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Abstract

Let c ≥ 2 be a positive integer. Terai [‘A note on the Diophantine equation x2 + qm = cn’, Bull. Aust.
Math. Soc. 90 (2014), 20–27] conjectured that the exponential Diophantine equation x2 + (2c − 1)m = cn

has only the positive integer solution (x,m, n) = (c − 1, 1, 2). He proved his conjecture under various
conditions on c and 2c − 1. In this paper, we prove Terai’s conjecture under a wider range of conditions
on c and 2c − 1. In particular, we show that the conjecture is true if c ≡ 3 (mod 4) and 3 ≤ c ≤ 499.
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1. Introduction

Let c ≥ 2 be a positive integer. Clearly, the Diophantine equation

x2 + (2c − 1)m = cn (1.1)

has the positive integer solution (x,m, n) = (c − 1, 1, 2). In [6], Terai conjectured that
(1.1) has no other solution and he proved this in five special cases determined by
certain conditions on c and 2c − 1 [6, Proposition 3.2]. When 2c − 1 = q, where
q is a prime, Terai obtained several results [6, Theorems 1.2–1.4] concerning the
Diophantine equation

x2 + qm = cn. (1.2)

Using these results, together with results of Ljunggren [5], Zhu [7] and Arif–Abu
Muriefah [1], Terai showed that, apart from c = 12, 24, his conjecture holds for
2 ≤ c ≤ 30. The cases c = 12, 24 have been treated in [4]. In this paper, we show
that Terai’s conjecture is true under a wider range of conditions on c and 2c − 1. The
methods are elementary, but rely on results obtained by more advanced means. We
prove the following theorems. Here

(
·

·

)
denotes the Legendre symbol.
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Theorem 1.1. Suppose that c ≥ 2 is a positive integer with c ≡ 3 (mod 4). Let s be a
positive integer and k, l, t be nonnegative integers. If one of the following conditions is
satisfied, then Terai’s conjecture is true:

(i) 2c − 1 is a power of a prime;
(ii) 2c − 1 = (8k + 3)(8l + 7) with gcd(8k + 3, 8l + 7) = 1;
(iii) 2c − 1 = (8s + 1)(8t + 5) with gcd(8s + 1, 87 + 5) = 1 and there is an odd prime

q such that one of the following two alternatives holds:

(a) q | (8(s + t) + 6) and q - c;
(b) q ≡ 3 (mod 4) or q ≡ 5 (mod 8), and 8s + 1 ≡ 0 (mod q),

((8t + 5)/q) = −1, or 8t + 5 ≡ 0 (mod q), ((8s + 1)/q) = −1.

Theorem 1.2. Suppose that p is an odd prime such that p ≡ 3 (mod 4). Let s be a
nonnegative integer. If c = p2s+1, then Terai’s conjecture is true.

Theorem 1.3. Let p be an odd prime and s and t be nonnegative integers. If one of the
following conditions is satisfied, then Terai’s conjecture is true:

(i) 2c − 1 = 32s+1 p2t+1, where p ≡ 7 (mod 8) or p ≡ 3 (mod 16);
(ii) 2c − 1 = 34s+1 p4t+1, where p ≡ 5 (mod 16) or p ≡ 3 (mod 5);
(iii) 2c − 1 = 52s+1 p2s+1, where p ≡ 3 (mod 8) and p + 5 . 0 (mod 32);
(iv) 2c − 1 = 92s

p2t+1, where p ≡ 5 (mod 8);
(v) c = 2s+1.

Corollary 1.4. If c ≡ 3 (mod 4) and 3 ≤ c ≤ 499, then Terai’s conjecture is true.

Theorem 1.3 extends Terai’s results [6, Proposition 3.2(ii)–(v)] by allowing for
multiple prime factors dividing 2c − 1.

2. Lemmas

Lemma 2.1 [2, Theorem 1.1]. If n ≥ 4 is an integer and C = 1, 2, 3, 5, 6, 10, 11, 13 or
17, then the equation xn + yn = Cz2 has no solutions in nonzero pairwise co-prime
integers (x, y, z) with, say, x > y, unless (n; C) = (4; 17) or (n; C; x, y, z) is one of
(5; 2; 3, 1,±11), (5; 11; 3, 2,±5) or (4; 2; 1, 1,±1).

Lemma 2.2 [3, Theorem XI]. Let α, β be integers such that 3 ≤ α < β, 2 - αβ and
gcd(α, β) = 1. Suppose that p is an odd prime and pa ‖ α + β. Then pa+1 ‖ αp + βp

and therefore p ‖ (αp + βp)/(α + β).

Lemma 2.3 [3, Theorem XXV]. Let x, y be coprime positive integers with x > y and let
r be a positive integer. If r > 2, then xr + yr has a prime divisor p such that p - xk + yk

for k = 1, 2, . . . , r − 1, except when (x, y, r) = (2, 1, 3).

Lemma 2.4. Let x, y be positive integers such that 3 ≤ x < y and 2 - xy. Then

2(x + y) ≤ xy + 1. (2.1)
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Proof. Let y = x + a and f (x) = xy + 1 − 2(x + y) = x2 + (a − 4)x − 2a + 1. Clearly, a
is even with a ≥ 2. If a = 2, the only positive root of f (x) = 0 is x = 3, so (2.1) holds.
Suppose that a ≥ 4. Let the bigger root of f (x) = 0 be r. Since

2 < r =
4 − a +

√
a2 + 12

2
<

4 − a + a + 2
2

= 3,

it follows that (2.1) still holds. �

Lemma 2.5. Let c > 1 be a positive integer with c ≡ 3 (mod 4) and suppose that (1.1)
has a positive integer solution. Then:

(i) m = 2m′ + 1 is odd and n = 2N is even;
(ii) if m = 3 and 2c − 1 = PQ with 3 ≤ P < Q and gcd(P,Q) = 1, then Pm + Qm = 2cN

has no solution.

Proof. (i) Taking (1.1) modulo c gives m = 2m′ + 1. Since 2c − 1 ≡ 5 (mod 8), taking
(1.1) modulo 2c − 1 yields

1 =

(
x2

2c − 1

)
=

(
cn

2c − 1

)
=

(
2c − 1

c

)n

=

(
−1
c

)n

= (−1)n

and hence n = 2N.
(ii) Clearly, N > 1. Suppose that N = 2. From (1.1),

P3Q3 = (2c − 1)3 = c4 − x2 = (c2 − x)(c2 + x) and gcd(c2 − x, c2 + x) = 1,

so c2 − x = P3, c2 + x = Q3 and P3 + Q3 = 2c2. Since gcd(P + Q, (P3 + Q3)/(P + Q)) =

1 or 3, we have two cases to consider.
Case 1: gcd(P + Q, (P3 + Q3)/(P + Q)) = 1. Write c = c1c2 with gcd(c1, c2) = 1. From

P3 + Q3 = (P + Q)
(

P3 + Q3

P + Q

)
= 2c2 = 2c2

1 · c
2
2,

we have (P3 + Q3)/(P + Q) = c2
2, which leads to a contradiction because

P3 + Q3

P + Q
= P2 + Q2 − PQ ≡ 2 − 5 ≡ 5 . c2

2 ≡ 1 (mod 8).

Case 2: gcd(P + Q, (P3 + Q3)/(P + Q)) = 3. By Lemma 2.2,

P + Q = 2 · 3c2
1,

P3 + Q3

P + Q
= 3c2

2,

where c = 3c1c2 with gcd(3c1, c2) = 1. As in Case 1, we reach a contradiction because

P3 + Q3

P + Q
= P2 + Q2 − PQ ≡ 2 − 5 ≡ 5 . 3cN

2 ≡ 3 (mod 8).

Finally, if N ≥ 3, the equation P3 + Q3 = 2cN has no solution because, by
Lemma 2.4,

P3 + Q3 < (P + Q)3 ≤

(PQ + 1
2

)3
= c3 < 2c3 ≤ 2cN . �
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Lemma 2.6. Suppose that n = 2N, where N is a positive integer. If one of the following
conditions is satisfied, then Terai’s conjecture is true:

(i) 2c − 1 = ps, where p is a prime;
(ii) Pm + Qm = 2cN has no solution for m > 1, where PQ = 2c − 1, 3 ≤ P < Q and

gcd(P,Q) = 1.

Proof. (i) As in part (ii) of the proof of Lemma 2.5, from x2 + (2c − 1)m = c2N , we
have cN − x = 1 and cN + x = (2c − 1)m, which gives

(2c − 1)m + 1 = 2cN . (2.2)

If m = 1, (2.2) gives N = 1 and the solution (x,m, n) = (c − 1, 1, 2) to (2.2). If m = 2,
then 2c2 < (2c − 1)2 + 1 < 2c3 implies that (2.2) has no solution. If m ≥ 3, then (2.2)
has no solution by Lemma 2.3.

(ii) Suppose x2 + (2c − 1)m = c2N . As in (i), if cN − x = 1 and cN + x = (2c − 1)m,
then (2c − 1)m + 1 = 2cN and, if cN − x = Pm, cN + x = Qm, with PQ = 2c − 1,
3 ≤ P < Q and gcd(P,Q) = 1, then

Pm + Qm = 2cN . (2.3)

As in (i), the equation (2c − 1)m + 1 = 2cN has no solution for m > 1. By assumption,
(2.3) has no solution for m > 1. If m = 1, then P + Q ≤ (PQ + 1)/2 = c < 2cN by
Lemma 2.4, so again (2.3) has no solution. Hence, Terai’s conjecture is true. �

Remark 2.7. In the case 2c − 1 = ps, to prove Terai’s conjecture, we need only prove
that n = 2N by Lemma 2.6(i). In the case 2c − 1 , ps, from the proof of Lemma 2.6(ii),
we see that (2.3) has no solution for m = 1 and (2c − 1)m + 1 = 2cN has only one
solution. Therefore, in the case 2c − 1 , ps, to prove Terai’s conjecture, we need only
prove that n = 2N and that (2.3) has no solution for m > 1. Under some circumstances,
we can prove that (2.3) has no solution without assuming that m > 1 (see the proof of
Theorem 1.1(iii) and the proofs of Theorem 1.3(i), (ii) and (iv)).

3. Proof of the main results

Proof of Theorem 1.1. By Lemma 2.5(i), m is odd and n = 2N is even.
For part (i), the result follows from Lemma 2.6(i).
For part (ii), by Remark 2.7, we only need to prove that

Pm + Qm = 2cN , P = 8k + 3,Q = 8l + 7 (3.1)

has no solution for m > 1, where PQ = 2c − 1, P ≥ 3,Q ≥ 3 and gcd(P,Q) = 1. By
interchanging P and Q, if necessary, we can suppose that P < Q. By taking (3.1)
modulo 8, we see that N is even. By Lemma 2.1, we get m ≤ 3. But m > 1, so this gives
m = 3 and (3.1) has no solution by Lemma 2.5(ii). Therefore, (3.1) has no solution for
m > 1.

For part (iii), we will prove that

Pm + Qm = 2cN , P = 8k + 1,Q = 8l + 5 (3.2)
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has no solution, where PQ = 2c − 1,P ≥ 3,Q ≥ 3 and gcd(P,Q) = 1. We consider three
cases.

Case 1. If there is an odd prime q such that q | (P + Q) and q - c, then (3.2) clearly has
no solution.

Case 2. By assumption,

PQ = 2c − 1 = (8k + 1)(8l + 5) (3.3)

and there is a prime q with q ≡ 3 (mod 4) or q ≡ 5 (mod 8) such that

8k + 1 ≡ 0 (mod q) and
(
8l + 5

q

)
= −1. (3.4)

If q ≡ 3 or 5 (mod 8), from (3.3),(
2c
q

)
=

(
2
q

)
·

(
c
q

)
= −

(
c
q

)
=

(
1
q

)
= 1 =⇒

(
c
q

)
= −1.

Taking (3.2) modulo q and using (3.4),

−1 =

(
8l + 5

q

)
=

(
2
q

) (
c
q

)N

= (−1)N+1.

Therefore, N is even. Taking (3.2) modulo 8 gives the contradiction

Pm + Qm ≡ 6 . 2cN ≡ 2 (mod 8),

so (3.2) has no solution.
If q ≡ 7 (mod 8), from (3.3),(

2c
q

)
=

(
2
q

)
·

(
c
q

)
=

(
1
q

)
= 1 =⇒

(
c
q

)
= −1.

Taking (3.2) modulo q and using (3.4),(
Pm + Qm

q

)
=

(
8l + 5

q

)
= −1 =

(
2cN

q

)
= 1

which is impossible.

Case 3. By assumption, (3.3) holds and there is a prime q ≡ 3 (mod 4) or q ≡ 5
(mod 8) such that

8l + 5 ≡ 0 (mod q) and
(
8k + 1

q

)
= −1.

Proceeding as in Case 2, we similarly prove that (3.2) has no solution.
This completes the proof of Theorem 1.1. �
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Proof of Theorem 1.2. By Lemma 2.5(i), m is odd and n = 2N is even. By
Remark 2.7, we consider

Pm + Qm = 2cN , (3.5)

where PQ = 2c − 1, 3 ≤ P < Q and gcd(P,Q) = 1. Since PQ = 2c − 1 ≡ 5 (mod 8),
we see that P + Q must have an odd prime factor; therefore, by Lemma 2.3, if m > 1,
it follows that Pm + Qm has at least two different odd prime factors. Hence, (3.5) has
no solution for m > 1. �

Proof of Theorem 1.3. We consider the five parts of the theorem in turn. In each
case, by Remark 2.7, we need only consider (3.5), where PQ = 2c − 1, P ≥ 3,Q ≥ 3
and gcd(P,Q) = 1.

(i) From 2c − 1 = 32s+1 p2t+1, we get c ≡ 2 (mod 3) and 1 ≡ x2 ≡ cn (mod 3), so
n = 2N. We consider (3.5) with P = 32s+1,Q = p2t+1.

If p ≡ 7 (mod 8), then, from PQ = 2c − 1 ≡ 5 (mod 8), we deduce that c ≡ 3
(mod 4). By Theorem 1.1(ii), Terai’s conjecture is true.

Now consider p ≡ 3 (mod 16). In this case, c ≡ 5 (mod 8). Taking (3.5) modulo
16 gives 2 · 3m ≡ 2 · 5N (mod 16), which means that m ≡ N ≡ 0 (mod 2). But, taking
(3.5) modulo 3 leads to the contradiction 1 ≡ Pm + Qm = 2cN ≡ 2 (mod 3). So, (3.5)
has no solution.

(ii) Let 2c − 1 = PQ, where P = 34s+1,Q = p4t+1. If p ≡ 5 (mod 16), then c ≡ 0
(mod 8), so 2cN ≡ 0 (mod 16). But Pm + Qm ≡ 2 (mod 8) if m is even, and Pm + Qm ≡

8 (mod 16) if m is odd. If p ≡ 3 (mod 5), then c ≡ 0 (mod 5) and, by taking (3.5)
modulo 5, we get the contradiction 2 · 3m ≡ 2 · cN ≡ 0 (mod 5).

(iii) From 2c − 1 = 52s+1 p2s+1 with p ≡ 3 (mod 8), we deduce that c ≡ 3 (mod 5)
and c ≡ 0 (mod 4). Taking (1.1) modulo 4 and 5 in turn gives 2 - m and 2 | n. Let
n = 2N and P = 52s+1, Q = p2s+1. Since (p + 5) . 0 (mod 32), c ≡ 0 (mod 4) and
(5 + p) | (Pm + Qm), we must have N = 1. If m > 1, then

Pm + Qm ≥ P3 + Q3 > 2PQ = 4c − 2 > 2c,

which is a contradiction. Thus, (3.5) with P = 52s+1,Q = p2s+1 has no solution for
m > 1.

(iv) From 2c − 1 = 92s
p2t+1, we obtain 3 - c, p - c and 2c − 1 ≡ 5 (mod 8); hence,

c ≡ 3 (mod 4). Taking (1.1) modulo c and 3 in turn gives 2 - m and 2 | n. Let n = 2N
and P = 92s

,Q = p2t+1. We prove that (3.5) has no solution.
Since 1

2 (P + Q) ≡ 3 (mod 4), there must be a prime q such that q ≡ 3 (mod 4)
and P + Q ≡ 0 (mod q). Thus, PQ ≡ −P2 (mod q). On the other hand, P + Q ≡ 0
(mod q), so 2cN = Pm + Qm = (P + Q)((Pm + Qm)/(P + Q)) ≡ 0 (mod q) and 2c ≡ 0
(mod q). Hence,

2c = PQ + 1 ≡ −P2 + 1 ≡ P2 − 1 ≡ 0 (mod q),

that is, q | P2 − 1. Since

P2 − 1 = (92s
− 1)(92s

+ 1) = (92 − 1)(92 + 1) · · · (92s−1
+ 1)(92s

+ 1)
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and q - (9 − 1)(9 + 1), there must be an integer i with 1 ≤ i ≤ s such that q | (92i
+ 1).

But this gives the contradiction

1 =

(
92i

q

)
=

(
−1
q

)
= −1.

(v) By Terai’s result in [6, Proposition 3.3], we can suppose that s ≥ 5. Suppose
first that s = 2t. Since x2 ≡ 1 (mod 4) and 2c − 1 ≡ 0 (mod 3), taking (1.1) modulo 4
and modulo 3 respectively gives 2 - m and n = 2N. So, we have the equation

Pm + Qm = 2cN = 2 · 22tN , (3.6)

where PQ = 2c − 1 = 22t+1, 3 ≤ P < Q and gcd(P,Q) = 1.
If 22t+1 − 1 = pr, Terai’s conjecture is true by Lemma 2.6(i). If 22t+1 − 1 , pr, we

need to prove that (3.6) has no solution for m > 1. Since m > 1 and m,P and Q are odd,
then, from Lemma 2.3, Pm + Qm has a prime factor p , 2. So, (3.6) has no solution
for m > 1 and Terai’s conjecture is true by Lemma 2.6(ii).

Now suppose that s = 2t − 1. Since x2 ≡ 1 (mod 4) and 2c − 1 ≡ 0 (mod 3), taking
(1.1) modulo 4 gives 2 - m. Note that 2c − 1 = 22t − 1 , pr. So, similar to the proof in
the case of s = 2t, we can show that Terai’s conjecture is true.

This completes the proof of Theorem 1.3. �

Proof of Corollary 1.4. By the results obtained in [6] and [4], we may suppose that
31 ≤ c ≤ 499 with c ≡ 3 (mod 4).

For c = p2s+1, where p is a prime, p ≡ 3 (mod 4), s ≥ 0 and 31 ≤ p2s+1 ≤ 499, that
is, c ∈ {31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191,
199, 223, 227, 239, 243 (= 35), 251, 263, 271, 283, 307, 311, 331, 343 (= 73), 347, 359,
367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499}, we see that Terai’s
conjecture is true by Theorem 1.2.

For c ∈ {51, 55, 63, 75, 87, 91, 99, 115, 135, 147, 159, 175, 187, 195, 211, 231, 255,
279, 327, 339, 351, 355, 387, 399, 411, 415, 427, 471}, since 2c − 1 is a power of a
prime, the same conclusion follows from Theorem 1.1(i).

For c ∈ {35, 39, 95, 119, 155, 171, 207, 219, 235, 259, 287, 291, 295, 299, 335, 375,
391, 395, 407, 435, 447, 459, 495}, since 2c − 1 = (8k + 3)(8l + 7), the conclusion
follows from Theorem 1.1(ii).

For c ∈ {111, 123, 183, 203, 247, 267, 275, 303, 315, 319, 423, 451, 455, 475, 483},
since 2c − 1 = (8s + 1)(8t + 5), the conclusion follows from Theorem 1.1(iii). For
example, take c = 275, so that 2c − 1 = 32 · 61. Set P = 32, Q = 61. Then
Theorem 1.1(iii) applies because ( 9

61 ) = ( 61
3 ) = 1 and 7 | P + Q, 7 - c.

For c ∈ {143, 215, 323, 371, 403}, we have 2c − 1 = p1 p2 p3 and Terai’s conjecture is
true by Theorem 1.1(ii) and (iii). For example, c = 143 implies that 2c − 1 = 3 · 5 · 19.
If we take P = 3,Q = 95 or P = 15,Q = 19, then 2c − 1 = (8k + 3)(8l + 7) and Terai’s
conjecture follows by Theorem 1.1(ii). If we take P = 5, Q = 57, then 2c − 1 =

(8s + 1)(8t + 5) and ( 57
5 ) = −1 and Terai’s conjecture follows by Theorem 1.1(iii).
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Finally, suppose that c = 3 · 112 = 363. Then 2c − 1 = 25 · 29, so, by Lemma 2.5(i),
m is odd and n = 2N is even. Consider the equation

25m + 29m = 2 · 363N = 2 · 3N · 112N . (3.7)

Taking (3.7) modulo 11 gives m = 5(2s + 1), so (255 + 295) | (25m + 29m). But
50971 | (255 + 295), so (3.7) has no solution.

This completes the proof of Corollary 1.4. �
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