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When two drops collide, they may either exhibit complete coalescence or selectively
generate secondary drops, depending on their relative sizes and physical properties, as
dictated by a decisive interplay of the viscous, capillary, inertia and gravity effects.
Electric field, however, is known to induce distinctive alterations in the topological
evolution of the interfaces post-collision, by influencing a two-way nonlinear coupling
between electro-mechanics and fluid flow as mediated by a topologically intriguing
interfacial deformation. While prior studies primarily focused on the viscous-dominated
regime of the resulting electro-coalescence dynamics, several non-intuitive features of
the underlying morpho-dynamic evolution over the intertio-capillary regime have thus
far remained unaddressed. In this study, we computationally investigate electrically
modulated coalescence dynamics along with secondary drop formation mechanisms in
the inertio-capillary regime, probing the interactions of two unequal-sized drops subjected
to a uniform electric field. Our results bring out an explicit mapping between the
observed topological evolution as a function of the respective initial sizes of the parent
drops as well as their pertinent electro-physical property ratios. These findings establish
electric-field-mediated exclusive controllability of the observed topological features, as
well as the critical conditions leading to the transition from partial to complete coalescence
phenomena. In a coalescence cascade, an electric field is further shown to orchestrate
the numbers of successive stages of coalescence before complete collapse. However, an
increase of the numbers of cascade stages with the electric field strength and parent
droplet size ratio is non-perpetual, and the same is demonstrated to continue until only a
threshold number of cascade stages is reached. These illustrations offer significant insights
into leveraging the interplay of electrical, inertial and capillary-driven interactions for
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controllable drop manipulation via multi-drop interactions for a variety of applications
ranging from chemical processing to emulsion technology.

Key words: drops

1. Introduction

Drop–drop coalescence is fundamentally a surface-tension-driven phenomenon, leading
to the merging of two control mass systems into a single unit to minimize the total
surface energy. From the early development of the subject, the dynamics of coalescence
at drop–drop interfaces or drop–pool interfaces has been widely studied, in an effort to
explain a plethora of natural phenomena such as the formation of mist, size variations
of rain droplets in the atmosphere and fusion of raindrops into water reservoirs (Qian &
Law 1997; Blanchette & Bigioni 2009; Tang, Zhang & Law 2012). In more recent years,
there has been a growing interest in investigating the interactive dynamics of droplet arrays
in engineered devices for manipulating various chemical and biological processes (Anna
2016; Sánchez Barea, Lee & Kang 2019; Panigrahi et al. 2021; Santra & Chakraborty
2021). Furthermore, in industrial applications like ink-jet printing, surface coating and
fuel injectors, frequent events of drop collision appear inevitable (Aarts et al. 2005; Tang
et al. 2012; Peng et al. 2018; Varma et al. 2020). In oil–water segregation processes, for
instance, the coalescence of water droplets is preferred for efficient sedimentation of the
dispersed phase (Kavehpour 2015).

Drop–drop or drop–interface collisions may lead to a variety of events such as
coalescence, bouncing or splash, depending on the approaching speed and separation
distance (Rein 1993; Qian & Law 1997; Tang et al. 2012; Cong et al. 2020). Experimental
studies (Qian & Law 1997; Tang et al. 2012) conducted for various drop-impact conditions
show that a low relative speed and small separation distance are the most favourable
condition for coalescence. In contrast, a higher speed can lead to either drop bouncing or
splash. As the drop approaches a liquid surface, the medial thin film gradually drains out,
and a tiny connecting bridge (or neck) forms. If the capillary bridge radius (R̄n) turns out to
be much larger than the viscous length scale, i.e. R̄n � l̄v = μ2/ργ , the local flow remains
effectively inviscid, as appropriate for various biological and chemical processes involving
aqueous systems (where l̄v ∼ 10 nm). In a significant development, Eggers, Lister & Stone
(1999) mathematically modelled the bridge evolution in the inertio-capillary regime by
scaling the interfacial stress with the inertial stress and inferred that the bridge growth
follows a power law: R̄n ∝ t̄1/2, wherein R̄n and t̄ are bridge radius and time in dimensional
forms, respectively. While subsequent experimental and numerical studies conducted
by several researchers (Menchaca-Rocha et al. 2001; Duchemin, Eggers & Josserand
2003; Wu, Cubaud & Ho 2004) seemed to agree well with this scaling law, deviations
were observed in the later experiments of Thoroddsen, Takehara & Etoh (2005). These
discrepancies primarily stemmed from the finite radius of the inertial bridge as opposed
to the considerations of more idealized theories, which may, in principle, be rationalized
by delving into the detailed dynamics of the relatively less addressed inertio-capillary
regime. For instance, expansion of the capillary bridge may further facilitate mass transfer
between the liquid bodies and initiate the droplet merging process. In addition, this may
also set in partial coalescence, generating a secondary drop in the process that may exhibit
self-similar dynamic events at different stages, which is commonly termed a coalescence
cascade. As demonstrated by Chen, Mandre & Feng (2006) and later by Ray, Biswas
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Electric-field-mediated morpho-dynamic evolution

& Sharma (2010), partial coalescence mostly occurs in an inertio-capillary-dominated
regime, while the dominance of viscous and gravity effects mostly results in complete
coalescence.

The physics of morpho-dynamic evolution during partial or complete coalescence is
known to be intriguing. From fundamental theoretical considerations, the capillary wave
generated at the liquid bridge is likely to traverse over the drop surface and bring in
topological modulations by giving rise to cylindrically shaped topologies. Earlier, it was
argued that the secondary drop pinches due to the Rayleigh–Plateau instability of this
long cylindrical structure. Later on, Blanchette & Bigioni (2006) analysed this problem
numerically and showed that the vertical and horizontal collapse rates determine the
pinch-off as the cylindrical structures are not long enough to result in Rayleigh–Plateau
instability. These findings revealed that the resulting morpho-dynamics over local scales
may turn out to be significantly more involved as compared to the insights provided by
the classically postulated instability mechanisms. The situation gets significantly more
involved when partial coalescence occurs. While partial coalescence is more common in
drop–pool interactions, unequal drop size is also a strong influencing factor favouring the
same during multi-drop interactions. Zhang, Li & Thoroddsen (2009) offered experimental
insights into the process and obtained a threshold diameter ratio of the parent drops to be
around 1.55, beyond which pinch-off phenomena occur. They also observed a monotonic
increase in the said ratio with an increase in the fluid viscosities. More intensive analysis
of the mechanism responsible for the transition from partial to complete coalescence and
the role of viscous effect therein has been put forward in the recent work of Deka et al.
(2019).

While the studies mentioned above offered comprehensive mechanistic insights into the
drop coalescence phenomenon, the role of external fields, such as electric field (Johnson
1968; Higuera 2006; Welch & Biswas 2007; Karyappa, Naik & Thaokar 2016; Mandal,
Bandopadhyay & Chakraborty 2016b; Poddar et al. 2019; Vlahovska 2019; Behera &
Chakraborty 2020; Su et al. 2020; Kahali, Santra & Chakraborty 2022), magnetic field
(Kahkeshani & Di Carlo 2016; Rowghanian, Meinhart & Campàs 2016) and acoustic
field (Simon et al. 2015), in the same necessitates further advancements of theoretical
understanding via providing complementary multi-physics perspectives. Such insights
appear to be imperative for advancing several emerging industrial and microfluidic
applications in which external-field-mediated coalescence may be utilized for the desired
functionalities such as efficient demulsification (Eow et al. 2001; Ahn et al. 2006; Mhatre
et al. 2015b; Nie et al. 2021). Fundamentally, electric-field-mediated effects may induce
dielectrophoretic motion of drops to enhance their speed of approach as a precursor to
coalescence. However, such dielectrophoresis-based considerations alone appear to be
inadequate in providing conclusive evidence as to whether influences of external field
would lead to sufficient conditions for coalescence or not, and conflicting observations
in this regard have been reported in the literature as well (Bird et al. 2009; Ristenpart
et al. 2009). Previous works, nevertheless, suggested that the angles of the Taylor cones
formed at the contact region may provide a critical influence on the consequent dynamic
outcome, irrespective of the nature of the external field. By conducting experimental and
theoretical analysis for a drop–air system, Bird et al. (2009) demonstrated that the drops
may not coalesce for a cone angle above 30.8°. However, one recent experimental study
by Anand et al. (2019) revealed that the critical cone angle can be as small as 19° for
oil-based emulsions. These studies duly evidenced the importance of the initial separation
distance, typically conditions in which the parent drops deform to an extent to obviate their
coalescence.
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Electrically mediated drop coalescence (or electro-coalescence) has emerged as a
very active research topic in recent times, particularly keeping in purview its growing
technological importance and the associated unaddressed scientific questions. These
reported studies, however, were mostly restricted to the viscous-dominated regime
(Mousavichoubeh, Ghadiri & Shariaty-Niassar 2011; Mousavi, Ghadiri & Buckley 2014;
Mhatre et al. 2015b; Santra, Mandal & Chakraborty 2018; Santra et al. 2019; Li et al.
2020; Das, Dalal & Tomar 2021). Garzon, Gray & Sethian (2018), in a more recent
study, examined the partial coalescence phenomena of drops subjected to an electric
field and analysed the consequent alterations in the size of the satellite drop. However,
their model did not discuss viscous effects nor the role of the sizes of the parent drops.
Accordingly, several open questions on the electrically mediated coalescence of drops
remain unaddressed, in particular, the interplay of various forces governing the resulting
morpho-dynamics in the inertio-capillary regime. Here, we analyse the coalescence
dynamics of unequal-sized drop pairs in the inertio-capillary-dominated flow regime by
applying a uniform electric field. In particular, we aim to bring out the role of the relative
physical properties of the different phases in the consequent morphological evolution,
including the cascaded formation of secondary drops and the associated pinch-off
phenomena. These results offer the multi-physics perspective of coalescence dynamics
under the interplay of electrodynamics and hydrodynamics over interfacial scales, with
particular reference to the critical conditions leading to the onset of various unstable modes
that have hitherto remained unexplored.

2. Problem description

We consider two closely placed drops of identical fluids that are about to coalesce,
suspended in a carrier fluid, as shown in figure 1(a). The diameters of the mother drop and
father drop are D̄m and D̄f , respectively, and the parent ratio is defined by β = D̄f /D̄m.
Material properties of the drop phase, i.e. density, viscosity, electrical permittivity and
electrical conductivity, are denoted by ρ̄i, μ̄i, ε̄i and σ̄i, respectively, whereas the same
properties of the suspending medium are denoted by ρ̄e, μ̄e, ε̄e and σ̄e, respectively.
The overbar is used to denote dimensional quantities. A uniform electric field (Ē0)
is applied along the vertically upward direction. The gravitational field (ḡ) as well as
dielectrophoretic interactions favour drop collision. The initial gap between the drops is
kept negligibly small (�h̄ ≈ 0.01D̄m), allowing the completion of film drainage within
a short time. Because of an extremely slow approach speed, the coalescence dynamics
remains unaffected due to additional artefacts on account of drop impact.

Figure 1(b) schematically illustrates a typical liquid bridge created after the successful
drainage of the film. We investigate in detail the morphological evolution post-drainage via
using a numerical approach, as detailed subsequently. We use an axisymmetric coordinate
system (r, z) to study the transport processes in the domain having a sectional height of
24D̄m and width of 12D̄m. The computational domain is taken to be sufficiently large to
avoid the boundary effects on the drop dynamics. The left side of the domain boundary
is subjected to symmetric boundary conditions for the velocity and the electric potential.
Neumann boundary condition for the velocity is imposed on the other sides of the domain.
For electric potential, ϕ̄ = −Ē0z̄ is applied at all the boundaries except for the symmetry
axis, where ϕ̄ and Ē0 are the electric potential and magnitude of the applied electric
field, respectively. The velocity field ū(ūr, ūz) created due to the combined action of the
capillary wave and the electric field is governed by continuity and equivalent one-fluid
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Figure 1. (a) Schematic of the axisymmetric computational domain used to study the coalescence of drop
pairs. A mother drop of diameter D̄m is kept near a father drop of size D̄f with a gap of 0.01D̄m between them.
An external electric field Ē0 = −∇̄ϕ̄ is applied along the vertically upward direction. (b) Structure of the neck
obtained at time t = 0.03.

Navier–Stokes equation:

∇̄ · ū = 0, (2.1)

ρ̄(c)
(

∂ū
∂ t̄

+ ū · ∇̄ū
)

= −∇̄p̄ + ∇̄ · τ̄ v + γ κ̄nδ̄s + F̄ E + ρ̄(c)ḡ. (2.2)

Here p̄ denotes the pressure and τ̄ v = μ̄(c){∇̄ū + (∇̄ū)T} is the viscous stress tensor.
Using a one-fluid formulation the material properties like density ρ̄(c) and viscosity μ̄(c)
are interpolated as ρ̄ = cρ̄i + (1 − c)ρ̄e and μ̄ = cμ̄i + (1 − c)μ̄e, respectively, where
the volume fraction c(r, z, t) is a spatio-temporal variable, which satisfies the advection
equation that is reminiscent of the kinematic boundary condition:

∂c
∂ t̄

+ ū · ∇̄c = 0. (2.3)

Here, c takes the value of 1 and 0 for the drop phase and carrier phase, respectively.
In (2.2), γ κ̄nδ̄s represents the volumetric surface tension force, where γ is the interfacial

tension between the two phases, κ̄ is the curvature, n is the normal unit vector and δ̄s is
the smoothed Dirac delta function. Likewise, the electric force is expressed in terms of its
volumetric density, F̄E (Melcher & Taylor 1969):

F̄ E = ∇̄ · τ̄M = q̄vĒ − 1
2 Ē2∇̄ε̄(c), (2.4)

where τ̄M = ε̄(c)(ĒĒ − Ē2I/2) is the Maxwell stress tensor, Ē is the electric field
and q̄v is the charge per unit volume. The first term on the right-hand side of (2.4)
represents the Columbic force and the second term represents the dielectrophoretic force.
The electrostriction effects are not considered to contribute towards the volumetric force,
assuming homogenous and incompressible bulk fluid phase (Melcher & Taylor 1969;
Hua, Lim & Wang 2008). The interfacial stress, essentially a combined consequence of
the viscous, capillary and Maxwell stresses, needs to satisfy the following force balance
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constraint:
||n · τ̄ v|| + ||n · τ̄M|| = ||n · p̄I|| + γ κ̄, (2.5)

where || || represents the jump of a physical quantity at the interface.
The electrical stresses may be estimated by noting that the electric field is

divergence-free (∇̄ × Ē = 0), and thus can be expressed in the form of electric potential,
Ē = −∇̄ϕ̄. It further satisfies the Gauss law, so that

∇̄ · (ε̄(c)Ē) = q̄v. (2.6)

Expressed in terms of the electrical potential, it reads −∇̄ · (ε̄(c)∇̄ϕ̄) = q̄v . Transport
of the volumetric charge q̄v is governed by the Ohmic charge conduction, surface
charge convection and transient charge relaxation. The resulting transport equation reads
(Melcher & Taylor 1969)

∂ q̄v

∂ t̄
+ ∇̄ · (q̄vū) + ∇̄ · J̄ = 0, (2.7)

where J̄ = (σ̄ Ē) is the current density and ∇̄ · J̄ delineates the Ohmic conduction.
In several physical systems of interest including vegetable oils, alcohols, crude oils and

several coolants used in industrial practice (Corach, Sorichetti & Romano 2012; Valantina
et al. 2016; Charin et al. 2017; Coronado & Wenske 2018; Lu et al. 2020), the charge
relaxation time (the same for the droplet phase and the outer phase scale as ε̄i/σ̄i and
ε̄e/σ̄e, respectively) turns out to be much shorter than the characteristic time scale of
the dynamical evolution of the physical system. This results in virtually instantaneous
accumulation of the charges at the interface and a charge-free bulk, rendering the
applicability of the leaky-dielectric model. Thus, the Ohmic conduction primarily dictates
the charge distribution at the interface (Taylor 1966; Esmaeeli & Behjatian 2020).
Full-scale numerical solutions of (2.6) and (2.7) for short charge relaxation times justify
this proposition.

The diameter of the mother drop (D̄m) appears be a decisive length scale that influences
the initial condition for the dynamical evolution of the droplet couple over space and
time. Considering our focal attention on the inertio-capillary regime, the key time scale

associated with this spatio-temporal evolution may be estimated as t̄γ =
√

ρ̄mD̄3
m/γ (Ray

et al. 2010), where ρ̄m = (ρ̄i + ρ̄e)/2 is the mean density of the two phases. This time
scale follows from the interplay of the inertia and the capillary forces over the dynamical

regime addressed herein. Consequently, the characteristic velocity scale (

√
γ /ρ̄mD̄m) may

be obtained by balancing the inertial stress with the capillary stress γ /D̄m.
The pressure and the viscous stresses may be normalized by the capillary pressure

γ /D̄m, considering the decisive implication of the interfacial tension for the morphological
evolution of the physical system. The extent of the influence of the viscous interactions
may be assessed from the ratio of the viscous time scale t̄μ = μ̄D̄m/γ to the
inertio-capillary time scale, known as the Ohneseorge number Oh (= t̄μ/t̄γ ). The
Ohneseorge numbers for the carrier and the droplet phases may be written as Ohe =
μ̄e/

√
ρ̄mD̄mγ and Ohi = μ̄i/

√
ρ̄mD̄mγ = λOhe, respectively. The classical hydrodynamic

parameter, namely the Reynolds number, is related to the above as Re =
√

ρ̄mD̄mγ /μ̄ =
1/Oh. Over the inertio-capillary regime (Re � 1), the Ohneseorge numbers are limited
to (Ohi, Ohe) � 1. The relative strengths of the gravitational forces are governed by the
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Bond number Bo = (ρ̄i − ρ̄e)gD̄2
m/γ and the Atwood number A = (ρ̄i − ρ̄e)/(ρ̄i + ρ̄e).

Considering a silicon oil–air system as representative of a practical scenario, for an initial
drop of diameter of 0.8 mm, we obtain the dimensionless numbers mentioned above
as Bo ∼ O(10−1), A ∼ O(1), Ohe ∼ O(10−4) and Ohi ∼ O(10−2). In these obtained
parametric limits, the drop dynamical evolution appears to be supportive in favour of
realizing pinch-off, as suggested by previous studies (Zhang & Thoroddsen 2008; Ray
et al. 2010), albeit disregarding the influence of the electric field. Note that for ensuring
drop sphericity immediately before the collision, here we consider a drop size less than
the capillary length

√
γ /ρ̄ig.

The strength of the electric field is governed by the electric capillary number CaE =
D̄mε̄eĒ2

0/γ , which is the ratio of the electric stress (ε̄eĒ2
0) to the capillary pressure. For

practical systems of concern (representative physical data being presented subsequently),

the charge relaxation time-scales ε̄e/σ̄e, ε̄i/σ̄i �
√

ρ̄mD̄3
m/γ , so the effect of charge

relaxation and charge convection turns out to be inconsequential in terms of dictating the
overall charge transport.

Before presenting the simulation results, it is also prudent to put forward the most
imperative property ratios that may significantly influence the physics of the problem.
These are

ρr = ρ̄i

ρ̄e
, λ = μ̄i

μ̄e
, S = ε̄i

ε̄e
, R = σ̄ i

σ̄ e
. (2.8a–d)

The physical implications of these property ratios are discussed later.

3. Numerical method

Employing the reference scales as described in § 2, the normalized forms of (2.1), (2.2),
(2.6) and (2.7) are obtained as

∇ · u = 0,
ρ̄(c)
ρ̄m

(
∂u
∂t

+ u · ∇u
)

= −∇p + Ohe∇ ·
(

μ̄(c)
μ̄e

{∇u + (∇u)T}
)

+κnδs + CaEF E + ρ̄(c)
ρ̄m

Bo
2A

,

∇ ·
(

ε̄(c)
ε̄e

E
)

= qv,

(ε̄e/σ̄ e)

√
γ /ρ̄mD̄3

m{∂qv/∂t + ∇ · (qvu)} + ∇ · J = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

The dimensionless variables in these equations are denoted with the same symbols as the
corresponding dimensional ones introduced as earlier, albeit without any overbar for the
convenience of representation. To numerically implement the leaky dielectric paradigm,

the term (ε̄e/σ̄e)

√
γ /ρ̄mD̄3

m that appears in (3.1), is given with a very small value (�1).
The above set of coupled electrohydrodynamic (EHD) governing equations is solved

using a charge-conservative volume-of-fluid-based numerical scheme proposed by the
López-Herrera, Popinet & Herrada (2011). A quadtree-structured Cartesian mesh is used
to discretize the computational space with variables defined at the centroid of each control
volume, representing the average value of that variable in that particular cell. A piecewise
linear geometrical method is used for interface reconstruction, which is generalized
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for the quadtree spatial discretization. The second-order-accurate projection method
(Chorin 1968; Brown, Cortez & Minion 2001) is used to integrate the time-dependent
Navier–Stokes equation. A divergence-free velocity field is ensured at each time step
using the Hodge decomposition technique. Second-order-accurate staggered-in-time
discretization is followed to discretize the variables. The advection terms are computed
using a Bell–Collela–Glaz second-order upsplit upwind scheme (Bell, Colella & Glaz
1989). A multi-level solver is employed to solve the pressure Poisson’s equation. A
height-function-based curvature calculation and the continuum surface force theorem,
developed by Francois et al. (2006), is implemented to model the surface tension forces,
minimizing the spurious currents. All the schemes mentioned above are implemented in
the backbone of a incompressible flow solver, GERRIS, developed by Popinet (2003, 2009).
The electrical conductivity and the permittivity at the interfacial region are respectively
interpolated as σ̄ = cσ̄i + (1 − c)σ̄e and ε̄ = cε̄i + (1 − c)ε̄e.

We adopt both gradient-based and curvature-based adaptive mesh refinement (AMR),
similar to that used in the recent article of Behera & Chakraborty (2022), to discretize the
domain in an effort to minimize the computational cost significantly. The gradient-based
AMR is used to compute the volume fraction. At the fluid–fluid interface, the mesh is
refined up to level 11 (211 cells along the domain width), and the far-field refinement
level 6 (26 cells along the domain width) is used. Tripathi, Sahu & Govindarajan
(2015) previously obtained approximate results for complex drop shapes using a similar
mesh structure. As the present phenomenon encounters high curvatures during bridge
formation, later at the moment of pinch-off and entrapment of outer fluid globules,
the mesh is again refined to level 12 at the concerned regions using curvature-based
AMR. These special considerations of dynamic interfacial meshing are decisive towards
capturing the dynamically evolving complex topology in accordance with the focal theme
of investigation of this work, which is otherwise known to be a challenge for the
computational methods that do not intrinsically consider assured interfacial resolution over
scales compatible with the morphological features of the artificially smeared interface.
The above numerical scheme is benchmarked by comparing the present results with
previously established experimental and numerical results prior to investigating the present
problem statement (refer to § 3.1 for detailed discussion). The grid convergence test is also
performed, which is provided in Appendix A for convenience. It is worth mentioning that
for all the computational results presented herein, the drops are initially separated by a
maximum of one or two simulation cells for rapid film drainage.

3.1. Validation of numerical method
In figure 2, we compare our simulated coalescence events with the reported experimental
results of Zhang et al. (2009). In their experiments, two vertically aligned water drops with
parent ratio β = D̄f /D̄m = 2.72 are allowed to collide in an air medium in the absence of
external field (CaE = 0) with a negligible approaching velocity. From their given data,
the dimensionless parameters are obtained as Ohi = 0.0058, Ohe = 0.00011, Bo = 0.092
and A = 0.997. By comparing the drop contours at different times, it is confirmed that
our numerical model predicts the progress of coalescence and pinch-off phenomena very
well. The accuracy of the present numerical method is further examined by comparing the
size of the daughter drop. From the present study, the diameter of the daughter droplet
(or the generated droplet) is found to be ≈0.52D̄m which is approximately the same as
the experimentally reported value of 0.48D̄m. Note that Zhang et al. (2009), in their
experiments, considered one supported drop (the bottom one) on a nozzle. The upper
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(e)(b)(a) (c) (d ) ( f )

Figure 2. Advancement of coalescence of water droplets with time for β = 2.72, CaE = 0, Bo = 0.092,
Ohi = 0.0058, Ohe = 0.00011 and A = 0.997. The upper panel shows the experimental results of Zhang et al.
(2009) and the lower panel represents the present numerical results. The snapshots are taken at dimensional
time (a) 0 ms, (b) 0.27 ms, (c) 0.67 ms, (d) 0.93 ms, (e) 1.2 ms and ( f ) 1.8 ms.

–3 –2 –1 0 1 2 3

x

–1

0

1

y

t = 0

t =30
E

Figure 3. Interaction of two equal-sized droplets in uniform electric field for CaE = 2, Ohi = Ohe = 4, Bo = 0
and A = 0. The solid lines represent the numerical results of Baygents et al. (1998) and the circles represent our
numerical results.

drop (the smaller one) was allowed to fall on it from a glass needle, for studying the
satellite-drop formation in the coalescence event. They observed that pinch-off typically
occurred much before the capillary wave propagation could reach the bottom nozzle. Thus,
the presence of the bottom nozzle was inconsequential towards dictating the coalescence
dynamics. Hence, two freely suspended drops in air could alternatively replicate the
physical features of their experiments as well, as evidenced from figure 2.

In an effort to establish the efficacy of our numerical approach in the scenarios where
EHD interactions are present as well, we next present the interaction between two neutrally
buoyant (Bo = 0 and A = 0) equal-sized drops in a uniform electric field, as shown
in figure 3. In this study, the present results are compared with a reported numerical
model of Baygents et al. (1998), where the parameters used for simulation were R = 2,
S = 8, λ= 1 and CaE = 2. They adhered to the Stokes flow limit by taking the Reynolds
number Re(= ρ̄eD̄2

mε̄eĒ2
0/μ̄

2
e) � 1. Since Ohe = √

CaE/Re, the representative choices of
CaE = 2 and Re = 0.125 yielded Ohe = 4, conforming to the domain of applicability of our
framework. From figure 3, it is evident that the numerically obtained shape and motion of
the drop couple, as obtained from the present study, agree well with the previous findings
of Baygents et al. (1998).
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4. The physics of topological bifurcations

4.1. Dynamical evolution without electric field
One of the primary hydrodynamic features, even without the action of an electric field,
is the realm of two-drop interaction in the presence of fluid flow, which turns out to be
significantly more involved as compared with the corresponding single-drop dynamics. On
first physical contact as a prelude to possible coalescence, a liquid bridge connecting the
two drops (herein termed as the ‘neck’) is formed. The interfacial tension tries to minimize
the contact area during this course, so that the neck gradually widens. This results in liquid
motion from the mother drop towards the father drop. At the onset of merging of the two
drops, the curvature of the neck remains very high. As the neck attempts to expand, it
generates a strong capillary wave, which during its propagation towards the ends of the
drops, brings in shape distortions of the same, as shown in figure 2. Because of the size
disparity between the parent drops (the mother drop is considered to be much smaller
than the father drop), the capillary wave converges at the apex of the mother drop quite
early, inducing a vertically upward capillary pull. This force is essentially a function of the
initial neck curvature, which in turn is a function of the parent ratio, β (Deka et al. 2019).
Increase in the neck curvature intensifies the capillary wave, strengthening the upward
capillary pull that results in longer protrusions at the apex. The upward capillary pull,
however, is resisted by the viscous effects and gravity.

For high Oh (referring to systems where either drop viscosity or outer fluid viscosity
is high), the loss in capillary wave energy through viscous dissipation may be substantial
(Blanchette & Bigioni 2006). Thus, only a small fraction of the capillary momentum may
be available at the top, weakening the net upward pull to an extent to preclude pinch-off.
The gravitational force, which acts in the downward direction, is directly proportional to
the specific weight of the fluid. For high Bo, thus, the capillary pull may not be strong
enough to carry the fluid to a substantial height. In this case, vertical collapse may occur
as against pinch-off. However, if the capillary-wave-induced upward pull overcomes the
viscous- and the gravity-induced resistances, a cylindrical protrusion forms at the apex,
as shown in figure 2(e). After achieving a threshold height, when the curvature at the
peak of the cylindrical structure becomes sufficiently large, the same results in vertical
downward pull (or vertical collapse) at the apex and a concomitant horizontal inward pull
(or horizontal collapse) at the neck. Hydrodynamically driven pinch-off, thus, may emerge
to be a competing consequence between the vertical and the horizontal collapse. If the
vertical collapse prevails, pinch-off does not occur and vice versa (Blanchette & Bigioni
2006).

4.2. Effect of electric field
Subjected to an electric field, instant charging of the drops occurs owing to the
discontinuity in the relevant electrical properties at the interface. For R/S > 1, the upper
face of a drop holds positive charge, whereas the lower face holds negative charge. A
reverse charge distribution pattern can be observed for R/S < 1 (Salipante & Vlahovska
2010; Mandal et al. 2018). These distinctive scenarios, accordingly, alter the electrical
stresses to an extent that results in concomitant variations in the viscous and the capillary
stresses, so as to realize a dynamic force balance at the interface. Thus, the contrast in
the relevant electro-physical properties plays the most non-intuitive role in altering the
dynamic force balance and orchestrating topological alterations under electrical forcing.
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Figure 4. Coalescence outcomes for (a) CaE = 0 and (b) CaE = 0.1. The other parameters considered are
β = 1.6, R = 10, S = 2.3, Ohi = 0.005, Ohe = 0.0002, Bo = 0.32 and A = 0.998. (c) Schematic describing key
forces acting at the top and the geometrical features during capillary pulling.

To highlight some key distinctive features of drop–drop coalescence with and without
electric fields, we portray the drop contour evolution for CaE = 0 and CaE = 0.1 in
figure 4(a) and 4(b), respectively, considering parent ratio β = 1.6, electro-physical
parameters (R, S) = (10, 2.3) and drop-side Ohnesorge number Ohi = 0.005. In order
to physically relate the above with an experimentally realizable system, we consider
silicone oil (ρ̄i ∼ 920 kg m−3, μ̄i/ρ̄i ∼ 1 cSt, ε̄e ∼ 2.3ε0) as the drop phase and air
as the carrier phase with a surface tension value γ ∼ 20 mN m−1 (Ricci, Sangiorgi
& Passerone 1986). The conductivity of the air typically varies between O(10−15) and
O(10−14) S m−1 (Kamsali, Prasad & Datta 2009), whereas that of the silicone oil
varies between O(10−13) and O(10−11) S m−1 (Mhatre, Deshmukh & Thaokar 2015a;
Abbasi et al. 2019). For such property ranges, the charge relaxation time scale may
be comparable to the droplet coalescence time scale. However, in reported benchmark
experiments, the conductivity of the silicone oil could be significantly enhanced (up to
∼10−6 S m−1) by using specific doping techniques (Yin & Zhao 2002), manifesting
its leaky dielectric feature. Thus, for the silicone oil–air system, a wide range of
conductivity ratios (R) can be realized in practice, covering both perfect dielectric and
leaky dielectric behaviour. However, following a rich tradition of prior works (Ha & Yang
2000; Lac & Homsy 2007; Mählmann & Papageorgiou 2009; Poddar et al. 2018), we
considered R ∼ O(10) for our reported results We have verified that while higher orders of
magnitude of R indeed alter the quantitative results, the nature of physical forcing remains
unaltered for the entire physically plausible regime of the pertinent electrical properties.
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Figure 5. (a) Variation of drop apex position HT with time. (b) Demonstration of electric force acting on drop
and (c) electric field profile at t = 0.84. The parameters considered are β = 1.6, R = 10, S = 2.3, Ohi = 0.005,
Ohe = 0.0002, Bo = 0.32 and A = 0.998.

The values of the Bond number, Atwood number and outer-side Ohnesorge number are
taken as Bo = 0.32, A = 0.998 and Ohe = 0.0002 (obtained for drop diameter of 0.8 mm),
respectively, throughout this work, unless mentioned otherwise.

As shown in figure 4, the drop deformations for CaE = 0 and CaE = 0.1 are almost
similar up to t = 0.6. However, at t = 0.8 the drop shape for CaE = 0.1 appears
to be clearly more stretched. Eventually, significant topological variations start to
occur, leading to pinching of the daughter drop, whereas for CaE = 0, no such
phenomenon is observed over the same parametric space. Figure 4(c) shows the schematic
representation of various forces acting on the drop apex that dictates topological variation
during electric-field-mediated coalescence; the importance of these forces is discussed
elaborately in Appendix B.

The role of electric field in triggering a bifurcation to the pinch-off behaviour can be best
explained by analysing the vertical deformation of the drop with time. Figure 5(a) depicts
the transient variation in the apex position of the mother drop (HT ) in the computational
domain for CaE = 0 and 0.1, from which it can be observed that the variations due to
electric field are not significant until t = 0.5. However, beyond this temporal limit, HT
increases dramatically for CaE = 0.1, resulting in the appearance of a significantly longer
protrusion at t = 0.8. This delays the subsequent vertical collapse, leading to pinch-off.

The bifurcation from vertical collapse to pinch-off may be addressed from a mechanistic
point of view, by considering the geometrical space at top occupied by the northern half
of a polarized drop having originally a spherical shape. The jump ([·]) in the normal
component of the electric traction at the interface of the said entity can be derived as

n · [τM · n] = qS(En,i + En,e)

2
− (1 − S)

2
(En,iEn,e − E2

t,i), (4.1)

where qS (= En,e − SEn,i) is the surface charge density (Saville 1997) and En and Et
are the normal and tangential electric field components, respectively. The first term on
the right-hand side of (4.1) is the stress due to Coulombic force (τcoulomb, generated
due to interaction between surface charge and electric field) and the second term is the
stress generated due to dielectrophoretic force (τdiel, generated due to jump in electrical
permittivity at the interface). By appealing to the expressions of the electric and the
velocity field calculated by using Taylor’s leaky-dielectric model (1966) for the individual
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drops, the order of magnitude of the respective normalized stress components may be
estimated as τ̄coulomb/(γ /D̄m) ∼ CaE(9/2)(R − S)(R + 1)/(R + 2)2 and τ̄diel/(γ /D̄m) ∼
CaE(9/2)R(S − 1)/(R + 2)2. Note that the Coulombic stress vanishes for R = S, which
is the condition for a perfectly dielectric fluid system having zero net charge (Mandal,
Bandopadhyay & Chakraborty 2016a). Similarly, the dielectrophoretic stress vanishes
when there is no permittivity jump across the phases, i.e. S = 1.

The electric stress induces flow in the drop vicinity, the jump in which induces
hydrodynamic stress at the interface (τEHD), where τ̄EHD/(γ /D̄m) ∼ (9

5 )CaE((R −
S)(3λ+ 2)/(R + 2)2(λ+ 1)). Thus, the total electrically induced stress created at the
apex, in its normalized form, scales as

τE = τ̄ coulomb + τ̄ diel + τ̄EHD

(γ /D̄m)
∼ CaE

⎧⎪⎨
⎪⎩

9
2

(R2 − S)

(R + 2)2︸ ︷︷ ︸
due to electric force

+ 9
5

(2 + 3λ)(R − S)

(1 + λ)(R + 2)2︸ ︷︷ ︸
due to EHD flow

⎫⎪⎬
⎪⎭

= 9
10

CaE
(5R2(λ+ 1) + 2R(3λ+ 2) − S(11λ+ 9))

(λ+ 1)(R + 2)2 . (4.2)

While the gravitational force and capillary pull always attempt to pull the apex
downwards and upwards, respectively (the corresponding normalized stresses respectively
read as τ̄g/(γ /D̄m) ∼ BoHTR2

n and τ̄γ /(γ /D̄m) ∼ 1/Rn, where Rn is the dimensionless
instantaneous neck radius as shown schematically in figure 4c), the electrically induced
traction at the top can preferentially act either upwards or downwards, depending on
the specific values of (R, S). Additionally, (4.2) suggests that there exists a critical
characteristic demarcating boundary line in the (R, S) phase space, along which the net
electric forcing effect turns out to be zero, recovering the hydrodynamically manipulative
limit. The equation of this critical characteristic line is found as

S = R(5Rλ+ 5R + 6λ+ 4)/(11λ+ 9). (4.3)

For the property combination values cited herein, i.e. (R, S) = (10, 2.3), the electric
stress pulls the mother drop in the upward direction as suggested by the volumetric electric
force (F E) profile presented in figure 5(b) as well as the theoretically obtained sign of
τE from (4.2). As the capillary pull gradually stretches the mother drop, the charges are
pushed towards the apex region. With the continuation of vertical stretching, the lateral
width of the protrusion gradually decreases, thereby decreasing the local surface area at
the apex. Thus, the surface charge density qS becomes locally high. Since qS = (Ee −
SEi) · n, increase in the charge density amplifies the jump in the normal component of the
electric field across the interface, which results in a significantly high localized electric
field distribution at the top surface as compared with the bottom, as shown in figure 5(c).
Consequently, the electric force (F E ∝ E2) becomes large at the top (as shown in figure 5b)
and, thus, produces strong upward stretching, aiding the capillary pull. Their cooperative
interplay, as further orchestrated by the simultaneous alteration in CaE and β, can result
in decisive dynamical bifurcations over preferential parametric spaces, as discussed in the
subsequent sections.

5. Influence of the key governing parameters

Since the capillary-driven interfacial motion and deformation are influenced by the
electric and viscous forces, pinch-off may be effectively governed by the parameters
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Figure 6. (a) Pinch-off and no pinch-off regimes in CaE–Ohi space for β = 2. Effect of drop-side Ohnesorge
number Ohi on the transient variation in (b) drop apex HT and (c) neck radius Rn for CaE = 0.1 and β = 2. The
other parameters considered are R = 10, S = 2.3, Ohe = 0.0002, Bo = 0.32 and A = 0.998.

CaE and Ohi. In figure 6(a), we have marked the no pinch-off and pinch-off regimes
in the CaE–Ohi parametric space for R = 10, S = 2.3 and β = 2. As can be noted, high
CaE creates a favourable condition for pinch-off, whereas high Ohi creates an adverse
condition. Accordingly, with the increase in Ohi, the critical (or minimum) value of CaE
required for pinch-off increases. To obtain a physical insight into the same, the effect of
Ohi on the vertical deformation is depicted in figure 6(b) for CaE = 0.1 and β = 2. For
large Ohnesorge number, the fraction of capillary energy lost through viscous dissipation
is more, as discussed earlier in § 4.1. Thus, the upward stretching induced by the combined
EHD–capillary pull is arrested, resulting in early vertical collapse. Moreover, the increase
in Ohi increases the local neck radius Rn, as illustrated in figure 6(c). As a result, the
pressure difference between the bridge and the father drop, i.e. �p = pneck − pfather ≈
1/Rn − 1/Hn − 1/β, decreases (where Hn is the axial length of the neck). This fall in
the neck pressure deaccelerates the neck-to-bulk flow drainage, resisting the horizontal
collapse. Consequently, while pinch-off is obtained for Ohi = 0.005 and 0.1, for Ohi = 0.02
the neck gradually starts to widen after certain initial thinning. The viscous resistance can
be overcome by enhancing the upward pull, which can be achieved by increasing the CaE
value, as demonstrated in figure 5(a).

In a purely hydrodynamic approach of overcoming the viscous resistance, maintaining a
parent ratio (β) higher than a threshold value is imperative (Zhang et al. 2009; Deka et al.
2019). This is attributed to the fact that the strength of the capillary pull depends on the
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Figure 7. Effect of drop-side Ohnesorge number Ohi on critical diameter ratio βc for different CaE. Other
parameters considered are R = 10, S = 2.3, Ohe = 0.0002, Bo = 0.32 and A = 0.998.

initial local curvature at the contact region (or neck), and thus depends on the diameter
ratio as described before in § 4.1. Increase in diameter ratio or equivalently increase in the
size of the father drop results in an increase in the neck curvature, as attributed to the higher
flatness of the father drop surface near the contact region and vice versa. Thus, there exists
a critical diameter ratio, below which the capillary wave may be weak enough to induce
sufficient upward stretching, resulting in early commencement of the vertical collapse to
an extent that pinch-off may not occur. In the absence of external forces, and for weak
gravitational forces (Bo � 1, i.e. when density difference is small), such a critical parent
ratio (βc) is typically a function of the Ohnesorge number only.

By offering an additional albeit inter-connected degree of freedom, here we show
that CaE can also be a major controlling parameter for βc, under electric-field-mediated
interactions. To identify the critical parent ratio under electric forcing for the previous
system, we perform simulations for different sets of (Ohi, CaE) by progressively varying
the value of β, as collated in figure 7. For all the values of CaE, βc is seen to rise
monotonically with an increase in Ohi. Note that in the absence of electric field (i.e. for
CaE = 0), our numerical results agree well with the experimental findings of Zhang et al.
(2009), delineating an increase in βc with increasing Ohi.

Two additional phenomena further feature under electric forcing. First, βc significantly
deviates towards a lower value. This is because of the fact that the coupled EHD–capillary
pull yields a much stronger upward stretching than for the capillary pull alone, as shown
earlier in figure 5(a). This obviates the need for a higher parent ratio as inevitable for a
pure hydrodynamic scenario. Second, the dependence of βc on Ohi becomes much less
consequential. For example, in the case of CaE = 0, βc varies from 1.55 to 4.6 (almost
2.9 times) on varying Ohi from 0.002 to 0.02, whereas the same variation in Ohi leads to
an increase in βc from 1.3 to 2.1 (almost 1.6 times) for CaE = 0.2. Using a power-law
curve-fitting model, we found that βc varies with Oh1.85

i for CaE = 0, whereas for
CaE = 0.1 and 0.2, βc varies with Oh1.48

i and Oh1.34
i , respectively. It is worth mentioning

that in the reported experimental studies, albeit without involving electric-field-mediated
effects, the lowest possible value of βc reported was 1.55 (Zhang et al. 2009), whereas the
same is found to be 1.3 in the present study, for CaE = 0.2 and Ohi = 0.002. For β < 1.3,
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Figure 8. Effect of electric capillary number CaE on (a) daughter drop size, (b) transient variation in drop
apex HT , (c) transient variation in neck radius Rn and (d) centreline velocity uz,c around the neck at t = 0.7. The
parameters considered are β = 2, R = 10, S = 2.3, Ohi = 0.005, Ohe = 0.0002, Bo = 0.32 and A = 0.998.

we observe stretching of the father drop owing to the convergence of capillary wave at the
tip of the same (the bottommost position), which prevents pinch-off. As is evident, the
viscous effects may still significantly influence the coalescence outcomes despite delving
into the intertio-capillary regime; hence, the potential (or inviscid) flow models (Garzon
et al. 2018) may not turn out to be adequate in predicting the various morphological
events with the envisaged quantitative accuracy. A concise accounting of this is outlined
in Appendix B.

5.1. Pinch-off modes and topology of secondary (or daughter) drop
Post-identification of the critical limit of parent ratio, we probe the effect of the electric
field on the daughter drop topology in the pinch-off regime. The electrical properties
are kept unchanged in the current section, i.e. R = 10 and S = 2.3, for consistency in the
discussion. Figure 8(a) illustrates the variation of daughter drop size (Dd) with CaE for
Ohi = 0.005 and β = 2. The drop contours for different CaE are compared at the onset
of pinch-off for better physical understanding. The size of the daughter drop shows an
increasing trend with increasing CaE. However, the increments are only prominent at the
initial rise in CaE. Beyond a certain CaE (≈0.1), negligible variations are observed.

We further analyse the transients in the drop apex position and neck radius for different
CaE values in figures 8(b) and 8(c), respectively. In the HT versus time characteristics
shown in figure 8(b), the continuous rise in HT refers to cylindrical structure formation
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CaE = 0 CaE = 0.1 CaE = 0.2EHD circulations

(b)(a) (c)

Figure 9. Flow patterns near the upper drop for (a–c) different CaE at t = 0.8. Other parameters considered
are β = 2, R = 10, S = 2.3, Ohi = 0.005, Ohe = 0.0002, Bo = 0.32 and A = 0.998.

which has been discussed earlier, whereas the fall in HT corresponds to the vertical
collapse phase. At the initial stage, a small increment in HT is observed with the increase
in CaE, attributed to the electric-field-induced deformations only (Saville 1997; Vlahovska
2019). However, after the collapse of the capillary wave at the apex, the coupled effect of
EHD–capillary pull comes into play, causing a noticeable increase in the elongation rate.
As the deviation in maximum apex position (d(Hmax

T )/d(CaE)) continuously increases
with increasing CaE, it signifies that the coupled EHD–capillary pull is much stronger than
the linear superposition of individual pulling forces. Looking at the augmented elongation
rate, one may argue that the upward stretching directs the flow upwards inside the drop,
causing an increase in the volume of the daughter drop. Whereas in reality, the flow
always directs towards the downward direction (shown in figure 9), discarding the above
possibility. In figure 8(d), on comparing the flow velocities along the centreline (uz,c),
we show that for CaE = 0.1, the fluid motion near the neck region is weaker as compared
with the case for CaE = 0. As the flow drainage is mainly generated due to the pressure
difference between the father drop and the mother drop, the alteration in the fluid velocity
must be attributed to this observed finding. Comparing the results at t = 0.55 (during the
elongation phase), we observe that on increasing CaE, the pressure at the exit of the neck
decreases insignificantly (p = 1.75, 1.66 and 1.58 for CaE = 0, 0.1 and 0.2, respectively).
In contrast, at the neck entrance, the pressure falls considerably (p = 5.2, 4.4 and 3.9 for
CaE = 0, 0.1 and 0.2, respectively). The small pressure variations in the father drop may be
due to its diminutive shape modulation under weaker electric forcing, as shown previously
in figure 5(b). The above data show reduction in net pressure difference between neck inlet
and outlet, reflected in weaker flow rate. Furthermore, the vertical collapse rate decreases
with increasing CaE, as shown in figure 8(b). In conjunction, these phenomena resist the
downward flow, causing entrapment of more fluid within the mother drop. Thus, larger
daughter drops are produced.

Fundamentally, the normal electric stress is responsible for the above-mentioned
variations in drop deformation, while both the tangential and normal electric stress cause
alterations in the local flow field (Lac & Homsy 2007; Esmaeeli & Sharifi 2011; Lanauze,
Walker & Khair 2015; Behera & Chakraborty 2020). Figure 9 shows the flow patterns
for different CaE at t = 0.8, considering Ohi = 0.005 and β = 2. For CaE = 0, the flow
is unidirectional throughout the mother drop, whereas for CaE = 0.1 circulations (or
secondary flows) are observed. These circulations emerge to balance the tangential electric
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Figure 10. (a) Transient variation in drop apex position and (b) evolution of drop for CaE = 0.3. Other
parameters considered are β = 2, R = 10, S = 2.3, Ohi = 0.005, Ohe = 0.0002, Bo = 0.32 and A = 0.998.

stress at the interface. Although an increase in CaE strengthens the circulations, the flow
patterns in the neck remain mostly unaffected.

Even though the transient variation in drop apex looks qualitatively similar for all
CaE, for CaE = 0.2 the downward displacement of the apex is appreciably small. This
suggests that the electric stress, in this case, is comparable to the combined effect of
the downward capillary stress and gravitational stress, i.e. τE = τγ + τ g, at the onset
of the vertical collapse phase. Importantly, increasing CaE from 0 to 0.2 reverses the
direction of the outer flow from downward to upward, indicating that for τE � τγ + τg,
non-trivial interfacial deformations are most likely to be produced due to the strong electric
pulling and the shearing effect of outer flow (as inferred from the flow patterns shown in
figure 9 for CaE = 0.1 and 0.2). Accordingly, for CaE = 0.3, the apex rises greatly instead
of falling, as demonstrated in figure 10(a). Accordingly, the HT versus t characteristic
shown here exhibits a different profile from that shown previously. While for CaE ≤ 0.2
the typical neck collapses are seen to occur around t = 1.1 as shown earlier, the same
does not happen for CaE = 0.3, allowing prolonged elongation of the mother drop. At
t = 1.2, a thin jet emerges from the mother drop, resulting in tip streaming. Such tip
streaming is an electric-field-induced breakup mode reported in earlier numerical and
experimental studies (Herrada et al. 2012; Karyappa, Deshmukh & Thaokar 2014; Casas
et al. 2019; Gawande, Mayya & Thaokar 2020). Owing to substantial elongation, the
curvature at the top end becomes very high, resulting in high charge concentration at
the top, which is the reason behind this ejecting mode. Note that there is a slight fall
in the drop apex at t ≈ 1.2, which can be due to the instant fluid loss by tip streaming.
The overall length starts to increase for t > 1.5, as the mother drop continues to stretch.
With time, the downward capillary propagation eventually converges at the bottom of
the father drop, creating a similar EHD–capillary pull as shown earlier in the case of
the mother drop. At this point, the drop phase behaves as a single entity experiencing
tensile force, simultaneously from both ends. The effective capillary number in such a
scenario can be calculated as Caeff

E = ε̄eĒ2
0(D̄

3
m + D̄3

f )
1/3/γ = CaE(1 + β)1/3. For the

parent ratio of β = 2 as considered herein, the effective capillary number is calculated
as Caeff

E = 31/3CaE ≈ 0.43, which is larger than the critical limit required to induce
unstable elongations. Consequently, the instability grows as the elongation continues,
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Figure 11. (a) Pinch-off events for various pairs of β and CaE. (b) Coalescence time �t and (c) daughter
drop size as functions of β for different CaE. The parameters considered are R = 10, S = 2.3, Ohi = 0.005,
Ohe = 0.0002, Bo = 0.32 and A = 0.998.

finally leading to asymmetric breakup via end-pinching mode, resulting in the generation
of small droplets at both ends.

While β and CaE can influence pinch-off as well as the daughter drop size, a
comprehensive picture of the coalescence subjected to the variations in both can be
intriguing, as shown in figure 11(a). Remarkable alterations in the pinch-off modes can be
observed with an increase in CaE. For CaE ≤ 0.1, in all cases, a dimple (or crater) forms
on the father drop at the onset of pinch-off. Such pinch-off events have been observed
to be common in most of the previously reported studies (Blanchette & Bigioni 2009;
Ray et al. 2010; Garzon et al. 2018). Counterintuitively, the pinch-off mode shifts to a
cusping-like mode when CaE is increased to 0.2. In such cases, the top portion of the
father drop elevates, transforming into conical ends prior to neck collapse. Note that
the angle of these conical ends increases with increasing β. Another peculiarity can be
found in terms of the time taken for pinch-off (�t) (see figure 11b). For the former
pinch-offs (i.e. for CaE ≤ 0.1), while �t ≈ 0.87 for all β, for the cusping modes �t is much
longer and monotonically increases with β. Following the above discussion, it can be said
that the mechanism responsible for cusping is similar to that inducing end-pinching (see
figure 10), except that the latter is most likely to occur at a much higher CaE as it requires
substantial elongations in the father drop also, as discussed before. From figure 11(a),
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Figure 12. (a) Temporal variation of the drop apex (HT ) under electric field for different electrical properties
(R, S). The insets display the outcomes of coalescence for different (R, S). The HT versus t curves marked
with crosses indicate non-pinching modes. The parameters considered are β = 2, CaE = 0.2, Ohi = 0.01,
Ohe = 0.0002, Bo = 0.32 and A = 0.998. (b) Location of the systems considered in (a) with reference to the
zero net force line in the (R, S) phase plot.

one important feature that can be noted is that, for higher β (e.g. β = 5), increase in CaE
produces noticeably longer daughter drops, which are highly unstable and may undergo
capillary-driven breakup before or after pinch-off.

Figure 11(c) depicts the effect of β on non-dimensional daughter drop size (D̄d/D̄m)

for different CaE. For all CaE, increase in β leads to bigger daughter droplets. Deka
et al. (2019), in their numerical analysis, demonstrated that increase in β lessens the
neck expansion, thus decreasing the fluid drainage to the father drop. To this, as we have
already discussed, increase in CaE further restricts the flow rate and thus increases D̄d/D̄m.
However, altering CaE from 0.1 to 0.2 leads to negligible variation in D̄d/D̄m. This is
for the reason that, as compared with CaE = 0 and 0.1, the time needed for pinch-off for
CaE = 0.2 is much longer. Accordingly, more fluid is transported to the father drop, even
if the flow rate is low.

5.2. Influence of the relative electrical properties
As the electric stress is characterized by (R, S), it is imperative to investigate the effect
of these parameters on the observed coalescence dynamics. In figure 12(a), we delineate
the coalescence dynamics in terms of the temporal variation of the drop apex for different
sets of electrical properties (R, S) and its consequence for pinch-off, considering β = 2,
CaE = 0.2 and Ohi = 0.01. It is pointed out that as the deviation of R/S from unity
increases, the temporal characteristic of HT shows higher deviation from the same obtained
for CaE = 0. For R/S > 1, while this deviation in HT is positive, for R/S < 1 it is negative.
For the systems (R, S) = (5, 2.3), (R, S) = (10, 2.3) and (R, S) = (25, 2.3), using (4.2),
the values of normal electric stresses (τE) at the apex are obtained as 0.476, 0.668 and
0.80, respectively. This explains the rise in HT with increasing R/S. Conversely, for cases
with R/S < 1, decrease in R/S causes larger reduction in HT as the dimensionless τE for
(R, S) = (0.5, 2) and (R, S) = (0.5, 4) are found to be 0.511 and −1.144, respectively. By
looking into the locations of these said systems in phase space with reference to the zero
net force line (see (4.3)), as depicted in figure 12(b), it can be inferred that as we move
far from the said line, the electric-field-induced modulations become more important.
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Figure 13. (a) The CaE–β phase diagram indicating no-pinch-off and pinch-off regimes. (b) Effect of electric
capillary number CaE on daughter drop size for β = 4. The inset compares the shapes of the drop for different
CaE at �t = 0.75. The parameters considered are R = 0.5, S = 2, Ohi = 0.01, Ohe = 0.0002, Bo = 0.32 and
A = 0.998.

The sign and the relative magnitude of the various electric stresses that define the resulting
interplay have already been discussed in § 4.

From the insets provided in figure 12(a), it can be observed that for the considered
parameters, the systems with R/S > 1 exhibit pinch-off, unlike for the case without electric
field (non-pinching modes are marked with a cross). For (R, S) = (5, 2.3), while the
daughter drop is close to spherical shape, for (R, S) = (25, 2.3), pinch-off generates a
long drop with a tail-like structure. This tail eventually becomes detached and breaks
into tiny droplets as shown in the inset. In figure 11(a), we have presented a similar
daughter drop topology for lower R/S values (i.e. R = 10 and S = 2.3) and higher values
of β. A comparison between figures 11(a) and 12(a) signifies that EHD–capillary pulls of
comparable magnitude, creating long unstable daughter droplets, can be generated even
for lower values of β, by increasing R/S.

For the cases with R/S < 1, no pinch-offs are obtained (marked with a cross), owing to
weak upward pull. In fact, the system (R, S) = (0.5, 4) exhibits complete coalescence. For
this system, the electric stress significantly suppresses the capillary pull, not allowing the
apex to move upwards. As a result, the mother drop entirely merges with the father drop
within a much shorter time (at t ≈ 0.8) without showing any sign of partial coalescence.
The drop evolution leading to complete coalescence is provided in the next section while
discussing the coalescence cascade.

The electric-field-mediated coalescence for the cases of R/S < 1 is elucidated in more
detail in figure 13, considering the system (R, S) = (0.5, 2) and Ohi = 0.01. Figure 13(a)
depicts the phase diagram in CaE–β parametric space demarking the pinch-off regimes.
This demonstrates that the increase in CaE remarkably increases the minimum (or critical)
value of the parent ratio (βc) required for pinch-off, owing to the additional capillary
energy required for overcoming the effect of electrically induced perturbation. This
qualitative relation between βc and CaE is opposite to that obtained for R/S > 1, where
βc is directly proportional to the negative exponent of CaE. Consequently, on increasing
CaE, while for R/S > 1, βc tends to unity (see figure 7), for R/S < 1, βc can deviate up to
O(10), where the drop–drop system can be typically considered as a drop–pool system. It
is worth mentioning that an increase in Ohi can further increase βc by providing higher
viscous resistance to the capillary pull.
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Figure 14. Coalescence cascade of drops for parent ratio β = 1.6 in the absence of electric field. The
parameters considered are Ohi = 0.005, Ohe = 0.0002, Bo = 0.32 and A = 0.998. The panels capturing the
occurrence of pinch-off are marked with dashed lines in red colour for better visualization.

Figure 13(b) shows the effect of CaE on the non-dimensional daughter drop size
(D̄d/D̄m) in the pinch-off regime for β = 4. Unlike the case of R/S > 1, here we obtain
a decrease in D̄d/D̄m with an increase in CaE. As the downward electric pull lowers
the maximum limit of the drop apex, it causes an early vertical collapse, as shown in
figure 12. Moreover, on analysing the contours at t = 0.75 (during the vertical collapse
phase), we observe that the increase in CaE results in wider necks, as opposed to the
thinner necks obtained for the case of R/S > 1. As the neck becomes wider, the local
pressure (pneck) reduces as discussed before, resulting in slower horizontal collapse. For
example, for CaE = 0, 0.1 and 0.2, pinch-off occurs at �t = 0.86, 0.9 and 0.96, respectively.
The augmented cross-sectional area of the neck and higher pre-pinch-off time enhance the
fluid displacement from the mother drop, leading to reduction in D̄d/D̄m.

5.3. Coalescence cascade
The smaller drops (or daughter drops) generated from partial coalescence fall onto the
bigger drop to initiate a self-similar coalescence event. This process may continue several
times until the formation of a single entity, thus generally termed as a coalescence cascade.
Here we compare the solely capillary-driven coalescence cascade (when CaE = 0) with the
electrically mediated one considering R/S > 1 and R/S < 1.

Figure 14 depicts the results for CaE = 0, β = 1.6 and Ohi = 0.005. In this case, the first
pinch-off does not occur, and the neck starts to widen again, similar to that observed in the
initial stage. This initiates the second-stage coalescence, where the capillary wave deforms
the drop again into a cylindrical protrusion, followed by the vertical collapse phase.
Interestingly, the second pinch-off successfully takes place, generating a droplet of size
0.19. Similar mid-stage pinch-off modes were previously reported by Zhang et al. (2009),
which can be attributed to the fact that in the second stage, the attached daughter drop (that
acts like the mother drop) maintains a higher parent ratio, β >βc, with the father drop. The
third stage of coalescence starts at time t = 1.315 from which a tertiary droplet is produced
at t ≈ 1.39 with D̄d/D̄m (= 0.077) almost 0.4 times the preceding mother drop size. As
this drop’s size is very small, it completely merges with the bigger drop in the next stage.
In the current case, a four-stage coalescence is observed with two pinch-offs; however, by
increasing β, more stages can be obtained with more pinch-offs. The maximum number
of coalescence stages reported in the literature, in solely capillary-driven systems, is six,
which was observed by Thoroddsen & Takehara (2000) for a drop–pool system.
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Figure 15. Coalescence cascade of drops for the system (R, S) = (10, 2.3) and parent ratio β = 1.6. Other
parameters considered are CaE = 0.2, Ohi = 0.005, Ohe = 0.0002, Bo = 0.32 and A = 0.998. The panels
capturing the occurrence of pinch-off are marked with dashed lines in red colour for better visualization.

Figure 15 shows the influence of electric field on a cascade for R = 10, S = 2.3 and
CaE = 0.2, with other parameters remaining the same. Here, significant alterations in the
cascade process are found. A five-stage coalescence is obtained, including pinch-off in
the first four stages. The sizes of the daughter drops found in successive stages are 0.53,
0.32, 0.16 and 0.076. For R/S > 1, as the electric forcing lowers the critical parent ratio,
it leads to the transition from no pinch-off to pinch-off (see figures 7 and 8a) as well as
producing daughter drops larger than that obtained for CaE = 0 in the respective stages.
As a post-pinch-off event, the daughter drop exhibits movement in the upward direction
while undergoing prolate–oblate oscillatory deformations until it falls back to meet the
father drop. Interestingly, as the electric field’s presence results in a larger daughter drop,
it displaces to a greater distance due to higher inertia. As a consequence, for CaE = 0.2
the time gap between the first pinch-off and the initiation of the second stage is found
to be very high, i.e. almost 1.35, which makes the total coalescence process highly
time-consuming. It also can be noticed that the values of daughter to mother droplet size
ratios in each stage fall in the range of 0.55 + 0.05. From the times mentioned in each
panel of figure 15, it is apparent that the higher stages of cascade occur over progressively
shorter times. The reason is that the time scale for the completion of the nth stage (�tN) is

typically of the order of tγ,N =
√

ρ̄mD̄3
m,N/γ , where D̄m,N is the size of the mother drop

in the Nth stage or the size of the daughter drop in the (N − 1)th stage. Thus, �tN can
be calculated as ΔtN ≈ (D̄m,N/D̄m,1)

3/2Δt1, where D̄m,1 is the size of the mother drop at
the initial stage. Thus, as D̄m,N/D̄m,1 decreases at each stage as mentioned above, the time
needed for the completion of the cascade phenomenon also decreases perceptibly.

Although figures 14 and 15 suggest an increase in the number of coalescence cascade
stages under an electric field, in reality the coalescence cascade for the different parent
ratios may emerge to be contrary to that intuitive perception, as demonstrated in
figure 16(a). From the figure, it is evident that for CaE = 0, the number of pinch-offs
(N) can be increased by increasing the value of β. As the increase in β produces
larger daughter droplets after the first stage, it reduces the effective Ohneseorge number,
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Figure 16. (a) Number of pinch-offs before complete coalescence for different parent ratios β and electric
capillary numbers CaE. The system (R, S) = (10, 2.3) is considered along with Ohi = 0.005, Ohe = 0.0002,
Bo = 0.32 and A = 0.998. (b) Second-stage coalescence for β = 3 and CaE = 0.2. Schematic representation is
provided as the inset to explain the reason behind the non-pinching mode.

i.e. Oheff
i = μ̄i/

√
ρ̄mD̄dγ , reducing the viscous resistance in the second stge. Owing

to self-similarity, the viscous resistance in the successive stages is also relatively less,
favouring more pinch-offs. However, the discontinuous variation in N indicates the
existence of a critical value of β for each N. Additionally, between the two successive
critical parent ratios, there exists a range of β producing the same number of pinches.
Note that a maximum of four pinch-offs is observed for β = 5 and CaE = 0.

On increasing CaE to 0.1, N increases considerably for all β up to β = 4. It is noteworthy
that a maximum of six pinch-offs or alternatively a seven-stage coalescence is observed
under electric field, for β = 4 and CaE = 0.1 (see the supplementary movie available at
https://doi.org/10.1017/jfm.2022.1096), beyond the maximum numbers of stages observed
previously by Thoroddsen & Takehara (2000) for drop–pool systems. Surprisingly, when β

is increased to 5, we observe fewer pinch-offs (N = 3), which is even fewer than that found
for the corresponding case in the absence of electric field (N = 4). The non-monotonic
trend becomes more evident at higher CaE. For β ≤ 2, the pinch-offs obtained for
CaE = 0.2 are more in number as compared with that obtained for CaE = 0. However,
for β > 2, N dramatically decreases to unity, signifying the occurrence of complete
coalescence in the second stage.

To explain the distinctive and apparently non-intuitive cascading trends, we illustrate
the drop evolution in the second stage for CaE = 0.2 and β = 3 in figure 16(b). Unlike
the first stage, the drops at the initiation of the second stage are prolate-shaped owing to
electric-field-induced deformations for systems with R > S (Taylor 1966; Lac & Homsy
2007; Behera, Mandal & Chakraborty 2019). Accordingly, the initial neck curvature at
the onset of second stage reduces, leading to weakening of capillary-wave propagation as
demonstrated schematically in the inset. Importantly, as the size of the mother drop reduces
by almost (0.5)N times in the Nth stage, the effective electric capillary number Caeff

E =
(D̄N

mε̄eĒ2
0/γ ) reduces by the same fraction. Thus, the electric-field-induced deformation of

the mother drop in the second stage is significantly small, contributing less to the variation
in neck curvature. Conversely, the father drop, which is of larger size, deforms more (Caeff

E
for the father drop is D̄f ε̄eĒ2

0/γ ), as evidenced from figure 16(b), which thus plays the key
role in reducing the neck curvature. Moreover, the fluid transport from the mother to the
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t = 0 0.1

1.0 1.1

0.3 0.5 0.7 0.85 0.95

Figure 17. Coalescence cascade of drops for the system (R, S) = (0.5, 2) and parent ratio β = 1.6. The other
parameters considered are CaE = 0.2, Ohi = 0.005, Ohe = 0.0002, Bo = 0.32 and A = 0.998.

father drop leads to increase in Df and thereby Caeff
E for the father drop. At a certain stage

if Caeff
E crosses the threshold limit due to either an increase in electric field strength or

size of the father drop, the father drop may exhibit unstable EHD elongations, inhibiting
pinch-off as shown earlier in figure 10(b).

Figure 17 reveals the cascading trends for the system with R/S < 1 considering R = 0.5,
S = 2, β = 1.6, CaE = 0.2 and Ohi = 0.005. Surprisingly, here no cascading is observed.
Instead, the mother drop completely merges with the father drop. The contour analysis
shows that at t = 0.7, the height of the protrusion above the father drop is much shorter
compared with the previous two cases. Owing to the shorter length, the protrusion
becomes highly stable resulting in insignificant horizontal collapse. In fact, the neck
cannot be identified after t = 0.7. As a result, the first pinch-off does not occur. The top of
the protrusion, where the curvature is maximum, continuously falls, pushing the fluid into
the father drop and leading to complete coalescence without going to the further stages.

6. Conclusions

The partial coalescence of unequal-sized drop pairs under uniform electric field is studied
in the inertio-capillary regime, using comprehensive numerical simulations. The effects of
electric field on the pinch-off of daughter droplets, in both the first and successive stages,
are highlighted, and the mechanisms orchestrating the alterations are discussed. The key
findings from the present study are summarized below.

The drop–drop coalescence gets hydrodynamically modulated by the imbalance
between the capillary force generated at the contact region, resistive viscous force
and gravitational force, with this interplay being significantly alterable via electrically
mediated interactions. This decisive controllability stems from the fact that the generation
of the secondary drop requires a delay in the vertical collapse of the liquid column formed
due to the interfacial tension-driven stretching induced by the capillary wave, depending
on the relative electrical properties of the droplet and the carrier phases towards altering
the pinch-off dynamics. Towards that end, if R/S > 1, the electric stress strengthens the
capillary stress causing higher elongation of the mother drop, thereby favouring pinch-off
by delaying a vertical collapse. Conversely, if R/S < 1, the electric stress hinders the
elongation and opposes pinch-off. Notably, pinch-off occurs only if the parent ratio is
above the critical limit. For R/S > 1 (or R/S < 1), an increase in electric capillary number
(CaE) can cause a decrease (or increase) in the critical parent size ratio (βc), and drastically
alter the physical nature of its dependence on the Ohnesorge number. In the process, it is
plausible to achieve this critical onset at a substantially reduced value of the parent size
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ratio, as compared with the lowest limiting value of 1.55 reported earlier albeit without
EHD interactions (Zhang et al. 2009).

In the limit of β >βc, increase in CaE increases (or decreases) the size of the daughter
drop for R/S > 1 (or R/S < 1). In the case of R/S > 1, small limits of CaE can cause the
formation of a dip on the father drop at the onset of pinch-off. Whereas, for higher CaE
values, pinch-off occurs by a cusping kind of mode producing long unstable drops with
a tail-type structure that eventually breaks into multiple smaller drops. Increasing CaE
beyond a threshold limit can cause large axial elongations in the mother drop and the father
drop, with continued contact. Under such a scenario, the drop experiences EHD–capillary
pull from both ends, which leads to end-pinching-type breakup and the formation of
satellite drops at each end. However, during the intermediate stage, the drop may also
exhibit tip streaming.

The coalescence dynamics in the successive stages is found to be self-similar. For
R/S > 1, the electric field not only increases the daughter drop’s size but also increases the
number of stages. As a consequence, the total coalescence time increases. We observed
that for R/S > 1, a maximum of seven stages of coalescence becomes possible under an
electric field, for the chosen set of parameters. Increasing the field strength or the parent
ratio beyond a certain limit has further been shown to reduce the numbers of cascade stages
contrary to common intuition, owing to large prolate deformation of the father drop that
reduces the initial neck curvature. On the other hand, for R/S < 1, the number of successive
stages may reduce or not even appear owing to partial–complete coalescence transition,
consequently reducing the coalescence time. These results imply that the applied electric
field not only may influence the inception of the coalescence phenomena, but also may
strongly dictate the downstream collision cascades in a non-trivial manner during the
occurrence of partial coalescence. Accordingly, via exploring the intertio-capillary regime
over favourable parametric spaces, decisive morphological transitions of a multi-drop
collection may be exclusively programmed, opening up new control mechanisms of the
observed transport phenomena having far-reaching implications in several spheres of
engineering, nature and biology.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2022.1096.
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Appendix A. Grid convergence study

Figure 18 illustrates the grid convergence study performed by simulating the coalescence
problem for (R, S) = (10, 2.3), β = 2, CaE = 0.1, Ohi = 0.005, Ohe = 0.0002, Bo = 0.32
and A = 0.998. Comparing the temporal evolution of drop apex position, it is evident that
increasing the grid level from 11 to 12 causes a negligible increase in HT (t). Consequently,
for grid-level 12, the obtained contour at the time of pinch-off is almost the same as
that obtained for level 11. Therefore, to reduce the computational cost without sacrificing
accuracy, grid-level 11 is used. The far-field grid is set to level 6 for both cases.
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Figure 18. Transient variation of the drop apex position during drop–drop coalescence for the system
(R, S) = (10, 2.3) and parent ratio β = 2. Other parameters considered are CaE = 0.1, Ohi = 0.005,
Ohe = 0.0002, Bo = 0.32 and A = 0.998.

Appendix B. Comparison with potential-flow-based analysis

Since the Ohnesorge numbers are negligibly small in the inertio-capillary regime, Garzon
et al. (2018) dropped out the viscous effects from their numerical model, which can
successfully explain the coalescence dynamics for very low-viscosity liquids like alcohol
and water. However, for relatively more viscous liquids such as oil, neglecting the viscous
effects altogether may result in significant inconsistencies in the model predictions, even
in the interio-capillary regimes, defying common intuition. This may be exemplified by
appealing to the results outlined in § 4. For illustration, we consider CaE = 0.05, R = 100
and S = 1. The chosen value of R as well as the fact that R � 1 are reminiscent of the
situation of a conducting drop placed in a perfectly dielectric (or insulating) medium (Ha
& Yang 2000; Karyappa et al. 2014), as considered by Garzon et al. (2018).

Figures 19(a) and 19(b) depict the effect of viscosity on the transient evolution of the
drop apex (HT ) in the absence and presence of the electric field, respectively. These
results reveal that an excellent agreement with the potential-flow-based predictions may
be obtained when Ohi and Ohe are of O(10−3). However, for Ohe ∼ O(10−2), the viscous
effects may alter the value of HT , particularly during the later transients, which may in turn
affect the generation of daughter drop and the downstream dynamic events in succession.
As reported by Blanchette & Bigioni (2009), in the case of drop–pool systems where
β → ∞, in the absence of electric field, pinch-off cannot occur if Ohi > 0.03 (Ohi ∼
O(10−2)). Therefore, for finite β, the critical limit of Ohi must be less than 0.03, which
agrees well with our results provided in figure 7. Additionally, with the increase in
viscosity ratio, i.e. Ohi/Ohe, the electric-field-induced deformations can significantly vary,
as reported by several researchers (Ha & Yang 2000; Lac & Homsy 2007), which cannot
be predicted by the potential flow model.

The alteration in drop apex owing to viscous effects can be better realized by imposing
force balance on the protrusion, analogous to the formulation of capillary filling problem
(Dhar et al. 2019), where the capillary stress (τγ ) drives the upward motion and the viscous
stress (τv) resists it, as shown schematically in figure 4(c). Assuming that the protrusion is
cylindrical throughout the upward stretching, the dimensional force balance condition can
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Figure 19. Effect of viscous forces on transient variation in drop apex for (a) CaE = 0 and (b) CaE = 0.05. The
other parameters considered are β = 2.63, R = 100, S = 1, Bo = 0.32 and A = 0.998. We compare our numerical
results with the same obtained from the potential flow model of Garzon et al. (2018).

be written as
d
dt̄

(
ρ̄iπR̄2

n�H̄T
d�H̄T

dt̄

)
=

∫
(τ̄ γ − τ̄ v + τ̄E) dĀ, (B1)

where dĀ = πR̄n dz̄ is the infinitesimal surface area. Note that the effect of gravitational
force is neglected here, considering negligible density variation. To establish a qualitative
relation between �H̄T and Oh in a simplified manner, we perform scaling analysis, where
the various forcing effects can be scaled as follows:

τ̄γ ∼ γ /�H̄T , τ̄v ∼ μ̄∂ ū/∂ z̄ ∼ (μ̄i + μ̄e)

�H̄T

(
�H̄T

t̄γ

)
, τ̄E ∼ ε̄eĒ2

0. (B2a–c)

Here, the viscous stress includes the resistance offered by both fluids. Using the above
scales, (B1) can be transformed to

ρ̄iR̄n�H̄T

t̄2γ
= C1

γ

�H̄T
− C2

μ̄i + μ̄e

t̄γ
+ C3ε̄eĒ2

0, (B3)

where C1, C2 and C3 are scaling constants. Here, C1, C2 > 0, whereas the sign of C3

depends on the sign of R/S − 1. Now, using t̄γ =
√

ρ̄mD̄3
m/γ and rearranging the terms,

the normalized and simplified form of (B3) can be written as

Rn�H2
T − (−C2(Ohi + Ohe) + C3CaE)�HT − C1 = 0. (B4)

The solution to the above quadratic equation can be obtained as

�HT = −C2(Ohi + Ohe) + C3CaE +
√

(C2(Ohi + Ohe) − C3CaE)2 + 4C1Rn

2Rn
, (B5)

which shows that �HT is a function of Oh. In the limit Ohi, Ohe → 0, the apex height
can be obtained as �H0

T = (C3CaE +
√

(C3CaE)2 + 4C1Rn)/2Rn. Thus, variation in CaE
alone can lead to variation in apex height. Furthermore, the mathematical relation given
in (B5) shows that an increase in (Ohi, Ohe) will result in �HT < �H0

T , which agrees
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well with our numerical results. Physically, an increase in Ohnesorge numbers amplifies
the viscous resistance to the capillary-driven flow. Thus, the apex attains a lesser height
as shown in figure 19. Importantly, in the other extreme limit, i.e. for finite Ohnesorge
numbers, (B5) predicts �HT ≈ 0. This means that in the viscous-dominated regime, no
protrusion is formed, which agrees with the reported experimental observations (Luo
et al. 2018; Anand et al. 2019). Another interesting thing to note here is that for low Rn,
HT is higher. Similar characteristics can be found in the numerical study of Deka et al.
(2019) for the cases of high β. Also, in figure 6 it can be seen that an increase in Ohi
leads to an increase in Rn and, simultaneously, a decrease in HT . Thus, our mathematical
modelling is able to predict the effects of various geometric and forcing parameters on
the morphological variations occurring during drop coalescence in the inertio-capillary
regime, in a physically consistent manner.
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