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Some Results on Annihilating-ideal Graphs

Farzad Shaveisi

Abstract. _e annihilating-ideal graph of a commutative ring R, denoted by AG(R), is a graph
whose vertex set consists of all non-zero annihilating ideals and two distinct vertices I and J are
adjacent if and only if IJ = (0). Here we show that if R is a reduced ring and the independence
number of AG(R) is ûnite, then the edge chromatic number of AG(R) equals its maximum degree
and this number equals 2∣Min(R)∣−1

− 1; also, it is proved that the independence number of AG(R)
equals 2∣Min(R)∣−1 , where Min(R) denotes the set of minimal prime ideals of R. _en we give some
criteria for a graph to be isomorphic with an annihilating-ideal graph of a ring. For example, it is
shown that every bipartite annihilating-ideal graph is a complete bipartite graph with at most two
horns. Among other results, it is shown that a ûnite graph AG(R) is not Eulerian, and that it is
Hamiltonian if and only if R contains no Gorenstain ring as its direct summand.

1 Introduction

_roughout this paper, all graphs are assumed to be undirected simple graphs. Let G
be a graph with the vertex setV(G) and the edge set E(G). _e neighborhood, closed-
neighborhood and degree of a vertex v of G are denoted by NG(v), NG[v], and dG(v),
respectively. _e subscript G is usually dropped when there is no confusion. Also,
the minimum degree and the maximum degree of vertices of G are denoted by δ(G)
and ∆(G), respectively. _e girth of a graphG, denoted by girth(G), is the length of a
shortest cycle contained inG. IfG does not contain any cycle, its girth is deûned to be
inûnity. _e distance between two vertices u and v of a graph is denoted by d(u, v).
_e diameter of a connected graphG, denoted by diam(G), is the maximum distance
between any pair of the vertices of G. An induced subgraph of G on X ⊆ V(G),
denoted by G[X], is the subgraph with the vertex set V(G[X]) = X and the edge set
E(G[X]) = {{u, v} ∈ E(G) ∣ u, v ∈ X}. A vertex v in a connected graph G is called
a cut vertex if G ∖ {v} = G[V(G) ∖ {v}] is a disconnected graph. A bipartite graph
is a graph whose vertex set can be divided into two disjoint parts X and Y such that
both of the induced subgraphs G[X] and G[Y] have no edges. Moreover, a complete
bipartite graph is a bipartite graph in which every vertex of one part is joined to every
vertex of the other part. If the size of one of the parts is 1, then it is said to be a star
graph. A vertex of a bipartite graph G with parts X and Y , is called an end vertex if
deg(v) = 1; also, it is called a full vertex if either N(v) = X or N(v) = Y . For a graph
G, the independence number of G and the edge chromatic number of G are denoted by
α(G) and χ′(G), respectively. For more details about the terminology of graphs used
here, see [17].

Received by the editors June 24, 2014; revised February 29, 2016.
Published electronically May 10, 2016.
AMS subject classiûcation: 05C15, 05C69, 13E05, 13E10.
Keywords: annihilating-ideal graph, independence number, edge chromatic number, bipartite,

cycle.
641

https://doi.org/10.4153/CMB-2016-016-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-016-3


642 F. Shaveisi

_ere are many papers on assigning a graph to the set of ideals of a ring [1–3, 5,
7, 9–11, 14, 15]. Let R be a commutative ring with identity. We call an ideal I of R,
an annihilating-ideal if there exists a non-zero ideal J of R such that IJ = (0). We
use the notations I(R) and A(R), for the set of non-zero ideals of R and the set of
annihilating-ideals of R, respectively. Also, by Min(R), we denote the set of all min-
imal prime ideals of R. By the annihilating-ideal graph of R, AG(R), we mean the
graph with the vertex set A(R)∗ = A(R) ∖ {(0)} and two distinct vertices I and J
are adjacent if and only if IJ = (0). _e concept of the annihilating-ideal graph of a
commutative ringwas ûrst introduced in [5]. We say that a graphG is an annihilating-
ideal graph if G ≅ AG(R) for some ring R. In Section 2, it is shown that for every
reduced ring R,

χ′(AG(R)) = ∆(AG(R)) = α(AG(R)) − 1 = 2∣Min(R)∣−1 − 1.

Moreover, we ûnd a suõcient condition under which AG(R) belongs to Class 1,
for every Artinian ring R. In Section 3 we give some criteria for a graph to be an
annihilating-ideal graph. For example, we prove that any bipartite annihilating-ideal
graph is a complete bipartite graph with at most two horns. Section 4 is devoted to
investigating the cycles in annihilating-ideal graphs. Finally, we show that a ûnite
annihilating-ideal graphAG(R) is not Eulerian, and this graph is Hamiltonian if and
only if R contains no Gorenstein ring as its direct summand.

2 The Independence Number and the Edge Chromatic Number

In this section we use the maximal intersecting families to obtain a lower bound for
the independence number of AG(R).

Proposition 2.1 If α(AG(R)) < ∞, then every element of R is either a zero-divisor
or a unit. Moreover, if R is Noetherian, then R has ûnitely many maximal ideals.

Proof Suppose to the contrary that R contains an element, say x, which is neither
a zero-divisor nor a unit. _en it is clear that {(zxn) ∣ n ∈ N}, in which z is a zero-
divisor, is an inûnite independent set of AG(R), a contradiction. Moreover, if R is
Noetherian, then [16, Corollary 9.36] and the fact that the set of associated prime
ideals of a Noetherian ring is a ûnite non-empty set, imply that R has ûnitely many
maximal ideals.

We note that the converse of the previous proposition is not true. To see this, let
R ≅ S × T , where S and T are Artinian local rings and ∣I(T)∣ = ∞. _en

{S × I ∣ I is a nontrivial ideal of T}
is an inûnite independent set of AG(R). So α(AG(R)) = ∞.

Let R be a decomposable ring such that R ≅ R1 × R2 × ⋅ ⋅ ⋅ × Rn , where every R i is a
ring. _en we use the following notation:

S(R) = {(0) /= I = I1 × I2 × ⋅ ⋅ ⋅ × In ⊲ R∣ ∀ 1 ≤ k ≤ n ∶ Ik ∈ {(0), Rk}} .

Also, we denote the induced subgraph of AG(R) on S(R) by GS(R).

Lemma 2.2 If R ≅ R1 × R2 × ⋅ ⋅ ⋅ × Rn is a ring, then α(GS(R)) = 2n−1.
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Proof For every ideal I = I1 × I2 × ⋅ ⋅ ⋅× In , let ∆I = {k ∣ 1 ≤ k ≤ n and Ik = Rk}. _en
two distinct vertices I and J in GS(R) are not adjacent if and only if ∆I ∩ ∆J /= ∅. So
there is a one-to-one correspondence between the independent sets ofGS(R) and the
set of families of pairwise intersecting subsets of [n] = {1, 2, . . . , n}. Assume that F is
a maximum intersecting family of the subsets of [n]. SettingA = {I ∈ S(R) ∣ ∆I ∈ F},
we deduce that A is an independent set of GS(R) with maximum size. _is implies
that α(GS(R)) = ∣A∣ = ∣F∣. So [13, Lemma 2.1] completes the proof.

Using [4, _eorem 8.7] and Lemma 2.2, we have the following corollary.

Corollary 2.3 Let R be an Artinian ring with n maximal ideals. _en α(AG(R)) ≥
2n−1; moreover, the equality holds if and only if R is reduced.

Lemma 2.4 ([12, Proposition 1.5]) Let R be a ring and {p1 , . . . , pn} be a ûnite set of
distinct minimal prime ideals of R. Let S = R ∖⋃n

i=1 pi . _en RS ≅ Rp1 × ⋅ ⋅ ⋅ × Rpn .

Proposition 2.5 If ∣Min(R)∣ ≥ n, then α(AG(R)) ≥ 2n−1.

Proof Let {p1 , . . . , pn} be a subset of Min(R) and S = R ∖ ⋃n
i=1 pi . By Lemma 2.4,

there exists a ring isomorphism RS ≅ Rp1 × ⋅ ⋅ ⋅ × Rpn . On the other hand, if IS , JS are
two non-adjacent vertices ofAG(RS), then it is not diõcult to check that I, J are two
non-adjacent vertices of AG(R). _us α(AG(R)) ≥ α(AG(RS)) and so by Lemma
2.2, we deduce that α(AG(R)) ≥ 2n−1.

From the previous proposition, we have the following immediate corollary which
shows that the ûniteness of α(AG(R)) implies the ûniteness of the set of minimal
prime ideals of R.

Corollary 2.6 If R contains inûnitely many minimal prime ideals, then the indepen-
dence number of AG(R) is inûnite.

Vizing’s _eorem [18, p. 16] states that if G is a simple graph, then either χ′(G) =
∆(G) or χ′(G) = ∆(G) + 1. A graph G belongs to Class 1 if χ′(G) = ∆(G) and it
belongs to Class 2 if χ′(G) = ∆(G) + 1.

Now we determine suõcient conditions under which an annihilating-ideal graph
belongs to Class 1. First of all, we recall the following lemma.

Lemma 2.7 ([6, Corollary 5.4]) Let G be a simple graph. Suppose that for every
vertex u of maximum degree, there exists an edge {u, v} such that ∆(G) − d(v) + 2 is
more than the number of vertices with maximum degree in G. _en χ′(G) = ∆(G).

Recall that for every local ring (R,m), Ann(m) is a vector space on the ûeld R
m
.

_e dimension of this vector space, denoted by r(R), is called the type of R. By [1,
_eorem 3], m2 = (0) if and only if AG(R) is a complete graph and in this case
χ′(AG(R)) = ∆(AG(R)) if and only if R has an even number of non-trivial ideals.

_eorem 2.8 Let (R,m) be a local ring with t proper ideals. Ifm2 /= (0) and r(R) =
r < log2(t + 2) − 1, then AG(R) belongs to Class 1.
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Proof Since dim R
m
Ann(m) = r, there are 2r − 1 non-zero ideals (subspaces) which

are contained in Ann(m). Also, it is clear that every ideal I ⊆ Ann(m) is adjacent to
every other vertex of AG(R). So a vertex I of AG(R) has maximum degree if and
only if I ⊆ Ann(m). For every such vertex, we have

∆(AG(R)) − d(m) + 2 = t − 2 − (2r − 1) + 2 > 2r+1 − 2 − 2r + 1 = 2r − 1.

_erefore, the assertion follows from Lemma 2.7.

Let R ≅ R1 × R2 × ⋅ ⋅ ⋅ × Rn be a ring, where (R i ,mi) is an Artinian local ring of
type r i and ∣I(R i)∣ = t i for every 1 ≤ i ≤ n. With no loss of generality, we can assume
that t1 = t2 = ⋅ ⋅ ⋅ = tk > tk+1 ≥ ⋅ ⋅ ⋅ ≥ tn , for some positive integer k ≤ n. It is not hard
to check that I is a vertex of maximum degree if and only if

I = (0) × ⋅ ⋅ ⋅ × (0) ×Ann(m j) × (0) × ⋅ ⋅ ⋅ × (0)
for some 1 ≤ j ≤ k and in this case M j = R1 × ⋅ ⋅ ⋅ × R j−1 ×m j × R j+1 × ⋅ ⋅ ⋅ × Rn is an
adjacent vertex to I. _us ∆(AG(R))−d(M j)+2 = t1∏n

i=2(t i + 1)−2r j + 1, where 2r j

is the number of ideals contained in Ann(m j). Moreover, the number of vertices with
maximum degree is ∑k

i=1(2r i − 1). Now setting s = max{r1 , r2 , . . . , rk}, Lemma 2.7
implies that the suõcient condition for AG(R) to be of Class 1 is that

t1
n

∏
i=2

(t i + 1) >
k

∑
i=1

2r i + 2s − k − 1.

_erefore, we have proved the following result.

Proposition 2.9 Let R ≅ R1 × R2 × ⋅ ⋅ ⋅ × Rn be a ring, where every R i is an Artinian
local ring of type r i and ∣I(R i)∣ = t i , such that t1 = t2 = ⋅ ⋅ ⋅ = tk > tk+1 ≥ ⋅ ⋅ ⋅ ≥ tn and
r1 ≥ r2 ≥ ⋅ ⋅ ⋅ ≥ rk . If t1∏n

i=2(t i + 1) > ∑k
i=1 2r i + 2r1 − k − 1, then AG(R) belongs to

Class 1.

An Artinian local ring (R,m) is called Gorenstein if R has type one. Also, it is
said that an Artinian ring R is Gorenstein if Rm is a Gorenstein ring for every max-
imal ideal m of R. From the previous proposition, we have the following immediate
corollary.

Corollary 2.10 If R is an Artinian Gorenstein ring, then χ′(AG(R)) = ∆(AG(R)).

It is clear that any ûnite direct product of ûelds is a Gorenstein ring. So, we have
the following corollary.

Corollary 2.11 Let R ≅ F1×F2×⋅ ⋅ ⋅×Fn , where every Fi is a ûeld. _en χ′(AG(R)) =
∆(AG(R)) = 2n−1 − 1.

We ûnish this section with the following theorem.

_eorem 2.12 If R is a reduced ring and α(AG(R)) < ∞, then

χ′(AG(R)) = ∆(AG(R)) = α(AG(R)) = 2∣Min(R)∣−1 − 1.
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Proof Since α(AG(R)) < ∞, Proposition 2.1 implies that every element of R is
either a zero-divisor or a unit. Moreover, Corollary 2.6 implies that R contains only
ûnitely many minimal prime ideals. Let Min(R) = {p1 , p2 , . . . , pn}. _en by Lem-
ma 2.4, RS ≅ Rp1 × Rp2 × ⋅ ⋅ ⋅ × Rpn , where S = ⋃n

i=1 pi . Let I and J be two non-trivial
ideals of R. If IS = JS , then for every x ∈ I, there are elements s ∈ S and y ∈ J such
that sx = y which implies that x = s−1 y ∈ J. _us I ⊆ J. A similar proof shows that
J ⊆ I. _erefore, there is a one-to-one correspondence between the ideals of R and
the ideals of RS . Next we show that IJ = (0) if and only if IS JS = (0). If IJ = (0),
then it is clear that IS JS = (0). Now suppose that IS JS = (0) and choose x ∈ I and
y ∈ J. _en there exists an element t ∈ S such that tx y = 0. By [8, Corollary 2.4], t is
not a zero-divisor and so xy = 0. _us IJ = (0) if and only if IS JS = (0). _e above
argument shows thatAG(R) ≅ AG(RS). By [12, Proposition 1.1], we can assume that
RS ≅ F1×F2×⋅ ⋅ ⋅×Fn , where every Fi is a ûeld. _erefore, Lemma 2.2 andCorollary 2.11
complete the proof.

3 Some Criteria for Graphs to be Annihilating-ideal Graphs

First we determine when a bipartite graph is an annihilating-ideal graph. For this we
need the following two lemmas.

Lemma 3.1 Assume that R is a ring such that AG(R) is a bipartite graph with parts
X, Y. If I ∈ X, J ∈ Y, and IJ /= (0), then either d(I) = 1 or d(J) = 1.

Proof Let I ∈ X and J ∈ Y be two non-adjacent vertices of AG(R). _en it is clear
that N(I) ∪ N(J) ⊆ N[IJ]. If IJ ∈ X, then N(J) = N(J) ∖ Y ⊆ N[IJ] ∖ Y = {IJ} and
thus d(J) = 1. If IJ ∈ Y , then a similar proof shows that d(I) = 1.

As an immediate consequence, we obtain the following result.

Corollary 3.2 If G is a bipartite annihilating-ideal graph containing no end vertices,
then G is a complete bipartite graph.

Now we recall the following theorem from [5, _eorem 2.1].

_eorem 3.3 For every ring R the annihilating-ideal graph AG(R) is connected and
diam(AG(R)) ≤ 3. Moreover, if AG(R) contains a cycle, then girth(AG(R)) ≤ 4.

Let G be a bipartite graph with parts X, Y . We deûne a vertex v ∈ V(G) to be full
if either N(v) = X or N(v) = Y .

Lemma 3.4 Let AG(R) be a bipartite annihilating-ideal graph with parts X, Y. If
there exists a vertex I ∈ X such that d(I) = 1, then the unique element in N(I) is a full
vertex.

Proof Suppose to the contrary that J ∈ N(I) is not a full vertex. _en there is a
non-trivial ideal K ∈ X such that KJ /= (0) and the shortest one of the possible paths
linking I and K is as shown in Figure 1
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J

I

M

L K

Figure 1.

for some non-trivial ideals L,M of R. _us d(I,K) ≥ 4, which is impossible by _e-
orem 3.3.

Recall that a two-star graph is a graphG consisting of two star graphs with a bridge
connecting the two sub-centers x and y. A horn in a graph consists of some end
vertices all adjacent to a common vertex.

_eorem 3.5 Every bipartite, annihilating-ideal graph is a complete bipartite graph
with at most two horns.

Proof Let G ≅ AG(R) be a bipartite, annihilating-ideal graph for some ring R. If
G is a star graph, then there is nothing to prove. So we can assume that AG(R) is
a bipartite graph with parts X, Y , and ∣X∣ > 1, ∣Y ∣ > 1. We claim that there exist
I ∈ X and J ∈ Y such that I and J are full vertices. If G is complete bipartite, then
there is nothing to prove. So, we assume that G is not a complete bipartite graph and
there exist non-trivial ideals K ∈ X and L ∈ Y such that K is not adjacent to L. So by
Lemma 3.1 and with no loss of generality, we can assume that d(K) = 1. Let J ∈ N(K).
_en J ∈ Y is a full vertex by Lemma 3.4. Now assume that each vertex in X is not
full. _en N(a) ⫋ Y for any a ∈ X. If d(a) = 1 for any a ∈ X, then N(a) = {J}, for
any a ∈ X, and thus each vertex in Y ∖ {J} is an isolated vertex, which contradicts
_eorem 3.3. Hence there exists a ∈ X with 2 ≤ d(a) and N(a) ⫋ Y . Fix a vertex
J1 ∈ Y ∖ N(a). _en J1 is not adjacent to a and so d(J1) = 1 by Lemma 3.1. It follows
from Lemma 3.4 that the unique element in N(J1) is full, a contradiction again. So
the claim is proved. Set

A = {p ∈ V(G) ∣ p is adjacent to I and d(p) > 1},
U = {p ∈ V(G) ∣ p is adjacent to I and d(p) = 1},
B = {q ∈ V(G) ∣ q is adjacent to J and d(q) > 1},
V = {q ∈ V(G) ∣ q is adjacent to J and d(q) = 1}.

_en V(G) = A∪ B ∪U ∪ V ∪ {I, J} and the graph G is of the type in Figure 2

I J

A B

VU

Figure 2.
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where A, B,U , and V are pairwise disjoint subsets of V(G). To complete the proof,
we show that the induced subgraph on A∪B is a complete bipartite graph. Suppose to
the contrary, p ∈ A and q ∈ B are two nonadjacent vertices. _en Lemma 3.1 implies
that either d(p) = 1 or d(q) = 1, a contradiction. Hence the induced subgraph on
A∪ B is a complete bipartite graph, as desired.

From the previous theorem, we have the following immediate corollary.

Corollary 3.6 Let G be an annihilating-ideal graph. If G is a tree, then G is either a
star or a two-star graph.

Proof From _eorem 3.5, we deduce that G is of the type in Figure 2. Since G is a
tree, then either A = ∅ or B = ∅. So the assertion follows.

Recall that a graph G is a reûnement of a star graph if it contains a vertex, say v,
such that N[v] = V(G).
From [5, _eorem 2.2], we know that an annihilating-ideal graph AG(R) is a re-

ûnement of a star graph if and only if either Z(R) is an annihilator ideal or R ≅ F×D,
where F is a ûeld andD is an integral domain. In the following theoremwe investigate
the existence of end vertices in an annihilating-ideal graph that is not a reûnement of
a star graph.

_eorem 3.7 Let G be an annihilating-ideal graph which is not a reûnement of a star
graph. _en G has an end vertex if and only if G has a cut vertex.

Proof Let G ≅ AG(R) for some ring R. If G has a vertex I of degree one, then
Ann(I) is the unique vertex, adjacent to I. _us Ann(I) is a cut vertex of G. Con-
versely, assume that G has a cut vertex, say K. _en there exist two disjoint subsets
X ,Y such that V(G) ∖ {K} = X ∪ Y and IJ /= (0), for every ideal I ∈ X and J ∈ Y .
Suppose to the contrary,G contains no end vertex. Now from_eorem 3.3, we deduce
that for every two ideals I ∈ X and J ∈ Y , there exist ideals L ∈ X andM ∈ Y such that
IL = (0) and JM = (0). So, N(L)∪N(M) ⊆ N[LM]. _us LM ∈ N[I]∩N[J] ⊆ {K},
and so LM = K. _erefore, KI = KJ = (0), for every ideal I ∈ X and every ideal J ∈ Y .
_is implies that G is a reûnement of a star graph, a contradiction.

Example 3.8 _egraphs in Figures 3 and 4 are not annihilating-ideal graphs, where
U consists of ûnitely or inûnitely many end vertices.

U
I

J

L

K

M
U

I

J

L

K
M

Figure 3. Figure 4.

To see this, ûnd N[IM].

Let ∆, δ denote the maximum and minimum degrees of a graph, respectively.
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Lemma 3.9 Let G be an annihilating-ideal graph and I be a vertex of G with maxi-
mum degree. If J ∉ N(I), then N(J) ⊆ N(I).

Proof LetG ≅ AG(R), where R is a ring, and choose J ∉ N(I). _en N(I)∪N(J) ⊆
N[IJ]∖{I}. If I ∈ N(IJ), then ∣N(I)∪N(J)∣ = ∆, and so N(J) ⊆ N(I). Now, suppose
IJ ∉ N(I). _en N(I) ⊆ N(IJ). Since ∣N(IJ)∣ ≤ ∣N(I)∣ = ∆, we have N(I) = N(IJ),
and so IJ ∉ N(J). Hence N(J) ⊆ N(IJ) = N(I).

In the next result we give a necessary condition on the minimum and maximum
degree of the vertices of a graph G to be an annihilating-ideal graph.

_eorem 3.10 If ⌈δ(∣V(G)∣−∆− 1)/∆)⌉+ 1 > ∆, then G is not an annihilating-ideal
graph.

Proof Let ⌈δ(∣V(G)∣ −∆− 1)/∆)⌉ + 1 > ∆ and suppose to the contrary, G ≅ AG(R)
for some ring R. Choose a vertex I withmaximumdegree and let N(I) = {J1 , . . . , J∆}.
Also, assume that V(G) ∖ N[I] = {K1 , . . . ,Kn−∆−1}, where n = ∣V(G)∣. By Lemma
3.9, N(K i) ⊆ N(I) for every 1 ≤ i ≤ n − ∆ − 1. On the other hand, each K i must
be adjacent to at least δ vertices. So the pigeonhole principle implies that there must
exist K i with degree d(K i) ≥ ⌈δ(n − ∆ − 1)/∆)⌉ + 1 > ∆, a contradiction.

For any graph G, we denote the set of all vertices with maximum degree, by I∆ .

Corollary 3.11 If G is an annihilating-ideal graph, then G[I∆] is either connected or
the graph of isolated vertices.

Proof Suppose G ≅ AG(R) for some ring R, and assume that G[I∆] is not con-
nected. _en there exist two vertices I and J in the same connected component such
that IJ = (0). Clearly, there exists a vertex, say K, such that K is not adjacent to both
I and J. _us from Lemma 3.9 we have N(K) = N(I) and N(K) = N(J). _erefore,
N(I) = N(J), a contradiction.

4 Cycles in Annihilating-ideal Graphs

In this section, it is shown that the core of any annihilating-ideal graph is a union of
triangles and rectangles. Recall that the core of a graph G is the subgraph induced
on all vertices of cycles of G. Also, we prove that a ûnite annihilating-ideal graph is
Hamiltonian if and only if the ring contains noGorenstein ring as its direct summand.
First, we need the following lemma.

Lemma 4.1 If I −−J −−K is a path in AG(R), then either N(M) ⊆ N(J) for every
non-adjacent vertex M to J, or I −−J −−K is contained in a cycle of length ≤ 4.

Proof Let I −−J −−K be a path in AG(R). If there exists a vertex L /= J such that
L ∈ N(I) ∩ N(K), then I −−J −−K −−L −−I is a cycle of length 4. So, assume that
N(I) ∩ N(K) = {J}. If M is a non-adjacent vertex with J, then N(J) ∪ N(M) ⊆
N(JM). _us JM ∈ N(I) ∩ N(K). If JM ∈ N(I) ∩ N(K), then JM = J and this
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implies that N(M) ⊆ N(J). So, with no loss of generality, we can assume that JM = I.
_us K ∈ N(I) and hence I −−J −−K −−I is a triangle in AG(R).

In [5], the authors proved that if AG(R) contains a cycle, then its girth does not
exceed 4 . _e next theorem is a vast strengthening of this result.

_eorem 4.2 _e coreK of AG(R) is a union of triangles and rectangles. Moreover,
any vertex of AG(R) is either a vertex of the coreK of AG(R) or else is an end vertex
of AG(R).

Proof If I ∈ K, then I is part of a cycle I −−J −−K −−L −− ⋅ ⋅ ⋅ −−I. If L is adjacent to I,
then I is in a rectangle. _us we can assume that L and I are not adjacent vertices. So
Lemma 4.1 implies that K ∈ N(L) ⊆ N(I). _erefore, I is in a triangle. _is proves the
ûrst statement. For the second statement, we can assume ∣V(AG(R))∣ ≥ 3. Suppose
to the contrary, I is a vertex of AG(R) such that I ∉ K and I is not an end vertex.
Choose J ∈ K. _en Lemma 4.1 implies that J lies in either a triangle or a rectangle.
By _eorem [5, _eorem 2.1] d(I, J) ≤ 3. To get a contradiction, we consider the
following cases.
Case 1: d(I, J) = 1. In this case, AG(R) contains one of the following subgraphs:

JI

K

L I J

K

M

L

Since I ∉ K and I is not an end vertex, there exists a vertex P ∈ N(I) ∖ {J ,K , L,M}.
So Lemma 4.1 implies that either P−−I−−J lies in a cycle with length ≤ 4 or K ∈ N(L) ⊆
N(I). _us I ∈K, a contradiction.
Case 2: d(I, J) = 2. In this case, AG(R) contains one of the following subgraphs:

X JI

K

L I X J

K

M

L

Again from Lemma 4.1, we deduce that either I −−X −−J lies in a cycle of length ≤ 4 or
K ∈ N(L) ⊆ N(I), a contradiction.
Case 3: d(I, J) = 3. In this case, AG(R) contains one of the following subgraphs:

Y JI X

K

L I X Y J

K

M

L

_erefore, we have diam(AG(R)) ≥ d(I,K) ≥ 4, a contradiction.
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_eorem 4.3 Let R be a ring with ûnite annihilating-ideal graph. _en AG(R) is
Hamiltonian if and only if R contains no Gorenstein ring as its direct summand.

Proof Since AG(R) is a ûnite graph, [5, _eorem 1.4] and [4, _eorem 8.7] imply
that R ≅ R1 × R2 × ⋅ ⋅ ⋅ × Rn , where every (R i ,mi) is an Artinian local ring. If R
contains a Gorenstein ring as its direct summand, then with no loss of generality,
we can assume that R1 is a Gorenstein local ring. _us the type of R1 is 1, and so
Ann(m1) × (0) × ⋅ ⋅ ⋅ × (0) is the only vertex adjacent with m1 × R2 × ⋅ ⋅ ⋅ × Rn . Hence
AG(R) is not Hamiltonian. Now assume that R contains no Gorenstein ring as its
direct summand. _en every R i is not a Gorenstein ring. Indeed, every vertex of
AG(R) is contained in M i = R1 × ⋅ ⋅ ⋅ × mi × ⋅ ⋅ ⋅ × Rn for some 1 ≤ i ≤ n. Since R i
is not Gorenstein, Ann(M i) = Ann(mi) contains more than one non-trivial ideal.
_us d(M i) > 1 for every maximal ideal M i of R, and henceAG(R) contains no end
vertex. _erefore, _eorem 4.2 implies that AG(R) is Hamiltonian.

_e following corollary is obtained immediately from the previous theorem.

Corollary 4.4 IfAG(R) is a ûnite graph and R contains a ûeld as its direct summand,
then AG(R) is not a Hamiltonian graph.

Finally, we ûnish this paper with the following result.

Proposition 4.5 Finite annihilating-ideal graphs are not Eulerian.

Proof Assume that R is a ring such that AG(R) is a ûnite graph. _en by [5, _e-
orem 1.4], R contains only ûnitely many ideals. _us [4, _eorem 8.7] implies that
R ≅ R1 × R2 × ⋅ ⋅ ⋅ × Rn for some positive integer n, where every R i is an Artinian
local ring. Let m be the unique maximal ideal of R1. _en the degree of the vertex
M = m × R2 × ⋅ ⋅ ⋅ × Rn in AG(R) equals the number of non-zero ideals contained in
Ann(m1) × (0) × ⋅ ⋅ ⋅ × (0). So d(M) = 2r − 1, where r is the type of the local ring R1.
_erefore, by [17, _eorem 1.2.26], AG(R) is not Eulerian.
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