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WREATH PRODUCTS OF NONOVERLAPPING 
LATTICE ORDERED GROUPS 

BY 

JOHN A. READ 

Introduction. One of the fundamental tools in the theory of totally ordered 
groups is Hahn's Theorem (a detailed discussion may be found in Fuchs [3]), 
which asserts, roughly, that every abelian totally ordered group can be embedded 
in a lexicographically ordered (unrestricted) direct sum of copies of the ordered 
group of real numbers. Almost any general question regarding the structure of 
abelian totally ordered groups can be answered by reference to Hahn's theorem. 
For the class of nonabelian totally ordered groups, a theorem which parallels 
Hahn's Theorem is given in [5], and states that each totally ordered group can 
be o-embedded in an ordered wreath product of subgroups of the real numbers. 
In order to extend this theorem to include an "if and only if" statement, one must 
consider lattice ordered groups, as an ordered wreath product of subgroups of the 
real numbers is, in general, not totally-ordered, but lattice ordered. Theorem 
4.2 states that a lattice ordered group G can be 1-embedded in an ordered wreath 
product of subgroups of the reals if, and only if, G is nonoverlapping (Def. 2.5). 
This class of lattice ordered groups is also the collection of lattice ordered groups 
which are, as Wolfenstein [7] has named them, normal valued groups (see theorem 
2.8). 

The first section defines the notion of an interval of an order preserving per­
mutation of a chain, and gives several properties of intervals. Section 2 defines 
nonoverlapping lattice ordered groups and proves certain results concerning 
these groups. Section 3 discusses ordered wreath products, (borrowing strongly 
from [5]), and certain transitive ordered permutation groups. The final section, 
concerned with nonoverlapping 1-groups and wreath products, ends with the im­
portant theorem of the paper, theorem 4.3. 

1. Intervals of Order preserving Permutations of a Chain. Let G denote an 
1-subgroup of the 1-group A(S) of all order preserving permutations of the Chain 
S. [4] For g eG and s e S, the set {t e S\ there exist integers n, m such that 
sgn<t<sgm}, is the interval of s by g, and is denoted by (g)s or gs. For a<b, 
elements of S, the subsets {teS\ a<t<b}, {teS\ a<t<:b}, {teS\ a<t<b}, 
and {teS\a<t<b} will be denoted respectively by [a,b], (a,b], [a,b) and 
(a,b). 
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THEOREM 1.1. Let G be an 1-subgroup of A (S) for some chain S. 

(1) For each s e S and g e G, gs is convex and gs=
:z(gn)s:==\s\sfor a^ integers n 

different from 0. (gs=s). 
(2) Let s e S and g e G. Ifsg>s, then gs={t e S | sg~~n<t<sgn for some positive 

integer n}. Ifsg<s, thengs={t e S | sgn<t<sg~^n for some positive integer n}. 

(3) For {s, t}^S and g e G, either gs=gt or gs C\gt=0. Thus ift e g89 gs=gt. 
(4) If e<h<g for some {h, g}^ G, then hs^gsfor each s e S. 
(5) If G is abelian and s \f\<s \g\for some s e S and {f, g}^ G, thenfs^gs. 
(6) If [s, s \g\]^fs for some se S and {g,h}^G, then s\f\n>s\g\ for some 

positive integer n. 
(7) Suppose S is Dedekind complete and {f g}^G. Then \f\n< \g\for all integers 

n, if and only if for each s e S there exists an element t e S such that f^ 

[t, t \g\\. 
(8) If Sy£x and sh>s while xh<x, then x $ hs. Thus if sf>sg and xf<xg, 

(9) Let f^G and t e S. If for some x e S, x $ft9 then x>s for all s eft and 
xfn>sfor all integers n, or xKsfor all s eft and xfn<sfor all integers n. 

(10) For {g, h}^Gandss S, (g^gh)sg = (hs)g and {g^hg^Qt^g. 

Proof. (1) That g8 is convex and gs=(gn)s for all non-zero integers n is clear 
from the definition. If sg>s, then s \g\n=sgn for all integers n, and if sg<.s, 
then s \g\n=sg~n for all integers n. In each case \g\s=gs. 

(2) and (3) are clear. 
(4) This follows directly from the relation xg~^m<xhrm<x<xhn<xgn. 
(5) If G is abelian, s \g\~m<s \f\~m<s \f\n<s \g\n for all positive integers n 

and m. Thus by part 4, | / | s £ \g\8, which by part 1 implies fs^gs. 
(6) This follows directly from the definition off. 
(7) Fix s e S. Iff^ [t, t\g\] for some t e S, it follows from the definition of an 

interval that s\f\n<t \g\<s \g\. 
Conversely, suppose | / | w < | ^ | for all integers n. Fix s e S. If sf=s, 

fs^ [s, s \g\]. If sf y£s, let t={z G S I z<y for each y efs}. Since S is dedekind 
complete, t defines a point of S and since fs^s, t<x for all x ef. If there 
exists y efs such that / \g\<y, then t<y \g\~1<y so that y \g\"^ ef. Part 3 
of this theorem implies that there exists an m such that (y \g\~'1)fm>y. 
That is, (y\g\~1)\g\<(y\g\~~1)fm+1 which contradicts the assumption. 
Thus t \g\ >y for all y ef and hence/SÇ [t, t \g\]. 

(8) If s<x, then shrn<s<shn<xhn<x for all positive integers n, and hence 
x $ hs by part 2. 

If x<s, then xh^n<sh~n for all positive integers n, so that x<xh~n<. 
shrn<s<xhn and hence x <£ hs by part 2. 

(9) If x $ft, thenfx nft=0 and since/^ is convex, x>s for all s ef or x<s 
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for all s eft. In the first case, if xfn<s for some integer n and some s eft, 
then s eft nfx which is absurd, so that xfn>s. Similarly if x<s for all 
s eft and s<xfn for some integer n and some s efu then s eft nfx, which 
is absurd, so that xfn<s. 

(10) The statement 

Kg-i = {* G S | sg~xhn < t < sg~xhm for integers n and m) 
implies 

hsg-ig = {peS\ sg-lhng <p< sg~xhmg for integers n, m} 

But this latter equation is the definition of (g~~xhg)s. That is, (hsg_1)g= 
(g~~lhg)s- By replacing the point s by sg, one has (hs)g=(g~1hg)sg. 

2. Nonoverlapping lattice-ordered groups. Let G be an 1-subgroup of A(S) 
for some chain S. To emphasize the present dependency of the following definition 
on the chain S, we will write (G, S) in place of G. It will be seen in Theorem 2.4 
that the concept of nonoverlapping which we now define really depends only on 
the group structure of G. Immediately following theorem 2.4 we give the more 
general definition of nonoverlapping. 

DEFINTION 2.0. If for each {g, h}^ (G, 5), gs ^ hte{0, gs, ht) whenever s 
and t are elements of S, then the 1-group (G, S) is called nonoverlapping (i.e. no 
two intervals overlap). 

LEMMA 2.1. Let G be an l-subgroup of A(S)for some chain S. If (G, S) fails to 
be nonoverlapping, there exists 

{x, y, z | x < y < z) c S and {h, g} c G 

such that xg=x, zh=z, hx=hy andgy—gz {i.e. a special type of overlap). 

Proof. Since (G, S) is not overlapping, there exists 

{k,f} s G and {a, b} <= S 

such that ka nfb $ { 0 , ka,fb}. By part 1 of theorem 1.1, we may assume k^e 
andf>e. Let {r, s,t}^S be such that r e ka\fb, s eka r\fb=I, and t efb\ka. With 
no loss of generality we may assume r<s<t, so that r<I<t. 

(The comments in this paragraph will be referred to later as part A.) If w e S 
and w<£7, then either w efb or w>fb. In the former case, wfn Efb for all integers n, 
and in the latter case wfn>fb for all integers n by part 9 of theorem 1.1. That is, 
w < J implies that w/*n</for all integers n. If t<I, then by part 9 of Theorem 1.1, 
tfn<I for all integers n. Similarly if w>I then wkn^>I, and if w>I then wkn>I 
for all integers n. 

Since s is assumed to belong to I=kr nf, there exists a positive integer n such 
that sk-n<r and ^ / n > / . Let g=fnk~n v e, h=f-nkn v e, x=shrx, y=s, and 
z=sg=s{fnk-n v e). 

https://doi.org/10.4153/CMB-1974-129-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1974-129-8


716 J. A. READ [February 

The relation sfn>t implies sfn>I, so that by part A, sfkrn>I. Since k a n d / 
are assumed positive, one has sfn>s(fnk~~n v e)=sfnk~~n>I. That is, sfn>z>I 
and hence s>zf~n so z / " n >7. Thus by part A, zf~~nkn^>I, which together with 
z > 7 implies that z(f~nkn v e)=z. That is, zh—z. 

Using the relation sk~n<r<I, part A, and the fact t h a t / > e , one has sk~n< 
sk^nfn<I, so that sk-n<s{k~nfn v e)<I. Thus sk^n<x<I which implies £<*£:", 
and hence xkn^I. By part A, xknf~n<£I also, and this together with x<I implies 
that x(knf~n A e)=x. That is, xg~~1=x, and hence xg=x. 

Since xh=y and zg~~1=y, it is clear that hx=hy and gy=
:gz-

LEMMA 2.2. Lef (G,S) be a nonoverlapping l-group and suppose {/z,g}<=G+ 

(i.e. h^e, g>e). If there is ans e S such that hsy^gs, then either hs^gs andxhn<xg 
for all x egsu hs=gs and all positive integers n, or gs^hs and xgn<.xh for all 
x e gs U hs=hs and all positive integers n. 

Proof. Since s egs n hs, either gs n hs=gs or gs n hs=hs. The two cases are 
similar, and in the following we assume gs n hs=hs. In order to prove the lemma 
in the restricted case in which we select x e hs, assume by way of contradiction 
that there exists an x ehs such that xhn>xg for some integer /z>0. Let k=hn

9 

and let t be an element of gs\ks. (Such an element exists since ks=hs by theorem 
1.1, and hs is properly contained in gs.) 

Case 1. Suppose t<x, and hence t<ks. Since gt—gs, there is a positive integer 
m such that tgm<ks but tgm+1<£ks. The relation tgm<ks implies tgm<x. Thus 
tgm+1<xg<xk e £s, so that tgm+1 e ks by convexity. Hence tgm+1kr1 e ks and so 
tgm+1k^1>tgm. That is tgm(gk~1 V e)>*gw. Thus if we denote tgm hyp, and we set 
F equal to the interval of/? by (g/r* v e), we have/? G F \ / : S and ^(g/r -1 v e ) e F n 
&s. Since xg<xk=xhn, we have xgfc"'1<x, which together withpgk~1>p and part 
8 of Theorem 1.1, implies that x G ks\F. That is, for w=p(gkr1 v e), (g^ - 1 V é)w n 
fcw is not in { 0 , (g&-1 v e)w=F, kw=ks}, which contradicts (G, 5) being nonover­
lapping. 

Case 2. Suppose t>s and hence t>ks. Since gt=gx, there exists a positive 
integer m such that tg^m>ks but /lg~w^1>Â:s. The relation xg<xk implies (xA:)g^1> 
(x^)/: -1=x. However tg~m>ks so that tg^m>xk and hence ^g_mg"'1>x%~1> 
XtCtC —X. 

This together with fg-™^1^^,} means that tg~m~^1 e ks by convexity. 
Let p=tg-m>ks. Since pg-^k,, then by part 9 of Theorem 1.1 pg^k>ks 

and hencepg"1/:</?. Thus/^Ar1^/* and hence (kr^^Qc^-g v e)^ The relation 
(xk)g~1>(xk)k^1 of the last paragraph implies that (xfyg^kyxk and so by part 8 
of Theorem \.l xk$ Qc^g v e)p. Thus xk G k\(k~xg v e)p. 

However (/r^g V e)-~1=g~1k A e and so by the last paragraph,/? G (fc^g v e)P\ks. 
Since p(g~~xk A e)e (fc_1g v e)» n £5, we have 

(k^g v e)„ n £s £ { 0 , (fc-ig ve)„, fc,} 

which contradicts (G, S) being nonoverlapping. 
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Thus xhn<xg for all positive integers n and all x e hs. If xhn=xg for some x 
and some n, then since xh>x implies xhn+1>xhn=xg, a contradiction, we must 
have xh=x. But then xhn=xg and hx=gx which again is a contradiction. Thus 
xhn<xg for all xehs and all positive integers n. 

Finally if y e gs, then Av is proper in gy=gs since As is proper in gs. Thus by the 
preceding, yhn<yg for all positive integers n. 

LEMMA 2.3. Suppose (G, S) is a nonoverlapping l-group, and suppose {h, g}^ G+. 
If for some s e S, hs=gs=I, then one of the following is true. 

(1) sg=sh=s 
(2) xg<xhfor each x si 
(3) xg>xhfor each xel 
(4) xg<xh2 andxg2>xhfor each xel. 

Proof. If 1, 2, and 3 fail, there exists {u, v}^I such that ug>uh and vg<vh. 
By part 8 of Theorem 1.1, each of {ghrx)u and (hg^X is proper in I. Hence by 
lemma 2.2, xghrx<xh and xhg^Kxg, for each xel. That is, xg<xh2 and xh<xg2 

for each xel. 

THEOREM 2.4. jFbr a« l-group G, the following are equivalent. 
(1) For each pair {h, g}^G+, hg=g2h2 

(2) The 1-subgroup H of A (S) is nonoverlapping whenever H is l-isomorphic to G. 
(3) There exists an l-subgroup H of some A(S) which is l-isomorphic to G such 

that (H, S) is nonoverlapping. 

Proof. 1=>2 By way of contradiction, suppose there is an (H, S) as in 2 which 
fails to be nonoverlapping. By Lemma 2.1 there exists {g, h}^H+ and {x, y, z | * < 
y<z}^S such that hx=hy, gy=gz, zh=z and xg=x. Thus for some positive 
integer n9 xhn>y and ygn>z. Let f=hn and k=gn. Then xk=x, yk>z, xf>y, 
zf=z9 and by part 9 of Theorem 1.1, xfn<z for all integers n. Thus xk2f2=xf2<z 
and xfk>yk>z which contradicts 1. 

2=>3 This is clear when one recalls Holland's Theorem [4] that each 1 group G 
is l-isomorphic to an 1-subgroup H of some A(S). 

3=>1 Suppose {h, g}^H+, and &xs e S. lîhsj£gs we may assume hs^gs, as the 
case gs^hs is similar, and so by lemma 2.2, sh<sg which implies shg<sg2<isg2h2. 
If hs=gs9 then by Lemma 2.3 we consider the following four cases. 

(1) sg=sh=s so that shg=sg2h2. 
(2) xg<xh for all xehs and hence shg<.shh<sg2h2. 
(3) xh<xg for all x ehs and hence shg<sgg<sg2h2. 
(4) xg<xh2 and xh<xg2 for all x ehx and hence shg<sg2h2. 
Thus for each s e S, shg<sg2h2. Since G is l-isomorphic to 77, this element-wise 

condition also holds in G. 
W. C. Holland has shown [4] that each l-group G is l-isomorphic to an 1-sub­

group H of some A (S). (The 1 -group (H, S) is called a Holland-representation of G.) 
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This together with the theorem above allows us to make the following definition 
which is a generalization of definition 2.0. 

DEFINITION 2.5. An 1-group is nonoverlapping if, and only if, one (and hence all) 
of its Holland-representations is nonoverlapping in the sense of definition 2.O., 

DEFINITION 2.6. A convex 1-subgroup of the 1-group G that is maximal with 
respect to not containing some g in G is called a regular subgroup of G. Let F(G) 
be an index set for the collection of all regular subgroups Gy of G. For each y e T(G) 
there exists a unique convex 1-subgroup Gy of G which is minimal with respect to 
properly containing Gy, called the cover of Gy. If g belongs to Gy but not to Gy, 
then y (or Gy) is said to be a value of g. A regular subgroup Gy is called special 
if there exists an element g in G such that Gy is the unique value of g. If this is the 
case, then g is also called special. For y, X e F(G), we define y<X if Gy<^Gk. 
A subset A of V(G) is said to be plenary if 

(i) each e^g in G has at least one value in A, 
(ii) if g $ Gô (ô G A), then there exists À>ô, (A e A) such that A is a value for g. 

DEFINITION 2.7 (Byrd [1]). Let NP={G \ G is an 1-group and there exists a 
plenary subset A(G)^r((7) such that each Gô is normal in its cover, for each 
<Se A } . 

THEOREM 2.8. Let G be an 1-group. The following are equivalent, 
(1) G is nonoverlapping 
(2) for each pair {h, g}ç= G+, hg<g2h2 

(3) GeNP 
(4) each regular 1-subgroup of G is normal in its cover (i.e. G is normal valued). 

Proof. Wolfenstein proves the equivalence of 2, 3, and 4 in [7]. As a result he 
refers to such groups as normal valued groups. In [6], the author has independently 
proved the equivalence of 1, 3 and 4. Either reference together with theorem 2.4 
completes the proof. 

3. Lattice ordered wreath products and transitive ordered permutation groups. 
Familiarity with the material contained in [5] is assumed. The notation in this 

section is that of [5]. 
Let S be a chain and F a set of permutations of the chain S. A convex incon­

gruence on S is an equivalence relation g on S such that each g-cass is convex 
(x<y<z and xQz implies xQy), and such that if xQz a n d / e F, then (xf)Q(zf). 

Let (G, S) be a transitive o-permutation group, that is, G is a group of o-per-
mutations of S such that given s and t in S, there exists a g e G such that sg=t. 
Let y = (Qy, Qy) be a pair of convex (/-congruences of the transitive o-permutation 
group (G, S)9 with Qy properly contained in Q7. Let o be any point in S. Let S be 
the chain ogy/2y a n d l e t GoQy={geG \ (oQy)g=oQy}. Let G be the image in 
A(Sy) of GoQy under the natural o-homomorphism g->g, where (xQy)g=(xg)Qr 
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Then (Gy, Sy) is called the y-component of (G, S). It is an easy consequence of 
transitivity that, to within an o-isomorphism, (Gy, Sy) is independent of the choice 
of o e S. 

The transitive o-permutation group (G, S) is said to be o-primitive if the only 
convex G-congruences on S are the two trivial ones. If C and K are convex G-
congruences with C ^ K, it is easy to check that K covers C if and only if the (C, K)-
component (Gy, Sy) of (G, S) is o-primitive. The o-primitive components (Gy, Sy) 
of (G, S) are those y-components of (G, S) which are o-primitive. These are 
primarily those components arising from covering pairs y=(Cy, Cy) of convex 
G-congruences. 

THEOREM 3.1. Let (G,S) be a transitive lattice-ordered permutation group. 
If (W, R)= * XTyer (Gy> Sy) ^s tne ordered wreath product of the o-primitive com­
ponents (Gy, Sy) of (G, S), then (W, R) is a transitive lattice ordered permutation 
group, and there is an embedding <£=(G, S)-+(W, R) of the following sort. (Let 
(Cy, Cy) and (Ky, Ky) be the covering pairs of (G, S) and (W, R), respectively.) 
First </>:S-+R is an o-embedding and (Cy, Cy)(/)=(Ky, K

y) \ S<f>. Next <f>:G->W is 
an l-embedding of the lattice ordered group G in the lattice ordered group W. Finally 
(s(f>)(g<f>)=(sg)(f>for all s e S and geG. 

Proof. Theorem 12, theorem 15, theorem 16, and theorem 17 of [5]. 

THEOREM 3.2. If(G, S) is nonoverlapping and G is transitive on S, then G can be 
embedded as an l-subgroup of an ordered wreath product of subgroups of the real 
numbers (permuting themselves in the right regular representation). 

Proof. It is enough by the preceding theorem to show that each o-primitive 
component of (G, S) is o-isomorphic with a subgroup of the real numbers, per­
muting itself in the right regular representation. 

Fix o e S and suppose C is a convex G-congruence on S. Let Hy={g\ (oCy)g^ 
oCy}. Then Hy is a convex l-subgroup of G. Conversely each convex l-subgroup 
H of G defines a convex G-congruence r on S by srt if and only if s belongs to the 
convexification of the orbit of t under H. 

Thus each covering pair (Cy, Cy) of convex G-congruences on S determines a 
covering pair of convex 1-subgroups (Hy, Hy) of G. Let s e oCy \oC r Since G is 
transitive on 5, there exists geG with og=s. Then g G Hy\Hy, and so Hy is regular 
missing g9 and hence normal in Hy. (Theorem 2.8.) Since HyjHy is totally ordered 
and (Hy, Hy) is a covering pair, it follows that HyjHy is o-isomorphic to a subgroup 
of the real numbers. Hence the o-primitive component (Gy, Sy) constructed from 
(Cy, Cy) is 1-isomorphic with (Hy/Hy, Hy/Hy). That is, each o-primitive component 
of (G, S) is o-isomorphic with a subgroup of the real numbers. 

THEOREM 3.3. If (W,B) is the ordered wreath product * JJ y e r (Gy, Sy) of right 
regular representations of subgroups of the real numbers, then (W, B) is nonover­
lapping. 

7 
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Proof. As in [5], we may view each point r of B as a function from F into the 
reals R, such that for a fixed point in B, say 0 where 0(y)=0, {y | r(y)^0(y)=0} 
is inversely well ordered. We may also represent each r e B as a T-tuple ( . , . . , 
r(y),. . .)• For g G W the F-tuple rg is then (. . . , r(y)+gy>r,. . .) where gy>r is 
the real number by which the function gy>r translates the points of Gy. 

Let h e Wand suppose <x is the largest element of the set {y \ r(y)^(rh)(y)}. 

Claim, {s \ s(y)=r(y) for y>K}=hr (the interval of r by h). 

Proof. Choose s e B so that s(y)=r(y) for y>oc. Let d denote the real number 
\r(y)—rh(y)\. Then for some n e Z + , r(oc) —nd<.s(<x)<r((x.+nd) so that s is between 
rhrn and rhn, and hence s G /zr which proves one inclusion. 

To prove the other inclusion, suppose t e B and /?>oc where (3 is the largest 
element of {y \ t(y)9^r(y)}. By the definition of a, rh(y)=r(y) for y > a . By the 
action of elements of G on points of B, it follows that rhn(y)=r(y) for y>oc. If 
r(PXKP), then rhn((3)=r(P)<t(p), and rAn(y)=r(y) = f(y) for y> i8. Thus r/jn</ 
for all « G Z and hence t $ hr. In a similar fashion, if r(/?) >/(/?), then rhn>t for 
all « G Z, so that again, ? ^ Ar. This proves the claim. 

To see that (W, B) is nonoverlapping, suppose that hs n gv7
é0 for {s, v}^B 

and {/z, g} Ç W+. Fix t e hs C\ gv. If a is the largest element of {y \ t(y)^th{y)} 
and fi is the largest element of {y | £(7)7^(7)}, then by the claim proved above, 

hs = ht= {seB\ s(y) = t(y) for y > a} 

g„ = g, = {5 G J5 I s(y) = f(y) for y > £} 

Clearly htC\gte {<£, At, g j , that is, hsHgve {<f>, h8, gv}, so (W, 5) is nonover­
lapping. 

4. Nonoverlapping lattice ordered groups and wreath products of reals. A proof 
of the following theorem requires a straightforward verification of certain con­
ditions. As the process is long, however, the proof will be omitted. A proof for 
this theorem is given in section 5 of [6]. 

THEOREM 4.1. Suppose that (G, S) is an l-group (i.e. G is an l-subgroup of some 
A(S)), A is a chain, and I\ is a chain for each a G A. Let (G, S)y =(G, S) and let 
(Wa, Ca)= * Y[y er (^ ' &\ ' *he ordered wreath product. There exists a chain B, 
and an injective lattice homomorphism from 2*^4 {* TTy er (^> $)y ) *nt0 

*TlpeB(G,S)^.Here(G,S)p=(G,S). 

THEOREM 4.2. The l-group G is nonoverlapping if and only if G is {-isomorphic 
with an l-subgroup of a wreath product of the reals. 

Proof. By Theorem 3.3, a wreath product of the reals is nonoverlapping. 
Clearly an l-subgroup of a nonoverlapping l-group is nonoverlapping. 
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For the converse, suppose that G is nonoverlapping. The 1-group G can be 
embedded 1-isomorphically as a subcartesian sum of transitive 1-subgroups of 
o-preserving permutations of chains Sa, for a belonging to some index set A. 
(This is the embedding theorem of W. C. Holland [4].) Also since G restricted to 
each Sa is a homomorphic image of G, then (G | Sa, Sa) is nonoverlapping. (Use 
the condition hg<g2h2 directly, or note that this equation defines a variety.) 
Thus by Theorem 3.2, G is 1-isomorphic with an 1-subgroup of 

2 f * IT (Ry ,Ry )) 

where for each a in the chain A, the set r a is a chain, and each (R7 , Ry ) is a sub­
group of the reals permutting itself in the right regular representation. By Theorem 
4.1 it follows that G can be embedded by an injective lattice homomorphism in 

*TI Ĉ > fyp f° r s o m e c ^ a i n B-
PeB 

In [7], Wolfenstein defines an s-group G as an 1-group for which the special 
values form a plenary subset of the set of all values of G. (See definition 2.6.) 
He has shown in [7] that each 1-subgroup of an .s-group is nonoverlapping. 
Using the notation of [5], we show the converse. 

THEOREM 4.3. If the l-group G is nonoverlapping, then G can be embedded as an 
1-subgroup of an s-group. 

Proof. It is enough to show that (W, S)= * JJpeB (R, R)p, a wreath product 
of the reals, is an s-group. 

Fix s0e S and /?0 e B, and define g e Was 

fl ifj8 = j80, s = 50 

8p.s = 
vO otherwise 

Define 
G*.* ={heW | V,S 0 = 0 for/?>/?„} 

Then Gp tS is a special value of g, and by varying /?0 and ,y0 it follows easily that the 
special values of (W, S) thus defined form a plenary subset of the set of all values 
of (W, S). We summarize the preceding results in the following. 

THEOREM 4.4. Let G be a lattice ordered group. The following are equivalent: 
(1) G is nonoverlapping 
(2) for each pair {h, g}^G+, hg<g2h* 
(3) GENP 

(4) G is normal valued 
(5) G can be embedded as an l-subgroup of a wreath product of the reals. 
(6) G can be embedded as an l-subgroup of an s-group. 
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