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Abstract
Text preprocessing is not only an essential step to prepare the corpus for modeling but also a key area
that directly affects the natural language processing (NLP) application results. For instance, precise tok-
enization increases the accuracy of part-of-speech (POS) tagging, and retaining multiword expressions
improves reasoning and machine translation. The text corpus needs to be appropriately preprocessed
before it is ready to serve as the input to computer models. The preprocessing requirements depend on
both the nature of the corpus and the NLP application itself, that is, what researchers would like to achieve
from analyzing the data. Conventional text preprocessing practices generally suffice, but there exist situ-
ations where the text preprocessing needs to be customized for better analysis results. Hence, we discuss
the pros and cons of several common text preprocessing methods: removing formatting, tokenization, text
normalization, handling punctuation, removing stopwords, stemming and lemmatization, n-gramming,
and identifying multiword expressions. Then, we provide examples of text datasets which require special
preprocessing and how previous researchers handled the challenge. We expect this article to be a starting
guideline on how to select and fine-tune text preprocessing methods.

Keywords: Data preprocessing; Parsing; Text data mining

1. Introduction
Text mining can provide valuable insights, but the text data need to be adequately preprocessed
first, just like numerical data (Kalra and Aggarwal 2018). Real-world data are dirty (Hernández
and Stolfo 1998), so data scientists spend more than half of the time preprocessing and organizing
the data (Gabernet and Limburn 2017; CrowdFlower 2017). For example, Twitter data contain
HTML tags and user mentions, so researchers have to remove the formatting from the data before
feeding the corpus into any text model (Angiani et al. 2016). Many text analysis models deal with
words (Aggarwal and Zhai 2012; Kutuzov et al. 2017); hence, breaking down the text into words
(i.e., tokenization) is also a necessary preprocessing step (Karthikeyan et al. 2020). Text prepro-
cessing refers to these operations that prepare the corpus for analysis (Anandarajan, Hill, and
Nolan 2019). Text preprocessing methods are not just essential to natural language processing
(NLP), but they have actual implications to the modeling results (Samad, Khounviengxay, and
Witherow 2020), just like raw data with errors can distort the regression output (Chai 2020) .

Text preprocessing also has a quantitative impact on the natural language applications. Forst
and Kaplan (2006) showed that precise tokenization increased the coverage of grammars in
German from 68.3 percent to 73.4 percent. Gomes, Adán-Coello, and Kintschner (2018) also
showed that text preprocessing can boost the accuracy by more than 20 percent in sentiment
analysis of social media data. Zhou et al. (2019) improved hypoglycemia detection by filtering
stopwords and signaling medications in clinical notes in the US, which increased the F1 score
by between 5.3 percent and 7.4 percent. According to Camacho-Collados and Pilehvar (2018),
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there is a high variance in model performance (± 2.4 percent on average) depending on the text
preprocessing method, especially with smaller sizes of training data. Trieschnigg, Kraaij, and de
Jong (2007) discovered that different tokenization choices can result in a variability of more than
40 percent in the precision of biomedical document retrieval. The variance is large enough for
researchers to choose a different model for better performance, while the real issue is choosing
the appropriate methods in text preprocessing. Cohen, Hunter, and Pressman (2019) found out
that in clinical text mining, tokenization choices can make the difference between getting publish-
able results or not, which indirectly contribute to the problem of false discoveries (Leek and Jager
2017). These examples provide the evidence that text preprocessing plays a much more important
role than most people have realized (Hickman et al. 2020). Researchers need to make decisions
in working with a dataset, and Nugent (2020) pointed out that human subjective decisions are as
important as the machine learning algorithm itself.

Nevertheless, text preprocessing is more complex and difficult than it seems. Text contains
many kinds of lexical information as described in the book The Lexicon (Ježek 2016), such
as concept, grammar, syntax, and morphology. For example, grammar may not be important
in topic modeling or text classification, but grammar is essential to end-user applications like
question-answering or summarization (Torres-Moreno 2014). Different types of text corpora
require different preprocessing methods, so text preprocessing is not a one-size-fits-all process
(Yuhang, Yue, and Wei 2010; Denny and Spirling 2018). Recent advances of pretrained language
models like Bidirectional Encoder Representations fromTransformers (BERT) (Devlin et al. 2018)
has brought NLP to an unprecedented level (Wang, Gu, and Tang 2020), but preprocessing the text
corpus is still necessary to get the data ready for the input (Kaviani and Rahmani 2020; Armengol
Estapé 2021). Example preprocessing operations include text normalization and unpacking hash-
tags (Polignano et al. 2019). There are still many decisions to be made, because the number of
possible models grows exponentially with the abundance of hyperparameters in neural networks.
With eight binary hyperparameters, the number of possible models is as high as 28 = 256 (Dodge
et al. 2019). For instance, do we choose uniform or term frequency-inverse document frequency
(TF-IDF) weights? Do we retain multiword expressions? If yes, what is the cutoff frequency? It
is practically infeasible to try every single combination to find the best-performing model, so
researchers should narrow down the search space, that is, find which preprocessing choices are
more appropriate for the target application.

Therefore, we would like to discuss various text preprocessing methods by summarizing the
commonly used practices and pointing out their limitations. These methods include removing
formatting, tokenization, text normalization, handling punctuation, removing stopwords, stem-
ming and lemmatization, n-gramming, and identifying multiword expressions. Figure 1 shows a
common order of application of the text preprocessing modules, but in some cases, punctuation
is handled (or even removed) during the tokenization stage (Welbers, Van Atteveldt, and Benoit
2017; Mullen et al. 2018). Researchers have performed text normalization and punctuation han-
dling in either order (Bollmann 2019; Zupon, Crew, and Ritchie 2021), so we list the two modules
in parallel in the diagram.

Our objective is to serve a variety of NLP applications and provide researchers guidance on
selecting preprocessing methods for their text corpus. Kathuria, Gupta, and Singla (2021) also
created a description of common text preprocessing techniques, but their main goal is to com-
pare various open-source text mining tools such as Weka, Rapid Miner, R, and Python Jupyter
Notebook. Many survey papers in text preprocessing are focused on a specific NLP applica-
tion, such as text classification (HaCohen-Kerner, Miller, and Yigal 2020) or sentiment analysis
in Brazilian Portuguese (Cirqueira et al. 2018). Other relevant survey papers like Vijayarani,
Ilamathi, and Nithya (2015) and Nayak et al. (2016) seem to discuss the detailed implementation
of text preprocessing, rather than the potential impact on the NLP applications.

In this article, the text preprocessing methods described are primarily for English, but some
methods also apply to other languages. For example, Kannan and Gurusamy (2014) showed that
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Figure 1. A common order of application of the text preprocessing modules.

English and French can be tokenized in similar ways due to the space-delimited nature in both
languages. Here, we explicitly specify the language name to acknowledge the importance of data
statement for NLP (Bender and Friedman 2018). There are more than 7000 languages in the
world,1 but English accounts for the vast majority of NLP research (Bender 2011; Mieke 2016).
Munro (2015) pointed out that many researchers fail to name the language of their data, which
is obviously English. We would like to be inclusive and do not assume that English is the default
language studied in this field.

We also encourage researchers to use “text preprocessing” when referring to operations cov-
ered in this review article, unless this term is explicitly defined otherwise. Many researchers use
“text cleaning” and “text preprocessing” interchangeably (Kunilovskaya and Plum 2021), but we
adopt the latter to highlight the goal of getting the text corpus ready for input to NLPmodels (Aye
2011). Kadhim (2018) extended the term “text preprocessing” to the operations of converting text
to numerical data (e.g., TF-IDF), and they clearly stated that the aim is to represent each docu-
ment as a feature vector of individual words. We agree that this aspect is equally important, but
“data representation” is a more appropriate term (Dařena 2019). Finally, we make a distinction
between “text preprocessing” and “data preprocessing”, where the latter refers to a broader range
of data transformations, including scaling and feature selection on numerical/vectorized repre-
sentations of text (García et al. 2016). One example is that Al Sharou, Li, and Specia (2021) uses
“data preprocessing” to indicate the handling of all nonstandard appearance of language units
(e.g., casing, hashtags, code-switching, emoji, URL, and punctuation). Another example is the
Keras preprocessing module,2 which organizes files in a tree of folders into the Keras inter-
nal dataset format by creating batches of text, including truncating the text to a preset maximum
length. This belongs to “data preprocessing”, but not “text preprocessing”.

The rest of the paper is organized as follows. In Section 2, we outline the NLP-related appli-
cation types—information extraction, end-user applications, and building block applications.
In Section 3, we review and evaluate several commonly used text preprocessing practices. In
Section 4, we provide examples from three types of specialized text corpora—technical datasets,
social media data, and text with numerical ratings. In Section 5, we conclude by reemphasizing the

1https://www.ethnologue.com/.
2https://keras.io/api/preprocessing/.
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importance of text preprocessing. General text preprocessing methods have merits, but for further
improvement of data quality, text preprocessing needs to be tailored to the particular dataset.

2. NLP application types
NLP applications are generally divided into three types: information extraction, end-user appli-
cations, and building block applications (Jusoh 2018). Information extraction retrieves useful
information from the text corpus (Tang et al. 2008); such applications include information
retrieval, topic modeling, and classification tasks (Albalawi, Yeap, and Benyoucef 2020). End-
user applications take input directly from human users and provide output to them (Shaikh
et al. 2019). These require more comprehension in machine reading; examples are machine trans-
lation, question-answering, reasoning, text summarization, and sentence condensation (Zeng
et al. 2020). Building block applications enhance the performance of the first two types of NLP
applications (Taboada et al. 2013), and common building blocks in NLP are part-of-speech (POS)
tagging, named entity recognition (NER), and dependency parsing (Alonso, Gómez-Rodríguez,
and Vilares 2021). Our discussion on text preprocessing methods in this article is built to serve a
wide range of NLP applications. We start with an information extraction standpoint because its
text preprocessing methodology is relatively straightforward (Adnan and Akbar 2019a), then we
explain why some preprocessing methods are inappropriate for end-user applications. We also
explain how text preprocessing contributes to the success of building block NLP applications, and
eventually to the text model performance (Liu and Özsu 2009).

For information extraction, most text preprocessing methods would suffice for constructive
results (Allahyari et al. 2017; Kalra and Aggarwal 2018), but customized preprocessing methods
can further improve the performance of information extraction (Adnan and Akbar 2019b). As an
example of a successful preprocessing application, Yazdani et al. (2020) built an automated mis-
spelling correction system for Persian clinical text, with up to 90 percent detection rate and 88
percent correction accuracy. Using the Sastrawi library stemmer3 also improves the exact match
rate in Indonesian to 92 percent, compared with 82 percent by using the Porter stemmer (Rosid
et al. 2020). If the goal of information extraction is to reveal the semantic structure of text for fur-
ther end-user applications, the preprocessing methods also need to cater to the latter (Grishman
2015).

For end-user applications, text preprocessing is still crucial but how the methods are imple-
mented is of paramount importance (Kulkarni and Shivananda 2019; Chang et al. 2020).
Tokenizing the corpus can identify words, and sentence splitting can find sentence boundaries
(Zhang and El-Gohary 2017). Such segmentation of the corpus text is helpful in machine com-
prehension, especially for question-answering and text summarization (Widyassari et al. 2022).
Stemming and stopword removal are useful to narrow down the search space, but the system needs
to output full sentences to respond to the end user (Babar and Patil 2015; Lende and Raghuwanshi
2016). However, applying some preprocessing methods in the wrong way can be detrimental to
end-user applications. For instance, removing punctuation too early from the corpus will result
in failure to identify sentence boundaries, leading to inaccurate translation (Peitz et al. 2011). In
multilingual question-answering, the mix of different languages requires special handling in the
preprocessing phase, otherwise the system will have a large number of out-of-vocabulary (OOV)
words from the default single language (Loginova, Varanasi, and Neumann 2018).

For building block applications, adequate text preprocessing is necessary to leverage these
NLP building blocks to their full potential (Thanaki 2017; Sarkar 2019), while improper choices
in text preprocessing can hinder their performance (Reber 2019). For example, the accuracy of
POS tagging can generally be improved through spelling normalization (Schuur 2020), especially
in historical texts where archaic word forms are mapped to modern ones in the POS training

3https://pypi.org/project/Sastrawi/.

https://doi.org/10.1017/S1351324922000213 Published online by Cambridge University Press

https://pypi.org/project/Sastrawi/
https://doi.org/10.1017/S1351324922000213


Natural Language Engineering 513

database (Bollmann 2013). NER can benefit from the detection of multiword expressions, since
an entity often contains more than one word (Tan and Pal 2014; Nayel et al. 2019). On the other
hand, tokenization errors can lead to difficulties in NER (Akkasi, Varoğlu, and Dimililer 2016).
For instance, “CONCLUSIONGlucose” should be segmented as “conclusion” and “glucose”, but
splitting on letter case change will result in a partial entity “lucose”. Finally, although removing
stopwords is helpful in information retrieval (El-Khair 2017), this preprocessing method hurts
dependency parsing (Fundel, Küffner, and Zimmer 2007) because it may destroy the dependencies
between entities such as prepositions (Agić, Merkler, and Berović 2013).

We also briefly explain the training of word embeddings because the process is similar to the
text mining tasks (Jiang et al. 2015; Ye et al. 2016). Word2vec (Mikolov et al. 2013) creates a
vector representation to intuitively measure the similarity between words. Both continuous bag-
of-words model and continuous skip-gram model are used to predict the nearby words given the
current word. GloVe (Pennington, Socher, andManning 2014) leverages the conditional probabil-
ity for word frequency in a word–word co-occurrence matrix, and the dimensionality reduction
contributes to better performance. Embeddings from Language Model (Peters et al. 2018) uses
Long Short-Term Memory (LSTM) to capture context-dependent word meanings, allowing for
richer word representations. BERT (Devlin et al. 2018) is the state-of-the-art language repre-
sentation model, and it pretrains deep bidirectional representations in more than 100 languages.
BERT uses a masked language model for bidirectional conditioning and predicts the next sentence
for question-answering. BERT also supports cased and uncased versions of models (Kitaev, Cao,
and Klein 2019; Ji, Wei, and Xu 2020), and we will discuss more about letter case normalization
in Section 3.3.

Nevertheless, word embeddings with neural networks are not a cure-all solution for NLP appli-
cations (Abraham et al. 2018; Agre, van Genabith, and Declerck 2018) for two reasons: the first
reason is the necessary text preprocessing, and the second reason is the limitations of word embed-
dings themselves. Segmenting text into words (i.e., tokenization) is a prerequisite of creating word
embeddings (Kudo and Richardson 2018). In text ranking with BERT, document preprocessing
reduces the data size of potentially relevant information in the corpus, making computationally
expensive models scalable (Lin, Nogueira, and Yates 2020). Woo, Kim, and Lee (2020) also val-
idated combinations of text preprocessing techniques to optimize the performance of sentence
models. But even with the best intention and preparation, word embeddings still have limita-
tions in applications such as reasoning (i.e., natural language inference) (Zhou et al. 2020). Word
embeddings also face difficulties in low-resource scenarios (Hedderich et al. 2020) such as minor-
ity languages (e.g., Tibetan) (Congjun andHill 2021), due to an insufficient corpus on the language
itself. Finally, potential bias in the data can propagate to the word embeddings, leading to unin-
tended consequences such as unfair or discriminatory decisions (Papakyriakopoulos et al. 2020;
Basta, Costa-jussà, and Casas 2021).

3. Commonly used text preprocessing practices
Extensive information is available for commonly used text preprocessing practices, including
books and programming documentation (Lambert 2017). Open-source tools in Python include
the natural language toolkit NLTK (Bird, Loper, and Klein 2009) and scikit-learn (Pedregosa
et al. 2011) for machine learning. Both packages have been continuously maintained and updated
over the past decade. In addition to Python, R is also a popular tool in text modeling, with the
book Text Mining with R: A Tidy Approach (Silge and Robinson 2017). These resources provide
guidance to alleviate the pain of text preprocessing, but manual work is still required even with
the aid of integrated software like H2O.ai4 or Microsoft Azure Machine Learning Studio. Many
parameter settings are available for fine-tuning, and for best results, different types of text corpora

4http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/nlp.html.
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require different preprocessing methods (Yuhang et al. 2010). However, to the best of our knowl-
edge, there is not a set of comprehensive guidelines that can advise researchers on which text
preprocessing practices to apply to a brand-new text corpus.

Hence, we would like to review some text preprocessing techniques and evaluate their strengths
andweaknesses in terms of NLP so that researchers can determine whichmethods aremost appro-
priate for their text data. For each method, we start with a brief description, explain its advantages
and applications, and then discuss potential issues and situations when they are of concern. We
can attempt to propose remedies, but a trade-off always exists between undercorrection and over-
correction. Each text corpus is different, and the goal of text mining also varies by project. This
section is not a step-by-step execution guide on text preprocessing. We try to keep the methods
sequential, but the methods discussed here do not have to be executed in the same order as in
Figure 1. For instance, the information in punctuation is essential for question-answering (Ferret
et al. 2002) and sentiment detection (Rosenthal and McKeown 2013), so for these tasks we should
keep the punctuation in the corpus until much later stages.

3.1 Removing formatting
Removing formatting in text usually needs to be done before any other preprocessing. If the data
came from web scraping, the text would contain HTMLmarkup, which needs to be removed first.
For example, the original text string with HTML tags can be “<p> actual content </p>”, and
we want the “actual content” without the tags. The Python library BeautifulSoup (version 4.9.1
by Richardson 2020) is a popular tool for removing HTML tags, and the command to import
this library is from bs4 import BeautifulSoup. In addition to the official documentation,5
the book Website Scraping with Python (Hajba 2018) also contains a full chapter on using the
BeautifulSoup library to extract and navigate content in HTML format. For the R community,
the R package textclean (Rinker 2018b) is also available for removing formatting, such as the
function replace_html. This package also replaces common web symbols with their text equiv-
alents, such as “&cent” to “cents” and “&pound” to “pounds”. Finally, regular expressions can
remove a wide range of text patterns, such as a person’s email signatures and “[8:05 AM]” in chat
messages. Most programming languages support regular expressions, and manual preprocessing
offers greatest flexibility in removing formatting. However, manual preprocessing using regular
expressions is not only time-consuming but also error-prone (Shalaby, Zadrozny, and Jin 2019).
This can easily introduce unwanted and unexpected artifacts to a corpus (or some parts of it).
Hence, we recommend doing so only when the patterns cannot be handled by standard libraries,
which are more rigorously tested for correctness (Goyvaerts and Levithan 2012).

3.2 Tokenization
Tokenization decomposes each text string into a sequence of words (technically tokens) for
computational analysis (Singh and Saini 2014; Al-Khafaji and Habeeb 2017), and the choices
in tokenization are more important than many researchers have realized (Habert et al. 1998;
Verspoor et al. 2009). Given the sentence “I downloaded this software on-the-fly”, how many
words will it contain after tokenization? The question boils down to whether “on-the-fly” is
regarded as a compound word or separated into three words “on”, “the”, and “fly”. Although a
white space between two words is often used as an explicit delimiter (Webster and Kit 1992),
we should not simply tokenize on white space (Clough 2001). According to Barrett and Weber-
Jahnke (2011), there is not a universal tokenization method for English texts, not to mention
other languages with different linguistic features. The Python NLTK tokenizer package is a use-
ful tool to separate a text string into word tokens, but researchers still have to make subjective

5https://www.crummy.com/software/BeautifulSoup/.
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Figure 2. Postprocessing after using the NLTK tokenizer reduces the tokenization errors. The data are from Table 1 in Grön
and Bertels (2018).

decisions based on the corpus (Nugent 2020). Trieschnigg et al. (2007) showed that these subjec-
tive decisions, including tokenization, can contribute much more to model performance than the
algorithm choice.

According to Cohen et al. (2019), tokenization options canmake the difference between getting
a publishable result or not. For example, the type-token ratio is used to measure lexical richness,
which indicates the quality of vocabulary in a corpus (Malvern and Richards 2012). Type-token
ratio is calculated by dividing the number of types (distinct words) by the number of tokens (total
words). But the terms “type” and “token” are loosely defined, and questions arise when we make
decisions to count “on-the-fly” as one word or three words. Then, some researchers try various
definitions of “type” and “token” and select one that produces a statistically significant result
(Cohen et al. 2019). Such strategy is essentially p-hacking and hurts reproducibility in research
(Head et al. 2015). A better practice is to be clear and consistent with the definitions of these terms
in the tokenization process. Most existing literature does not specify the tokenization methods in
detail, including some papers with actual implications for diagnosis of serious neurological and
psychiatric disorders (Posada et al. 2017; Nasir et al. 2020). Therefore, we need to think carefully
about the potential impact from NLP to the published results, especially in clinical settings. We
will further discuss the tokenization challenges for biomedical text in Section 3.2.1 and for various
natural languages in Section 3.2.2.

3.2.1 Tokenization for biomedical text
In this section, we use biomedical text as an example of how domain-dependent tokenization can
be done and the impact it has on downstream tasks. Biomedical text can be regarded as a sub-
language because it is substantially different than documents written in general language. The
former contains more syntactic use of word-internal punctuation, such as “/” (forward slash) and
“-” (dash) among the biomedical terms (Temnikova et al. 2013). This phenomenon applies not
only in English but also in other languages such as Bulgarian, French, and Romanian (Névéol
et al. 2017; Mitrofan and Tufiş 2018). Moreover, Grön and Bertels (2018) showed that many
errors in processing biomedical clinical text are due to missing white space or nonstandard use
of punctuation, such as “2004:hysterectomie” and “2004 : hysterectomie”. A custom script for
postprocessing can reduce the tokenization errors, after the corpus of electronic health records is
divided into words using the NLTK tokenizer. Figure 2 illustrates that the percentage of tokeniza-
tion errors is reduced in the sections of complaints, anamnesis, history, examination, conclusion,
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Table 1. Number and percentage of false positives for each type of pattern matching. The data are from
Table 3 in Cohen et al. (2002), and the rows after the first one refer to the extra tokens discovered beyond
strict pattern matching

Tokens True False Percentage of

Type of pattern matching Discovered Positives Positives False positives

Strict pattern matching 500 425 75 15.00%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Case-insensitive 97 72 25 25.77%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vowel sequence 100 15 85 85.00%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Parentheses as optional 99 93 6 6.06%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Plural matches 86 75 11 12.79%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hyphen as optional 37 34 3 8.11%

and comments. The data are from Table 1 in Grön and Bertels (2018). The postprocessing includes
Greek letter normalization and break point identification (Jiang and Zhai 2007). For instance,
“MIP-1-α” and “MIP-1α” should both tokenize to “MIP 1 alpha”. Note that the hyphen does
more than separating elements in a single entity, so simply removing it is not always appropriate.
The hyphen in parentheses “(-)” can also indicate a knocked-out gene, such as “PIGA (-) cells had
no growth advantage” in Cohen et al. (2005).

Trieschnigg et al. (2007) also pointed out that tokenization decisions can contribute more
to system performance than the text model itself. The text string “NF-κ B/CD28-responsive”
has at least 12 different tokenization results, depending on the preprocessing techniques used.
The various approaches in tokenization resulted in up to 46 percent difference in the precision
for document retrieval. The baseline version “nf κ b cd responsive” keeps only lowercase let-
ters without numbers, and this achieves 32 percent precision in document retrieval. Another
version “NF-κ B/CD28-responsive” has only 17 percent, where the text string is separated by
white space without further normalization. A custom tokenizer result “nf kappa nfkappa b cd
28 respons bcd28respons” has 40 percent precision, which is the highest among the 12 combi-
nations attempted by Trieschnigg et al. (2007). The last version replaces Greek letters with their
English names and stems the word from “response” to “respons”. This version also regards “nf”,
“kappa”, and “nfkappa” as different tokens to increase the likelihood of getting a match. The same
applies to the separate tokens “b”,“cd”, “28”, “respons”, and the combined token “bcd28respons”.
In addition to precision, we should also examine the recall to capture as many relevant gene names
as they exist in the biomedical corpus.

Biomedical information retrieval often incorporates approximate string matching (a.k.a. fuzzy
matching) for gene names (Morgan et al. 2008; Cabot et al. 2016), because this allows small
variations to be considered as the same gene name. Verspoor, Joslyn, and Papcun (2003) dis-
covered that approximately 6 percent of gene oncology terms are exact matches in the biomedical
text, showing the necessity of non-exact matches to find the remaining 94 percent. For example,
Figure 3 depicts that tokenization choices of the gene name “alpha-2-macroglobulin” lead to dif-
ferent results of pattern matching in biomedical text. With a strict pattern matching heuristic,
there were 1846 gene names found in the corpus. Then, more flexible pattern matching methods
can find additional gene names and increase the recall. For instance, the case-insensitive heuris-
tic found an extra 864 gene names, and the vowel sequence heuristic6 discovered an extra 586
matches. The data in Figure 3 are from Table 2 in Cohen et al. (2002), and the concern of low

6The vowel sequence heuristic maps each vowel sequence to one or more of any vowel to reduce the dialectal differences in
gene names. For example, “hemoglobin” and “haemoglobin” are regarded as the same gene under this heuristic.
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Figure 3. Tokenization decisions in the gene “alpha-2-macroglobulin” lead to different pattern matching results. The data
are from Table 2 in Cohen et al. (2002).

precision (i.e., false positives) can be mitigated by discarding weaker matches. For each type of
pattern matching used, Table 1 lists the number and percentage of false positives in the discovered
tokens. The data are from Table 3 in Cohen et al. (2002), and the rows after the first one refer to
the extra tokens discovered beyond strict pattern matching. Most pattern matching schemes gen-
erated fewer than one-third of false positives, except that the vowel sequence heuristic produced
85% of false positives.

Approximate string matching in tokenization is also helpful in NER of biomedical and chem-
ical terms (Akkasi et al. 2016; Bhasuran et al. 2016; Kaewphan et al. 2017), but the tokenization
methods still have room for improvement. Both Cohen et al. (2004) and Groza and Verspoor
(2014) show that choices in handling punctuation affect the tokenization results and eventually
affect NER as well. Term variation can easily result in poor results of biomedical concept recog-
nition, especially in noncanonical forms. A slight change such as “apoptosis induction” versus
“induction of apoptosis” can result in the two entities being assigned into different equivalence
classes (Cohen et al. 2010).

Pretrained word embeddings for biomedical text are gradually increasing in popularity (Wang
et al. 2018), and one example is the BioBERT (Lee et al. 2020), which is pretrained on PubMed
abstracts and PMC (PubMed Central) articles. Since different language models have different
requirements on letter casing and punctuation, the BERTmodel (Devlin et al. 2018) supports mul-
tiple variants of input catering to various NLP applications (Ek, Bernardy, and Chatzikyriakidis
2020). Nevertheless, researchers still need to tokenize biomedical text into words before they can
leverage pretrained embeddings and do it in accordance with the preprocessing protocol used
in preparing the embedding training corpus (Corbett and Boyle 2018; Pais et al. 2021). Another
challenge in leveraging these pretrained word embeddings is that word vectors may not reflect
the internal structure of the words. For instance, the related words “deltaproteobacteria” and
“betaproteobacteria” should be close (but not too close) in the embedding space; however, this
relationship is not accounted for in the word2vec or GloVe models. Zhang et al. (2019) proposed
BioWordVec to leverage the subword information in pretraining, allowing the model to better
predict new vocabulary from the subwords in the corpus.

3.2.2 Tokenization for various natural languages
Beyond general English and biomedical texts, tokenizing non-English corpora also has challenges
that can affect the text mining performance. Most languages have compound terms that span
multiple tokens, such as “sin embargo” (however) in Spanish and “parce que” (because) in French
(Grana, Alonso, and Vilares 2002). Habert et al. (1998) applied eight different tokenization meth-
ods on a French corpus of size 450,000 and attempted to concatenate the compound terms (see
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Section 3.7 for multiword expressions). The number of words in the corpus differed by more than
10 percent, while the number of sentences could range from approximately 14,000 to more than
33,000. French also has contractions similar to English (e.g. “don’t” means “do not”) (Hofherr
2012). The article “l” (the) can be attached to the following noun, such as “l’auberge” (the hos-
tel). The preposition “d” (of) works similarly, such as “noms d’auberge” (names of hostels). More
details on handling word-internal punctuation will be discussed in Section 3.4.2.

Consider the case of Arabic tokenization. In Arabic, a single word can be segmented into at
most four independent tokens, including prefix(es), stem, and suffix(es) (Attia 2007). One exam-
ple is the Arabic word “ ” (“and our book”, or “wktAbnA” as the Buckwalter transliteration).
This word is separated into three tokens: the prefix “ ” “w” (and), the stem “ ” “ktAb” (book),
and a possessive pronoun “ ‘nA” (our) (Abdelali et al. 2016). Note that Arabic writes from right
to left, so the first token starts from the rightmost part of the word (Aliwy 2012). Most text prepro-
cessing systems now have a simple configuration for right-to-left languages (Litvak and Vanetik
2019), and the Python NLTK module nltk.corpus.reader.udhr supports major right-to-left
languages including Arabic and Hebrew.7

It is challenging to tokenize CJK languages because they use characters rather than letters, and
each language contains thousands of characters (Zhang and LeCun 2017). As a result, CJK tok-
enizers often encounter the OOV problem, and it is possible to get OOV characters as well as OOV
words (Moon andOkazaki 2021). Plus, CJK languages do not contain white space as obvious word
boundaries in the corpus (Moh and Zhang 2012). Researchers have attempted to mitigate these
problems by borrowing information from a parallel corpus of another language, commonly in
multilingual corpora for translation (Luo, Tinsley, and Lepage 2013; Zhang and Komachi 2018).
Thanks to recent advances in neural networks and pretrained models like BERT (Devlin et al.
2018), there has been progress in identifying CJK words that span multiple characters (Hiraoka,
Shindo, and Matsumoto 2019). Moreover, tokenization results can be improved by leveraging
subword information within the same language (Moon and Okazaki 2020), and even subword
pooling from other similar languages (Ács, Kádár, and Kornai 2021). Tokenization in multiple
languages helps not only in machine translation (Domingo et al. 2018) but also in adversarial text
generation (Li et al. 2020).

3.3 Text normalization
After the corpus is tokenized into words, text normalization is often the next step in preprocessing
(Zhang et al. 2013). Text normalization is defined as mapping noncanonical language to standard-
ized writing (Lusetti et al. 2018), and this consolidates text signals and decreases sparsity of the
search space (Bengfort, Bilbro, and Ojeda 2018). Text normalization is especially useful in deal-
ing with large amounts of nonstandard writings, such as social media data (Baldwin and Li 2015;
Lourentzou, Manghnani, and Zhai 2019) and speech-to-text output in automatic speech recogni-
tion (Yolchuyeva, Németh, and Gyires-Tóth 2018; Chua et al. 2018). One example is automatic
correction of misspellings (Tan et al. 2020), for example “mountian” becomes “mountain”; oth-
erwise, these misspellings will greatly increase the number of OOV words (Piktus et al. 2019).
Appropriate letter casing is also beneficial in NER, because it is easier to recognize named entities
in this form (Bodapati, Yun, and Al-Onaizan 2019). Generally speaking, stemming and lemmati-
zation (Section 3.6) both belong to the text normalization area (Korenius et al. 2004; Samir and
Lahbib 2018), and the most common form of letter case normalization is converting the entire
corpus to lowercase letters (Manning, Raghavan, and Schütze 2008). This is not only due to its
prevalence and availability in programming languages (Thanaki 2017) but also due to its demon-
strated success in text classification performance (HaCohen-Kerner et al. 2020). But despite its

7https://www.nltk.org/_modules/nltk/corpus/reader/udhr.html.
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popularity, converting everything to lowercase can be problematic in certain NLP applications like
text summarization and sentence boundary disambiguation, where uppercase at the beginning of
the text may indicate the start of a sentence (Abdolahi and Zahedh 2017).

The main advantages of letter case normalization are consistency and consolidation of word
variation (Şeker and Eryiğit 2012). For instance, “Large” and “large” would be recognized as the
same word because the letter case does not change the meaning of the word (Bokka et al. 2019;
Rahm and Do 2000). Some obviously proper nouns can also benefit from the lowercasing; for
example “Europe” and “europe” refers to the exact same thing, so the two tokens can be consol-
idated into one. Note that different languages have different capitalization schemes; for example,
German capitalizes all nouns, not just proper nouns as in English (Labusch, Kotz, and Perea 2022).
In biomedical data, case and format normalization improves the recall of finding a match of gene
names, because a gene often has multiple variations of its name (Section 3.2.1 and Cohen et al.
2002). Even in neural networks, conversion to lowercase keeps the text feature extraction simple
and reduces the number of distinct tokens (Preethi 2021). Lowercasing is also used in informa-
tion retrieval because search queries do not have accurate capitalization, so the query cannot rely
on capital letters to match against a corpus (Barr, Jones, and Regelson 2008). Especially in many
speech recognition systems, the user’s input does not have inherent capitalization (Beaufays and
Strope 2013), which often results in all lowercase words in the query.

However, converting to lowercase can result in loss of semantic information where the letter
capitalization indicates something other than the lowercase word. Some acronyms have different
meanings than the same spelling in all lowercase—for example, “US” (United States) and “us” (a
first-person plural pronoun). In addition to acronyms, many nouns have different meanings when
they are in proper case, compared with in lowercase. Examples include last names such as Bush,
Cooper, and Green. As a result, lowercasing is not very useful in NER, because the text model
needs to identify proper nouns from the letter cases (Campbell et al. 2016). The lack of letter case
information also contributes to the POS mistagging rate (Foster et al. 2011). In these NLP appli-
cations, truecasing (Lita et al. 2003) is needed to achieve a balance between consolidating word
variations and distinguishing proper nouns (Duran et al. 2014). Moreover, words in ALL-CAPS
can also be used to emphasize a strong emotion, so the capitalization is related to higher senti-
ment intensity. For example, the comment “The conference is AWESOME!” conveys a stronger
emotion than “The conference is awesome!”. Hutto and Gilbert (2014) compared the ratings on
a Likert scale (from positive to negative) from comments on social media and discovered that the
comments with ALL-CAPS express higher sentiment intensity than the ones without.

Handling accented words in languages like French and Spanish faces similar issues as con-
verting letters to lowercase (Zweigenbaum and Grabar 2002). Both text preprocessing steps
normalizes the corpus at the character level, that is, character normalization. De-accenting works
like lowercasing; the process replaces all accented characters (e.g., “àáâä”) with non-accented ones
(e.g., “a”). This is helpful in information retrieval because words in queries may not be appro-
priately accented (Grabar et al. 2003), but some semantic information is unavoidably lost. For
instance, consider the Spanish word “té” (tea) with an accent and the word “te” (reflexive pro-
noun of “you”) without an accent. Removing the accent will map both words to the same token
“te”, and the information of “tea” disappears. How to re-accent words from an unaccented corpus
has been a challenging research problem (Zweigenbaum and Grabar 2002b; Novák and Siklósi
2015).

3.4 Handling punctuation
Although many researchers remove punctuation in a text corpus at the beginning of text pre-
processing (Kwartler 2017), punctuation conveys information beyond the words and should not
always be ignored. Punctuation separates word strings to clarify meaning and conveys seman-
tic information to human readers (Baldwin and Coady 1978). Here is an example from Truss
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(2006): “Go, get him doctors!” means telling someone to find doctors for a male patient, because
the comma separates the two clauses “Go” and “get him doctors”. In comparison, “Go get him,
doctors!” means telling the doctors to catch a guy, because the clause “Go get him” is a command
directed at the doctors. In NLP, punctuation also provides syntactic information for parsing, such
as identifying complex sentences (Jones 1994) and tokenizing biomedical terms (Díaz and López
2015). For example, a string “cd28-responsive” can be parsed into “cd28” and “responsive” (split
words on the dash), or in a single token “cd28-responsive” (Trieschnigg et al. 2007).

According to Corpus Linguistics (Lüdeling and Kytö 2008), punctuation is generally divided
into three categories: sentence-final punctuation, sentence-internal punctuation, and word-
internal punctuation.

(1) Sentence-final punctuation indicates the end of a sentence, such as a period, an exclamation
mark, and a question mark.

(2) Sentence-internal punctuation are used in the middle of a sentence, including commas,
parentheses, semicolons, colons, etc.

(3) Word-internal punctuation exists within a word, and examples include apostrophes and
dashes.

These categories are neither mutually exclusive nor exhaustive; that is, a punctuation mark can
belong to multiple categories or neither. For instance, languages such as Spanish have sentence-
initial punctuation, which indicates sentence boundaries like sentence-final punctuation. One
example is the “¿” (the inverted question mark) in the sentence “¿Dónde está el baño?” (Where is
the bathroom?) But “¿” can also be used as sentence-internal punctuation, for example “Ana, ¿qué
haces hoy?” (Ana, what are you doing today?) (Miller 2014). English has complexity in punctua-
tion as well. The period often marks the end of a sentence, but it can also be used in word-internal
abbreviations, such as “e.g.” and “U.S.A.” The apostrophe can exist in both word-internal (e.g.,
“don’t”) and sentence-final (the end of a single quotation mark). The overlap can cause ambiguity
in text segmentation, that is, tokenizing the corpus to detect words and sentences (Grefenstette
and Tapanainen 1994; Huang and Zhang 2009).

The level of importance of breaking the corpus into sentences varies in NLP applications. For
instance, text classification and topic modeling focus on the text documents, so each sentence
itself is less of a concern (Blei, Ng, and Jordan 2003; Korde and Mahender 2012). But on the other
hand, certain end-user applications rely heavily on the sentences from the corpus breakdown: text
summarization needs sentence extraction as a prerequisite (Patil et al. 2015); machine transla-
tion of documents requires sentence segmentation (Matusov et al. 2005; Kim and Zhu 2019); and
question-answering utilizes the syntactic information from sentences (Li and Croft 2001). When
breaking the corpus into sentences is important, this is often done first before we can continue the
rest of preprocessing, such as identifying the entity’s POS from a sentence. Breaking into sentences
is harder than it appears, due to not only the multiple functions of the period but also the non-
standard usage of punctuation in informal text (Villares-Maldonado 2017). Methods for sentence
boundary disambiguation include maximum entropy approach (Reynar and Ratnaparkhi 1997;
Le and Ho 2008), decision tree induction (Kiss and Strunk 2006; Wong, Chao, and Zeng 2014),
and other trainable sentence segmentation algorithms (Indurkhya and Damerau 2010; Sadvilkar
and Neumann 2020).

We need to distinguish separating punctuation from strings (Section 3.4.1) and removing
punctuation (Section 3.4.2). Separating punctuation from strings means that we split a string into
words or shorter strings based on the punctuation. Splitting a string into words on punctuation is
essentially tokenization (see Section 3.2). This can be straightforward for a simple sentence like “I
have a dog.” or “Cindy is my sister, andDavid is my brother.” But there is confusion in splitting the
sentence “Then Dr. Smith left.” The first period is word-internal punctuation, while the second

https://doi.org/10.1017/S1351324922000213 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324922000213


Natural Language Engineering 521

period is sentence-final punctuation. In the biomedical domain, tokenizing the sentence “I studied
E. coli in a 2.5 percent solution.” will cause problems because the period following the uppercase
“E” indicates an acronym rather than the end of the sentence. Also, “E. coli” is a biomedical term
(Arens 2004). When we separate a string into shorter strings via punctuation, discourse parsing
is also of interest to understand the hierarchical and syntactic structure of the text string (Soricut
and Marcu 2003; Peldszus and Stede 2015). On the other hand, removing punctuation means that
we permanently eliminate punctuation from the corpus. Then, the corpus is reduced to words
and numbers, and each token is separated by blank space. The reduced dataset may be easier to
analyze in some cases, but researchers should be cautious in removing punctuation because the
lost information will not return to the corpus later.When punctuation contains emotional context
such as repeated exclamation marks “!!!” (Liu 2015), removing punctuation can be detrimental in
sentiment analysis, especially in social media data (Koto and Adriani 2015).

3.4.1 Separating punctuation from strings
Researchers often need to separate punctuation from strings in text preprocessing—not only
to obtain the words but also to retrieve the syntactic information conveyed in the punctuation
(Nunberg 1990; Briscoe 1996). For example, in the sentence “We sell cars, scooters, and bikes.”,
the two commas separate the noun objects and the period indicates the end of the sentence. This
shows that punctuation provides grammatical information to POS tagging (Olde et al. 1999). Note
that inconsistent use of punctuation can be worse than no punctuation (Bollmann 2013), and in
this case, discarding punctuation is preferable. Furthermore, using punctuation to separate text
into shorter strings is helpful inmachine translation, especially for long and complicated sentences
(Yin et al. 2007). Parsing punctuation as part of input not only improves the quality of translation
between European languages (Koehn, Arun, andHoang 2008) but also provides bilingual sentence
alignment for a Chinese-English corpus (Yeh 2003).

We would like to highlight the application of discourse parsing, because this is a difficult
research problem central to many tasks such as language modeling, machine translation, and text
categorization (Joty et al. 2019). Discourse parsing needs the punctuation information to identify
the relations between segments of text (Ji and Eisenstein 2014). Punctuation marks can serve as
discourse markers to separate a text string into shorter parts, along with many conjunction words
(Marcu 2000). A sentence with or without sentence-internal punctuation can have different mean-
ings, and here is an example from Truss (2004): “A panda eats shoots and leaves.” means that a
panda eats shoots and also eats leaves. But the sentence with a comma, “A panda eats, shoots and
leaves.”, means that a panda eats something, shoots a gun, and leaves the scene. Figure 4(a) and (b)
depict the two hierarchical structures, respectively. The syntactic structure from punctuation feeds
into discourse structure (Venhuizen et al. 2018). For more complicated text structures, Ghosh
et al. (2011) leveraged a cascade of conditional random fields to automate discourse parsing, based
on different sets of lexical, syntactic, and semantic characteristics of the text.

Another issue we would like to discuss is the challenge of parsing nonstandard use of punc-
tuation in social media text (Farzindar and Inkpen 2020). Text messages often contain repeated
punctuation such as “!!” and “??”, and these symbols are typically used as an emphasis of emo-
tion, without adding extra lexical information (Liu and Jansen 2013). This emotional context is
helpful in sentiment analysis (Rosenthal and McKeown 2013), while in many other applications,
it is acceptable to map repeated punctuation to a single one (Verma and Marchette 2019). We
also need to be careful in processing emoticons because each of them should be assigned to a
token, rather than being separated into characters (Rahman 2017). We recommend starting with
a predefined list of emoticons to identify them in the text corpus, and one example list is available
on Wikipedia.8 Emoticons that contain all punctuation are easier to detect, such as “:)” and “:-(”.

8https://en.wikipedia.org/wiki/List_of_emoticons.
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(a) (b)

Figure 4. Hierarchical structure of a sentence with or without a comma. The sentence example is from Truss (2004).

On the other hand, emoticons that contain both letters and punctuation are relatively harder to
detect, such as “:p” and “;D” (Clark and Araki 2011). In addition, the symbol @ can be part of an
emoticon “@_@” or can be used as a mention to another user on social media. Similarly, the sym-
bol # can be part of another emoticon “#)” or serve as the start of a hashtag. More about mentions
(@username) and hashtags (#hashtag) will be discussed in Section 4.2.

Finally, if researchers are unsure whether the information from punctuation would be needed
in their NLP work, we recommend separating punctuation from strings first. In this way,
researchers still have the option to remove the punctuation tokens later. In comparison, if
researchers remove punctuation from the corpus in the beginning, it is much harder to restore
the punctuation unless they are willing to restart from the raw data.

3.4.2 Removing punctuation
Removing punctuation generally simplifies the text analysis and allows researchers to focus on
words in the text corpus (Gentzkow, Kelly, and Taddy 2017; Denny and Spirling 2018). According
to Carvalho, de Matos, and Rocio (2007), removing punctuation improves the performance of
information retrieval. In NLP applications where punctuation is not of primary interest, it is easier
to remove punctuation from the corpus than to normalize the nonstandard usage of punctuation
for consistency (Cutrone and Chang 2011; Fatyanosa and Bachtiar 2017). This is why many intro-
ductory books onNLP include removing punctuation as an early step of text preprocessing (Dinov
2018; Kulkarni and Shivananda 2019).

Moreover, many text mining models do not handle nonword characters well, so removing
these characters beforehand is helpful in such situations. For instance, word2vec (Mikolov et al.
2013) takes a text corpus as input and produces efficient word representations in vector space, but
word2vec does not support punctuation due to the optimized design toward words. Even when
a text mining model allows nonword characters, it treats a word with punctuation as a different
token than the same word without punctuation. Hence, the punctuation symbols can hurt the
performance of modern parsers. The problem is that when punctuation exists in the input text,
many parsers heavily rely on this feature, making it difficult to handle sentences with nonstandard
use of punctuation. As a result, prediction suffers from punctuation inconsistency, and previous
researchers have referred to the situation as “a nightmare at test time” (Søgaard, de Lhoneux, and
Augenstein 2018). Removing punctuation as feature deletion improves the robustness of a model
(Globerson and Roweis 2006).

Nevertheless, removing punctuation also removes the underlying semantic information from
the corpus, which can have a negative effect on some NLP applications. In sentiment analysis,
emotions in a sentence can be expressed from different punctuation, so removing punctuation
would have a negative effect on the analysis results (Effrosynidis, Symeonidis, and Arampatzis
2017). For example, “He liked the cake!” is different than “He liked the cake?”. Generally,“!”
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expresses a stronger emotion, while “?” often reverses the intention of the sentence. Wang et al.
(2014a) built a model using both words and punctuation to identify product reviews as positive
or negative, and the model performed better than using only words without punctuation. In dig-
ital forensics, punctuation is also an important feature for authorship identification. The ALIAS
(Automated Linguistic Identification and Assessment System) methodology performs many com-
putation linguistic calculations to distinguish text written by different authors, and one aspect is
the frequency and types of punctuation (Craiger and Shenoi 2007). A sentence in quotation marks
can refer to a conversation or a quote from existing literature, so the writing style in that sentence
can be highly different from the author’s usual style. This information can be used to determine
who said what (Pareti et al. 2013), and Thione and van den Berg (2007) developed a US patent to
use the quotation marks in text for speaker attribution.

If researchers decide to remove punctuation from the text corpus, a straightforward way
to do so is using regular expressions. This is part of string processing in almost all program-
ming languages. A starting list is the ASCII printable characters,9 which consist of a white
space, punctuation, uppercase English letters, lowercase English letters, and the numbers 0–9.
Note that different languages have different space characters (e.g., Chinese vs. English) (Craven
2004). In Python, the code from string import punctuation provides a string of commonly
used punctuation symbols, including the open and close brackets. In R, the regular expression
[:punct:] from the function grep also gives the same set of punctuation symbols as Python
does. The R package tm (Feinerer and Hornik 2018) has a function removePunctuation for easy
implementation.

We need to be careful in treating word-internal punctuation, especially contractions (e.g.,
“you’re” vs. “you are”). Although most contractions drop out during the stopword removal phase
since they are stopwords, some contractions have non-ignorable semantic meaning (e.g., “n’t”
means “not”). Python NLTK includes the package contractions to split contracted words, and
GutenTag10 as an extension toolkit makes it possible to preserve within-word hyphenations and
contractions (Brooke, Hammond, and Hirst 2015). We can also map contractions into their non-
contracted forms (e.g., map “don’t” into “do not”) using a predefined list,11 and this is beneficial
to negation handling (Anderwald 2003). For higher precision of contraction-splitting, we can use
the Python library pycontractions (Beaver 2019) to incorporate context to determine the orig-
inal form of ambiguous contractions. For example, the sentence “I’d like to know how I’d done
that!” contains two “I’d”—the first one is from “I would” and the second one is from “I had”.
However, many researchers remove punctuation without handling the contractions (Battenberg
2012; Soriano, Au, and Banks 2013; Xue et al. 2020), so the demonstrations in this article do not
include the contraction-mapping step.

3.5 Removing stopwords
Stopwords refer to the words that do not distinguish one text document from another in the
corpus (Ferilli, Esposito, and Grieco 2014), and this concept was first developed by Hans Peter
Luhn (1959). Examples include “the” and “or” because they are extremely common across doc-
uments, leading to little distinction among each document. Note that every stopword still has
semantic content; for example, “the person” has a slightly different meaning than “a person”. It is
inappropriate to say that stopwords are meaningless, just because their content does not differen-
tiate text documents in the corpus. Stopwords are usually removed in the text preprocessing stage
(Rajaraman and Ullman 2011), so that text models can focus on the distinctive words for better
performance (Babar and Patil 2015; Raulji and Saini 2016). Otherwise, these nondistinctive words

9https://theasciicode.com.ar/ascii-printable-characters/dot-full-stop-ascii-code-46.html.
10http://www.cs.toronto.edu/~jbrooke/gutentag/.
11https://gist.github.com/nealrs/96342d8231b75cf4bb82.
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(i.e., stopwords) with high number of occurrences may distort the results of a machine learn-
ing algorithm (Armano, Fanni, and Giuliani 2015), especially in information retrieval (Zaman,
Matsakis, and Brown 2011) and topic modeling (Wallach 2006). Removing stopwords greatly
reduces the number of total words (“tokens”) but not significantly reduces the number of distinct
words, that is, vocabulary size (Manning et al. 2008). Hvitfeldt and Silge (2021) showed that even
removing a small number of stopwords can moderately decrease the token count in the corpus,
without a large influence on text mining models.

Nevertheless, stopwords are crucial for someNLP applications that require reasoning of text. In
dependency parsing, stopwords are informative in understanding the connection between words
in a sentence (Elming et al. 2013; Poria et al. 2014). For instance, the words “from” and “to”
in “from Seattle to Houston” show the relationship between the nouns “Seattle” and “Houston”
(Nivre 2005). Moreover, syntactic analysis of stopwords enables author identification (Arun,
Suresh, and Madhavan 2009), and patterns of stopword usage can also be examined to detect
plagiarism (Stamatatos 2011). An example of stopword-related feature is how often one uses
pronouns to refer to a specific name (Sánchez-Vega et al. 2019).

Stopwords can be divided into two categories—general and domain-specific. General stop-
words include prepositions (e.g., “at”), pronouns (e.g., “you”), determiners (e.g., “the”), auxiliaries
(e.g., “was”), and other words with relatively less semantic meaning. A predefined stopword list
provides general stopwords that can be removed from the corpus in preprocessing (Nothman,
Qin, and Yurchak 2018). On the other hand, domain-specific stopwords are words with non-
ignorable semantic meaning in general, but they appear in almost every document in the specific
domain. For example, the words “method”, “algorithm”, and “data” are considered domain-
specific stopwords in a text corpus of machine learning papers (Fan, Doshi-Velez, and Miratrix
2017). In addition to predefining a list of domain-specific stopwords for removal, we can also
leverage the TF-IDF scores to identify the corpus-specific stopwords. These words typically have a
high TF and/or a low IDF, making them too prevalent to distinguish one document from another
in the corpus (Kaur and Buttar 2018). Other methods to automatically identify domain-specific
stopwords include entropy (information theory) (Makrehchi and Kamel 2008; Gerlach, Shi, and
Amaral 2019) and Kullback–Leibler divergence (Lo, He, and Ounis 2005; Sarica and Luo 2020).

3.5.1 Existing stopword lists
According to Manning et al. (2008), most researchers use a predefined stopword list to filter out
the general stopwords, and the list typically includes fewer than 1000 words in their surface forms.
For instance, “have” and “has” count as two separate stopwords in the list. Shorter lists include the
Python NLTK (127 English stopwords) (Bird et al. 2009) and the R package stopwords (175
stopwords) (Benoit, Muhr, and Watanabe 2017). For longer lists, the Onix Text Retrieval Toolkit
(Lextek International n.d) provides two versions—one with 429 words and the other with 571
words, where both lists are available in the R package lexicon (Rinker 2018a). Although Atwood
(2008) optimized the SQL query performance for information retrieval by removing the 10,000
most common English words from their corpus, this is an extreme case and we do not recommend
removing so many stopwords. Schofield, Magnusson, and Mimno (2017) showed that a list of
approximately 500 stopwords would already remove 40–50 percent of the corpus. Zipf (1949)
showed that the distribution of words is right-skewed, and that the word with the nth highest
frequency is expected to appear only 1/n times as likely as the word with the highest frequency.
Figure 5 is an illustration of the Zipf’s law, assuming that themost frequent word appears 1million
times in a hypothetical corpus. Zhang (2008) and Corral, Boleda, and Ferrer-i Cancho (2015) also
show that stopwords are often the most common words in the corpus, which applies to most
languages like English, French, or Finnish.

An existing list often serves as a starting point for removing stopwords, and many researchers
modify the list before use (Blanchard 2007; Heimerl et al. 2014), in order to optimize text mining

https://doi.org/10.1017/S1351324922000213 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324922000213


Natural Language Engineering 525

Figure 5. Illustration of the Zipf’s law (Zipf 1949).

results (Amarasinghe, Manic, and Hruska 2015). For instance, since the list contains several words
for negation (e.g., “no”, “not”), removing these words would alter the meaning of the context.
Then the negation words should be excluded from the stopword list, and more details are dis-
cussed in Section 3.5.2. In addition to standard stopword lists, alternative options include publicly
available e-books, such as Alice’s Adventures in Wonderland by Lewis Carroll, which can be used
as a benchmark corpus to filter out nontechnical words from a technical database (Brooke et
al. 2015). Project Gutenberg12 contains more than 60,000 e-books, whose US copyrights have
expired.13 Even better, this corpus is directly available in the R package gutenbergr (Robinson
2018). Good candidates for a stopword list should be a book of general content, so the technical
words in the database would be more likely to stay. Since a book usually contains thousands of
words, using one book as a stopword list would be sufficient. Choosing multiple books provides
limited benefits because most general words (e.g., “where” and “say”) have already been removed
by the first book.

There is a trade-off between using shorter stopword lists and longer ones, and it is up to the
researchers to determine which works best for their text dataset. Using a shorter stopword list
preserves more semantic information in the corpus, but the vocabulary size reduction may be
insufficient. Using a longer stopword list further reduces the data, but words with potentially
important informationmay also be accidentally eliminated from the corpus. Since words removed
at the beginning would not return to the scope of data analysis, we need to be more cautious in
using a longer stopword list (Fox 1989). Therefore, we recommend starting from a short stopword
list to retain potentially important “stopwords”. If the text mining results contain too many irrel-
evant words, we can gradually remove them by adding more words to the stopword list. This is a
reversible process because if we find key insights are missing in the new version of the corpus, we
can always select an earlier version with a smaller amount words removed.

3.5.2 Known issues with removing stopwords
Even in NLP applications where removing stopwords is safe and appropriate, we need to remem-
ber that the removed stopwords are permanently excluded from the corpus and will not re-enter
the model (Yang and Wilbur 1996). Therefore, we have to beware of unintentional removal
of important text information. Some phrases contain only stopwords, and the whole phrase is
removed if we filter out stopwords at the beginning. Examples include the band “The The” and
the phrase “to be or not to be” fromHamlet. Multiword expressions consisting of both stopwords
and non-stopwords face a slightly better situation. For example, the novel title “Gone with the

12http://www.gutenberg.org/.
13https://www.copyright.gov/circs/circ15a.pdf.
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Wind” becomes “Gone Wind” after we remove stopwords—the phrase still exists, but it is no
longer understandable.

Being able to find stopwords is crucial for titles, especially in a search engine for media and/or
e-commerce content (Lazarinis 2007). Although information retrieval generally ignores stop-
words (Singhal 2001), Google Search allows the user to put a phrase in quotation marks for exact
matching,14 and so domost other search engines (White andMorris 2007;Wilson 2009). Hence in
text preprocessing, when the subject indicates that the corpusmay have stopword-formed phrases,
n-gramming should be done first to preserve the semantic information of these phrases.Moreover,
if the NLP application involves dependency parsing or semantic reasoning, we have to be careful in
removing stopwords, especially prepositions (Hartrumpf, Helbig, and Osswald 2006). For exam-
ple, the sentence “The box is in the house, and the toy is in the box.” will mean something different
if we remove both “in”s. Hansen et al. (2018) suggested not removing stopwords at all in syn-
tax dependency parsing, because they may contain important syntactic information for sentence
structure.

Finally, researchers should exclude “no” and “not” from the stopword list, because filtering
out negation terms often reverts the meaning of the whole phrase. For example, the sentence
“Zach doesn’t know physics.” becomes “zach know physics” (opposite meaning) after we remove
the stopwords. It is possible to retain semantic information through antonym replacement or
bigram creation. For instance, “not good” can be replaced with “bad” or “not_good” (as a bigram)
(Perkins 2014; Chai 2017). However, neither approach is perfect because the scope of “not” may be
different than the word immediately following the negation (Councill, McDonald, and Velikovich
2010). Consider the sentence “He was not driving the car and she left to go home.” If we simply
invert “not drive”, we lose the context that someone else may be driving the car instead (Fancellu,
Lopez, andWebber 2016). Automatically detecting the scope of negation is a challenging problem
(Blanco and Moldovan 2011), and recent advances include using deep learning approaches (Qian
et al. 2016) and bidirectional LSTM (Fancellu et al. 2017; Morante and Blanco 2021).

3.6 Stemming and lemmatization
Both stemming and lemmatization normalize words to their base forms to reduce the vocabulary
size of a text corpus (Manning et al. 2008). For example, “enjoys” and “enjoyed” are assigned to
the same token “enjoy”. This decreases the space of word representation and improves the per-
formance not only in information retrieval (Rajput and Khare 2015) but also in automatic text
summarization (Torres-Moreno 2012). Liu et al. (2012) created a lemmatizer tool for biomed-
ical text and achieved an accuracy of 97.5 percent in a given collection of biomedical articles.
Stemming and lemmatization have gained success in many NLP applications (Khyani et al. 2020),
but as a caveat, researchers are making a trade-off between semantic information and signal
consolidation (Tabii et al. 2018).

3.6.1 Comparison of stemming and lemmatization
Before we compare stemming and lemmatization, we need to distinguish between inflectional and
derivational morphology. Inflectional morphology refers to the word modification for grammati-
cal purposes (e.g., verb tense, singular or plural noun form), without changing the word’s meaning
or POS (Baerman 2015). When we normalize the word “enjoyed” to its base form “enjoy”, we are
removing the inflectional morpheme from the word. On the other hand, derivational morphology
adds a morpheme to the word and changes its semantic meaning and/or its POS (Crystal 1999).
When we normalize the word “enjoyable” (adjective) to its base form “enjoy” (verb), the removed
suffix is derivational because it changed the word from a verb to an adjective.

14http://www.googleguide.com/quote_operator.html.
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Stemming uses rules to reduce each word to its root (stem), and this strips off both inflec-
tional and derivational variations. For English words, a commonly used stemming method is the
Porter algorithm (Porter 1980), along with the R package SnowballC (Bouchet-Valat 2019).15
This algorithm implements suffix stripping rules for word reduction, such as replacing “ies” with
“i” and removing the last “s” before a consonant other than “s” (making a plural noun singular).
The Porter algorithm also uses regular expressions and determines which rule takes priority. For
instance, “hopping” becomes “hop”, but “falling” becomes “fall”, not “fal”. Due to the removal of
suffixes, some tokens are not valid words and look like typos, such as “enjoi” (enjoy) and “chal-
leng” (challenge). Other stemming algorithms include the Lovins stemmer (Lovins 1968) and the
Lancaster stemmer (Paice and Hooper 2005).

Lemmatization groups the inflectional forms of each word to its lemma (Sinclair 2018), but
lemmatization also considers the POS of the word (Bergmanis and Goldwater 2018) (e.g., noun,
verb, adjective, or adverb). The WordNetLemmatizer package in Python NLTK analyzes the POS
tag in a sentence input and lemmatizes each word, using the English lexical database WordNet.16
The lemmatizer can also be used on isolated words by mapping to a single, most common lemma,
or provide different outputs based on the specified POS tag. For instance, the word “leaves” can
have the lemma “leave” (verb) or “leaf” (noun). Another example is mapping “better” and “best”
to the same lemma “good”, which would not have been picked up by a stemmer. Lemmatization
is especially useful in parsing morphologically rich languages, whose grammatical relations (e.g.,
subject, verb, object) are indicated by changes to the words (Tsarfaty et al. 2010). Examples of such
languages include Turkish, Finnish, Slovene, and Croatian (Gerz et al. 2018).

Lemmatization has a higher time complexity than stemming, but given modern big data
technology, we do not need to be overly concerned about computational speed. Assume that
the text corpus contains N words, and that each sentence has M words on average. Stemming
takes O(N) time because the algorithm processes each word exactly once throughout the cor-
pus. In comparison, lemmatization takes O(MN) time because the algorithm reads in the whole
sentence to identify the context and POS tag beforehand. A compromise is context-free lemma-
tization, which produces the appropriate lemmas without using the whole context (Namly et al.
2020). By leveraging existing inflection tables, this method has achieved some success in English,
Dutch, and German (Nicolai and Kondrak 2016). Nevertheless, the actual computation time
is often acceptable for either method. Mubarak (2017) lemmatized 7.4 million Arabic (a mor-
phologically rich language) words on a personal laptop within 2 minutes, indicating that the
computational speed is usually fast. Note that English has only eight inflectional morphemes,17
and many researchers still use stemming for simplicity (Kao and Poteet 2007; Meyer, Hornik, and
Feinerer 2008).

3.6.2 Known issues
Neither stemming nor lemmatization is perfect. Both methods suffer from over-consolidation
of words—assigning two word forms with clearly different meanings to the same token, such as
mapping both “computer” and “computation” to the token “comput” (Jivani 2011). A known way
to avoid over-consolidation is to use the lempos format (lemma with POS tag, e.g., “set_NOUN”),
as implemented by Akhtar, Sahoo, and Kumar (2017) and Ptaszynski et al. (2019).Moreover, some
words require context to determine its true base form or lemma. A fundamental question to ask is
whether we should perform stemming and/or lemmatization in the first place. The answer would
be “yes” in most cases, but depending on the goal of the text data mining project, we may have to
reconsider the pros and cons of consolidating word forms before making the decision.

A risk of consolidating word forms is the loss of sentiment information (Haddi, Liu, and Shi
2013; Potts nd). Words of the same root can have different sentiments, but they are mapped to

15http://snowball.tartarus.org/algorithms/porter/stemmer.html.
16https://wordnet.princeton.edu/.
17http://www.arts.uwaterloo.ca/~raha/306a_web/EnglishInflectionalAffixes.pdf.
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the same token. For example, both “objective” (positive) and “objection” (negative) are mapped
to “object” under the Porter stemming algorithm. As a result, we do not know whether the token
“object” indicates something positive or negative. Bao et al. (2014) also show that both stemming
and lemmatization negatively affect Twitter sentiment classification. Even conservative lemmati-
zation can have a negative impact on POS tagging and NER (Cambria et al. 2017). Some named
entities would not be recognizable after the corpus is lemmatized, such as the American rock band
“Guns N’ Roses” versus “gun n rose”. Therefore, it is better to perform these NLP steps before we
lemmatize the corpus.

Another risk is losing the spelling variation as a writing style element, which can be detri-
mental to authorship attribution (Stamatatos 2008). For instance, spelling discrepancies exist
between American English and British English, such as “center” versus “centre” and “canceled”
(one “l”) versus “cancelled” (two “l”s). Assume we have two documents—one in American English
and the other in British English. The two documents should be written by different people,
since it is unlikely that someone would use both forms in writing. But after we perform stem-
ming/lemmatization andmap each pair to the same token, we cannot distinguish between the two
English variations. One potential solution is to identify the words with spelling variations and add
an underline character to each word, making the stemmer/lemmatizer “think” they are different
tokens. In this way, the algorithm would preserve these words in their original forms.

3.7 N-gramming and identifyingmultiword expressions
N-gramming is a text preprocessing approach to analyze the phrases consisting of n words in
the corpus, that is, n-grams (Dunning 1994). Some n-grams have special meaning (e.g., “New
York” and “neighborhood watch”), and they are called multiword expressions (Blei and Lafferty
2009; Masini 2019). The formal definition of multiword expressions is “a class of linguistic forms
spanning conventional word boundaries that are both idiosyncratic and pervasive across differ-
ent languages,” as stated by Constant et al. (2017). Although some multiword expressions come
from n-grams, others are syntactically flexible and may contain different forms that map to the
same expression (Sag et al. 2002). For instance, the two sentences “Please contact the Customer
Help Desk.” and “Please contact the Customer Helpdesk.” mean the same thing. It is challeng-
ing to identify the two multiword expressions “customer help desk” (three words) and “customer
helpdesk” (two words), since neither may have enough occurrences in the corpus to be detected.
Given the complexity of multiword expressions, Sailer and Markantonatou (2018) regarded them
as a difficult problem in NLP applications and computational linguistics. Fortunately, there
are programming tools to reduce the burden of n-gramming the corpus. The Python mod-
ules include Phraser in gensim (Řehůřek and Sojka 2010) and nltk.tokenize.mwe in NLTK
(Bird et al. 2009). The R packages include quanteda (Benoit et al. 2018) and udpipe (Wijffels
2021). However, post hoc human judgment is often necessary in identifying the true multiword
expressions (Seretan 2011; Poddar 2016).

Retaining multiword expressions is essential because many text mining models rely on the
bag-of-words assumption and disregard word order (Wang,McCallum, andWei 2007), a.k.a. bag-
of-words models. Although bag-of-words models are fast and efficient (Joulin et al. 2016), their
failure to account for word order results in losing semantic meaning (Wallach 2006). An example
is “milk chocolate” versus “chocolate milk”, where the two phrases consist of the same words
but have different meanings. Word order encodes discourse information (Kaiser and Trueswell
2004), especially in free word order languages with significant inflection and discourse functions
reflected in the word order (Slioussar 2011). These languages include Finnish, Hindi, Russian,
Turkish, and many more (Hoffman 1996). Hence, we need n-gramming to preserve multiword
expressions as tokens, so each multiword expression will not be separated in the permutation
phase of the model. Das et al. (2013) also showed that n-gramming helps in keyword extraction
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because the approach can include named entities, many of which are multiword expressions such
as WHO (World Health Organization).

Multiword expressions are important for a wide variety of NLP tasks, including topic identifi-
cation (Koulali and Meziane 2011) and machine translation (Lambert and Banchs 2006; Tan and
Pal 2014). Detecting multiword expressions is also beneficial to word sense disambiguation, that
is, determining which meaning of the word is used in a particular context (Masini 2005; Finlayson
and Kulkarni 2011). N-gramming detects and retains many multiword expressions (e.g., “White
House” and “New Jersey”) before we feed the data into a statistical model, so these multiword
expressions will not be separated in the analysis (Bekkerman and Allan 2004). This is a useful
approach with demonstrated success in many text mining applications (Doraisamy and Rüger
2003; Los and Lubbers 2019).With the increasing popularity of word embeddings, more advanced
methods like deep learning and L1 regularization are available to identify multiword expressions
(Berend 2018; Ashok, Elmasri, and Natarajan 2019). We emphasize that n-gramming is not a
panacea for retaining multiword expressions or semantic information. Any text preprocessing
technique will result in some loss of semantic information from the corpus (Fesseha et al. 2021),
and in an extreme case, n-gramming even decreased cross-lingual model performance (Kamps,
Adafre, and De Rijke 2004).

Before getting into the construction of n-grams and detection of multiword expressions, we
also add that n-grams play a major role in creating probabilistic language models (Bengio et al.
2003; Qudar and Mago 2020), such as the conditional probability of words occurring together. N-
grams can represent linguistic patterns and indicate the perplexity of the language model (Toral
et al. 2015). Perplexity is defined as the inverse probability of the observed test data (Gamallo,
Campos, and Alegria 2017), or the effective number of equally likely words identified by the
language model (Lafferty and Blei 2006). The perplexity measure is especially useful in compar-
ing the complexity of multilingual language models (Buck, Heafield, and Van Ooyen 2014; Zeng
et al. 2017. Note that our focus is on the n-gramming process itself, rather than the maintenance
of word order. Recovering Chomsky’s Deep Structure across languages is a completely different
research field in linguistics (Chomsky 1969; Lan 1996).

3.7.1 Constructing N-grams from a text document
We create n-grams as phrases of n consecutive words in a text document (Gries and Mukherjee
2010), using a moving window of length n across the text, that is, “shingling” (Broder et al.
1997; Huston, Culpepper, and Croft 2014). We use the definition of word-based n-grams, which
is different than the character-based n-gram definition, which refers to a string of n characters
(Houvardas and Stamatatos 2006). Words are also called unigrams, while bigrams and trigrams
denote the two-word and three-word phrases in the corpus, respectively.

A document consisting of n words would have n unigrams, n− 1 bigrams, and n− 2 trigrams.
For example, the text “one should be humble while studying advanced calculus” contains eight
unigrams, seven bigrams, and six trigrams as below:

• Unigrams: “one”, “should”, “be”, “humble”, “while”, “studying”, “advanced”, “calculus”
• Bigrams: “one should”, “should be”, “be humble”, “humble while”, “while studying”,
“studying advanced”, “advanced calculus”

• Trigrams: “one should be”, “should be humble”, “be humble while”, “humble while
studying”, “while studying advanced”, “studying advanced calculus”

The ordering of text preprocessing modules is key to success. Converting the string of text
into unigrams is equivalent to tokenization (see Section 3.2), and this is a prerequisite for remov-
ing stopwords and n-gramming (Putra, Gunawan, and Suryatno 2018; Chaudhary and Kshirsagar
2018). Note that this example inputs a full sentence in raw text, without stopword removal or
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stemming/lemmatization. As a result, the unigrams contain general stopwords such as “one”
and “be”, which are not ideal. The unigram “studying” is not reverted to its base form “study”,
either. That’s why removing stopwords and stemming/lemmatization are often performed before
n-gramming (Anandarajan et al. 2019; Arief and Deris 2021), as illustrated in Figure 1.

In terms of semantic meaning, only the phrase “advanced_calculus” seems special enough to
be a multiword expression because it is the name of a college-level class. We need systematic
methods to determine which n-grams are multiword expressions and which are not (Baldwin
and Kim 2010). Moreover, n-gramming has limitations because some multiword expressions are
not n consecutive words (i.e., n-grams). They may skip a few words in between and hence are
called skip-grams (Guthrie et al. 2006). This reflects the challenge of modeling long-distance
dependencies in natural languages (Deoras, Mikolov, and Church 2011; Merlo 2019).

In general, multiword expressions should be both practically and statistically significant.
Practical significance means that the phrase is of practical interest, that is, it occurs many times
in the corpus. Rare phrases should be removed from the n-gram pool (Grobelnik and Mladenic
2004). On the other hand, statistical significance means that the words forming the multiword
expression have a relatively high probability to stay together (Brown et al. 1992). Thus, a multi-
word expression should be an n-gram of statistical interest, rather than n words that just happen
to appear together many times. Sections 3.7.2 and 3.7.3 will discuss the practical and statistical sig-
nificance requirements for multiword expressions. This is by no means the only way to determine
which n-grams are multiword expressions; other methods include finding the longest common
subsequence (Duan et al. 2006) and using linguistic features of each sentence (Boukobza and
Rappoport 2009).

3.7.2 Multiword expressions: Practical significance
For practical significance, the easiest way is to set a minimum frequency and consider any n-gram
to be a multiword expression if its number of occurrences is higher than the cutoff (Wei et al.
2009). Since general stopwords have been removed from the corpus, uninformative bigrams (e.g.,
“you are”, “is an”) are less likely to appear. The article “a”, “an”, or “the” often precedes a noun,
and such bigrams (e.g., “the artist”) are not helpful, either. Setting a cutoff frequency ensures
that the multiword expressions are of practical interest, and this approach has proven success in
computational linguistics (Pantel and Pennacchiotti 2006; Lahiri and Mihalcea 2013). As a note
of caution, Wermter and Hahn (2005) showed that a high number of occurrences does not always
mean the n-gram is a term, that is, a multiword expression with special meaning. An example is
in the biomedical field, the phrase “t cell response” has a higher frequency than “long terminal
repeat”, but the latter is a term while the former is not.

The cutoff frequency can be determined empirically, and Microsoft Azure Machine Learning
Studio recommends a starting value of 5 as the minimum frequency for multiword expressions
(Microsoft 2019). Previous researchers had success in using the cutoff frequency of 5, while they
analyzed a corpus of 450 political blog posts, with around 289,000 total words at the time when
the corpus was ready for n-gramming (Soriano et al. 2013; Au 2014). Inevitably, a low threshold
of minimum frequency results in a steep increase in computation time as the corpus gets larger
due to the need of processing the massive number of low-frequency n-grams (Brants et al. 2007).
The New York Times Annotated Corpus (Sandhaus 2008) contains more than 1.8 million news-
paper articles and more than 1.05 billion words, so Berberich and Bedathur (2013) set the cutoff
frequency to 100. The ClueWeb09 dataset (Callan et al. 2009) is even larger, with more than 50
million web documents and more than 21.4 billion English words. Accordingly, Berberich and
Bedathur (2013) increased the cutoff frequency to 1000. The Google Syntactic Ngrams English
corpus (Goldberg and Orwant 2013) consists of more than 345 billion words, and Ng, Bansal, and
Curran (2015) set the cutoff frequency to as high as 10,000.

The histograms of n-grams for each n are right-skewed (Ha et al. 2009; Bardoel 2012). The
distribution generally follows the power law (Jean-Baptiste 1916; Newman 2005), just like the
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Table 2. The n-gram statistics ofWuthering Heights

Once Twice 3 times 4 times 5 or more Total distinct

Unigram 3983 (43.27%) 1500 (16.29%) 853 (9.26%) 511 (5.55%) 2360 (25.63%) 9207 (100.00%)


Bigram 48,617 (77.93%) 6765 (10.84%) 2451 (3.93%) 1283 (2.06%) 3271 (5.24%) 62,387 (100.00%)


Trigram 100,158 (93.35%) 4801 (4.47%) 1173 (1.09%) 454 (0.42%) 716 (0.67%) 107,302 (100.00%)


4-gram 117,457 (98.79%) 1191 (1.00%) 152 (0.13%) 50 (0.04%) 45 (0.04%) 118,895 (100.00%)

illustration of Zipf’s law (Zipf 1949) in Figure 5. The vast majority of bigrams appear only once,
and the phenomenon of trigrams is more extreme. Dressel (2016) demonstrated that only 19 per-
cent of the trigrams occurred more than once in their corpus before stopwords were removed.
We also n-grammed the publicly available e-book Wuthering Heights from Project Gutenberg
(Robinson 2018), which contains 120,772 total words and 9207 total distinct words in the corpus.
Table 2 provides the n-gram statistics of Wuthering Heights: over a quarter of unigrams (words)
appear 5 or more times in the corpus, so it is viable to further examine the frequency trends of the
unigrams. For bigrams, more than three-quarters of them appear only once, leaving us with about
a quarter of the unique bigrams to analyze. Finally, more than 90 percent of the trigrams and 4-
grams appear only once in the corpus, showing that only a small percentage of longer n-grams
may be of interest.

Remark. N-grams should not be calculated over sentence boundaries (Buerki 2017), but
Huston,Moffat, and Croft (2011) showed that using sentence boundaries as separation can greatly
reduce the number of 4-grams produced. Since the majority of longer n-grams will be dropped by
the thresholding, empirically it does not matter whether sentence boundaries are considered in
the n-gramming process.

3.7.3 Multiword expressions: Statistical significance
For statistical significance, we focus on conditional probability (Jurafsky andMartin 2008)—given
one or more words, the probability of another word immediately following the sequence. In
mathematical notation, a string of n words is written as w1w2 · · ·wn. For the bigram w1w2, the
conditional probability of w2 following w1 is

P(w2|w1)= P(w1w2)
P(w1)

= Count(w1w2)
Count(w1)

, (1)

where the function Count(s) outputs the frequency of the word string s in the corpus.
Assuming the corpus containsN words, we have the probability of getting each word as P(w)=

Count(w)/N, and the probability of getting each bigram as P(wv)=Count(wv)/(N − 1). The only
difference is that the corpus contains N − 1 bigrams. When N is sufficiently large, N and N − 1
are asymptotically equal, so we do not make a distinction in calculating P(w2|w1).

To determine whether the bigram w1w2 is a multiword expression, we test against the two
competing hypotheses:

• H0: P(w2|w1)≤ P(w2)
• H1: P(w2|w1)> P(w2)

The framework is adopted from Chai (2022). This is a one-sided hypothesis test because only
a large P(w2|w1) is of interest. When the p-value is less than 0.05, we reject H0 and conclude that
w1w2 is a multiword expression.

We can extend the bigram testing scheme to n-grams, but the conditional probability of seeing
the nth word given the first n− 1 words, P(wn|w1 · · ·wn−1), is unreasonable to compute. Chances
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are high that the (n− 1) word phrase appears only once in the corpus, making this conditional
probability 100 percent, which is not what we are looking for. Instead, we can approximate the
conditional probability with

P(wn|w1 · · ·wn−1)≈ P(wn|wn−1)= Count(wn−1wn)
Count(wn−1)

, (2)

where the Markov assumption states that wn depends on only the previous word wn−1 (Fosler-
Lussier 1998; Tran and Sharma 2005). Then, the n-gramming question is reduced to whether
wn−1wn is a multiword expression, and the hypothesis testing framework still applies.

Many automated tools are available to perform n-gramming, but most of them simply pull
all n-grams from the input text. For example, the function tokens_ngrams in the R package
quanteda (Benoit et al. 2018) generates the n-grams, but this package does not provide support
for how to test n-grams for multiword expressions. It is still up to the researcher to determine
which ones are multiword expressions of length n, that is, the n-grams of interest. Fortunately,
the implementation of Equation (1) is not difficult for bigrams. The n-gramming results can also
be affected by the choices within other text preprocessing operations, such as tokenization, letter
case normalization, and stopword removal (Al-Molegi et al. 2015; Jimenez et al. 2018).

A manual way to create multiword expressions of length 3 or 4 is to run the bigram generation
and testing algorithm twice (Henry 2016). If the concatenation of a word and a bigram passes
the test, the trigram becomes a multiword expression of length 3. If the concatenation of two
bigrams passes the test, the 4-gram becomes a multiword expression of length 4. One drawback
is that w1w2w3 being a multiword expression does not always imply w1w2 and/or w2w3 are also
multiword expressions. But given the Markov assumption in Equation (2), we can safely presume
that counterexamples are rare, that is, w3 mostly depends on only the previous word w2.

For an n-gram to be a multiword expression, both practical and statistical significance are
essential requirements. Practical significance requires eachmultiword expression to appear a min-
imumnumber of times in the corpus, so the selected n-gramswould be presumed to have semantic
importance. Statistical significance ensures that the multiword expressions are unlikely to be
words co-occurring by chance (Dror et al. 2018), but the conditional probability P(w2|w1) would
not be accurate without w1w2 of sufficient frequency in the corpus, that is, practical significance.

3.7.4 N-gramming: Computational issues
Although the number of total n-grams grows linearly with the total number of words in the docu-
ment, detectingmultiword expressions in the corpus is computationally expensive due to the large
number of distinct n-grams (McNamee and Mayfield 2007; Vilares et al. 2016). If the vocabulary
containsV distinct words, the number of distinct unigrams of the corpus hasO(V) complexity. As
the length n increases, the size of the n-gram pool grows exponentially—the complexity increases
to O(V2) for distinct bigrams and to O(V3) for distinct trigrams. Nevertheless, the effort needed
may not generate a good return of investment, especially for long n-grams. For aggregated statis-
tics of text data, the n-gram frequency is right-skewed and most of the detected n-grams appear
only once in the corpus. Accordingly, most studies do not investigate the corpus past 4-grams (Lin
andHovy 2003; Barrón-Cedeño and Rosso 2009), not to mention longer n-grams. As a result, long
multiword expressions are difficult to detect in n-gramming (Raff and Nicholas 2018; Raff et al.
2019).

The good news is that long multiword expressions may be discovered via researchers’ under-
standing of the data content. The presence of such phrases may follow patterns and/or contain
non-ignorable information, and we can apply subject matter knowledge of the corpus to create a
list of long n-grams which are likely to bemultiword expressions.We should retrieve these phrases
directly from the data, rather than shingling the entire corpus to generate all n-grams when n is
large. After obtaining the frequency of such phrases, we can determine whether it is appropriate
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to remove them from the corpus. If the answer is yes, then the text corpus can be further reduced.
Below are some scenarios that produce longmultiword expressions. Upon detection, these phrases
can be easily removed without losing excessive semantic information.

• The sales limitation phrase “must be 18 or older” is a multiword expression in a text cor-
pus of digital advertisements. This phrase indicates the product’s legal age range, so the
product should not be marketed to underage people such as middle school students. But
from a computational advertising standpoint, this multiword expression does not provide
any information about the product itself, making it difficult to match ads to users (Soriano
et al. 2013).

• In a political blog corpus about the 2012 Trayvon Martin shooting incident,18 the research
group at Duke Statistical Science discovered an extremely long multiword expression—
because one blogger included the Second Amendment to the United States Constitution
in every post as a signature. The statement is “A well regulated Militia, being necessary
to the security of a free State, the right of the people to keep and bear Arms, shall not be
infringed.” Although controversial, this shows the blogger’s perspective toward gun laws
(Chai 2017).

The decision to apply n-gramming for text preprocessing or not depends on the NLP appli-
cation. N-gramming is beneficial to applications that focus on words and phrases as consecutive
words, such as text classification (Beitzel et al. 2007; Narala, Rani, and Ramakrishna 2017) and
probabilistic topic modeling (Acree 2016; Luiz et al. 2019). N-gramming also identifies multi-
word expressions, which can enhance the vocabulary database in word embeddings (Goodman,
Zimmerman, and Hudson 2020). In machine translation, n-gramming can be used for the hard-
to-translate parts, because translation is not a one-to-one mapping between words (Du, Yu, and
Zong 2018). But since n-gramming does not provide context to phrases, this approach will be
of limited help in logical reasoning (Bernardy and Chatzikyriakidis 2019; Zhou et al. 2020).
Instead, special techniques are needed for multiword expressions (Rikters and Bojar 2017) and
also for proper names (e.g., transliteration from Latin to Cyrillic characters) (Petic and G fu 2014;
Mansurov and Mansurov 2021).

4. Dataset examples
In this section, we provide three examples of text corpora which require more advanced prepro-
cessing methods, that is, methods catering to the nature of the text data. The first example is a
technical dataset, where removing stopwords should be done after stemming and n-gramming to
preserve the technical phrases. The second example is social media data, where removing format-
ting is of heavy focus and special handling is needed in text normalization. The third example is
survey text with numerical ratings, and we should retain negation in every step of text prepro-
cessing, especially during stopword removal. All seven text preprocessing modules in Figure 1
apply, but the discussion will be on the specific adaptation. This is by no means a comprehensive
list, but the methods will provide a foundation for unconventional text corpora beyond the three
categories described here.

4.1 Technical datasets
For datasets with technical content, we recommend using publicly available e-books on Project
Gutenberg as a starting filter to remove stopwords, especially the e-books with general con-
tent. Leveraging Project Gutenberg eliminates the subjectivity of deciding which words should be

18https://en.wikipedia.org/wiki/Shooting_of_Trayvon_Martin.

https://doi.org/10.1017/S1351324922000213 Published online by Cambridge University Press

https://en.wikipedia.org/wiki/Shooting_of_Trayvon_Martin
https://doi.org/10.1017/S1351324922000213


534 C. P. Chai

included in the stopword list, increasing the reproducibility of the work. Since many researchers
examine the predefined stopword list and manually add or remove a few words beforehand, it is
more difficult to reproduce their results unless they publish the exact stopword list they used
in the project (Nothman et al. 2018). Existing literature has proposed automated methods to
extract domain-specific stopwords with improved text classification results (Ayral and Yavuz 2011;
Makrehchi and Kamel 2017). But given the amount of technical expertise and work required, the
automation may not be worthwhile, or even feasible (Arora et al. 2016). Using an e-book from
Project Gutenberg to remove stopwords is an easier way to achieve potentially better results than
using a standard stopword list.

An example of a technical corpus is the JSM (Joint Statistical Meetings) abstract collection (Bi
2016), which contains more than 3000 abstracts and 700 sessions from the 2015 JSM.19 JSM is one
of the world’s largest conferences in statistics, and the abstracts obviously contain much techni-
cal jargon. Common phrases in this dataset include “maximum likelihood estimation” and “time
series”. Bi (2016) eliminated all HTML formatting and punctuation from the corpus, tokenized the
corpus into English words, and converted all letters to lowercase. The stopword removal process
for the JSM abstract collection contains three steps:

(1) Stem and n-gram the JSM abstract collection.
(2) Stem and n-gram a publicly available e-book from Project Gutenberg.
(3) Remove anything from (1) that exists in (2).

In Step 1, note that n-gramming is required before we compare the two datasets and remove the
words also in Project Gutenberg. Some statistical terminology contains words that may be con-
sidered a stopword, so we need to preserve these n-grams first. For example, after the stopword
“one” is removed, the term “one sample t-test” is not equivalent to a “sample t-test”. Assume the
word “two” precedes both terms, then “two one sample t-tests” is different from a “two sample
t-test”. The former means conducting an independent one-sample t-test on each of the two
samples, and the latter means conducting a single t-test to compare the two given samples.

In Step 2, appropriate choices of a filtering book should be something completely unrelated to
statistics, such as Little Busybodies: The Life of Crickets, Ants, Bees, Beetles, and Other Busybodies
by Jeanette Augustus Marks and Julia Moodyand. If the technical dataset includes medical con-
tent, such as citation networks from PubMed,20 then using an e-book about insects may not be
appropriate. Otherwise, content related to insect bites would be filtered out by the e-book. A better
choice is Herein is Love by Reuel L. Howe, which is an interpretation about love from the Bible.

In Step 3, the intersection with the filtering book is removed from the corpus of JSM abstracts.
This step removes most of the general content and keeps the technical terms in the corpus. This
not only reduces the vocabulary size but also prepares the corpus for topic modeling and con-
ference scheduling optimization. Although most JSM abstracts contain self-identified keywords,
an automated system is still needed for conference session scheduling given the large number
of abstracts (Sweeney 2020; Frigau, Wu, and Banks 2021). Most conferences have moved to vir-
tual in COVID times, but Patro et al. (2020) emphasized that scheduling remains a challenge due
to time zones, sign language interpreter hours, etc. Availability of on-demand recordings may
change the equation, because participants have the opportunity to watch the recorded talks after
the conference.

4.2 Social media data
Social media data contain information from user posts, and text analytics of such data can gener-
ate insights of business value and/or research interest (Mostafa 2013). Particularly, Twitter has an

19https://ww2.amstat.org/meetings/jsm/2015/.
20https://www.ncbi.nlm.nih.gov/pubmed/.
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abundance of unstructured text data (Kwak et al. 2010), and text mining applications include (and
are not limited to) opinion mining (Pak and Paroubek 2010), stock market prediction (Bollen,
Mao, and Zeng 2011), and even how people communicate under emergency situations (Mendoza,
Poblete, and Castillo 2010; Vieweg et al. 2010). In addition to the text preprocessing methodol-
ogy described in Section 3, preprocessing social media text comes with unique challenges due to
ungrammatical language, misspellings, and typos (Batrinca and Treleaven 2015). Many resources
are available for social media text preprocessing, such as the Google Refine21 desktop application
software and the book Python Social Media Analytics (Chatterjee and Krystyanczuk 2017). These
are excellent and helpful tools, and they describe the whole text preprocessing pipeline.

Therefore, we point out some key differences between preprocessing a traditional text dataset
and preprocessing a social media text corpus. Although preprocessing a social media text corpus
takes considerable time, the preprocessing step is worth the effort because the resulting corpus
leads to successful implementation of text mining algorithms (Irfan et al. 2015).

First, a text corpus from social media often contains HTML tags and URL paths which were
generated from web scraping. We can use regular expressions to remove the web-generated char-
acters, just like the process of removing punctuation described in Section 3.4.2. One caveat is to
consider whether to remove punctuation or remove web-generated characters first, because the
order of removing different types of nonword characters matters in the code development. For
instance, many URLs start with https://, and if we remove the colon (:) first, then the URL
prefix would be https// instead.

Next, hashtags and mentions in Twitter are extremely helpful in processing tweets, but due
to their distinct structures, it is important to identify them as separate entities before we remove
all punctuation. Hashtags start with the # sign (e.g., #hashtag), and they often indicate the main
terms of the tweet, which are useful in topic identification (Zubiaga et al. 2015) and event detection
(Wang et al. 2014b; Cai et al. 2015). Mentions start with the @ symbol (e.g., @username) and refer
directly to another Twitter user, making them helpful in NER (Yamada et al. 2015; Gorrell et al.
2015). All mentions (@) can also be converted into stopwords (Metzler et al. 2021) or masked for
certain tasks (Abd-Alrazaq et al. 2020). If we remove punctuation before processing the hashtags
and mentions, the unexpected word in a sentence can mess up NLP models such as POS tagging
(Kaufmann and Kalita 2010).

Moreover, text from online social media often contains abbreviations not in a standard English
dictionary, such as “cu” (see you) and “idk” (I don’t know) (Pennell and Liu 2011; Kozakou 2017).
These terms, also known as Internet slang, need to be explicitly defined. Nevertheless, this task is
relatively difficult because we require an unconventional dictionary to translate slang words into
their proper reference words, such as the Internet Slang Dictionary (Jones 2006). But given the
fast-growing content on the web, the static dictionaries about Internet slang risk being outdated
due to not keeping up with the current trends. It is possible to automatically detect such spelling
variants (Barteld 2017), but this is an extensive research topic outside the text preprocessing scope.

After the preprocessing of social media data is complete, we recommend text mining methods
which specialize in short texts. Many topic modeling techniques, especially the ones based on the
standard latent Dirichlet allocation (LDA), work better for longer documents and have decreased
performance over short texts (Li et al. 2016). This is due to their probabilistic nature of identifying
the topic distribution over words in each document (Chen, Yao, and Yang 2016), which becomes a
challenge for shorter documents like social media data (Chen et al. 2019). One potential solution
is auxiliary word embeddings (Li et al. 2017), that is, incorporating external words to the sample
space of the dataset. In this way, each word in the short text can be either generated directly from
the Dirichlet multinomial distribution or sampled from the estimated probabilities by the word
embeddings in the corresponding topic (Nguyen et al. 2015). Despite the challenges of prepro-
cessing and analyzing social media data, many researchers have successfully generated insights

21https://github.com/OpenRefine/OpenRefine/wiki.
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from the massive database of information. Sophisticated models can provide recommendations
for companies to develop their social media marketing strategy (He, Zha, and Li 2013), and even a
simple gender classification of Facebook names can improve an online dating platform’s accuracy
of targeted advertising (Tang et al. 2011).

4.3 Text with numerical ratings
Some datasets contain text records with a numerical rating assigned to each text comment, such
as surveys, online reviews, and performance evaluations. The numerical ratings are regarded as
metadata, and they should also be incorporated in the data preprocessing phase. There are other
types of metadata we can utilize, such as dates, authors, and locations. Nevertheless, we decided
to emphasize the numerical ratings in surveys because analysis of survey text is relatively rare, due
to its complexity compared with the numerical counterparts (Schuman and Presser 1996; Roberts
et al. 2014). When preprocessing the text with numerical ratings, we need to ensure correctness of
which rating is associated with which text comment and beware of missing cells which can mess
up the alignment. But more often than not, the rating errors are made by the respondents (Saal,
Downey, and Lahey 1980). Therefore, it is important to identify potential data errors and make
correction efforts, so combined analysis of text and numerical data is required.

The problem of text-rating mismatch is especially prevalent in surveys because respondents
may get confused with the rating scale (Fisher 2019). A 1–10 rating scale has at least two dif-
ferent meanings: 1 (least important) to 10 (most important) and 1 (most important) to 10 (least
important). Appropriate survey design and instructions can mitigate the problem (Fowler 1995;
Friedman and Amoo 1999), but text-rating inconsistencies are inevitable in a survey response
dataset (Fisher 2013). For example, in an employee satisfaction dataset with the rating scale from
1 (least satisfied) to 10 (most satisfied), a respondent wrote “Love my work – very varied.” and
gave a “1” rating (Chai 2019). The respondent was obviously confused by the rating scale because
the comment shows satisfaction with his/her work.

Preserving negation is essential to the survey text, because removing the negation term will
result in an opposite meaning and ambiguity of text-rating assignment. If another respondent
wrote “I don’t likemy job,” then the “3” rating is appropriate. But if we accidentally remove “don’t”
as a stopword, the text comment becomes “I like my job,” and the originally correct rating “3”
becomes inappropriate. Section 3.5 explains that many existing stopword lists contain negation
terms like “no” and “not”. Hence, researchers should exclude them from the list so that negation
can be retained in the corpus.

A potential solution to validate a text-rating dataset is to estimate the rating from the text using
the supervised latent Dirichlet allocation (sLDA) (McAuliffe and Blei 2008), which is a supervised
topic model for text mining. Compared with the LDA (Blei et al. 2003) for topic modeling, sLDA is
supervised because it takes the record labels (i.e., numerical ratings) into account. After we train
the sLDA model using the text-rating dataset, we can estimate the rating from a particular text
record and compare it with the actual rating (Fisher and Lee 2011). If the estimated rating is very
different from the actual rating in the record, then the rating is likely a response error. We should
flag the record and reconsider its accuracy.

5. Conclusion
Researchers and practitioners need to know which text preprocessing modules to apply in what
order, and whether a generic or specific model is preferable. General text preprocessing meth-
ods apply for most datasets, but more content-specific methods are needed to preserve additional
semantic information. There is a trade-off between the effort in data preprocessing and the result-
ing data quality, so advanced text preprocessing methods are considered add-ons to the general
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methods. Which text preprocessing methods are useful depend on both the corpus and the goal
of text mining (White et al. 2018). Therefore, we provide some guidelines to select the appro-
priate text preprocessing methods for a given dataset. For publicly available datasets such as 20
Newsgroups and WebKB (World Wide Knowledge Base),22 previous researchers have done the
preprocessing and published their methodology (Miah 2009; Albishre, Albathan, and Li 2015).
But when we receive a whole-new text corpus for a specific application, we have to preprocess the
data with little guidance. This is the key application for the compare-and-contrast of various text
preprocessing methods.

This article has set up a framework in selecting the appropriate text preprocessing methods
for a given corpus. Most of the literature we reviewed here used text corpora written in English,
but some concepts are applicable to other languages. For instance, most languages contain stop-
words, and their word frequency distributions follow the Zipf’s law (Zipf 1949). Nevertheless,
the complexity of each necessary text preprocessing step would vary by language. CJK (Chinese,
Japanese, and Korean) require more complex tokenizers due to the character-based nature of the
languages (Zhang and LeCun 2017), as well as the lack of white space as obvious word bound-
aries (Moh and Zhang 2012). On the other hand, morphologically rich languages like Turkish and
Finnish require more complex stemmers/lemmatizers due to their wide range of derivational and
inflectional word variation (Przepiórkowski et al. 2012; Nuzumlalı and Özgür 2014).
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Lusetti M., Ruzsics T., Göhring A., Samardžić T. and Stark E. (2018). Encoder-decoder methods for text normalization.
In Proceedings of the Fifth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2018). Association for
Computational Linguistics, pp. 18–28.

Makrehchi M. and Kamel M.S. (2008). Automatic extraction of domain-specific stopwords from labeled documents. In
European Conference on Information Retrieval. Springer, pp. 222–233.

Makrehchi M. and Kamel M.S. (2017). Extracting domain-specific stopwords for text classifiers. Intelligent Data Analysis
21(1), 39–62.

Malvern D. and Richards B. (2012). Measures of lexical richness. In The Encyclopedia of Applied Linguistics.
Manning C., Raghavan P. and Schütze H. (2008). Introduction to Information Retrieval. Cambridge, UK: Cambridge

University Press.
Mansurov B. and Mansurov A. (2021). Uzbek Cyrillic-Latin-Cyrillic machine transliteration. arXiv preprint

arXiv:2101.05162.
Marcu D. (2000). The Theory and Practice of Discourse Parsing and Summarization. Cambridge, MA, USA: MIT Press.
Masini F. (2005). Multi-word expressions between syntax and the lexicon: The case of Italian verb-particle constructions. SKY

Journal of Linguistics 18(2005), 145–173. SKY stands for Suomen kielitieteellinen yhdistys, from the Linguistic Association of
Finland.

Masini F. (2019). Multi-word expressions and morphology. In Oxford Research Encyclopedia of Linguistics.
Matusov E., Leusch G., Bender O. and Ney H. (2005). Evaluating machine translation output with automatic sentence

segmentation. In International Workshop on Spoken Language Translation (IWSLT).
McAuliffe J.D. and Blei D.M. (2008). Supervised topic models. In Advances in Neural Information Processing Systems, pp.

121–128.
McNamee P. andMayfield J. (2007). N-grammorphemes for retrieval. In CLEF (Working Notes). CLEF stands for the Cross-

Language Evaluation Forum workshop.
Mendoza M., Poblete B. and Castillo C. (2010). Twitter under crisis: Can we trust what we RT? In Proceedings of the First

Workshop on Social Media Analytics. ACM, pp. 71–79.
Merlo P. (2019). Probing word and sentence embeddings for long-distance dependencies effects in French and English. In

Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 158–172.
Metzler H., Baginski H.,Niederkrotenthaler T. andGarcia D. (2021). Detecting potentially harmful and protective suicide-

related content on Twitter: A machine learning approach. arXiv preprint arXiv:2112.04796.
Meyer D.,Hornik K. and Feinerer I. (2008). Text mining infrastructure in R. Journal of Statistical Software 25(5), 1–54.
MiahM. (2009). Improved k-NN algorithm for text classification. In Proceedings of the 2009 International Conference on Data

Mining (DMIN). Citeseer, pp. 434–440.
Microsoft (2019). Extract n-gram features from text. Available from: https://docs.microsoft.com/en-us/azure/machine-learni-

ng/studio-module-reference/extract-n-gram-features-from-text.
Mieke S.S. (2016). Language diversity in ACL 2004–2016. ACL stands for the annual meeting of the Association for

Computational Linguistics. Available from: https://sjmielke.com/acl-language-diversity.htm.
Mikolov T., Chen K., Corrado G. and Dean J. (2013). Efficient estimation of word representations in vector space. arXiv

preprint arXiv:1301.3781.
Miller J.-A. (2014). Language: Much ado about what? In Lacan and the Subject of Language, pp. 21–35.

https://doi.org/10.1017/S1351324922000213 Published online by Cambridge University Press

https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/extract-n-gram-features-from-text
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/extract-n-gram-features-from-text
https://sjmielke.com/acl-language-diversity.htm
https://doi.org/10.1017/S1351324922000213


548 C. P. Chai
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