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Abstract. In this paper, we focus on dynamical properties of (real) convex projective
surfaces. Our main theorem provides an asymptotic formula for the number of free
homotopy classes with roughly the same renormalized Hilbert length for two distinct
convex real projective structures. The correlation number in this asymptotic formula is
characterized in terms of their Manhattan curve. We show that the correlation number
is not uniformly bounded away from zero on the space of pairs of hyperbolic surfaces,
answering a question of Schwartz and Sharp. In contrast, we provide examples of diverging
sequences, defined via cubic rays, along which the correlation number stays larger than a
uniform strictly positive constant. In the last section, we extend the correlation theorem to
Hitchin representations.
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Correlation for convex projective surfaces 2939

1. Introduction
In this paper, we study the correlation of length spectra of pairs of convex projective
surfaces. We describe how length spectra of two convex projective structures ρ1 and ρ2

correlate on a closed connected orientable surface S of genus g ≥ 2. More precisely, we
investigate the asymptotic behavior of the number of free homotopy classes of closed
curves whose ρ1-Hilbert length and ρ2-Hilbert length are roughly the same. This question
was first considered by Schwartz and Sharp in the context of hyperbolic surfaces in [56]
(see also [27]), and more generally for negatively curved metrics in [23, 49]. The holonomy
of a real convex projective structure is an example of a Hitchin representation and our
correlation theorem holds in this more general setting.

We now discuss our results in greater detail. A (marked real) convex projective structure
on the surface S is described by a strictly convex set �ρ in the real projective plane which
admits a cocompact action by a discrete subgroup of SL(3, R) isomorphic to � = π1(S).
We denote by ρ : � → SL(3, R) the corresponding representation and by Xρ the surface
S equipped with the convex projective structure. Goldman [30] proved that the space
of convex projective surfaces C(S) is an open cell of dimension −8χ(S). Hyperbolic
structures on S define, via the Klein model of the hyperbolic plane, a −3χ(S)-dimensional
subspace of C(S), called the Fuchsian locus, which is naturally identified with the
Teichmüller space T (S) of S. As customary, we will blur the distinction between T (S)
and the Fuchsian locus.

Every convex projective structure ρ induces a Hilbert length �Hρ for non-trivial
conjugacy classes of group elements in �. Given [γ ] ∈ [�] a non-trivial conjugacy class,
we define �Hρ ([γ ]) as the length of the unique closed geodesic with respect to the Hilbert
metric on Xρ that corresponds to the free homotopy class of [γ ] on S. Concretely, �Hρ ([γ ])
is the logarithm of the spectral diameter of ρ(γ ), see §2.1 for details. The (marked) Hilbert
length spectrum of ρ is the function �Hρ : [�] → R>0. We investigate a slightly different
notion of length. Denoting the topological entropy of (the Hilbert geodesic flow of) ρ as

hH (ρ) = lim sup
T→∞

1
T

log #{[γ ] ∈ [�] | �Hρ ([γ ]) ≤ T },

we define the renormalized Hilbert length spectrum of ρ as LHρ = hH (ρ)�Hρ . It follows
from [7, 10] that hH (ρ) is positive and finite, as it is the topological entropy of an Anosov
flow.

Our first theorem concerns the correlation of the renormalized Hilbert length spectra of
two different convex projective structures.

THEOREM 1.1. (Correlation theorem for convex real projective structures) Fix a precision
ε > 0. Consider two convex projective structures ρ1 and ρ2 on a surface S with distinct
renormalized Hilbert length spectra LHρ1

�= LHρ2
. There exist constants C = C(ε, ρ1, ρ2) >

0 and M = M(ρ1, ρ2) ∈ (0, 1) such that

#{[γ ] ∈ [�] | LHρ1
([γ ]) ∈ (x, x + hH (ρ1)ε), LHρ2

([γ ]) ∈ (x, x + hH (ρ2)ε)} ∼ C
eMx

x3/2 ,

where f (x) ∼ g(x) means f (x)/g(x) → 1 as x → ∞.
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2940 X. Dai and G. Martone

Remark 1.2
(1) There is an involution on the space of convex projective structures, called the

contragredient involution, which sends ρ to ρ∗ = (ρ−1)t . Cooper and Delp [21] and
Kim [36] show that LHρ1

= LHρ2
if and only if ρ2 is ρ1 or ρ∗

1 .
(2) It follows from the generalized prime geodesic theorem [44, 47] that for any fixed ε,

if ρ is a convex projective structure, then

#{[γ ] ∈ [�] | LHρ ([γ ]) ∈ (x, x + hH (ρ)ε)} ∼ (eh
H (ρ)ε − 1)

ex

x
.

This implies that if ρ1 and ρ2 converge to convex projective structures with the
same renormalized Hilbert length spectrum, then M(ρ1, ρ2) converges to one and
C(ε, ρ1, ρ2) diverges.

The topological entropy of any hyperbolic structure is equal to one [34] and its renor-
malized Hilbert length coincides with its Hilbert length. The entropy varies continuously
on C(S) [52, Proposition 3.8] and Crampon [22] shows that it is strictly less than one away
from the Fuchsian locus. Nie and Zhang [46, 60] prove that the entropy can be arbitrarily
close to zero. In Example 5.2, we show that there exist a Fuchsian representation ρ1 and a
representation ρ2 ∈ C(S) with topological entropy different from one such that

lim
x→∞ #{[γ ] ∈ [�] | �Hρ1

([γ ]) ∈ (x, x + ε), �Hρ2
([γ ]) ∈ (x, x + ε)} = 0.

In particular, for these representations, the size of the set {[γ ] ∈ [�] | �Hρi ([γ ]) ∈
(x, x + ε), i = 1, 2} does not grow exponentially in contrast with what happens for the
renormalized Hilbert length spectra by Theorem 1.1. However, the renormalized length
spectra arise naturally from a dynamical point of view and they play a key role in our
discussion.

We refer to the exponent M(ρ1, ρ2) from Theorem 1.1 as the correlation number of ρ1

and ρ2. An important goal of this paper is to study the correlation number as we vary ρ1

and ρ2 in C(S). One interesting question asked in [56] for the case of the Teichmüller space
is whether the correlation number M(ρ1, ρ2) is uniformly bounded away from zero as its
arguments range over all hyperbolic structures. We answer this question in the negative
in §4. We prove the following.

THEOREM 1.3. (Decay of correlation number) There exist sequences (ρn)∞n=1 and (ηn)∞n=1
in the Teichmüller space T (S) such that the correlation number satisfies

lim
n→∞ M(ρn, ηn) = 0.

The sequences in Theorem 1.3 are given by pinching a hyperbolic structure along two
different pants decompositions which are filling. Intuitively, these are two families of
hyperbolic structures diverging from each other in the Teichmüller space thus suggesting
a small correlation number when going to infinity. A key to prove Theorem 1.3 is a
characterization of Sharp [58] of the correlation number in terms of the Manhattan
curve [17]. In Theorem 4.2, we extend Sharp’s characterization of the correlation number
to the case of two convex projective structures.
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In §5, we study explicit examples of correlation numbers in the space of convex
projective structures. In contrast to Theorem 1.3, we provide pairs of diverging sequences
for which the correlation numbers are uniformly bounded below away from zero. These
sequences (ρt )t≥0, called cubic rays, are defined using holomorphic cubic differentials via
Labourie–Loftin’s parameterization of C(S) [38, 43]. More precisely, Labourie and Loftin
describe a mapping class group equivariant homeomorphism between C(S) and the vector
bundle of holomorphic cubic differentials over T (S). The sequences (ρt )t≥0 lie in fibers of
C(S)with base point ρ0 ∈ T (S) and correspond to rays (tq)t≥0 for a fixed ρ0-holomorphic
cubic differential q. We will recall Labourie–Loftin’s parameterization of C(S) and the
definition of cubic rays more precisely in §5.

Using work of Tholozan [59], we show in Lemma 5.1 that for a cubic ray (ρt )t≥0, the
renormalized Hilbert length of ρt is bi-Lipschitz to the one of ρ0 with Lipschitz constants
independent of t. We deduce that the correlation number of any two convex projective
structures in different fibers is uniformly bounded from below by the correlation number
of its base hyperbolic structures.

THEOREM 1.4. Let (ρt )t≥0 and (ηr)r≥0 be two cubic rays associated to two different
hyperbolic structures ρ0 �= η0. Then, there exists a constant C > 0 such that for all t ≥ 0
and r ≥ 0,

M(ρt , ηr) ≥ CM(ρ0, η0).

A similar statement holds for most pairs of cubic rays with the same base hyperbolic
structure.

THEOREM 1.5. Let (ρt )t≥0 and (ηr)t≥0 be two cubic rays associated to two different
holomorphic cubic differentials q1 and q2 on a hyperbolic structure X0 such that q1, q2

have unit L2-norm with respect to X0 and q1 �= −q2. Then there exists a constant C > 0
such that for all t > 0 and r > 0,

M(ρt , ηr) ≥ C.

In §5, we discuss how the assumptions in Theorems 1.4 and 1.5 allows application of
the correlation theorem.

In §5.3, which is for the most part independent of the rest of the paper, we show how
Lemma 5.1 can be used to study renormalized Hilbert geodesic currents νρt along a cubic
ray (ρt )t>0. Geodesic currents are measures on the space of complete geodesics on the
universal cover of S and each geodesic current ν has a corresponding length spectrum
�ν : [�] → R≥0 with systole Sys(ν) = infc∈[�] �ν(c). See §2.5 for a detailed discussion.
It follows from [9, 15, 45] that for every convex projective structure ρ, there exists a unique
geodesic current υρ whose length spectrum coincides with the renormalized Hilbert length
spectrum of ρ. We call υρ the renormalized Hilbert geodesic current (also known as the
renormalized Liouville current) of ρ. We prove the following.

THEOREM 1.6. As t goes to infinity, the renormalized Hilbert geodesic current (υρt )t≥0

along a cubic ray (ρt )t≥0 converges, up to subsequences, to a geodesic current υ with
Sys(υ) > 0.
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This should be compared with what happens for hyperbolic structures: given a sequence
of hyperbolic structures which leaves every compact subset of T (S), up to rescaling
and passing to subsequences, the corresponding sequence of geodesic currents converges
to a geodesic current with vanishing systole. Burger et al [18] show that this fact no
longer holds for general sequences of Hilbert geodesic currents. Theorem 1.6 provides
new examples of diverging sequences of convex projective structures whose associated
geodesic currents converge (projectively and up to subsequences) to a geodesic current
with positive systole. In light of [2, Theorem 1.13], Theorem 1.6 extends a theorem of
Burger et al [18, Theorem 1.12] who prove that the Hilbert geodesic currents of a diverging
sequence of convex projective structures of a triangle group converge (projectively and up
to subsequences) to a geodesic current with positive systole.

Finally, in §6, we generalize the correlation theorem (Theorem 1.1) to Hitchin compo-
nents for a large class of length functions. We will replace the Hilbert geodesic flow of a
convex projective structure, which is Anosov, with more general metric Anosov translation
flows.

Given a hyperbolic structure ρ ∈ T (S), seen as a (conjugacy) class of representation
ρ : � → PSL(2, R), we obtain a representation i ◦ ρ : � → PSL(d, R) by post-composing
ρ with the unique (up to conjugation) irreducible representation i : PSL(2, R) →
PSL(d, R). The Teichmüller space T (S) embeds in this way in the character variety of S
and PSL(d, R). The connected component Hd(S) of the character variety containing
this image is known as the Hitchin component. Hitchin [33] showed that Hd(S)

is homeomorphic to an open cell of dimension −(dim PSL(d, R))χ(S). Choi and
Goldman [20] identify H3(S) with the space C(S) which will be our main focus from
§2 to §5. Let us remark that, although the spaces Hd(S) consist of conjugacy classes of
representations, for this paper, the distinction between a representation and its conjugacy
class is inconsequential. Because of this, when clear from context, we will not distinguish
between a representation and its conjugacy class.

To state the general correlation theorem for Hitchin representations (Theorem 1.7), we
need to introduce some Lie theoretical notation.

Let

a = {�x ∈ R
d | x1 + · · · + xd = 0} and a+ = {�x ∈ a | x1 ≥ · · · ≥ xd}

denote the (standard) Cartan subspace for PSL(d, R) and the (standard) positive Weyl
chamber, respectively. Let λ : PSL(d , R) → a+ be the Jordan projection given by λ(g) =
(log λ1(g), . . . , log λd(g)) consisting of the logarithms of the moduli of the eigenvalues
of g in non-increasing order. We consider linear functionals in

� =
{
c1α1 + · · · + cd−1αd−1

∣∣∣∣ ci ≥ 0,
∑
i

ci > 0
}

,

where αi : a → R are the simple roots defined by αi(�x) = xi − xi+1 with i = 1, . . . ,
d − 1. Observe that if φ ∈ �, then φ(�x) > 0 for all �x in the interior of a+. The length
function �φρ for φ ∈ � and ρ ∈ Hd(S) is defined by �φρ([γ ]) = φ(λ(ρ(γ ))). The length
function is strictly positive because λ(ρ(γ )) is in the interior of a+ for all [γ ] ∈ [�]
(see [25, 37]). The topological entropy hφ(ρ) and renormalizedφ-length L

φ
ρ([γ ]) =
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hφ(ρ)�
φ
ρ([γ ]) are defined in similar manner as for convex projective structures. Given a

Hitchin representation ρ, we denote by ρ∗ its contragredient given by ρ∗ = (ρ−1)t .
We are now ready to state the correlation theorem for Hitchin representations.

THEOREM 1.7. Given a linear functional φ ∈ � and a fixed precision ε > 0, for any two
different Hitchin representations ρ1, ρ2 : � → PSL(d, R) such that ρ2 �= ρ∗

1 , there exist
constants C = C(ε, ρ1, ρ2, φ) > 0 and M = M(ρ1, ρ2, φ) ∈ (0, 1) such that

#{[γ ] ∈ [�] | Lφρ1
([γ ]) ∈ (x, x + hφ(ρ1)ε), Lφρ2

([γ ]) ∈ (x, x + hφ(ρ2)ε)} ∼ C
eMx

x3/2 .

Remark 1.8
(1) For ρ ∈ Hd(S), when φ = αi and i = 1, . . . , d − 1, we know that hαi (ρ) = 1

thanks to [50, Theorem B]. Thus, Lαiρ = �
αi
ρ is the simple root length without any

renormalization. The correlation theorem in this case can be seen as a natural
generalization of Schwartz and Sharp’s correlation theorem for hyperbolic surfaces.

(2) Note that Theorem 1.1 is a corollary of Theorem 1.7 when we set d = 3 and consider
the positive root φ(�x) = (α1 + α2)(�x) = x1 − x3.

It would be interesting to extend the results on the correlation number proved in
§§4 and 5 to the context Hitchin representations. In this spirit, we end the paper by
raising Question 6.15 and Conjecture 6.16 which are motivated by Theorems 1.3 and 1.5,
respectively.

1.1. Structure of the paper. In §§2–5, we focus on convex projective structures. In this
case, the length function can be defined geometrically via the Hilbert distance, and Benoist
proved in [7] that the associated geodesic flow is Anosov. These two facts will simplify the
exposition. The main results (Theorems 1.3, 1.4, and 1.5) in §§4 and 5 concern the behavior
of the correlation number along geometrically defined sequences of convex projective
structures. We establish the correlation theorem in full generality in §6, after recalling
the precise definitions of Hitchin representations and their length functions and the theory
of metric Anosov translation flows.

2. Preliminaries for convex real projective structures
Consider a connected, closed, oriented surface S with genus g ≥ 2 and denote by � its
fundamental group. In this preliminary section, we focus on convex projective structures
on S. We will discuss in §6 how parts of the material presented here hold for general
Hitchin components.

The structure of §2 is as follows. In §2.1, we briefly recall the relevant geometric aspects
of the theory of convex projective structures on surfaces. We refer to [7, 30] for further
details and background. In §2.2, we collect dynamical properties of convex projective
surfaces which will play an important role in §§3 and 4. In §2.4, we prove the independence
lemma (Lemma 2.11) which plays a key role in the proof of Theorem 1.1. Finally, we
briefly survey the theory of geodesic currents in §2.5 which will be used in the proof of
Theorem 1.3 and in §5.3.
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2.1. Convex projective surfaces. A properly convex set � in RP
2 is a bounded open

convex subset of an affine chart. A properly convex set whose boundary does not contain
open line segments is strictly convex. We will exclusively focus on strictly convex sets in
this paper. We equip a strictly convex set � with its Hilbert metricd�. More precisely,
if x, y ∈ �, the projective line xy passing through x and y intersects the boundary of �
in two points a, b, where a, x, y, b appear in this order along xy. The Hilbert distance
between x and y is

d�(x, y) = 1
2 log[a, x, y, b],

where [a, x, y, b] denotes the crossratio of four points on a projective line. With the Hilbert
metric, geodesics are segments of a projective line intersecting �. Typically, the Hilbert
metric is not Riemannian, but it derives from a Finsler norm. Thus, one can study the unit
tangent bundle T 1� of a strictly convex set �.

The main objects of interest are representations ρ : � → SL(3, R) such that ρ(�)
preserves a properly convex set�ρ on which it acts properly discontinuously with quotient
homeomorphic to the closed surface S. In this case, we say that ρ is a (marked real) convex
projective structure which divides �ρ and denote by Xρ the surface S equipped with the
convex projective structure ρ. Since S is a closed surface of negative Euler characteristic,
�ρ is strictly convex and if γ ∈ � is non-trivial, then the moduli λ1(ρ(γ )) > λ2(ρ(γ )) >

λ3(ρ(γ )) > 0 of the eigenvalues of ρ(γ ) are distinct. (See for example [30, Theorem 3.2]
and references therein).

The Hilbert distance on �ρ induces the Hilbert length spectrum�Hρ for non-trivial
conjugacy classes of group elements in �. Algebraically, if [�] is the set of conjugacy
classes of non-identity elements in �, namely [γ ] ∈ [�] is the conjugacy class of γ �= id,
then

�Hρ ([γ ]) = 1
2

log
λ1(ρ(γ ))

λ3(ρ(γ ))
.

Benoist [7] proved that if ρ is a convex projective structure on S, then (�ρ , d�ρ ) is
Gromov hyperbolic, the Gromov boundary and the topological boundary of �ρ coincide,
and ∂�ρ is of class C1+α for some α ∈ (0, 1]. For a(ny) point o ∈ �ρ , the orbit map
γ �→ ρ(γ ).o is a quasi-isometric embedding. It follows (see e.g. [26, Ch. 7, Proposition
14]) that the orbit map induces a limit map ξρ : ∂� → ∂�ρ between Gromov boundaries
which is a ρ-equivariant bi-Hölder homeomorphism.

If ρ(�) divides a strictly convex set �ρ in RP
2, then the representation ρ∗ divides

a (typically different) strictly convex set �ρ∗ . Here we recall that the contragredient
representation is defined as ρ∗(γ ) = (ρ(γ )−1)t for all γ ∈ �. We refer to this operation
on the space of convex projective structures as the contragredient involution. The
contragredient involution preserves the Hilbert length because for all [γ ] ∈ [�],

�Hρ ([γ ]) = 1
2

log
λ1(ρ(γ ))

λ3(ρ(γ ))
= 1

2
log

1/λ3(ρ(γ ))

1/λ1(ρ(γ ))
= �Hρ∗([γ ]).
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A standard computation using the irreducible representation PSL(2, R) → PSL(3, R)
shows that if ρ is a hyperbolic structure, then ρ = ρ∗. The converse holds by [5, Theorem
1.3]: if ρ is a convex projective structure such that ρ = ρ∗, then ρ is a hyperbolic structure.

2.2. The Hilbert geodesic flow and reparametrization function. Suppose that ρ is a
convex projective surface. The Hilbert geodesic flow �ρ is defined on the unit tangent
bundle of the surface T 1Xρ . The image �ρt (w) of a point w = (x, v) is obtained by
following the unit speed geodesic for time t leaving x in the direction v. When it is clear
from context, we simply write �ρ as �.

The Hilbert geodesic flow � on T 1Xρ is an example of a topologically mixing Anosov
flow by [7, Propositions 3.3 and 5.6]. A standard reference for the theory of Anosov flows
is [35, §6]. A key property for our discussion is that topologically mixing Anosov flows
can be modeled by Markov partitions and symbolic dynamics in the sense of Bowen [11].

Given a positive Hölder continuous function f : T 1Xρ → R, one can define a Hölder
reparameterization of the flow � by time change. We construct the flow �f following
[53, §2]. First, we define κ : T 1Xρ × R → R as

κ(x, t) =
∫ t

0
f (�s(x)) ds.

Given the fact that f is positive and T 1Xρ is compact, the function κ(x, ·) is an increasing
homeomorphism of R. We therefore have an inverse α : T 1Xρ × R → R that verifies

α(x, κ(x, t)) = κ(x, α(x, t)) = t

for every (x, t) ∈ T 1Xρ × R. The Hölder reparametrization of� by the Hölder continuous
function f is given by �ft (x) = �α(x,t)(x). We say that f is a reparameterization function
for �f . The new flow �f = {�ft }t∈R shares the same set of periodic orbits of �. For any
periodic orbit τ of � with period λ(τ), its period as a �f periodic orbit is

λ(f , τ) =
∫ λ(τ)

0
f (�s(x)) ds. (2.1)

Property (2.1) is a simple application of the definitions of α(x, t) and κ(x, t).

Remark 2.1. Each oriented closed geodesic γ on a convex projective structure ρ is
associated with a periodic orbit τ of �. However, an oriented closed geodesic γ

corresponds to a free homotopy class [γ ] ∈ [�]. We adopt different perspectives depending
on necessity in this paper while keeping in mind that they are the same object described
from different points of view.

Remark 2.2
(1) One can check from the definition that � is a Hölder reparameterization of �f with

the Hölder reparameterization function given by 1/f .
(2) Set � = �f and consider g a positive Hölder reparameterization of �, then �g is a

Hölder reparameterization of � by the Hölder function g · f .
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Let ρ1 and ρ2 be two convex projective structures on a surface S. The next lemma,
which is essentially due to Sambarino [53, §5], states that there exists a positive Hölder
continuous reparameterization function f ρ2

ρ1 : T 1Xρ1 → R encoding the Hilbert length
spectrum of ρ2. We include a proof for completeness.

LEMMA 2.3. (Sambarino [53]) Let ρ1 and ρ2 be convex projective structures on a surface
S. There exists a positive Hölder continuous function f ρ2

ρ1 : T 1Xρ1 → R such that for every
periodic orbit τ corresponding to [γ ] ∈ [�], one has

λ(f ρ2
ρ1

, τ) = �Hρ2
([γ ]).

Proof. Let us lift the picture to the universal cover. By [7, equation (20)], there exists a
Hölder continuous ρ1-equivariant homeomorphism T 1�ρ1 → ∂2�ρ1 × R, where ∂k�ρ1

is the set of ordered k-tuples of distinct points in ∂�ρ1 . Since the limit map of ρ1 is Hölder
continuous, we have a bi-Hölder homeomorphism ∂3�ρ1

∼= ∂2�ρ1 × R. We thus obtain
a Hölder continuous ρ1-equivariant homeomorphism χ : T 1�ρ1 → ∂3�ρ1 . Since the
Hilbert geodesic flow is Anosov [7, Proposition 3.3], it follows from [53, Theorem 3.2] (see
also [16, Proposition 5.21]) that for any choice of an auxiliary hyperbolic surface ρ0, there
exists a Hölder continuous positive reparameterization function gρ2

ρ0 : T 1�ρ0
∼= ∂3

H
2 →

R of the geodesic flow of ρ0 with periods �Hρ2
([γ ]). Considering the Hölder continuous

function ξ (3) : ∂3�ρ1 → ∂3
H

2 induced by the inverse of the limit map ξρ1 and the limit
map ξρ0 : ∂� → ∂H2, we obtain the composition gρ2

ρ0 ◦ ξ (3) ◦ χ : T 1�ρ1 → R which is
the lift of the desired reparameterization function f ρ2

ρ1 . The equality λ(f ρ2
ρ1 , τ) = �Hρ2

([γ ])
follows from equivariance of the limit maps.

2.3. Thermodynamic formalism. In this subsection, we will introduce several important
concepts from thermodynamic formalism in our context that will be needed later. Standard
references for thermodynamic formalism and Markov codings are [12, 47].

For a continuous function f : T 1Xρ → R, we define its pressure with respect to � as

P(�, f ) = lim sup
T−→∞

1
T

log
( ∑
τ∈RT

eλ(f ,τ)
)

,

where RT := {τ periodic orbit of � | λ(τ) ∈ [T − 1, T ]}. One can check that the topo-
logical entropy hH (ρ) is P(�, 0). For simplicity, we omit the geodesic flow � from the
notation and write P(·) for P(�, ·). The pressure can be characterized as follows.

PROPOSITION 2.4. (Variational principle) The pressure of a continuous function f :
T 1Xρ → R satisfies

P(f ) = sup
μ∈M�

(
h(μ)+

∫
f dμ

)
,

where M� is the space of �-invariant probability measures on T 1Xρ and h(μ) =
h(�, μ) denotes the measure-theoretic entropy of � with respect to μ ∈ M�.

A �-invariant probability measure μ on T 1Xρ is called an equilibrium state for f if the
supremum is attained at μ.
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Remark 2.5
(1) For a Hölder continuous function f : T 1Xρ → R, there exists a unique equilibrium

state μf by [13, Theorem 3.3].
(2) The equilibrium state μ0 for f = 0 is called a probability measure of maximal

entropy or a Bowen–Margulis measure, denoted as μ�. The Hilbert geodesic flow
� is topologically mixing and Anosov, thus it admits a unique measure of maximal
entropy on T 1Xρ . The entropy of the measure of maximal entropy coincides with
the topological entropy. See for instance [35, §20].

The following lemma, derived from Abramov’s formula [1], allows us to rescale a
reparameterization function to be pressure zero.

LEMMA 2.6. (Sambarino [53, Lemma 2.4], Bowen and Ruelle [13, Proposition 3.1]) For
a positive Hölder reparameterization function f on T 1Xρ and h ∈ R, the pressure function
satisfies

P(−hf ) = 0

if and only if h = h(�f ), where

h(�f ) = lim sup
T→∞

1
T

log #{τ periodic orbit | λ(f , τ) ≤ T }.

By definition, h(�f ) is the topological entropy of the reparameterized flow �f .

We will use Lemma 2.6 in the proofs of Theorems 1.1, 1.3, and 1.5.

Remark 2.7. By construction, if f = f
ρ2
ρ1 is the reparameterization function defined in

Lemma 2.3, then the topological entropy of the flow�f is equal to the topological entropy
hH (ρ2) of ρ2 as defined in the introduction.

Finally, we introduce (Livšic) cohomology. We say two Hölder continuous functions f
and g are (Livšic) cohomologous if there exists a Hölder continuous function V : T 1Xρ →
R that is differentiable in the flow’s direction such that for all x ∈ T 1Xρ ,

f (x)− g(x) = ∂

∂t

∣∣∣∣
t=0
V (�t(x)).

Remark 2.8. (Livšic’s theorem, [41])
(1) Two Hölder continuous functions f and g are cohomologous on T 1Xρ if and only

if λ(f , τ) = λ(g, τ) for any periodic orbit τ of �. It follows that the pressure of a
Hölder continuous function depends only on its cohomology class.

(2) Two Hölder continuous functions f and g have the same equilibrium state on T 1Xρ

if and only if f − g is cohomologous to a constant C. In this case, we have P(f ) =
P(g)+ C [35, §20].

2.4. Independence of convex projective surfaces. We start by recalling the notion of
(topologically) weakly mixing flows which motivates the concept of independence of
representations. A flow ϕ on T 1Xρ is weakly mixing if its periods do not generate a discrete
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subgroup of R. In particular, we can ask whether the Hilbert geodesic flow � is weakly
mixing. Equivalently, we ask whether there exists some non-zero real number a ∈ R such
that a�Hρ (γ ) ∈ Z for all [γ ] ∈ �. In the proof of Theorem 1.1, we will need a strengthening
of this property for a pair of representations.

Two convex projective structures ρ1 and ρ2 are dependent if there exist a1, a2 ∈ R, not
both equal to zero, such that a1�

H
ρ1
([γ ])+ a2�

H
ρ2
([γ ]) ∈ Z for all [γ ] ∈ [�]. Otherwise,

ρ1 and ρ2 are independent over Z. The next definition clarifies that this notion of
independence is of a dynamical nature.

Definition 2.9. Two positive Hölder continuous functions f1, f2 : T 1Xρ → R are depen-
dent if there exists a1, a2 ∈ R not both equal to zero and a complex valued C1 function u :
T 1Xρ → S1 such that a1f1 + a2f2 = (1/2πi)(u′/u). Here, u′ denotes the derivative of u
along the flow, that is, ∂/∂t |t=0u ◦�t . Otherwise, f1 and f2 are independent. In particular,
f is said to be (in)dependent if f and the constant function g ≡ 1 are (in)dependent.

Remark 2.10. The integral over a closed orbit of u′/u is an integer multiple of 2πi.
Thus, by integrating along closed orbits and using equation (2.1) and Remark 2.2, we
see that if ρ1 and ρ2 are independent, then the reparameterization function f ρ2

ρ1 on T 1Xρ1

is independent.

We now prove that convex projective surfaces with distinct Hilbert length spectra are
independent.

LEMMA 2.11. (Independence lemma) Let ρ1 and ρ2 be convex projective structures
with distinct Hilbert length spectra. If there exist a1, a2 ∈ R such that a1�

H
ρ1
([γ ])+

a2�
H
ρ2
([γ ]) ∈ Z for all [γ ] ∈ [�], then a1 = a2 = 0.

Proof. Our proof follows from combining the results of Benoist [5, 6] and an argument of
Glorieux [28].

We prove this statement by contradiction. Consider the product representation η = ρ1 ×
ρ2 : � → G1 × G2, where Gi denotes the Zariski closure of ρi . Benoist [5, Theorem 1.3]
proved that Gi is PSL(3, R) or isomorphic to PSO(1, 2). Either way, this Zariski closure is
connected, center-free, and simple, so G1 × G2 is semi-simple. Choose a Cartan subspace
of G1 × G2 such that

a ⊆ {(�x, �y) ∈ R
3 × R

3 | x1 + x2 + x3 = 0 = y1 + y2 + y3}
and a positive Weyl chamber a+ contained in {(�x, �y) ∈ a | x1 ≥ x2 ≥ x3 and y1 ≥
y2 ≥ y3}. Denote by λ : G1 × G2 → a+ the corresponding Jordan projection and by
φHa1,a2

the non-zero linear functional φHa1,a2
(�x, �y) = a1(x1 − x3)+ a2(y1 − y3) so that

φHa1,a2
(λ(η(γ ))) = a1�

H
ρ1
([γ ])+ a2�

H
ρ2
([γ ]).

Denote by H ⊆ G1 × G2 the Zariski closure of η(�). As a first step, observe that
H �= G1 × G2. Otherwise, Benoist [6, Proposition on p. 2] shows that the additive group
generated by λ(η(�)) is dense (in the standard topology) in a. We obtain a contradiction
as we assumed φHa1,a2

(λ(η(γ ))) ∈ Z for all γ ∈ � and φHa1,a2
is continuous.

Let πi : H → Gi for i = 1, 2 denote the projection maps. It follows from [24,
Lemma 3.1] that πi is surjective for i = 1, 2. Denote by N1 = π−1

2 (id) (respectively
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N2 = π−1
1 (id)) the kernel of π2 (respectively π1) which is naturally identified with a

normal subgroup of G1 (respectively G2) (note the indices in the definition of Ni). Then,
Goursat’s lemma [32, Theorem 5.5.1] states that the image of H in G1/N1 × G2/N2 is the
graph of an isomorphism G1/N1 ∼= G2/N2. Since G1 is simple, connected, and center-free,
then N1 = {e} or G1.

Case 1: Suppose N1 = G1. Then N2 = G2 and H is the direct product G1 × G2, which
is a contradiction.

Case 2: Suppose N1 = {e}. Since G2 is simple, N2 = {e} and G1 ∼= G2. In other words,
H is the graph of an automorphism ι : G1 → G2. This induces an automorphism of the
corresponding Lie algebras and, by the classification of their outer automorphisms given
in [31] (see also [14, Theorem 11.9]), we deduce that ρ2 is conjugated to either ρ1 or ρ∗

1 ,
which contradicts our hypothesis.

Observe that Lemma 2.11 readily implies that the geodesic flow of a convex projective
structure is weakly mixing. Otherwise there exist a ∈ R, a �= 0 such that a�Hρ ([γ ]) ∈ Z

which directly contradicts Lemma 2.11 with a1 = a, a2 = 0, ρ1 = ρ, and ρ2 ∈ C(S)

different from ρ1 and ρ∗
1 .

2.5. Geodesic currents for convex projective surfaces. Fix an auxiliary hyperbolic
structure m on S. A geodesic current is a Borel, locally finite, π1(S)-invariant measure
on the set of complete geodesics of the universal cover S̃. An important example is the
geodesic current δγ given by Dirac measures on the axes of the lifts of a closed geodesic γ
in S.

The space C(S) of geodesic currents is a convex cone in an infinite dimensional vector
space. Bonahon [8] extended the intersection pairing on closed curves to the space of
geodesic currents, that is, there exists a continuous, positive, symmetric, bilinear pairing

i : C(S)× C(S) → R≥0

such that i(δc, δd) equals the intersection number of the closed geodesics c and d.
Extending the work of Bonahon [9], in [15, 45], it was shown that for each convex

projective surface ρ, there exists a Hilbert geodesic current νρ such that for every
[γ ] ∈ [�],

i(νρ , δγ ) = �Hρ ([γ ]),

where γ denotes the unique closed geodesic in its free homotopy class [γ ]. Bonahon
[9, Proposition 15] proves that the geodesic current νρ of a hyperbolic structure ρ has
self-intersection i(νρ , νρ) = −π2χ(S). However, if ρ ∈ C(S) is not in the Fuchsian locus,
then i(νρ , νρ) > −π2χ(S) by Corollary 5.3 in [15].

In general, given a geodesic current ν, we can use the intersection number to define its
length spectrum �ν : [�] → R

+ as �ν([γ ]) = i(ν, δγ ). The systole of ν is then Sys(ν) :=
inf[γ ]∈[�] �ν([γ ]). Corollary 1.5 in [18] shows that Sys : C(S) → [0, ∞) is a continuous
function.

A geodesic current is period minimizing if for all T > 0, the set #{[γ ] ∈ [�] |
�ν([γ ]) < T } is finite. We define the exponential growth rate of a period minimizing
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geodesic current ν by

h(ν) = lim
T→∞

1
T

log #{[γ ] ∈ [�] | �ν([γ ]) < T }.
The notation is motivated by the fact that if ρ is a convex projective structure and νρ is
the corresponding Hilbert geodesic current, then h(νρ) is equal to the topological entropy
hH (ρ) of ρ.

The systole and the exponential growth rate of a geodesic current are related by the
following inequality, which will play an important role in the proof of Theorem 1.3.

THEOREM 2.12. (Corollary 7.6 in [45]) Let S be a closed, connected, oriented surface of
genus g ≥ 2. There exists a constant C > 0 depending only on g such that for every period
minimizing geodesic current ν ∈ C(S),

Sys(ν)h(ν) ≤ C.

3. The correlation theorem
In this section, we study the length spectra of two convex real projective structures
simultaneously.

This idea appeared first in [56] for studying correlation of hyperbolic structures. We
adapt their argument to the context of convex real projective structures. Theorem 3.1, which
was proved independently by Lalley and Sharp with slightly different conditions, gives the
asymptotic formula for the number of closed orbits of an Axiom A flow under constraints.
Anosov flows are important examples of Axiom A flows and Theorem 3.1 will be a crucial
ingredient for our proof of Theorem 1.1.

Fix a convex projective surface ρ. Let f : T 1Xρ → R be a Hölder continuous function
and consider the function t → P(tf ) for t ∈ R, where P denotes the pressure. This
function is real analytic and strictly convex in t when f is not cohomologous to a constant
[47, Proposition 4.12]. Its derivative satisfies

P ′(tf ) := d

dt
P (tf ) =

∫
f dμtf , (3.1)

where μtf is the equilibrium state for tf . We denote by J (f ) the open interval of values
P ′(tf ). If a ∈ J (f ), we let ta ∈ R be the unique real number for which P ′(taf ) =∫
f dμtaf = a. We ease notation and set μa = μtaf .
The following is the key result needed to establish our Theorem 1.1 (and Theorem 1.7).

THEOREM 3.1. (Lalley [39, Theorem I], Sharp [57, Theorem 1]) Let f : T 1Xρ → R be
an independent Hölder continuous function and let a ∈ J (f ). Then, for fixed ε > 0, there
is a constant C = C(f , ε) such that

#{τ : λ(τ) ∈ (x, x + ε), λ(f , τ) ∈ (ax, ax + ε)} ∼ C
exp(h(μa)x)

x3/2 .

Proof. Recall that the Hilbert geodesic flow on T 1Xρ is Anosov and, as pointed out at the
end of §2, weakly mixing. Thus, we can apply Lalley and Sharp’s results which hold for
all weakly mixing Axiom A flows.
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Remark 3.2. The constant C = C(f , ε) > 0 has the same order of magnitude as ε2 and is
related to P ′′(taf ). See [39, Theorem 5] and [56].

We introduce the concepts of pressure intersection and renormalized pressure intersec-
tion which we will need for the proof of Theorem 1.1.

Definition 3.3. Let ρ1 and ρ2 be two convex projective structures and let f : T 1Xρ1 → R

be a Hölder continuous reparameterization function. The pressure intersection of ρ1 and
ρ2 is

I(ρ1, ρ2) :=
∫
f dμ�ρ1 ,

where μ�ρ1 is the measure of maximal entropy for �ρ1 . The renormalized pressure
intersection of ρ1 and ρ2 is

J(ρ1, ρ2) := hH (ρ2)

hH (ρ1)
I(ρ1, ρ2).

By Livšic’s theorem, the definitions of pressure intersection and renormalized pressure
intersection do not depend on the choice of reparameterization function (see Remark 2.8).

PROPOSITION 3.4. [14, Proposition 3.8] For every ρ1, ρ2 ∈ C(S), the renormalized
pressure intersection is such that

J(ρ1, ρ2) ≥ 1

with equality if and only if LHρ1
= LHρ2

.

Proof. Notice that by Livšic’s theorem, LHρ1
= LHρ2

if and only if the function
(hH (ρ2)/h

H (ρ1))f is Livšic cohomologous to the constant function 1. Then the
proposition is a direct application of [14, Proposition 3.8].

Now we are ready to prove our main theorem stated in the introduction and repeated
below for the convenience of the reader.

THEOREM 1.1. Fix a precision ε > 0. Consider two convex projective structures ρ1 and
ρ2 on a surface S with distinct renormalized Hilbert length spectra LHρ1

�= LHρ2
. There exist

constants C = C(ε, ρ1, ρ2) > 0 and M = M(ρ1, ρ2) ∈ (0, 1) such that

#{[γ ] ∈ [�] | LHρ1
([γ ]) ∈ (x, x + hH (ρ1)ε), LHρ2

([γ ]) ∈ (x, x + hH (ρ2)ε)} ∼ C
eMx

x3/2 ,

where f (x) ∼ g(x) means f (x)/g(x) → 1 as x → ∞.

Proof. This proof is inspired by the proof for hyperbolic surfaces in [56]. Our first goal
is to show that for the reparameterization function f ρ2

ρ1 described in Lemma 2.3, the value
a in Theorem 3.1 can be chosen to be hH (ρ1)/h

H (ρ2). To ease notation, we set f = f
ρ2
ρ1

and we write � for the Hilbert geodesic flow �ρ1 on T 1Xρ1 .
By Lemma 2.6, we have that

0 = P(−hH (ρ2)f ) = h(μ−hH (ρ2)f
)−

∫
hH (ρ2)f dμ−hH (ρ2)f

,
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where μ−hH (ρ2)f
is the equilibrium state of −hH (ρ2)f . Hence,

hH (ρ2)

∫
f dμ−hH (ρ2)f

= h(μ−hH (ρ2)f
)

and ∫
f dμ−hH (ρ2)f

= h(μ−hH (ρ2)f
)

hH (ρ2)
≤ hH (ρ1)

hH (ρ2)
. (3.2)

Notice the equality can be attained only when μ−hH (ρ2)f
= μ�, where μ� is the

(Bowen–Margulis) measure of maximal entropy for the geodesic flow �. This happens
only if −hH (ρ2)f is cohomologous to a constant which, by integrating, implies the length
spectrum �Hρ1

is a multiple of �Hρ2
. This is impossible by Lemma 2.11 and therefore the

inequality is strict.
However, by Proposition 3.4, we have that

1 ≤ J(ρ1, ρ2) = hH (ρ2)

hH (ρ1)
I(ρ1, ρ2) = hH (ρ2)

hH (ρ1)

∫
f dμ�.

This yields ∫
f dμ� ≥ hH (ρ1)

hH (ρ2)
. (3.3)

Moreover, the equality is attained only when hH (ρ2)f is cohomologous to hH (ρ1) which
is impossible given our hypotheses.

Combining the inequalities (3.2) and (3.3), together with the fact that J (f ) is an open
interval, we conclude that (hH (ρ1)/h

H (ρ2)− δ, hH (ρ1)/h
H (ρ2)+ δ) ⊂ J (f ) for small

δ > 0. In particular, because P ′(tf ) is a strictly increasing continuous function, there exists
some ta0 ∈ (−hH (ρ2), 0) such that a0 = P ′(ta0f ) = hH (ρ1)/h

H (ρ2), as desired.
We now show that 0 < h(μa0) < hH (ρ1). Because the Hilbert geodesic flow is Anosov,

it has positive entropy with respect to any equilibrium state of a Hölder reparameterization,
so 0 < h(μa0) ≤ h(μ�) = hH (ρ1) and the equality occurs if and only if μa = μ� is the
measure of maximal entropy. However, as shown above,∫

f dμ� >
hH (ρ1)

hH (ρ2)
=

∫
f dμa0 .

This shows that μa0 can not be the Bowen–Margulis measure and hence h(μa0) < hH (ρ1).
Thanks to Lemma 2.11 and Theorem 3.1, we can conclude that for ρ1, ρ2 convex

projective structures such that ρ2 �= ρ1, ρ∗
1 , there exists C̃ = C̃(ρ1, ρ2, ε) such that

#
{

[γ ] ∈ [�] : �Hρ1
([γ ]) ∈ (y, y + ε), �Hρ2

([γ ]) ∈
(
hH (ρ1)

hH (ρ2)
y,
hH (ρ1)

hH (ρ2)
y + ε

)}

∼ C̃
exp(h(μa0)y)

y3/2 .

Setting x = hH (ρ1)y and clearing denominators, we have the desired statement with
C = hH (ρ1)

3/2C̃ and M = (h(μa0)/h
H (ρ1)) ∈ (0, 1).

https://doi.org/10.1017/etds.2022.56 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.56


Correlation for convex projective surfaces 2953

4. Correlation number, Manhattan curve, and decay of correlation number
In this section, we focus on the correlation number M(ρ1, ρ2) from Theorem 1.1. In
Theorem 4.2, we express the correlation number in terms of Burger’s Manhattan curve
[17] generalizing the main result in [58]. In §4.2, we prove that the correlation number is
not uniformly bounded away from zero in C(S). Specifically, we provide two sequences of
hyperbolic structures along which the correlation number goes to zero, thus answering a
question from [56].

4.1. Manhattan curve and correlation number. Let ρ1 and ρ2 be two convex projective
structures. The Manhattan curve ofρ1, ρ2 is the curve C(ρ1, ρ2) that bounds the convex
set {

(a, b) ∈ R
2 :

∑
[γ ]∈[�]

e
−(a�Hρ1

([γ ])+b�Hρ2
([γ ]))

< +∞
}

.

Equivalently (see [58]), the Manhattan curve can be defined in terms of the pressure
function and the reparameterization function f = f

ρ2
ρ1 : T 1Xρ1 → R from Lemma 2.3 as

C(ρ1, ρ2) = {(a, b) ∈ R
2 : P(−a − bf ) = 0} = {(a, b) ∈ R

2 : P(−bf ) = a}.
The next theorem collects the properties of the Manhattan curve we will need which

were first discussed in the setting of representations into isometry groups of rank one
symmetric spaces (see [17, Theorem 1]). We recall that a convex curve is a simple curve
in the Euclidean plane which lies completely on one side of any of its tangent lines. The
boundary of a convex set is always a convex curve. A strictly convex curve is a convex
curve that does not contain any line segments.

THEOREM 4.1. Let ρ1, ρ2 ∈ C(S) denote two convex projective surfaces.
(1) The Manhattan curve is a real analytic convex curve passing through the points

(hH (ρ1), 0) and (0, hH (ρ2)).
(2) The normals to the Manhattan curve at the points (hH (ρ1), 0) and (0, hH (ρ2)) have

slopes I(ρ1, ρ2) and 1/I(ρ2, ρ1), respectively.
(3) The Manhattan curve is strictly convex if and only if ρ2 �= ρ1, ρ∗

1 .

Proof. For item (1), convexity of the Manhattan curve follows from its definition since it
bounds a convex set. However, because the Manhattan curve is the graph of a function q
defined implicitly as P(−q(s)f ) = s, the implicit function theorem and real analyticity of
the pressure function yield real analyticity of the Manhattan curve.

For item (2), we notice P(0) = hH (ρ1) and P(−hH (ρ2)f ) = 0 (recall Lemma 2.6).
Therefore, C(ρ1, ρ2) passes through (hH (ρ1), 0) and (0, hH (ρ2)). To see that the normal
to the Manhattan curve at (hH (ρ1), 0) has slope I(ρ1, ρ2), we differentiate the equality
P(−q(s)f ) = s using equation (3.1) at (hH (ρ1), 0) to obtain

1 = d

ds

∣∣∣∣
s=hH (ρ1)

P (−q(s)f ) =
(

−
∫
f dμ�ρ1

)
q ′(hH (ρ1)).

Therefore, the normal to the Manhattan curve at (hH (ρ1), 0) has slope I(ρ1, ρ2) =∫
f dμ�ρ1 . The rest of item (2) follows by symmetry.
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FIGURE 1. Manhattan curve and the point (a, b) described in Theorem 4.2.

For item (3), if C(ρ1, ρ2) is not strictly convex, then by real analyticity, it must be a
line segment. From item (2), we have I(ρ1, ρ2) = 1/I(ρ2, ρ1). Therefore, we conclude
J(ρ1, ρ2) = 1/J(ρ2, ρ1). By Proposition 3.4, we conclude J(ρ1, ρ2) = J(ρ2, ρ1) = 1 and
therefore LHρ1

= LHρ2
. Then Remark 1.2 gives the results.

Sharp [58] expressed the correlation number M(ρ1, ρ2) in terms of the Manhattan
curve for hyperbolic structures. We establish an analogous result for convex real projective
structures.

THEOREM 4.2. Let ρ1 and ρ2 be convex projective structures with distinct renormalized
Hilbert length spectra. Then, their correlation number can be written as

M(ρ1, ρ2) = a

hH (ρ1)
+ b

hH (ρ2)
,

where (a, b) ∈ C(ρ1, ρ2) is the unique point on the Manhattan curve at which the tangent
line is parallel to the line passing through (hH (ρ1), 0) and (0, hH (ρ2)). See Figure 1.

Proof. By the proof of Theorem 1.1, the correlation number is such that hH (ρ1)

M(ρ1, ρ2) = h(μa0), where a0 = ∫
f dμa0 = (hH (ρ1)/h

H (ρ2)). By definition,

h(μa0) = P(ta0f )− ta0

hH (ρ1)

hH (ρ2)
.

Note that C(ρ1, ρ2) is the graph of a real analytic function q defined implicitly as
P(−q(s)f ) = s. Setting q(s0) = −ta0 , it follows that

M(ρ1, ρ2) = h(μa0)

hH (ρ1)
= P(−q(s0)f )

hH (ρ1)
+ q(s0)

hH (ρ2)
= s0

hH (ρ1)
+ q(s0)

hH (ρ2)
.
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FIGURE 2. Closed curves α1, α2, and α3 and β1, β2, and β3 give two pair-of-pants decompositions whose union
fills the surface of genus two.

Moreover, observe that

1 = d

ds
P (−q(s)f ) =

(
−

∫
f dμ−q(s)f

)
q ′(s).

We conclude by recalling that
∫
f dμta0f

= (hH (ρ1)/h
H (ρ2)) and that the line passing

through (hH (ρ1), 0) and (0, hH (ρ2)) has slope −(hH (ρ2)/h
H (ρ1)).

Remark 4.3. It follows from strict convexity of the Manhattan curve and Theorem 4.2 that
M(ρ1, ρ2) ∈ (0, 1). This fact is independently proved in Theorem 1.1.

4.2. Decay of correlation number. This section is dedicated to the proof of Theorem 1.3
from the introduction, which we restate here for the convenience of the reader.

THEOREM 1.3. There exist sequences (ρn)∞n=1 and (ηn)∞n=1 in the Teichmüller space T (S)
such that the correlation numbers M(ρn, ηn) satisfy

lim
n→∞ M(ρn, ηn) = 0.

Proof. We construct two special families of hyperbolic structures ρn, ηn and consider their
corresponding geodesic currents νρn , νηn as in §2.5. Our proof proceeds in two steps. First,
we take geodesic currents νρn + νηn given by the sum of the currents of ρn and ηn and
show that their exponential growth rates satisfy limn→∞ h(νρn + νηn) = 0. Then we show
that this condition implies that the correlation number M(ρn, ηn) goes to zero as well.

We consider two pair-of-pants decompositions (αi) and (βi) whose union is filling
on a hyperbolic structure ρ0. See Figure 2 for an example. A family of simple closed
curves is filling if the complement of their union consists of topological discs. We take
(ρn)

∞
n=1 to be a sequence of hyperbolic structures obtained by pinching all αi on ρ0 so that

the hyperbolic length �ρn(αi) = εn with εn → 0 when n → ∞. Similarly, we take (ηn) to
be another sequence of hyperbolic structures obtained by pinching all βi on ρ0 so that the
hyperbolic length �ηn(βi) = εn. Note in such cases, we have that �Hρn = �ρn and �Hηn = �ηn
and that the topological entropy hH (ρn) = hH (ηn) = 1 for all n. We now proceed to prove
limn→∞ h(νρn + νηn) = 0.

By definition, the systole of νρn + νηn is equal to Ln = inf[γ ]∈[�]{�Hρn([γ ])+ �Hηn([γ ])}.
Note that for a fixed n, #{[γ ] ∈ [�] | �Hρn([γ ])+ �Hηn([γ ]) < T } < ∞ for all T > 0. In
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other words, the geodesic current νρn + νηn is period minimizing and so we can apply
Theorem 2.12 to find a constant C depending only on the topology of S such that

h(νρn + νηn) ≤ C

Ln
.

Therefore, to show limn→∞ h(νρn + νηn) = 0, it suffices to show that limn→∞
Ln = ∞. Because of the filling condition, the geodesic representative of any [γ ] ∈ [�]
must intersect transversally either curves in (αi) or curves in (βi). By the collar lemma (see
[19, Ch. 4]), each geodesic representative of αi (respectively βi) for ρn (respectively ηn)
is enclosed in a standard collar neighborhood of width approximately log(1/εn). In
particular, every closed curve traverses a collar neighborhood of width approximately
log(1/εn) for the hyperbolic metric ρn or the hyperbolic metric ηn which implies that
limn→∞ Ln = ∞.

We now show that limn→∞ h(νρn + νηn) = 0 implies that the correlation number goes
to zero as well. Consider the reparameterization functions f ηnρn as in Lemma 2.3 and
notice that λ(1 + f

ηn
ρn , τ) = �Hρn([γ ])+ �Hηn([γ ]) for every periodic orbit corresponding to

[γ ] ∈ [�]. By Lemma 2.6, for all n,

P(−h(νρn + νηn)− h(νρn + νηn)f
ηn
ρn
) = P(−h(νρn + νηn)(1 + f ηnρn )) = 0.

We have that (h(νρn + νηn), h(νρn + νηn)) ∈ C(ρn, ηn) thanks to the characterization of
the Manhattan curve in terms of the pressure function. If the line y + x = 2h(νρn + νηn)

is tangent to the Manhattan curve C(ρn, ηn), then by Theorem 4.2, we obtainM(ρn, ηn) =
2h(νρn + νηn). If not, then the line y + x = 2h(νρn + νηn) must intersect transversally
C(ρn, ηn) at two points. See Figure 3. Now, by the mean value theorem and the convexity
of the Manhattan curve, we have from Theorem 4.2 that there exists 0 < an, bn <
2h(νρn + νηn) such that

0 < M(ρn, ηn) = an + bn < 2h(νρn + νηn).

This immediately implies that M(ρn, ηn) goes to zero as n goes to infinity.

5. The renormalized Hilbert length along cubic rays
5.1. Cubic rays and affine spheres. Building on work of Hitchin [33], Labourie [38], and
Loftin [43] have independently parameterized C(S) as the vector bundle of holomorphic
cubic differentials over T (S). This is called the Labourie–Loftin’s parameterization. We
briefly recall this parameterization since we will use it in this subsection to study the
correlation number. The reader can refer to [38, 43] for a detailed construction. This
parameterization shows that the space of pairs formed by a complex structure J on S and
a J-holomorphic cubic differential q is in one-to-one correspondence with the space of
convex real projective structures on S.

Because of the classical correspondence between hyperbolic structures and complex
structures, we will sometimes blur the difference between a Riemann surface X and a
hyperbolic structure X. We recall that a holomorphic cubic differential q is a holomorphic
section of K ⊗K ⊗K , where K is the canonical line bundle of a Riemann surface X.
Locally, a holomorphic cubic differential can be written in complex coordinate charts
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FIGURE 3. Manhattan curve and the point (h(νρn + νηn ), h(νρn + νηn )) described in the proof of Theorem 1.3.

as q = q(z)dz⊗ dz⊗ dz (often written as q(z)dz3) with q(z) holomorphic. The cubic
differential q is invariant under change of coordinates, meaning that if we pick a different
coordinate chart w, then q(w)dw3 = q(z)dz3. The hyperbolic metric σ that corresponds
to the complex structure of X induces a pointwise Hermitian metric 〈·, ·〉 for holomorphic
cubic differentials on X defined as follows:

〈q1, q2〉 = q1q2

σ 3 .

The L2-norm of a cubic differential q is defined as

‖q‖2
X =

∫
X

〈q, q〉 dσ .

The correspondence between the space of pairs of complex structures on S and
holomorphic cubic differentials on associated Riemann surfaces with the set of convex
real projective structures on S goes through a geometrical object invariant under affine
transformations, called an affine sphere. We briefly describe the relation. Consider a pair
(J , q), where J is a complex structure and q is a holomorphic cubic differential on the
Riemann surface XJ associated to J. Then one can obtain an affine sphere, which is a
hypersurface in R

3 that is invariant under affine transformations, by solving a second-order
elliptic partial differential equation (PDE) called Wang’s equation (see [43, §4]). The affine
sphere can be projected to RP

2 so as to obtain the developing image �ρ of some convex
projective structure ρ. Conversely, given a convex projective structure ρ and its developing
image �ρ , we can construct an affine sphere by solving a Monge–Ampére equation (see
[43, §7]). The affine sphere will provide a complex structure J and a holomorphic cubic
differential q on XJ .
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Since hyperbolic structures correspond to complex structures, the above identification
provides a way to parameterize the space of convex projective structures C(S) as the
vector bundle of holomorphic cubic differentials over T (S). In particular, we can fix a
non-zero cubic differential q and consider the associated family of representations (ρt )t∈R
in C(S) parameterized by (tq)t∈R. When t ≥ 0, we call such a family a cubic ray. In this
section, we study the properties of the renormalized Hilbert length spectrum along cubic
rays in C(S).

Note that we can use the holomorphic data introduced above to describe when two
convex projective structures ρ1 and ρ2 have the same renormalized Hilbert length spectra
(see Remark 1.2). Fixing a Riemmann surface XJ , the case ρ1 = ρ2 happens when their
corresponding holomorphic cubic differentials q1 and q2 with respect to XJ are equal in
the Labourie–Loftin’s parameterization. However, if ρ1 is the contragredient of ρ2, then
their corresponding holomorphic objects must be (XJ , q1) and (XJ , q2) = (XJ , −q1),
respectively. For a detailed explanation of this fact, we refer the reader to [42, §8].

For the reminder of this section, when there is no ambiguity, we ease notation by writing
ht = hH (ρt ) for the topological entropy, and LHt = LHρt for the renormalized Hilbert
length spectrum of a cubic ray (ρt )t≥0. With these notation, ρ0 is the hyperbolic structure
associated to X0. The entropy h0 equals 1 and the renormalized Hilbert length spectrum
LH0 is the X0-length spectrum.

The following observation is important and follows immediately from the work of
Tholozan [59].

LEMMA 5.1. Let (ρt )t>0 be a cubic ray. There exists D > 1 such that for all t ≥ 0,

1
D
LH0 ≤ LHt ≤ DLH0 .

Proof. Tholozan [59, Theorem 3.9] proves that there exists B > 1 such that for all t > 0,

1
B
t1/3�H0 ≤ �Ht ≤ Bt1/3�H0 . (5.1)

In turn, this implies that for all T ≥ 0 and t > 0,

#
{

[γ ] | �H0 ([γ ]) ≤ 1
Bt1/3

T

}
≤ #{[γ ] | �Ht ([γ ]) ≤ T } ≤ #

{
[γ ] | �H0 ([γ ]) ≤ B

t1/3
T

}
.

Since h0 = 1, by definition of topological entropy, the above inequalities imply that for all
t > 0,

1
Bt1/3

≤ ht ≤ B

t1/3
. (5.2)

The result follows by taking D = B2 and combining the inequalities (5.1) and (5.2). The
case for t = 0 is obvious.

The following example points out a problem with comparing un-renormalized length
spectra and partially motivates our study of the renormalized Hilbert length spectrum. In
particular, equation (5.3) below should be compared to the correlation theorem.
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Example 5.2. Fix ε > 0. Let ρ0 be a Fuchsian representation in C(S) and consider a cubic
ray (ρt )t≥0 ⊂ C(S). Consider any t > 0. Then,

lim
x→∞ #{[γ ] ∈ [�] | �H0 ([γ ]) ∈ (x, x + ε), �Ht ([γ ]) ∈ (x, x + ε)} = 0. (5.3)

Proof. For t > 0, consider δ > 0 small enough so that ht < 1 < D − δ, where D is as in
Lemma 5.1. Here we recall that hH (ρ) is strictly less than one when ρ ∈ C(S) is not in the
Fuchsian locus (see [22]). There exists M sufficiently large such that (Dx/x + ε) ≥ D − δ

for all x > M . Therefore, for all x > M , if x < �H0 ([γ ]) < x + ε, then

�Ht ([γ ]) ≥ D

ht
�H0 ([γ ]) >

D

D − δ
x ≥ x + ε.

This shows that {[γ ] ∈ [�] | �H0 ([γ ]) ∈ (x, x + ε), �Ht ([γ ]) ∈ (x, x + ε)} = ∅ for all
x > M , which implies that equation (5.3) holds.

5.2. Cubic rays and correlation numbers. In contrast with Theorem 1.3, we show some
instances in which the correlation numbersM(ρt , ηt ) arising from two different cubic rays
are uniformly bounded away from zero. We first introduce a convenient lemma that will be
used in the proof of Theorems 1.4 and 1.5.

LEMMA 5.3. Suppose ρ and η are different convex real projective structures such that
ρ∗ �= η. Let υρ and υη be the renormalized Hilbert currents associated to ρ and η,
respectively. For s ∈ [0, 1], let us denote the geodesic current sυρ + (1 − s)υη. Then there
exists a unique s0 ∈ (0, 1) such that

M(ρ, η) = h(us0).

Proof. Since η �= ρ, ρ∗, the Manhattan curve C(ρ, η) is strictly convex. The line
(x/hH (ρ))+ (y/hH (η)) = 1 intersects the Manhattan curve in the first quadrant only at
the points (hH (ρ), 0) and (0, hH (η)). It follows that for every s ∈ [0, 1], the straight line
connecting (shH (ρ), (1 − s)hH (η)) and the origin must intersect C(ρ, η). By Lemma 2.6,

P(−h(us)shH (ρ)− h(us)(1 − s)hH (η)f ηρ )

= P(−h(us)(shH (ρ)+ (1 − s)hH (η)f ηρ )) = 0,

where f ηρ is the reparameterization function from Lemma 2.3. It follows from the definition
of the Manhattan curve that every point on C(ρ, η) in the first quadrant can be written in
the form of (h(us)shH (ρ), h(us)(1 − s)hH (η)) for some s ∈ [0, 1]. By Theorem 4.2, there
exists s0 ∈ (0, 1) such that

M(ρ, η) = s0h(us0)h
H (ρ)

hH (ρ)
+ (1 − s0)h(us0)h

H (η)

hH (η)
= h(us0).

We first study the case of two cubic rays which lie in two different fibers of the vector
bundle C(S) → T (S) given by the Labourie–Loftin parameterization of the space of
convex projective surfaces.
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THEOREM 1.4. Let (ρt )t≥0, (ηr)r≥0 be two cubic rays associated to two different
hyperbolic structures ρ0 �= η0. Then, there exists a constant C > 0 such that for all
t , r ≥ 0,

M(ρt , ηr) ≥ CM(ρ0, η0).

Proof. Fix t , r ≥ 0 and write ρ = ρt and η = ηr , for simplicity. Note that by hypothesis,
LHρ �= LHη and LHρ0

�= LHη0
. This is because LHρ = LHη if and only if ρ equals η or its

contragredient involution η∗. Clearly, ρ �= η. Moreover, ρ = η∗ only happens if their
associated pairs of complex structures and holomorphic cubic differentials by the above
construction are (X0, q) and (X0, −q), respectively (see [42, §8]), which is excluded as
well. For s ∈ [0, 1], let us denote the geodesic current given by sυρ + (1 − s)υη, where
υρ and υη are the renormalized Hilbert geodesic currents of ρ and η, respectively. Denote
by h(us) the exponential growth rate for the geodesic current us .

By Lemma 5.1, there exist constantsD1, D2 depending on ρ0 and η0, respectively, such
that

sLHρ + (1 − s)LHη ≤ sD1L
H
ρ0

+ (1 − s)D2L
H
η0

≤ max{D1, D2}(sLHρ0
+ (1 − s)LHη0

).

Set C = 1/max{D1, D2} and ws = sυρ0 + (1 − s)υη0 , where υρ0 and υη0 are the renor-
malized Hilbert geodesic currents of ρ0 and η0, respectively. Then,

h(us) ≥ Ch(ws).

By Lemma 2.6, the intersection between the Manhattan curve C(ρ0, η0) and the
line passing through the origin and the point (s, (1 − s)) has coordinates (sh(ws),
(1 − s)h(ws)) and lies on the line y + x = h(ws). Then, by Theorem 4.2,

h(ws) ≥ M(ρ0, η0).

See Figure 4. Finally, by Lemma 5.3, there exists s0 ∈ (0, 1) such that

M(ρ, η) = h(us0) ≥ Ch(ws0) ≥ CM(ρ0, η0),

which concludes the proof.

Finally, we prove Theorem 1.5 from the introduction which can be seen as a ‘limiting
case’ of Theorem 1.4 if we avoid pairs of sequences related by the contragredient
involution.

THEOREM 1.5. Let (ρt )t≥0 and (ηr)r≥0 be two cubic rays associated to two different
holomorphic cubic differentials q1 and q2 on a hyperbolic structure X0 such that q1, q2

have unit L2-norm with respect to X0 and q1 �= −q2. Then the correlation number
M(ρt , ηr) is uniformly bounded away from zero for all t > 0 and r > 0.

Proof. This proof is similar to the proof of Theorem 1.4. We note that ρ0 = η0 and LHρ0
=

LHη0
= LH0 . Recall from Lemma 5.1, there exists D1, D2 > 1 such that for all t , r ≥ 0,

1
D1
LH0 ≤ LHρt ≤ D1L

H
0 and

1
D2
LH0 ≤ LHηr ≤ D2L

H
0 .
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FIGURE 4. The correlation number of ρ0 and η0 is less or equal to the exponential growth rate of the geodesic
current ws .

Consider the renormalized Hilbert currents υρt and υηr for ρt and ηr , respectively. Let
s ∈ [0, 1] and set the geodesic current ut ,r ,s = sυρt + (1 − s)υηr . As a first step, we show
that the entropy of the geodesic current ut ,r ,s = sυρt + (1 − s)υηr is uniformly bounded
away from zero. We have from Lemma 5.1, for all [γ ] ∈ [�],

sLHρt ([γ ])+ (1 − s)LHηr ([γ ]) ≤ (sD1 + (1 − s)D2)L
H
0 ([γ ]) ≤ max{D1, D2}LH0 ([γ ]).

Thus, we obtain h(ut ,r ,s) ≥ 1/D for every s ∈ (0, 1), where D = max{D1, D2}.
Next we want to show this implies the correlation number M(ρt , ηr) is bounded away

from zero. Because q1 and q2 both have unitL2-norm and q2 �= −q1, we haveLHρt �= LHηt as
ρt

∗ �= ηt when t = r > 0. Again, here we use the fact that ρt = η∗
t only if their associated

pairs of complex structures and holomorphic cubic differentials (via affine spheres) are
(X0, tq1) and (X0, −tq1), respectively. For each t > 0 and r > 0, by Lemma 5.3, we can
find some s0 ∈ (0, 1) such that

M(ρt , ηr) = h(ut ,r ,s0).

We conclude that M(ρt , ηr) ≥ 1/D for all t > 0 and r > 0, as desired.

5.3. Cubic rays and geodesic currents. In this section, we observe two properties of
renormalized Hilbert currents υρt = htνρt along cubic rays (ρt )t≥0 which readily follow
from Lemma 5.1. Let us start by showing that the self-intersection of the renormalized
Hilbert geodesic current is uniformly bounded along cubic rays.
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PROPOSITION 5.4. There exists C > 1 such that for all t ≥ 0,

1
C

≤ i(υρt , υρt ) ≤ C,

where υρt is the renormalized Hilbert geodesic current of ρt .

Proof. Recall from §2.5 that Bonahon proved that i(υρ0 , υρ0) = −π2χ(S), where χ(S)
is the Euler characteristic of S. Corollary 5.2 in [15] states that(

inf
[γ ]∈[�]

LHt ([γ ])
LH0 ([γ ])

)2

≤ i(υρt , υρt )
i(υρ0 , υρ0)

≤
(

sup
[γ ]∈[�]

LHt ([γ ])
LH0 ([γ ])

)2

,

so

−π2χ(S)

(
inf

[γ ]∈[�]

LHt ([γ ])
LH0 ([γ ])

)2

≤ i(υρt , υρt ) ≤ −π2χ(S)

(
sup

[γ ]∈[�]

LHt ([γ ])
LH0 ([γ ])

)2

.

We conclude by applying Lemma 5.1.

Bonahon [9] showed that Thurston’s compactification of the Teichmüller space can be
understood via geodesic currents. Explicitly, given a diverging sequence of hyperbolic
structures mt , there exists λt > 0 and a geodesic current α with i(α, α) = 0, a measured
lamination, such that λtνmt converges up to subsequences to α. In this case, the systole of
α vanishes, that is,

Sys(α) = inf
[γ ]∈[�]

i(α, δγ ) = 0.

Burger et al [18] show that there exist diverging sequences of Hilbert geodesic currents
which converge projectively to a current α with Sys(α) > 0. We use Lemma 5.1 to show
that this happens along cubic rays.

THEOREM 1.6. As t goes to infinity, the renormalized Hilbert geodesic current υρt along
a cubic ray converges, up to passing to a subsequence, to a geodesic current υ with
Sys(υ) > 0.

Proof. Suppose (αi) and (βj ) are pair-of-pants decompositions which fill the surface, that
is, they are pants decompositions such that the complement of their union is a collection
of topological discs. Set u = ∑

γ∈(αi )∪(βj ) δγ and let M = maxγ∈(αi )∪(βj ) LH0 ([γ ]). For
every t ∈ R, we have

i(υρt , u) =
∑

γ∈(αi )∪(βj )
LHt ([γ ]).

By Lemma 5.1, υt lies in {ν ∈ C(S) | i(ν, u) ≤ (6g − 6)DM} for some D > 1. This set
is compact by [9, Proposition 4] and by linearity of the intersection number. Thus, υt
converges, up to passing to a subsequence, to υ ∈ C(S). Applying Lemma 5.1 again, we
see that Sys(υρt ) is greater or equal toD−1Sys(υρ0) > 0. By continuity, the systole Sys(υ)
is strictly positive.
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6. Generalization to Hitchin representations
In this section, we illustrate how to generalize the main results of §§3 and 4 to the context
of Hitchin representations.

We start with introducing Hitchin components and Hitchin representations. Given
ρ ∈ T (S), we can postcompose the corresponding holonomy representation ρ : � →
PSL(2, R) with the unique (up to conjugation) irreducible representation i : PSL(2, R) →
PSL(d, R) given by the action of A ∈ PSL(2, R) on the space of degree d − 1 homo-
geneous polynomials in two variables. The Hitchin component Hd(S) is the connected
component of the character variety Hom(�, PSL(d , R))//PSL(d, R) containing i ◦ ρ.
The copy of the Teichmüller space T (S) embedded in the Hitchin component is its
Fuchsian locus. Hitchin proves in [33], using Higgs bundles techniques, that Hd(S) is
homeomorphic to an open Euclidean ball of dimension (2g − 2) · dim(PSL(d, R)). When
d = 2, the Hitchin component H2(S) coincides with the Teichmüller space T (S). Choi and
Goldman [20] identify the Hitchin component H3(S) with the space of convex projective
structures on the surface S, which is the main focus of §§2–5.

In this section, we establish the correlation theorem 1.7 for pairs of Hitchin representa-
tions for any d ≥ 3. In this setting, the length spectra will not be defined geometrically as
for the Hilbert length spectrum of a convex projective structure, but they will be interpreted
as periods of the Busemann cocycle, which was first introduced by Quint [51]. Then, we
follow a construction of Sambarino [53, 54] to replace the geodesic flow on the unit tangent
bundle of a convex projective surface with Sambarino’s translation flows. These flows are
not necessarily Anosov, but fit in the more general framework of metric Anosov flows.
Nevertheless, the main results coming from thermodynamic formalism needed for this
paper still hold in this setting [48, §3].

6.1. Length functions, Busemann cocycles, and entropy. In this section, we define length
functions for Hitchin representations and the Busemann cocycles associated to them. We
refer to [51, 53] for a more detailed construction.

We need to recall some Lie theory. Let G = PSL(d, R) and consider the standard
choices of Cartan subspace

a = {�x ∈ R
d | x1 + · · · + xd = 0}

and positive Weyl chamber a+ = {�x ∈ a | x1 ≥ · · · ≥ xd}. Let λ : G → a+ be the Jordan
projection

λ(g) = (log λ1(g), . . . , log λd(g))

consisting of the logarithms of the moduli of the eigenvalues of g in non-increasing order.
We will use the following fundamental property of the Jordan projection of the image of a
Hitchin representation.

THEOREM 6.1. (Fock–Goncharov [25], Labourie [37]) Every Hitchin representation
ρ ∈ Hd(S) is discrete and faithful and for every [γ ] ∈ [�],

λ1(ρ(γ )) > · · · > λd(ρ(γ )) > 0.
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The limit cone Lρ of a Hitchin representation ρ ∈ Hd(S), introduced in [6], is the closed
cone of a+ generated by λ(ρ(γ )). This cone contains all the rays spanned by positive
multiples of λ(ρ(γ )) for all γ ∈ �. The (positive) dual cone of Lρ is defined as L∗

ρ =
{φ ∈ a∗ : φ|Lρ ≥ 0}. For every i = 1, . . . , d − 1, the ith simple root αi : a → R, defined
by αi(�x) = xi − xi+1. We will focus on linear functionals in the set

� =
{
c1α1 + · · · + cd−1αd−1

∣∣∣∣ ci ≥ 0,
∑
i

ci > 0
}

,

which is contained in the interior of L∗
ρ by a result of Potrie–Sambarino [50, Theorem B

and Lemma 2.7].
Given φ in the interior of L∗

ρ , the φ-length of [γ ] ∈ [�] is defined as

�φρ([γ ]) = φ(λ(ρ(γ ))) > 0,

and its exponential growth rate is

hφ(ρ) = lim sup
T→∞

1
T

# log{[γ ] ∈ [�] | �φρ([γ ]) ≤ T }.

Sambarino [54] established the following important property of linear functionals in �.
We include the proof for completeness.

LEMMA 6.2. (Sambarino [54, Lemma 3.2]) If φ ∈ �, then hφ(ρ) ∈ (0, ∞).

Proof. Since we know hαi (ρ) = 1 from [50, Theorem B], by Lemma 2.7 in [50], a linear
functional ϕ ∈ L∗

ρ has finite and positive entropy if and only if it belongs to the interior
of L∗

ρ . Since elements in� are contained in the interior of L∗
ρ , the entropy hφ(ρ) is positive

and finite for every φ ∈ �.

The φ-length function can be realized via the period of the φ-Busemann cocycle. To
define φ-Busemann cocycles, we need to introduce the Frenet curve ξρ for a Hitchin
representation ρ. A complete flag F in R

d is a maximal nested sequence of subspaces
of Rd . Explicitly, F is a collection of subspaces F (i) of Rd , with the properties that F (i) ⊂
F (i+1) and dim F (i) = i for all i = 0, 1, . . . , d . Denote by Fd the space of complete
flags in R

d . Fock and Goncharov [25] and Labourie [37] show that for every Hitchin
representation ρ, there exists a unique (up to PSL(d, R)) ρ-equivariant Frenet curve
ξρ : ∂� → Fd which is bi-Hölder continuous onto its image, transverse, positive, and it
satisfies certain contraction properties. Moreover, the Frenet curve is dynamics preserving:
if γ+ ∈ ∂� is the attracting fixed point of γ ∈ �, then ξρ(γ+) is the attracting eigenflag
of ρ(γ ). We refer to [25, Theorem 1.15] and [37, Theorem 4.1] for precise statements.

We are now ready to define φ-Busemann cocycles for φ ∈ �. Fix F0 ∈ Fd and observe
that for every F ∈ Fd , there exists k ∈ SO(d) such that F = kF0. EveryM ∈ SL(d, R) can
be written as M = L(exp σ(M))U , for some L ∈ SO(d), σ(M) ∈ a, and U is unipotent
and upper triangular. This is known as the Iwasawa decomposition of M. The Iwasawa
cocycle B : SL(d, R)× Fd → a is defined as B(A, F) = σ(Ak).
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The vector valued Busemann cocycle Bρ : � × ∂� → a of a Hitchin representation ρ
with Frenet curve ξρ is

Bρ(γ , x) = B(ρ(γ ), ξρ(x)).

For every linear functional φ ∈ �, we set Bφρ (γ , x) = φ(Bρ(γ , x)). Lemma 7.5 in [53]
directly shows that the cocycle Bφρ encodes the φ-length via the equality Bφρ (γ , γ+) =
�
φ
ρ([γ ]), for every γ ∈ �.

The φ-Busemann cocycle is an example of a Hölder cocycle.

Definition 6.3. A Hölder cocycle is a map c : � × ∂� → R such that

c(γ η, x) = c(γ , ηx)+ c(η, x)

for any γ , η ∈ � and x ∈ ∂�, and there exists α ∈ (0, 1) such that c(γ , ·) is α-Hölder for
all γ ∈ �.

For a general Hölder cocycle, let �c(γ ) = c(γ , γ+) denote the c-length (also known as
period) of γ ∈ �. Two Hölder cocycles are cohomologous if they have the same periods.
We can define the exponential growth rate hc of a general Hölder cocycle c : � × ∂� → R

as

hc = lim sup
T→∞

1
T

# log{[γ ] ∈ [�] | �c(γ ) ≤ T }.

Note that the exponential growth rate hφ(ρ) of the linear functional φ ∈ � is the same
as the exponential growth rate h

B
φ
ρ

of the cocycle Bφρ . The number hφ(ρ) is also called
the topological entropy of a Hitchin representation ρ with respect to the φ-length. Indeed,
hφ(ρ) is the topological entropy of a translation flow, as we recall in the next section.

6.2. Translation flows and metric Anosov flows. In this subsection, we recall how
to equip Hitchin representations with translation flows which will allow us to use
thermodynamic formalism tools to study them. We start by recalling the construction of
Sambarino’s translation flow [53], which is analogous to Hopf’s parameterization of the
geodesic flow of a negatively curved manifold.

Let ∂2� = {(x, y) ∈ ∂� × ∂� : x �= y}. The translation flow {ϕt }t∈R on ∂2� × R is

ϕt (x, y, s) = (x, y, s − t).

Given a Hölder cocycle c : � × ∂� → R, the group � acts on ∂2� × R by

γ (x, y, t) = (γ x, γy, t − c(γ , y)).

The translation flow {ϕt }t∈R then descends to the quotientMc of ∂2� × R by the �-action
via c. Sambarino proves a reparameterization theorem for the translation flow ϕt .

First, recall that two (Hölder) continuous flows ψt and ψ ′
t on compact metric spaces X

and Y, respectively, are (Hölder) conjugated if there exists a (bi-Hölder) homeomorphism
h : X → Y such that ψ ′

t = h ◦ ψt ◦ h−1 for every t ∈ R.
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THEOREM 6.4. (Sambarino [53, Theorem 3.2]) Given a Hölder cocycle c with
non-negative periods and hc ∈ (0, ∞), the action defined by the cocycle c on ∂2� × R

is proper and co-compact. Moreover, the translation flow ϕt on the quotient space Mc is
Hölder conjugated to a Hölder reparameterization of the geodesic flow on T 1X0, where
X0 is a(ny) hyperbolic structure on S. The translation flow on Mc is topologically mixing
and its topological entropy equals hc.

From now on, we will always assume that the cocycle c is of the form B
φ
ρ for some

Hitchin representation ρ and φ ∈ �. In this case, the hypotheses of Theorem 6.4 are
satisfied. We will still denote the translation flow associated to B

φ
ρ by ϕt and write

M
φ
ρ = M

B
φ
ρ

.
We want to use thermodynamic formalism methods for the translation flow ϕt and we

briefly explain why we can do so in this setting. While it is well known that a Hölder
reparameterization of an Anosov flow is an Anosov flow [3, p. 122], Hölder conjugacy
does not necessarily preserve the Anosov property [29]. To construct symbolic codings
and use results from the thermodynamic formalism for Hitchin representations, we will
work in the more general setting of metric Anosov flows. Metric Anosov flows (or Smale
flows) were introduced by Pollicott in [48] to generalize classical results for Anosov flows
and Axiom A flows. In particular, he constructed a symbolic coding for metric Anosov
flows [48].

Our definition of metric Anosov flow, which is better suited to our purposes, differs
from the original definition in [48]. The main difference is that we allow an α-power of
the distance d(x, y) for the exponential diverging and expanding properties in part (1) of
Definition 6.5 below. This property guarantees that Hölder conjugacy preserves our notion
of metric Anosov flow (see Proposition 6.7) and is useful in our setting, for example, in
Proposition 6.8.

Recall for any continuous flow ψt on a compact metric space X, the local stable set of a
point x ∈ X is defined for ε > 0 as

Ws
ε (x) = {y ∈ X : d(ψtx, ψty) ≤ ε, for all t ≥ 0 and d(ψtx, ψty) → 0 as t → ∞}.

The local unstable set of a point x for ε > 0 is

Wu
ε (x) = {y ∈ X : d(ψ−t x, ψ−t y) ≤ ε, for all t ≥ 0 and d(ψ−t x, ψ−t y) → 0 as t → ∞}.

Definition 6.5. A continuous flow ψ on a compact metric space X is metric Anosov if the
following hold.
(1) There exist positive C, λ, ε and α ∈ (0, 1] such that

d(ψtx, ψty) ≤ Ce−λtd(x, y)α when y ∈ Ws
ε (x) and t ≥ 0

and

d(ψ−t x, ψ−t y) ≤ Ce−λtd(x, y)α when y ∈ Wu
ε (x) and t ≥ 0.

(2) There exists δ > 0 and a continuous map υ on the set {(x, y) ∈ X ×X : d(x, y)
≤ δ} such that υ = υ(x, y) is the unique value for which Wu

ε (ψυx) ∩Ws
ε (y) is

non-empty. The set Wu
ε (ψυx) ∩Ws

ε (y) consists of a single point, denoted as 〈x, y〉.
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Remark 6.6. Metric Anosov flows in Definition 6.5 have a symbolic coding. Indeed,
these flows verify one of the key properties [10, Lemma 1.5] used by Bowen to build
symbolic codings for Axiom A flows. From this, and after adapting Bowen’s arguments
to accommodate for the exponent α in the definition, we observe that the metric Anosov
flows in Definition 6.5 satisfy the expansivity, tracing, and specification properties [10,
Proposition 1.6 and §2]. These are also the crucial properties used by Pollicott in his
construction of symbolic codings for Smale flows [48].

PROPOSITION 6.7. Let ψ1 be a Hölder continuous metric Anosov flow on a compact
metric space X. If ψ2 is a flow on a compact metric space Y and ψ2 is Hölder conjugate
to ψ1, then ψ2 is a Hölder continuous metric Anosov flow.

Proof. We show here that a Hölder conjugacy preserves metric Anosov properties. By
hypothesis, there exists a bi-Hölder homeomorphism h : X → Y with Hölder exponent
α0 ∈ (0, 1] (for both h and h−1) such that h ◦ ψ1

t = ψ2
t ◦ h. We want to show that ψ2

t also
satisfies the metric Anosov property.

Given x2 ∈ Y , we want to find suitable parameters so that conditions (1) and (2) in
Definition 6.5 hold. We show condition (1) for local stable sets. Suppose x2 = h(x1).
Because ψ1

t is metric Anosov, we can find ε1, C1, λ1, δ1 positive and α1 ∈ (0, 1] so that

Ws
ε1
(x1) = {y1 ∈ X : dX(ψ1

t x1, ψ1
t y1) ≤ ε1 and dX(ψ1

t x1, ψ1
t y1)

≤ C1e
−λ1t dX(x1, y1)

α1 for all t ≥ 0}.
Note,

dY (ψ
2
t h(x1), ψ2

t h(y1)) = dY (h(ψ
1
t x1), h(ψ1

t y1)) ≤ ChdX(ψ
1
t x1, ψ1

t y1)
α0

≤ Ch(C1e
−λ1t dX(x1, y1)

α1)α0 ≤ C2e
−λ1α0t dY (h(x1), h(y1))

α2
0α1 .

Here we have used the Hölder properties of both h and h−1, and Ch is a constant from
the Hölder property of h. This implies that we can find ε2 > 0 so that Ws

ε2
(x2) satisfies

condition (1) in Definition 6.5 for ψ2
t with positive C2, λ2 = λ1α0 and α2 = α2

0α1. The
argument is similar for local unstable sets. Furthermore, given x2, y2 ∈ Y close enough,
condition (2) in Definition 6.5 can be verified by taking 〈x2, y2〉 = h(〈h−1(x2), h−1(y2)〉).
We conclude that ψ2

t is metric Anosov.

The translation flow has been introduced and extensively studied by Sambarino in [53].
For completeness, we provide a proof that the translation flow is metric Anosov.

PROPOSITION 6.8. The translation flow ϕt onMφ
ρ is a metric Anosov flow which admits a

symbolic coding with Hölder continuous roof functions.

Proof. Let X0 be a base hyperbolic surface. The geodesic flow on T 1X0 is a (metric)
Anosov flow which admits a symbolic coding with Hölder roof function. From Theorem
6.4, we know that the translation flow ϕt associated to the cocycle Bφρ defined on the
quotient spaceMφ

ρ is Hölder conjugate to a Hölder reparameterization of the geodesic flow
ψt on T 1X0. In other words, there exists a Hölder continuous function f : T 1X0 → R>0
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and a bi-Hölder homeomorphism h : T 1X0 → M
φ
ρ such that (h−1 ◦ ϕ ◦ h)t = ψ

f
t for all

t ∈ R. Since ψft is an Anosov flow (see [3, p. 122]), ϕt is a metric Anosov flow by
Proposition 6.7.

The coding is therefore preserved. The roof function remains Hölder by either Hölder
conjugacy or Hölder reparameterization as it is given by an opportune composition of
Hölder functions. The translation flow is therefore a metric Anosov flow on a compact
metric space that admits a symbolic coding with Hölder roof function.

6.3. Reparameterization functions. After constructing flows for Hitchin representations,
the next thing that we want to do is to define the reparameterization function with domain
M
φ
ρ for ρ a Hitchin representation. This construction is well known and it is contained

in the work of Sambarino [53]. We include this discussion to make our exposition
self-contained.

In §2.2, given a positive Hölder continuous function f on the unit tangent bundle T 1Xρ

of a convex real projective structure, we defined a reparameterization of the flow by time
change. This can be done more generally for any Hölder continuous flow on a compact
metric space X. In particular, given two Hitchin representations ρ1 and ρ2 in Hd(S), we
will show the existence of a positive Hölder continuous reparameterization function f ρ2

ρ1 :
M
φ
ρ1 → R>0 that encodes the φ-length spectrum of ρ2.
We start with a lemma that relates the positivity of the Hölder reparameterization

function to the positivity of its entropy. The entropy of a Hölder function f on a compact
metric space X equipped with a metric Anosov flow is defined as

hf = lim sup
T→∞

1
T

# log
{
τ periodic

∣∣∣∣
∫
τ

f ≤ T

}
.

LEMMA 6.9. (Ledrappier [40, Lemma 1], Sambarino [53, Lemma 3.8]) Let f : X → R

be a Hölder continuous function with non-negative periods on a compact metric space X
equipped with a topological transitive metric Anosov flow. The following are equivalent:
(1) the function f is cohomologous to a positive Hölder continuous function;
(2) there exists κ > 0 such that

∫
τ
f > κp(τ) where p(τ) is the period of τ ;

(3) the entropy hf ∈ (0, ∞).

We also need the following theorem of Ledrappier [40] which establishes the corre-
spondence between cohomologous Hölder cocycles and cohomologous Hölder continuous
functions on T 1X0. We will state this theorem for vector valued Hölder cocycles. Their
definition is analogous to Definition 6.3.

THEOREM 6.10. (Ledrappier [40, p. 105]) Let V be a finite-dimensional vector space.
For each Hölder cocycle c : � × ∂� → V , there exists a Hölder continuous map Fc :
T 1X0 → V , such that for every γ ∈ � − {e},

�c(γ ) =
∫

[γ ]
Fc.
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This map c → Fc induces a bijection between the set of cohomology classes of V-valued
Hölder cocycles and the set of cohomology classes of Hölder maps from T 1X0 to V.

For a Hitchin representation ρ, this tells us that we can find a Hölder continuous
map gρ : T 1X0 → a with periods equal to the periods of the vector valued Busemann
cocycle Bρ . Since hφ◦gρ = h

B
φ
ρ

= hφ(ρ) is finite and positive, by Lemma 6.9, the

reparameterization φ ◦ gρ on T 1X0 is cohomologous to a positive Hölder continuous
function.

Now we are ready to state our lemma about the existence of positive reparameterization
functions, which should be compared to Lemma 2.3.

LEMMA 6.11. Let ρ1 and ρ2 be two different representations in Hd(S). There exists a
positive Hölder continuous function f ρ2

ρ1 : Mφ
ρ1 → R>0 such that for every periodic orbit

τ corresponding to [γ ] ∈ [�],

λ(f ρ2
ρ1

, τ) = �φρ2
([γ ]).

Proof. We denote the translation flow for Mφ
ρi with respect to the Busemann cocycle Bφρi

as ϕit for i = 1, 2. Now since Bφρi has positive entropy, by Theorem 6.4, both ϕit are Hölder
conjugate to Hölder reparameterizations of the geodesic flow on T 1X0, where X0 is an
auxiliary hyperbolic surface. The reparameterization functions for ϕit on T 1X0 can be
chosen to be positive by the discussion after Theorem 6.10. Generalizing Remark 2.2,
we conclude that the flow ϕ2

t is Hölder conjugate to a Hölder reparameterization of ϕ1
t

on Mφ
ρ1 . Therefore, there exists a Hölder function f : Mφ

ρ1 → R such that the flow ϕ2
t is

Hölder conjugate to (ϕ1
t )
f where the flow (ϕ1

t )
f is a reparameterization of ϕ1

t by f. Because
hf = h

B
φ
ρ

is positive and finite, we can always choose f = f
ρ2
ρ1 in its cohomology class to

be a positive function by Lemma 6.9. One easily checks that λ(f , τ) = �
φ
ρ2([γ ]).

Once we have defined reparameterization functions, we see that all definitions, remarks,
and results in §2.3 regarding thermodynamic formalism readily generalize to this context
by simply changing the domain from T 1Xρ to Mφ

ρ .

6.4. Correlation and Manhattan curve theorem revisited. First, we state the indepen-
dence lemma for Hitchin representations which generalizes Lemma 2.11.

LEMMA 6.12. (Independence lemma) Consider φ ∈ � and Hitchin representations
ρ1, ρ2 ∈ Hd(S) such that ρ2 �= ρ1 or ρ∗

1 . If there exist a1, a2 ∈ R such that a1�
φ
ρ1([γ ])+

a2�
φ
ρ2([γ ]) ∈ Z for all [γ ] ∈ [�], then a1 = a2 = 0.

Proof. The Zariski closure Gi of ρi(�) is simple, center-free, and connected by a result
of Guichard (see for example [14, Theorem 11.7]. See also [55, Corollary 1.5]). Then, we
argue by contradiction, as in the proof of Lemma 2.11.

Recall that a flow is weakly mixing if its periods do not generate a discrete subgroup
of R. In particular, the independence lemma implies that the translation flow ϕt is weakly
mixing.
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We are now ready to state our correlation theorem for Hitchin representations. Recall
that we denote the renormalizedφ length spectrum of ρ by Lφρ = hφ(ρ)�

φ
ρ .

THEOREM 1.7. Given a linear functional φ ∈ � and a fixed precision ε > 0, for any two
different Hitchin representations ρ1, ρ2 : � → PSL(d, R) such that ρ2 �= ρ∗

1 , there exist
constants C = C(ε, ρ1, ρ2, φ) > 0 and M = M(ρ1, ρ2, φ) ∈ (0, 1) such that

#{[γ ] ∈ [�] | Lφρ1
([γ ]) ∈ (x, x + hφ(ρ1)ε), Lφρ2

([γ ]) ∈ (x, x + hφ(ρ2)ε)} ∼ C
eMx

x3/2 .

Proof. By Proposition 6.8 and Lemma 6.12, the translation flow associated to the linear
functional φ is a weakly mixing metric Anosov flow onMφ

ρ1 that admits a symbolic coding
with Hölder continuous roof function. Moreover, ρ1 and ρ2 are independent thanks to the
independence Lemma 6.12. Thus we can apply Lalley and Sharp’s Theorem 3.1 which
holds in the context of flows with a symbolic coding with Hölder roof function.

Recall J (f ρ2
ρ1 ) is the open interval of values P ′(tf ρ2

ρ1 ) for t ∈ R. We then want to verify
hφ(ρ1)/h

φ(ρ2) ∈ J (f ρ2
ρ1 ). The proof of this fact follows from the same argument as in the

proof for Theorem 1.1.

Remark 6.13
(1) Fix φ ∈ �. Sambarino’s orbit counting theorem [53, Theorem 7.8] implies that the

correlation numberM = M(ρ1, ρ2, φ) converges to one andC(ε, ρ1, ρ2, φ) diverges
if ρ1 and ρ2 converge to Hitchin representations with the same φ-length spectrum.

(2) Note that Theorem 1.7 holds more generally for any functional φ which is contained
in the interiors of L∗

ρ1
and L∗

ρ2
.

For two Hitchin representations ρ1, ρ2 with ρ2 �= ρ1, ρ∗
1 and φ ∈ �, consider the

Manhattan curve

Cφ(ρ1, ρ2) = {(a, b) ∈ R
2 : P(−a − bf ) = 0},

where f is the reparameterization function from Lemma 6.11. We obtain a characterization
of the correlation number analogous to Theorem 4.2.

THEOREM 6.14. Fix φ ∈ �, and let ρ1 and ρ2 be Hitchin representations in Hd(S) such
that ρ2 �= ρ1, ρ∗

1 . Their correlation number can be written as

M(ρ1, ρ2, φ) = a

hφ(ρ1)
+ b

hφ(ρ2)
,

where (a, b) ∈ Cφ(ρ1, ρ2) is the unique point on the Manhattan curve at which the tangent
line is parallel to the line passing through (hφ(ρ1), 0) and (0, hφ(ρ2)).

We conclude by raising two questions which are motivated by Theorems 1.3 and 1.5.
Recall that Potrie and Sambarino [50, Theorem B] showed that for every Hitchin

representation ρ, the simple root lengths are such that hαi (ρ) = 1 for i = 1, . . . , d − 1.
Moreover, the simple root lengths restrict to the hyperbolic length on the Fuchsian locus
T (S) ⊂ Hd(S). Thus, Theorem 1.7 in this case is a particularly natural generalization of
the correlation theorem for hyperbolic surfaces [56]. Theorem 1.3 exhibits examples of
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sequences for which the αi-correlation number decays. We ask whether there exist similar
examples which lie outside the Fuchsian locus.

Question 6.15. For d ≥ 3 and i = 1, . . . , d − 1, do there exist sequences (ρn)∞n=1 and
(ηn)

∞
n=1 in Hd(S) which leave every compact neighborhood of the Fuchsian locus and

such that the correlation numbers satisfy limn→∞ M(ρn, ηn, αi) = 0?

Finally, we raise a conjecture motivated by Theorem 1.5. Similarly to cubic rays
introduced in §5, in general for the Hitchin component Hd(S), one can consider a dth-order
holomorphic differential q over X0 and its associated family of representations (ρt )t∈R in
Hd(S) parameterized by (tq)t∈R. These representations are given by holonomies of cyclic
Higgs bundles. We refer to [4] for a detailed definition and discussion. When t ≥ 0, we say
this family of representations (ρt )t≥0 is a ray associated to q.

Conjecture 6.16. Let (ρt )t≥0 and (ηt )t≥0 be two rays associated to two different dth-order
holomorphic differentials q1 and q2 on a hyperbolic structure X0 such that q1, q2

have unit L2-norm with respect to X0 and q1 �= −q2. Then the correlation number
M(ρt , ηt ,

∑d−1
i=1 αi) is uniformly bounded away from zero as t goes to infinity.
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