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Abstract

This paper is concerned with the definition and calculation of containment probabilities
for emerging disease epidemics. A general multitype branching process is used to model
an emerging infectious disease in a population of households. It is shown that the
containment probability satisfies a certain fixed point equation which has a unique solution
under certain conditions; the case of multiple solutions is also described. The extinction
probability of the branching process is shown to be a special case of the containment
probability. It is shown that Laplace transform ordering of the severity distributions of
households in different epidemics yields an ordering on the containment probabilities.
The results are illustrated with both standard epidemic models and a specific model for
an emerging strain of influenza.
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1. Introduction

This paper is concerned with the definition and calculation of containment probabilities
for stochastic epidemic models. Our approach involves defining a certain multitype branching
process to describe the spread of disease in a specified population of individuals partitioned into
households. The branching process itself is rather general in the sense that it can describe a wide
range of underlying epidemic models. By supposing that individuals in the population have
potentially infectious contacts with those in the ‘outside world’ according to specified Poisson
processes, it is then possible to define a containment probability. The majority of the paper is
then devoted to developing theory by which this containment probability can be calculated. We
also present a result involving Laplace transform orderings by which different epidemics can be
compared, and finish with some numerical examples. To begin with, the following paragraphs
give a brief motivation for the problem at hand.

When a potentially pandemic disease first emerges, there may be an opportunity to use
targeted interventions to eliminate the disease altogether, whilst the number of individuals
infected remains small. For this to be achieved, the geographical spread of cases must be
relatively localised, so that the population at risk of infection can be effectively targeted. Since
no intervention strategy can completely prevent disease transmission, it may take some time
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for the intervention to eliminate the disease. It is vital that during this period the infection
does not escape from the region to which the intervention has been applied to cause further
outbreaks elsewhere. As outlined above, in this paper we describe such an emerging disease
using a general model. Moreover, different intervention measures can be included in the model
and the corresponding containment probabilities used to assess their effectiveness.

Although the idea of a containment probability appears previously in the literature [7], this
paper is the first to attempt to develop a theoretical framework in order to calculate such
a probability. Through this analytical approach we can view the containment probability
as a generalisation of the extinction probability for a branching process. Traditionally, the
effectiveness of intervention strategies has been measured by their effect on the reproduction
number R0, roughly defined as the expected number of infections caused by a typical infective
in a fully susceptible population. If the intervention reduces R0 to 1 or below then, in a large
population, the epidemic will die out with probability close to 1. Hence, R0 is a threshold
parameter. However, if the intervention fails to reduce R0 to 1, there is still some probability
that the epidemic will die out—particularly if there are only a small number of cases when the
intervention is applied. This can make R0 more difficult to interpret than the probability of
containment.

The remainder of this paper is structured as follows. In Section 2 we describe the multitype
branching process model used and define a related reproduction number. In Section 3 the
probability of containment is derived and its properties explored. In Section 4 we demonstrate
that a stochastic ordering between two possible within-household severities confers an ordering
on the respective containment probabilities. In Section 5 numerical examples are presented
which demonstrate the theory, including an example concerned with pandemic influenza. The
paper concludes with some discussion.

2. Branching process model

In this section we define the branching process which is used to describe the epidemic model.
For the purposes of calculating a containment probability, it turns out to be sufficient to define
the branching process at the level of household units in the epidemic. However, to motivate
our construction, we start with an informal description of the underlying epidemic model.

2.1. Underlying epidemic model

Consider a population consisting of N individuals of I types (such as adults/children, for
instance), partitioned into households. The households can be of different sizes. At any
time t ≥ 0, each individual in the population is either susceptible, exposed, infective, or
removed. Susceptible individuals can contract the disease, exposed individuals have been
infected but cannot infect others, infectives can infect others, and removed individuals are no
longer infectious, and play no further part in the epidemic. At this stage we shall not explicitly
specify exposed or infectious periods (i.e. the random time an individual spends being exposed
or infective, respectively), since they will not ultimately be required.

We suppose that each individual in the population can have potentially infectious contacts
of three kinds. These are internal contacts, which are with any other member of the population,
within-household contacts, and external contacts, the latter being with individuals outside the
population itself. We assume that any two individuals have internal contacts at times given
by the points of a Poisson process with a rate of the form λ/N , where λ can depend on the
types of individual in question. Each such contact between a susceptible and an infective
individual results in the former immediately becoming exposed. Under the assumption that
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all such contact processes are independent, as N → ∞ we can approximate the epidemic
model by a multitype branching process in which individuals correspond to households in the
underlying epidemic model. As described in full detail in [3], the basic idea is that, for largeN ,
the probability that a single household receives more than one internal contact converges to 0,
and so each infected household then gives rise to independent ‘offspring’ consisting of other
household epidemics. Specifically, the types of individual in the branching process correspond
to different initial configurations of household epidemics, i.e. the numbers of individuals of
each type in the household and the identity of the single initial infective.

For our purposes, it is not necessary to specify a model for the transmission within a
household. Instead, we assume that the final outcome of each within-household epidemic
can be summarised by a random vector, which we call the household severity. The elements of
this vector can be thought of as representing the total time during which the within-household
epidemic exerts pressure on susceptible individuals in the population. We assume that there are
K ≤ I different types of severity, so that the severity vector is K-dimensional. One possible
interpretation of this assumption is that each element of the severity vector represents the total
time spent by infective individuals in the household in a certain location (e.g. school, workplace,
etc.).

Finally, we assume that, independently of other individuals, each individual in the population
can make external contacts at times given by the points of a homogeneous Poisson process.
The relevant details, in terms of the branching process, are given below.

2.2. Branching process

We now give precise details of the branching process, relating these to the epidemic described
above. Recall that individuals in the branching process correspond to households in the
epidemic. Let H denote the number of types in the branching process, corresponding to
initial configurations of within-household epidemics.

For 1 ≤ h ≤ H and 1 ≤ k ≤ K , let the random variable Sh,k denote the amount
of type-k severity produced by a type-h individual in the branching process, and let Sh =
(Sh,1, . . . , Sh,K). For 1 ≤ k ≤ K and 1 ≤ u ≤ H , let βk,u denote the rate at which one unit of
type-k severity gives rise to type-u offspring (1 ≤ u ≤ H ), and let βu = (β1,u, . . . , βK,u). Let
Xh,u denote the number of type-u individuals produced by a type-h individual, so thatXh,u has
a Poisson distribution with mean βu · Sh, where, for K-vectors x and y, x · y = ∑K

k=1 xkyk .
For 1 ≤ k ≤ K , let αk denote the rate at which one unit of type-k severity creates infectious

external contacts, and let α = (α1, . . . , αK). Thus, the total number of external contacts made
by a type-h individual has a Poisson distribution with mean α · Sh.

We require the following notation. For θ = (θ1, . . . , θK) ∈ [0,∞)K , define

ψh(θ) = E[exp{−θ · Sh}].

For 1 ≤ h ≤ H and 1 ≤ k ≤ K , define�h,k to be the total amount of type-k severity produced
throughout the entire course of a branching process initiated by a single individual of type h,
and write �h = (�h,1, . . . , �h,K). Note that, since it is possible that the branching process
becomes infinite, there may be a positive probability that, for some k, �h,k = ∞. If in such
circumstances αk = 0, we define α · �h = ∞. Intuitively, this means that if the number of
infected individuals in the population becomes extremely large then it is impossible for the
disease to be contained, even if the external contact rate for type-k severity is assumed to be
negligible. For a more detailed discussion, see Section 3.3.
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2.3. Reproduction number

For the multitype branching process defined above, denote byM the mean offspring matrix
with elementsmij denoting the expected number of type-j offspring of a type-i individual. By
standard theory, the largest eigenvalue ofM , R∗ say, is a threshold parameter for the branching
process in the sense that the process goes extinct almost surely if and only if R∗ ≤ 1. This
parameter can also be viewed as a threshold parameter for the underlying epidemic model, as
described in [2] and [3].

Here we have mij = E[Xij ] = ∑K
k=1 E[Si,k]βk,j . Let S denote the H × K matrix with

(h, k)th entry E[Sh,k], and let B denote the K × H matrix with (k, h)th entry βk,h. Thus,
M = SB, and R∗ is the largest eigenvalue of this matrix. Alternatively, R∗ can be viewed as
the largest eigenvalue of the expected severity matrixM∗, wherem∗

ij is the expected amount of
type-j severity produced from one unit of type-i severity. Thus,M∗ = BS. By Theorem A.6.2
of [8], the nonzero eigenvalues of M and M∗ are the same and, therefore, R∗ will be the same
for either definition.

3. Probability of containment

The total number of external contacts produced throughout the entire course of the branching
process has a Poisson distribution with mean α ·�h, given that the process starts with a single
individual of typeh. Thus, conditional on�h, the probability of containment, i.e. the probability
that there are no external contacts, is exp(−α ·�h). Thus,

P(containment | initial individual is type h) = E[exp(−α ·�h)].
For h = 1, . . . , H and θ ∈ [0,∞)K , defineGh(θ) = E[exp(−θ ·�h)], so that the containment
probability is given by Gh(α).

Theorem 1. For h = 1, . . . , H and θ ∈ [0,∞)K , the generating functions Gh(θ) satisfy

Gh(θ) = ψh

(
θ +

H∑
u=1

(1 −Gu(θ))βu

)
. (1)

Proof. Recall that Xh,u is the number of type-u offspring of a type-h individual. Since the
offspring of an individual behave independently, the branching process can be split into the
initial type-h household plus

∑H
u=1Xh,u new branching processes initiated by the offspring of

the initial individual. Thus, the total severity satisfies

�h = Sh +
H∑
u=1

Xh,u∑
j=1

�
(j)
u ,

where the �(j)u are independent and identically distributed copies of �u, and the empty sum
is 0. Note that the �(j)u are also independent of the Xh,u. Thus,

Gh(θ) = E[exp(−θ ·�h)]

= E

[
exp

(
−θ ·

(
Sh +

H∑
u=1

Xh,u∑
j=1

�
(j)
u

))]

= E

[
exp(−θ · Sh)

H∏
u=1

Xh,u∏
j=1

exp(−θ ·�(j)u )

]
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= E

[
exp(−θ · Sh)E

[ H∏
u=1

Xh,u∏
j=1

exp(−θ ·�(j)u )

∣∣∣∣ Sh,Xh,1, . . . , Xh,H
]]

= E

[
exp(−θ · Sh)

H∏
u=1

Xh,u∏
j=1

E[exp(−θ ·�(j)u ) | Sh,Xh,1, . . . , Xh,H ]
]

= E

[
exp(−θ · Sh)

H∏
u=1

Gu(θ)
Xh,u

]

= E

[
exp(−θ · Sh)E

[ H∏
u=1

Gu(θ)
Xh,u

∣∣∣∣ Sh
]]

= E

[
exp(−θ · Sh)

H∏
u=1

exp(−(1 −Gu(θ))βu · Sh)
]
,

since, conditional on Sh, theXh,u (u = 1, . . . , H ) have independent Poisson distributions with
means βu ·Sh and probability generating functions E[sXh,u ] = exp((1 − s)βu · Sh). Therefore,

Gh(θ) = E

[
exp

(
−

(
θ +

H∑
u=1

(1 −Gu(θ))βu

)
· Sh

)]
= ψh

(
θ +

H∑
u=1

(1 −Gu(θ))βu

)
.

3.1. Uniqueness

For a given arbitrary value of θ , equations (1) do not uniquely determine G(θ) = (G1(θ),

. . . ,GH (θ)). However, in this section we show that in most practical situations equations (1)
have a unique solution. For convenience, we rewrite equations (1) as the vector equation

G(θ) = f (θ ,G(θ)), (2)

where, for x = (x1, . . . , xH ) ∈ [0, 1]H , f (θ , x) = (f1(θ , x), . . . , fH (θ , x)) and

fh(θ , x) = ψh

(
θ +

H∑
u=1

(1 − xu)βu

)
.

Recall that a branching process is irreducible if, for every pair of types (u, v), there exists
a t ∈ N such that the probability that there is at least one type-v individual in generation t is
strictly positive, when the branching process has one initial ancestor of type u.

Theorem 2. The equation x = f (θ , x) has a unique solution for x in [0, 1]H if any of the
following conditions hold:

(i) R∗ ≤ 1;

(ii) θ ∈ (0,∞)K ;

(iii) the branching process is irreducible with θ �= 0.

Two lemmas are needed in order to prove this theorem, but first we define some more notation.
For h, u ∈ {1, . . . , H } and t = 0, 1, . . . , let Zh,u(t) be the number of type-u individuals in
generation t of the branching process with generation 0 consisting of a single type-h individual.
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For k ∈ {1, . . . , K} and t ∈ N, let the cumulative severity �h,k(t) be the sum of the type-k
severity generated by the first t − 1 generations of the branching process described above, and
adopt the convention that �h,k(0) = 0. Form the vectors Zh(t) = (Zh,1(t), . . . , Zh,H (t)) and
�h(t) = (�h,1(t), . . . , �h,K(t)). We adopt the following definitions for H -vectors x and y:

xy =
H∏
h=1

x
yh
h , x ≤ y if and only if xh ≤ yh for all h = 1, . . . , H .

For t = 0, 1, . . . and x ∈ [0, 1]H , let f th(θ , x) = E[exp(−θ ·�h(t))xZh(t)] and let f t (θ , x) =
(f t1 (θ , x), . . . , f

t
H (θ , x)).

Lemma 1. For t ∈ N, θ ∈ [0,∞)K , and x ∈ [0, 1]H ,

f t (θ , x) = f (θ ,f t−1(θ , x)).

Proof. For h ∈ {1, . . . , H },
f th(θ , x) = E[exp(−θ ·�h(t))xZh(t)]

= E

[
exp

(
−θ ·

(
Sh +

H∑
u=1

Xh,u∑
j=1

�
(j)
u (t − 1)

))
x

∑H
u=1

∑Xh,u
j=1 Z

(j)
u (t−1)

]
,

where Xh,u is the number of type-u offspring from the type-h ancestor and, for j ∈ N,
�
(j)
u (t − 1) and Z(j)u (t − 1) are independent and identically distributed copies of �u(t − 1)

and Zu(t − 1), respectively. Arguing similarly to the proof of Theorem 1,

f th(θ , x) = E

[
exp(−θ · Sh)

H∏
u=1

exp

(
−
Xh,u∑
j=1

θ ·�(j)u (t − 1)

)
x

∑Xh,u
j=1 Z

(j)
u (t−1)

]

= E

[
exp(−θ · Sh)

× E

[ H∏
u=1

exp

(
−
Xh,u∑
j=1

θ ·�(j)u (t − 1)

)
x

∑Xh,u
j=1 Z

(j)
u (t−1)

∣∣∣∣ Sh,Xh,1, . . . , Xh,H
]]

= E

[
exp(−θ · Sh)

×
H∏
u=1

Xh,u∏
j=1

E[exp(−θ ·�(j)u (t − 1))xZ
(j)
u (t−1) | Sh,Xh,1, . . . , Xh,H ]

]

= E

[
exp(−θ · Sh)E

[ H∏
u=1

f t−1
u (θ , x)Xh,u

∣∣∣∣ Sh
]]

= E

[
exp(−θ · Sh)

H∏
u=1

exp(−(1 − f t−1
u (θ , x))βu · Sh)

]
,

since, given Sh, Xh,u has a Poisson distribution with mean βu ·Sh for u = 1, . . . , H , and these
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Poisson random variables are conditionally independent. Hence,

f th(θ , x) = E

[
exp

(
−

(
θ +

H∑
u=1

(1 − f t−1
u (θ , x))βu

)
· Sh

)]

= ψh

(
θ +

H∑
u=1

(1 − f t−1
u (θ , x))βu

)

= fh(θ ,f
t−1(θ , x)),

as required.

Lemma 2. Let Eh be the event that the branching process with one initial ancestor of type h
becomes extinct, and let Fh = {�h,k < ∞ for k = 1, . . . , K}. Then P(Fh | Ec

h) = 0.

Proof. If Ec
h occurs, there must exist a type of individual, u say, such that there exists

a line of descent which contains infinitely many individuals of type u. For t ∈ N, let
Yu(t) = (Yu,1(t), . . . , Yu,K(t)) be the severity generated by the t th such type-u individual,
i.e. conditional upon its being in the line of descent. Since offspring behave independently
of their parent, it follows that the Yu(t) are independent and identically distributed, and
moreover, P(Yu(t) = 0 | Ec

h) = 0. Therefore, for at least one component (say k∗), we have∑∞
t=1 Yu,k∗(t) = ∞, P-almost surely on Ec

h. However, on Ec
h, �h,k∗ ≥ ∑∞

t=1 Yu∗,k∗(t) = ∞,
P-almost surely, and so P(Fh | Ec

h) = 0, as required.

Proof of Theorem 2. This proof is similar to the proof of Theorem 7.2 of [9].
We begin by showing that, irrespective of the value of x ∈ [0, 1]H , limt→∞ f th(θ , x) =

Gh(θ), where f th(θ , x) is as defined in Lemma 1. First assume that R∗ ≤ 1, in which case
extinction is certain; see, for example, Theorem 7.1 of [9]. Thus,

lim
t→∞ f

t
h(θ , x) = lim

t→∞ E[exp(−θ ·�h(t))xZh(t)] = E
[

lim
t→∞ exp(−θ ·�h(t))xZh(t)

]
,

by the dominated convergence theorem. Next note that, since extinction is certain, we have
limt→∞ Zh(t) = 0 almost surely and so limt→∞ f th(θ , x) = E[exp(−θ ·�h)] = Gh(θ).

We can extend this argument to the case where R∗ is arbitrary and θ ∈ (0,∞)K ; or the
case where R∗ is arbitrary, θ �= 0, and the branching process is irreducible. By Lemma 2,
conditioning on nonextinction implies that at least one component of the severity vector is
almost surely infinite. Therefore, if θ > 0 then

E
[

lim
t→∞ exp(−θ ·�h(t))

∣∣∣ Ec
h

]
= 0 and E[exp(−θ ·�h) | Ec

h] = 0. (3)

Similarly, if the branching process is irreducible then conditioning on nonextinction implies
there must be infinitely many of every type of individual and so, by a renewal argument, every
component of the total severity vector must be infinite almost surely. Therefore, when the
process is irreducible and θ �= 0, (3) again holds. Finally, note that, for x ∈ [0, 1]H , (3) implies
that

0 ≤ E
[

lim
t→∞ exp(−θ ·�h(t))xZh(t)

∣∣∣ Ec
h

]
≤ E

[
lim
t→∞ exp(−θ ·�h(t))

∣∣∣ Ec
h

]
= 0,

i.e.
E
[

lim
t→∞ exp(−θ ·�h(t))xZh(t)

∣∣∣ Ec
h

]
= 0. (4)
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By applying the dominated convergence theorem, conditioning onEh and using (4) and then
(3), we find that, for any x ∈ [0, 1]H ,

lim
t→∞ f

t
h(θ , x) = E

[
lim
t→∞ exp(−θ ·�h(t))xZh(t)

∣∣∣ Eh] P(Eh)

+ E
[

lim
t→∞ exp(−θ ·�h(t))xZh(t)

∣∣∣ Ec
h

]
P(Ec

h)

= E[exp(−θ ·�h) | Eh] P(Eh)+ 0 · P(Ec
h)

= E[exp(−θ ·�h) | Eh] P(Eh)+ E[exp(−θ ·�h) | Ec
h] P(Ec

h)

= E[exp(−θ ·�h)]
= Gh(θ).

Therefore, we have shown that, for a branching process with R∗ ≤ 1, or with R∗ arbitrary and
θ ∈ (0,∞)K , or with R∗ arbitrary, irreducibility, and θ �= 0,

lim
t→∞f t (θ , x) = G(θ) (5)

for all x ∈ [0, 1]H .
Theorem 1 implies that there is at least one solution to f (θ , x) = x, and so assume that

G∗(θ) is another solution. We will show by induction on t that f t (θ ,G∗(θ)) = G∗(θ). For
the initialisation, note that f 0

h (θ ,G
∗(θ)) = E[exp(−θ ·�h(0))G∗(θ)Zh(0)] = G∗

h(θ), and so
f 0(θ ,G∗(θ)) = G∗(θ). Assume that the inductive hypothesis holds and that, for t ∈ N,
f t−1(θ ,G∗(θ)) = G∗(θ), and note that, by Lemma 1,

f t (θ ,G∗(θ)) = f (θ ,f t−1(θ ,G∗(θ))) = f (θ ,G∗(θ)) = G∗(θ),

and so, by induction, f t (θ ,G∗(θ)) = G∗(θ) for t = 0, 1, . . . . However, from (5),

G∗(θ) = lim
t→∞f t (θ ,G∗(θ)) = G(θ).

This completes the proof of Theorem 2.

3.2. Probability of extinction

In this section we show how the containment probability relates to the probability of
extinction.

Theorem 3. The probability of extinction for a branching process with one initial ancestor
of type h corresponds to limθ→0Gh(θ), where limθ→0 represents the limit as θ → 0 with
θ ∈ (0,∞)K .

Proof. To show that limθ→0Gh(θ) gives the probability of extinction for the branching
process, note that, by Lemma 2, conditioning on Ec

h implies that at least one component of�h
is infinite. Therefore, for θ with all components strictly positive,

Gh(θ) = E[exp(−θ ·�h) | Eh] P(Eh)+ E[exp(−θ ·�h) | Ec
h] P(Ec

h)

= E[exp(−θ ·�h) | Eh] P(Eh).

Thus, by the dominated convergence theorem, limθ→0Gh(θ) = P(Eh).
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3.3. Nonuniqueness

In this section we describe and discuss the solutions to (2) when there are multiple solutions.
Theorem 2 implies that if this occurs then at least one component of θ must be 0.

Theorem 4. There is at most one solution to each equation xh = fh(θ , x) with xh ∈ [0, 1) for
h = 1, . . . , H . In particular, there is at most one solution to (2) in [0, 1)H .

Proof. We begin by using a convexity argument to show the first part of the theorem.
Let

ψ
(k)
h (θ̃) = ∂ψh(θ)

∂θk

∣∣∣∣
θ=θ̃

= − E[Sh,k exp(−θ̃ · Sh)] ≤ 0,

ψ
(k,l)
h (θ̃) = ∂2ψh(θ)

∂θk∂θl

∣∣∣∣
θ=θ̃

= E[Sh,kSh,l exp(−θ̃ · Sh)] ≥ 0.

Then

∂fh(θ , x)

∂xi
= −

K∑
k=1

βk,iψ
(k)
h

(
θ +

H∑
u=1

(1 − xu)βu

)
≥ 0,

∂2fh(θ , x)

∂xi∂xj
=

K∑
k=1

K∑
l=1

βk,iβl,jψ
(k,l)
h

(
θ +

H∑
u=1

(1 − xu)βu

)
≥ 0;

hence, fh(θ , x) is nondecreasing and convex in xh. In addition, we have 0 ≤ fh(θ , x) ≤ 1,
and so xh = fh(θ , x) can have precisely one, two, or infinitely many solutions for xh ∈ [0, 1],
and either zero, one, or infinitely many for xh ∈ [0, 1). However, we can rule out the case with
infinitely many solutions (where fh(θ , x) as a function of xh follows part of the line y = x)
because ifψ(k)h (θ + ∑H

u=1(1 − xu)βu) > 0 for some k thenψ(k,k)h (θ + ∑H
u=1(1 − xu)βu) > 0,

and so ∂fh(θ , x)/∂xh > 0 implies that ∂2fh(θ , x)/∂x
2
h > 0. The second part of the theorem

follows easily from the first.

Theorem 4 demonstrates that there are at most two solutions to each equation xh = fh(α, x),
and if two solutions exist then one of them must be xh = 1. As each of these H equations
depends on x1, . . . , xH , then a priori there will be interdependence between the number and the
value of the solutions to each equation. The key question remaining to be answered is: when
multiple solutions do exist, which solution do we interpret as the probability of containment?

Consider the probability of containment for a branching process starting from a single type-h
ancestor. If αk = 0 for each type of severity which it is possible to ultimately produce from
a type-h ancestor, then no external contacts can occur. However, it may still be possible for
infinitely many individuals to be produced in the branching process. In such circumstances
the probability of containment can either be interpreted as 1 (since no external contacts can
occur) or as the extinction probability of the branching process, P(Eh). These correspond to
the two solutions to the equation xh = fh(α, x). From the epidemic modelling point of view, it
appears unnatural to consider the epidemic to be successfully contained when infinitely many
individuals have been infected. We will therefore opt for the second of these two interpretations,
in which the smallest solution to xh = fh(α, x) is called the probability of containment.

3.4. Calculating the containment probability numerically

We finish this section with an algorithm for calculating the probability of containment.
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Lemma 3. Define the sequence (xn) with the relations x0 = 0 and, for n ∈ N, xn =
f (θ , xn−1), where f (θ , x) = ψ(θ + ∑H

u=1(1 − xn−1,u)βu). Then

1. (xn) is nondecreasing;

2. if G(θ) satisfies G(θ) = f (θ ,G(θ)) then xn ≤ G(θ) for all n;

3. limn→∞ xn = G∗(θ), where G∗(θ) is the smallest solution in [0, 1]H to the equation
x = f (θ , x).

The first two parts of this lemma are easily proved by induction, and when combined with
the monotone sequence theorem, yield the third part [11]. From the discussion in Section 3.3
we see that, when θ = α, Lemma 3 implies that the sequence (xn) converges to the smallest
solution of (2), which corresponds to the probability of containment.

To obtain numerical estimates for G(α), sequentially calculate terms in the sequence (xn)
until xn+1 ≈ xn to the desired level of accuracy. In applications, it has been noted that
remarkably few iterations are required for the first eight decimal places of the sequence to
stabilise, sometimes as few as two.

4. Laplace transform orders

This section is concerned with the relationship between the containment probability and the
within-household severity distributions. In particular, it is proved that if a Laplace transform
ordering exists between two within-household severity distributions then a Laplace transform
ordering exists between the total severity distributions of branching processes with these
within-household severity distributions. Consequently, the containment probabilities of these
branching processes are also ordered.

Consider two independent branching process models, labelled 1 and 2, that differ only
in their household severity distributions. For j ∈ {1, 2} and h ∈ {1, . . . , H }, let S(j)h =
(S
(j)
h,1, . . . , S

(j)
h,K) denote the household severities for model j , with Laplace transformψ(j)h (θ) =

E[exp(−θ · S(j)h )]. Likewise, define�(j)h to be the total severity vector for model j , with Laplace

transform G
(j)
h = E[exp(−θ ·�(j)h )]. Let ψ (j)(θ) = (ψ

(j)
1 (θ), . . . , ψ

(j)
H (θ)) and G(j)(θ) =

(G
(j)
1 (θ), . . . ,G

(j)
H (θ)). For random vectorsX and Y of lengthK , defineX ≥Lt Y if and only

if E[exp(−θ ·X)] ≤ E[exp(−θ · Y )] for all θ ∈ [0,∞)K ; see, for example, [10].

Theorem 5. If S(1)h ≥Lt S
(2)
h for all h ∈ {1, . . . , H } then

�
(1)
h ≥Lt �

(2)
h (6)

for all h, and, in particular, the probability of containment is smaller for model 1 than for
model 2, i.e. G(1)h (α) ≤ G

(2)
h (α) for all h.

Proof. First note that S(1)h ≥Lt S
(2)
h for all h implies that

ψ (1)(θ) ≤ ψ (2)(θ) for all θ ∈ [0,∞)K. (7)

From Theorem 1, for fixed α ∈ [0,∞)K , G(j)(α) satisfies x = f (j)(α, x), where

f (j)(α, x) = ψ (j)
(
α +

H∑
u=1

(1 − xu)βu

)
.
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Therefore, from (7) we have, for all x ∈ [0, 1]H , f (1)(α, x) ≤ f (2)(α, x). In Section 3.3,
we saw that the probability of containment is the smallest solution to these equations. Since
f (1)(α, x) ≤ f (2)(α, x) for all x ∈ [0, 1]H , and f (1) and f (2) are continuous and nondecreas-
ing in all components of x, the smallest solution to x = f (1)(α, x) must be smaller than the
smallest solution to x = f (2)(α, x). Thus, G(1)(α) ≤ G(2)(α) for all α ∈ [0,∞)K and so
�
(1)
h ≥Lt �

(2)
h for h ∈ {1, . . . , H }.

5. Numerical illustrations

We now illustrate the theory with some numerical examples.

5.1. Household severity distribution explicitly available

Assume that the severity generated by every within-household epidemic is distributed accord-
ing to some random variable S and with moment generating functionψ . Since there is only one
type of household (H = 1) and one type of severity (K = 1), there is a single internal contact
rate β and a single external contact rate α. Equation (2) becomesG(α) = ψ(α+(1−G(α))β).
Figure 1 shows the containment probability for the case in which S ≡ 1, and, therefore,
ψ(θ) = e−θ . Note that, when α = 0, we obtain the probability of extinction for the branching
process, with a threshold at R∗ = β = 1.

5.2. SIR within-household epidemics

In this section the within-household epidemics are modelled by a multitype SIR (susceptible-
infective-removed) epidemic with homogeneous mixing. For this special case, the generating
function of the household severity is available analytically.

Consider a population of I types of individual, in which individuals are classed as susceptible,
infective, or removed. For i = 1, . . . , I , let ni be the initial number of type-i susceptibles and
mi be the initial number of type-i infectives. We assume that initially there are no removed
individuals. Type-i infectives make contact with type-j susceptibles at the points of a Poisson
process with rate γi,j , at which point the susceptible becomes an infective. Type-i infectives
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Figure 1: The probability of containment, G(α), against the internal contact rate, β, when S ≡ 1.
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have an infectious period of length Ti , after which they become removed. Form the vectors
n = (n1, . . . , nI ) and m = (m1, . . . , mI ), and the matrix � = [γi,j ]. Let φi(θ) = E[e−θTi ],
and, for I -vectors x and y, let (

x

y

)
=

I∏
i=1

(
xi

yi

)
.

Let Si,j represent the sum of the infectious periods of type-j individuals, whenm is the vector
of 0s that has a 1 in the ith position. Form the vector Si = (Si,1, . . . , Si,I ), and let ψi(θ) =
E[exp(−θ · Si )].

Ball [1] showed that, for θ ∈ [0,∞)I ,

ψi(θ) =
∑

0≤w≤n
gw(θ)

(
n

w

)
,

where, for 0 ≤ j ≤ n, ∑
0≤w≤j

gw(θ)
(
j
w

)
φ(θ + (n− j)�T )m+w = 1,

where

φ(θ)x =
I∏
k=1

φk(θk)
xk .

This series of equations can be solved sequentially to give ψi(θ).
Now, to form the branching process of households, we let K = I , so that type-k severity

represents infectious pressure from a type-i individual. For simplicity, we shall assume that all
of the households have the same composition, so that there are H = I initial configurations
for a within-household epidemic, where, for i = 1, . . . , I , the initial infective is of type i. The
probability of containment can now be obtained by solving (2).

Lefèvre and Picard [6] and Daley [4] gave an analogous result to Theorem 5 for SIR epidemics
of this type. Consider two independent within-household SIR epidemics that differ only in their
infectious period distributions. Let T (j)i be a random variable with the type-i infectious period
distribution for model j ∈ {1, 2}. LetSi = (Si,1, . . . , Si,I ) denote the household severity vector
for a household with initial infective of type i. Lefèvre and Picard stated that if T (1)i ≥Lt T

(2)
i for

all i = 1, . . . , I then S(1)i ≥Lt S
(2)
i for all i. When coupled with Theorem 5, this result implies

that if T (1)i ≥Lt T
(2)
i for all i = 1, . . . , I then G(1)i (α) ≤ Gi (α) for all i, i.e. the containment

probability is smaller for model 1 than for model 2.
This result is demonstrated in Figure 2 for the much simpler case where I = 1 and all

households are of size 4. The infectious period distributions used in the figure all have mean 1
and satisfy

1 ≥Lt U(0, 2), 
(2, 2) ≥Lt Exp(1) ≥Lt 
(
1
2 ,

1
2 ),

where 
(a, b) represents the gamma distribution with density fX(x) = baxa−1e−bx/
(a) for
x > 0. Table 1 gives the corresponding mean number of infected individuals in a household
and R∗ for epidemics with each infectious period distribution.

Note that the distributions 
(2, 2) and U(0, 2) are not ordered under the Laplace transform
ordering and the curves representing their containment probabilities cross. Also, note that, by
Jensen’s inequality, the constant infectious period distribution gives rise to the largest possible
epidemic for a given mean infectious period length, i.e. E[e−θT ] ≤ e−θ E[T ] for all θ ∈ [0,∞).
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Figure 2: The containment probability,G(α), against the external contact rate, α, whenβ = 0.4, γ = 0.5,
E[T ] = 1, and all households contain four individuals.

Table 1: Comparisons of the mean number of household infections and R∗ for five distributions of the
infectious period, T , with E[T ] = 1.

Distribution of T Mean household infections R∗
1 1.78 1.11

U(0, 2) 1.56 1.02

(2, 2) 1.52 1.01
Exp(1) 1.34 0.94

( 1

2 ,
1
2 ) 1.11 0.84

5.3. Pandemic influenza

Ferguson et al. [5] used household epidemic data to determine estimates of influenza natural
history parameters and distributions. These estimates were then used to construct a large-scale
simulation model of influenza transmission in rural Thailand, which was then used to test
the effectiveness of proposed intervention strategies. In this section the modelling techniques
discussed in this paper are used to construct an analogous model and calculate the probability
of containment under different intervention strategies, providing an additional measure of
intervention effectiveness.

We exactly replicate the within-household model of Ferguson et al. and the assumed effects
of the interventions via simulation. However, the large-scale simulation model incorporates
three levels of mixing: within-household, global, and workplace/school. We combine the latter
two levels of mixing into the internal contact level, and to ensure the models remain comparable,
the internal contact rate β is chosen so that the reproduction number is 1.8 for both models.

5.3.1. Household model. An SEIR (susceptible-exposed-infective-removed) model is used to
describe the within-household epidemic. Once infected, individuals experience an exposed
period during which they are not infectious. This period has length distributed according to
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Table 2: The household size distribution of Thailand.

Household size Proportion

1 0.150
2 0.175
3 0.230
4 0.270
5 0.165
6 0.030
7 0.015
8 0.005
9 0.004

10 0.001

0.5 days plus a Weibull distribution with power parameter 2.21 and scale parameter 1.1. It
is assumed that 50% of infections are severe (strongly symptomatic) and these are twice as
infectious as those that are nonsevere. In contrast to many other modelling papers, Ferguson
et al. have a constant length infectious period during which infectiousness varies. The household
severity is therefore defined to be the integral of the infectiousness level over the entire period
of the within-household epidemic. It is sufficient to consider only this single type of severity
(K = 1). Infectiousness for severe cases varies according to the density of a lognormal
distribution with parameters −0.72 and 1.8, truncated at 10 days and then renormalised; denote
this density by κ . The probability of a household member avoiding infection in the first t days
of infectiousness from a severe case is assumed to be

exp

(
−

∫ t

0

0.94

n0.8 κ(u) du

)
,

where n is the number of individuals in the household. The household size distribution is
given in Table 2. Following Ferguson et al., the simulations were actually performed in a
discretisation of the above model, in which all events that occur in ((t − 1)/4, t/4] actually
occur at time t/4 for t ∈ N. This does not affect the severity produced by the household, except
by changing slightly the time at which the intervention (if there is one) is applied.

5.3.2. Intervention strategies. The following five intervention strategies are considered: no
intervention, household isolation, household prophylaxis, blanket prohpylaxis, and social dis-
tancing.

Again following Ferguson et al. [5], severe infections exhibit healthcare-seeking behaviour
0.25 days after the start of the infectious period, which is assumed to coincide with the onset
of symptoms. At this point the household interventions are triggered with probability 0.9. In
the household isolation intervention strategy it is assumed that no more internal or external
contacts can emerge from a household after the intervention, and, therefore, any further within-
household severity is inconsequential. In the household prophylaxis intervention strategy, each
individual is given a course of antivirals with probability 0.9. It is assumed that a course of the
antiviral drug Oseltamivir (Tamiflu) will reduce infectiousness by 60%, reduce susceptibility
by 30%, and reduce the probability of a severe infection by 65%. In the blanket prophylaxis
intervention, each individual in the population is given a course of antivirals at the outset
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Figure 3: The probability of containment against the external contact rate, α, for five intervention
strategies with 10 000 simulations of each of the 10 household sizes.

Table 3: The threshold parameter, R∗, after intervention for the five intervention strategies.

Intervention strategy R∗
No intervention 1.80
Household isolation 0.71
Household prophylaxis 1.05
Blanket prophylaxis 0.42
Social distancing 1.00

with probability 90%. Finally, in the social distancing intervention, the internal contact rate is
decreased so that R∗ is reduced from 1.8 to the threshold level of 1, at which the extinction of
the epidemic becomes certain.

Figure 3 shows the probability of containment for the intervention strategies described above,
and Table 3 gives the R∗ values. The household prophylaxis strategy and the social distancing
strategy give similar improvements to the probability of containment. The fact that these are
the least effective strategies is in broad agreement with the conclusions of Ferguson et al. [5],
although our model is considerably simpler. It is interesting to note that, for some values
of α, household prophylaxis outperforms social distancing despite the fact that R∗ is lower
for the social distancing strategy. This is due to the assumption that antivirals will reduce
infectiousness; however, social distancing has not been assumed to affect the external contact
rate.

The household isolation strategy is the best possible household-based intervention with
this set of intervention trigger assumptions, as no contacts are assumed to be made after the
intervention is triggered. Despite this, the blanket prophylaxis strategy has a substantially lower
value of R∗. This substantial difference is not as strong in the containment probabilities due to
the fact that approaching a containment probability of 1 becomes increasingly difficult.
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6. Discussion

An important feature of the model used in this paper is its flexibility. Very few assumptions
are made concerning the within-household transmission of infection, and consequently, the
model can be tailored to suit many different populations and diseases. This is demonstrated
in Section 5.3, where a nonstandard SEIR model with variable infectiousness is used to model
pandemic influenza and numerical results are obtained with little difficulty. The most restrictive
model assumption is that there are only two levels of mixing within the population being
modelled. A useful but challenging extension to this paper would be to consider further levels
of mixing, for example workplaces and schools.

The mathematical results in this paper demonstrate that the containment probability can be
viewed as a generalisation of the extinction probability of the branching process. However, the
addition of external contacts to the branching process allows us not to consider separately the
awkward special cases of singular and periodic processes.

The methods described in this paper can be used to compare and evaluate the effectiveness
of intervention strategies for emerging pandemics before the outbreak of disease. This will
become increasingly relevant and important as international surveillance improves and the
early detection of emerging diseases becomes more commonplace.
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