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Abstract

Let ¢ > 2 be a positive integer. Terai [‘A note on the Diophantine equation x> + ¢" = ¢, Bull. Aust.
Math. Soc. 90 (2014), 20-27] conjectured that the exponential Diophantine equation x* + (2¢ — 1)" = ¢
has only the positive integer solution (x,m,n) = (¢ — 1, 1,2). He proved his conjecture under various
conditions on ¢ and 2¢ — 1. In this paper, we prove Terai’s conjecture under a wider range of conditions
on ¢ and 2¢ — 1. In particular, we show that the conjecture is true if ¢ =3 (mod 4) and 3 < ¢ < 499.
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1. Introduction

Let ¢ > 2 be a positive integer. Clearly, the Diophantine equation
P+Qc-1D"=c" (1.1)

has the positive integer solution (x,m,n) = (¢ — 1, 1,2). In [6], Terai conjectured that
(1.1) has no other solution and he proved this in five special cases determined by
certain conditions on ¢ and 2¢ — 1 [6, Proposition 3.2]. When 2¢ — 1 = g, where
q is a prime, Terai obtained several results [6, Theorems 1.2—-1.4] concerning the
Diophantine equation

¥ +qgt=c" (1.2)

Using these results, together with results of Ljunggren [5], Zhu [7] and Arif—-Abu
Muriefah [1], Terai showed that, apart from ¢ = 12,24, his conjecture holds for
2 < ¢ <30. The cases ¢ = 12,24 have been treated in [4]. In this paper, we show
that Terai’s conjecture is true under a wider range of conditions on ¢ and 2¢ — 1. The
methods are elementary, but rely on results obtained by more advanced means. We
prove the following theorems. Here () denotes the Legendre symbol.
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TueoreM 1.1. Suppose that ¢ > 2 is a positive integer with ¢ =3 (mod 4). Let s be a
positive integer and k, 1, t be nonnegative integers. If one of the following conditions is
satisfied, then Terai’s conjecture is true:

(i) 2c—lisapower of a prime;

(i) 2¢c-1=@k+3)(8+7) withged8k+3,8/+7)=1;

(iii) 2c—1=(8s+ 1)(8¢+5) with gcd(8s + 1,87 +5) = 1 and there is an odd prime
q such that one of the following two alternatives holds:

(@ ql@(s+1)+6)andqtc
) ¢g=3 (mod4)org=5 (mod 8), and 8s+1=0 (mod g),
(@Bt+5)/g)=-1,0r8t+5=0 (mod g),((8s + 1)/q) = —1.

TueoreM 1.2. Suppose that p is an odd prime such that p =3 (mod 4). Let s be a
nonnegative integer. If c = p***!, then Terai’s conjecture is true.

THeEOREM 1.3. Let p be an odd prime and s and t be nonnegative integers. If one of the
following conditions is satisfied, then Terai’s conjecture is true:

() 2c-1=3>"p21 ywhere p=7 (mod 8) or p=3 (mod 16);

(i) 2c—1=3%*1p¥*1 ywhere p=5 (mod 16) or p =3 (mod 5);

(iii) 2¢—1=5>"p>*! ywhere p=3 (mod 8) and p+5 £ 0 (mod 32);
(iv) 2c—1=9%p**! where p=5 (mod 8);

(V) c¢=2%*

CoroLLary 1.4. If ¢ =3 (mod 4) and 3 < ¢ <499, then Terai’s conjecture is true.
Theorem 1.3 extends Terai’s results [6, Proposition 3.2(ii)—(v)] by allowing for
multiple prime factors dividing 2¢ — 1.
2. Lemmas

Lemma 2.1 [2, Theorem 1.1]. If n > 4 is an integer and C = 1,2,3,5,6,10,11, 13 or
17, then the equation x" + y" = Cz* has no solutions in nonzero pairwise co-prime
integers (x,y,z) with, say, x >y, unless (n;C) = (4;17) or (n;C; x,y,z) is one of
(5;2;3,1,%11),(5;11;3,2,£5) or (4;2; 1, 1, £1).

Lemma 2.2 [3, Theorem XI]. Let a,f be integers such that 3 < a <B,2 1 a8 and
ged(a, B) = 1. Suppose that p is an odd prime and p® || a + 8. Then p**' || o + B¥
and therefore p || (& + BP)/(a + B).

Lemma 2.3 [3, Theorem XXV]. Let x,y be coprime positive integers with x > y and let
r be a positive integer. If r > 2, then X" + y" has a prime divisor p such that p £ x* + y*
fork=1,2,...,r— 1, except when (x,y,r) = (2, 1, 3).

Lemma 2.4. Let x,y be positive integers such that 3 < x <y and 2 { xy. Then

2x+y)<xy+ 1. 2.1
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Proor. Lety=x+aand f(x) =xy+1-2(x+y) = x>+ (a—4)x—2a + 1. Clearly, a
is even with a > 2. If a = 2, the only positive root of f(x) = 0 is x = 3, so (2.1) holds.
Suppose that a > 4. Let the bigger root of f(x) = 0 be r. Since

4—a+ Va2 + 12 - 4—a+a+2 _3
2 2 o
it follows that (2.1) still holds. O

2<r=

Lemma 2.5. Let ¢ > 1 be a positive integer with ¢ =3 (mod 4) and suppose that (1.1)

has a positive integer solution. Then:

i) m=2m'+1isoddandn = 2N is even;

(i) ifm=3and2c—-1=PQwith3 <P < Qandgcd(P,Q) =1, then P" + Q" = 2cN
has no solution.

Proor. (i) Taking (1.1) modulo ¢ gives m = 2m’ + 1. Since 2¢ — 1 =5 (mod 8), taking
(1.1) modulo 2¢ — 1 yields

x2 " 2c—1Y\" —1\"
1: = = =|— = —1 n
(26‘—1) (26—1) ( c ) (c) =D
and hence n = 2N.
(ii) Clearly, N > 1. Suppose that N = 2. From (1.1),
P3Q3 =Qc-1P=* == -0C?+x) and gcd(c2 —xc+x)=1,

soc?—x=P,c*+x=0Q%and P? + Q3 = 2¢%. Since gcd(P + Q,(P* + Q*)/(P + Q) =
1 or 3, we have two cases to consider.

Case 1: ged(P + Q,(P? + Q%) /(P + Q)) = 1. Write ¢ = ¢;c, with gcd(cy, ¢;) = 1. From

P+ 0
P+ 0} =(P+Q)( o ):z&:zc%.cg,
we have (P° + 0%)/(P + Q) = ¢3, which leads to a contradiction because
P+ Q?
P 0 =P*+Q*-PQ=2-5=5%c3=1 (mod 8).
Case 2: gcd(P + Q, (P> + Q%)/(P + Q)) = 3. By Lemma 2.2,
P+ Q?
P+Q=2-3c, Y =3c3,
where ¢ = 3c¢jc; with ged(3¢y, ¢;) = 1. Asin Case 1, we reach a contradiction because
P+ 0’
P 0 =P*+Q*-PQ=2-5=5%3c) =3 (mod B).
Finally, if N >3, the equation P® + Q° =2c" has no solution because, by

Lemma 2.4,
PO+1
2

3
P3+Q3<(P+Q)3S( )=c3<2c3s2cN. O
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Lemma 2.6. Suppose that n = 2N, where N is a positive integer. If one of the following
conditions is satisfied, then Terai’s conjecture is true:

(i) 2c—1=p° where pis a prime;
(i) P"+ Q" =2cN has no solution for m > 1, where PQ =2c - 1,3 <P < Q and
ged(P, Q) = 1.
N

Proor. (i) As in part (ii) of the proof of Lemma 2.5, from x*> + (2c — 1) = ¢*¥, we
have ¢¥ —x =1and ¢V + x = (2c — 1), which gives

c—1D"+1=2N. (2.2)

Ifm=1, (2.2) gives N = 1 and the solution (x,m,n) = (c - 1,1,2) to (2.2). If m =2,
then 2¢? < (2c — 1)?> + 1 < 2¢? implies that (2.2) has no solution. If m > 3, then (2.2)
has no solution by Lemma 2.3.

(i) Suppose x* + (2¢ — 1)" = ¢?V. Asin (i), if ¥ —x=1and ¥ + x = 2c — 1)",
then 2c—- 1" +1 = 2¢V and, if N —x=P" N +x= 0", with PQ =2c -1,
3<P< Qandgcd(P,Q) =1, then

P"+ Q™ =2V, (2.3)

As in (i), the equation (2c — 1) + 1 = 2¢" has no solution for m > 1. By assumption,
(2.3) has no solution for m > 1. If m =1, then P+ Q < (PQ + 1)/2 = c < 2c" by
Lemma 2.4, so again (2.3) has no solution. Hence, Terai’s conjecture is true. O

RemMark 2.7. In the case 2¢ — 1 = p*, to prove Terai’s conjecture, we need only prove
that n = 2N by Lemma 2.6(i). In the case 2¢ — 1 # p*, from the proof of Lemma 2.6(i1),
we see that (2.3) has no solution for m = 1 and (2c — 1)™ + 1 = 2¢" has only one
solution. Therefore, in the case 2c — 1 # p®, to prove Terai’s conjecture, we need only
prove that n = 2N and that (2.3) has no solution for m > 1. Under some circumstances,
we can prove that (2.3) has no solution without assuming that m > 1 (see the proof of
Theorem 1.1(iii) and the proofs of Theorem 1.3(i), (ii) and (iv)).

3. Proof of the main results

Proor oF THEorEM 1.1. By Lemma 2.5(i), m is odd and n = 2N is even.
For part (i), the result follows from Lemma 2.6(i).
For part (ii), by Remark 2.7, we only need to prove that

PP+ Q" =2, P=8k+3,0=8[+7 (3.1

has no solution for m > 1, where PQ =2¢c—1,P > 3,0 >3 and gcd(P, Q) = 1. By
interchanging P and Q, if necessary, we can suppose that P < Q. By taking (3.1)
modulo 8, we see that N is even. By Lemma 2.1, we get m < 3. Butm > 1, so this gives
m =3 and (3.1) has no solution by Lemma 2.5(ii). Therefore, (3.1) has no solution for
m> 1.

For part (iii), we will prove that

Pm+Qm:2CN, P=8k+1,0=8[+5 (3.2)
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has no solution, where PQ =2c — 1, P > 3,0 > 3 and gcd(P, Q) = 1. We consider three
cases.

Case 1. If there is an odd prime ¢ such that g | (P + Q) and ¢ 1 ¢, then (3.2) clearly has
no solution.

Case 2. By assumption,
PO =2c—-1=@8k+ 1)®BI+5) (3.3)

and there is a prime g with ¢ =3 (mod 4) or ¢ =5 (mod 8) such that

(3.4)

8k+1=0 (modgq) and (8”5):—1.

Ifg=3or5 (mod 8), from (3.3),

B0 ~ 6

Taking (3.2) modulo ¢ and using (3.4),

o o

Therefore, N is even. Taking (3.2) modulo 8 gives the contradiction

P"+0"=6%2"=2 (mod 8),

so (3.2) has no solution.
If g =7 (mod 8), from (3.3),

B-EHG-0- — -

Case 3. By assumption, (3.3) holds and there is a prime g =3 (mod 4) or g =5
(mod 8) such that

which is impossible.

|
81+5=0 (modgq) and (81‘+ ):—1.
q

Proceeding as in Case 2, we similarly prove that (3.2) has no solution.
This completes the proof of Theorem 1.1. O
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Proor oF THeoreMm 1.2. By Lemma 2.5(31), m is odd and n = 2N is even. By
Remark 2.7, we consider
P"+ Q" =2cN, (3.5)

where PO =2c—-1,3<P < Q and gcd(P, Q) = 1. Since PQ =2c—-1=5 (mod 8),
we see that P + Q must have an odd prime factor; therefore, by Lemma 2.3, if m > 1,
it follows that P" + Q™ has at least two different odd prime factors. Hence, (3.5) has
no solution for m > 1. O

Proor oF THEOREM 1.3. We consider the five parts of the theorem in turn. In each
case, by Remark 2.7, we need only consider (3.5), where PQ =2c—1,P>3,0 >3
and ged(P, Q) = 1.

(i) From 2c — 1 = 3%+ p?*1 we get ¢ =2 (mod 3) and 1 = x* = ¢" (mod 3), so
n = 2N. We consider (3.5) with P = 3>*!, Q = p*1,

If p=7 (mod 8), then, from PQ =2c—1=5 (mod 8), we deduce that ¢ = 3
(mod 4). By Theorem 1.1(ii), Terai’s conjecture is true.

Now consider p =3 (mod 16). In this case, ¢ =5 (mod 8). Taking (3.5) modulo
16 gives 2- 3" =2 -5 (mod 16), which means that m = N =0 (mod 2). But, taking
(3.5) modulo 3 leads to the contradiction 1 = P” + Q" = 2¢Y =2 (mod 3). So, (3.5)
has no solution.

(ii) Let 2c — 1 = PQ, where P = 3**! 0 = p**1_ If p=5 (mod 16), then ¢ =0
(mod 8),502c¢Y =0 (mod 16). But P" + Q" =2 (mod 8)if miseven, and P" + Q" =
8 (mod 16) if m is odd. If p =3 (mod 5), then ¢ = 0 (mod 5) and, by taking (3.5)
modulo 5, we get the contradiction2-3" =2 - ¢V =0 (mod 5).

(iii) From 2¢ — 1 = 52*1 p?s*1 with p = 3 (mod 8), we deduce that ¢ =3 (mod 5)
and ¢ =0 (mod 4). Taking (1.1) modulo 4 and 5 in turn gives 2 ¢+ m and 2 | n. Let
n=2N and P = 5% Q= p**!. Since (p +5) %0 (mod 32),c =0 (mod 4) and
G+p)|(P"+ Q™),wemusthave N = 1. If m > 1, then

P"+ Q"> P+ Q*>2PQ=4c-2> 2

which is a contradiction. Thus, (3.5) with P = 5%*1, 0 = p?**! has no solution for
m>1.

(iv) From 2¢ — 1 = 9% p?*! we obtain 34 ¢, p{ c and 2c — 1 =5 (mod 8); hence,
¢ =3 (mod 4). Taking (1.1) modulo ¢ and 3 in turn gives 2 { m and 2 | n. Let n = 2N
and P = 9%, Q = p**!. We prove that (3.5) has no solution.

Since %(P + Q) =3 (mod 4), there must be a prime g such that ¢ =3 (mod 4)
and P+ Q =0 (mod ¢g). Thus, PQ = —P? (mod ¢). On the other hand, P+ Q=0
(mod g), s0 2c¥ = P" + Q" = (P + Q)((P" + Q™)/(P + Q)) =0 (mod ¢) and 2¢ =0
(mod ¢). Hence,

20=PQ+1=-P*+1=P>-1=0 (mod g),
that is, g | P> — 1. Since

P2Po1=9 =19 +1)= (9> = 1)O*+ 1)--- (9% + 1)(9* + 1)
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and g 1 (9 — 1)(9 + 1), there must be an integer i with 1 < i < s such that ¢ | (92i +1).
But this gives the contradiction

B

(v) By Terai’s result in [6, Proposition 3.3], we can suppose that s > 5. Suppose
first that s = 2¢. Since x> = 1 (mod 4) and 2c — 1 =0 (mod 3), taking (1.1) modulo 4
and modulo 3 respectively gives 2 ¥ m and n = 2N. So, we have the equation

P+ Q" =2 =222, (3.6)

where PQ =2¢ - 1=2*13<P < Qand gcd(P,Q) = 1.

If 22+ — 1 = p’, Terai’s conjecture is true by Lemma 2.6(i). If 22! — 1 # p", we
need to prove that (3.6) has no solution for m > 1. Since m > 1 and m, P and Q are odd,
then, from Lemma 2.3, P" + Q™ has a prime factor p # 2. So, (3.6) has no solution
for m > 1 and Terai’s conjecture is true by Lemma 2.6(ii).

Now suppose that s = 2¢ — 1. Since x> = 1 (mod 4) and 2c — 1 =0 (mod 3), taking
(1.1) modulo 4 gives 2 { m. Note that 2c — 1 = 2% — 1 # p’. So, similar to the proof in
the case of s = 2¢, we can show that Terai’s conjecture is true.

This completes the proof of Theorem 1.3. O

Proor oF CoroLLARY 1.4. By the results obtained in [6] and [4], we may suppose that
31 < ¢ <499 with ¢ =3 (mod 4).

For ¢ = p***!, where p is a prime, p =3 (mod 4), s > 0 and 31 < p>**! <499, that
is, ¢ € {31,43,47,59,67,71,79, 83,103, 107, 127, 131, 139, 151, 163, 167, 179, 191,
199,223,227, 239,243 (= 3°), 251, 263,271, 283,307, 311, 331, 343 (= 7%), 347, 359,
367,379, 383,419, 431,439, 443,463, 467, 479, 487,491, 499}, we see that Terai’s
conjecture is true by Theorem 1.2.

For ¢ € {51,55,63,75,87,91,99, 115, 135, 147, 159, 175, 187, 195, 211, 231, 255,
279,327,339, 351, 355,387,399, 411, 415,427,471}, since 2c — 1 is a power of a
prime, the same conclusion follows from Theorem 1.1(i).

For ¢ € {35, 39, 95, 119, 155,171,207,219, 235,259, 287,291, 295, 299, 335, 375,
391, 395, 407, 435, 447, 459, 495}, since 2¢ — 1 = (8k + 3)(8] + 7), the conclusion
follows from Theorem 1.1(ii).

For ¢ € {111, 123, 183, 203, 247,267, 275, 303, 315, 319, 423, 451, 455, 475, 483},
since 2c — 1 = (8s + 1)(8¢ + 5), the conclusion follows from Theorem 1.1(iii). For
example, take ¢ =275, so that 2c -1 = 32.61. Set P=32,0=61. Then
Theorem 1.1(iii) applies because (&) =(§)=1and 7| P+ Q,7 t c.

For ¢ € {143,215,323,371,403}, we have 2c¢ — 1 = p; p, p3 and Terai’s conjecture is
true by Theorem 1.1(ii) and (iii). For example, ¢ = 143 implies that 2c—1=3-5-19.
If wetake P=3,0=950r P=15,0 =19, then 2c — 1 = (8k + 3)(8/ + 7) and Terai’s
conjecture follows by Theorem 1.1(ii). If we take P =5,Q =57, then 2c -1 =
(8s+ 1)(8t+5) and (%) = —1 and Terai’s conjecture follows by Theorem 1.1(iii).
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Finally, suppose that ¢ = 3 - 11?2 = 363. Then 2¢ — 1 = 25 - 29, so, by Lemma 2.5(i),
mis odd and n = 2N is even. Consider the equation

25"+ 29" =2.363Y =2.3V. 11?2V, (3.7)

Taking (3.7) modulo 11 gives m = 5(2s + 1), so (25° +29°) | (25™ +29™). But
50971 | (25° + 29%), so (3.7) has no solution.
This completes the proof of Corollary 1.4. O
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