ADDITIVE AND SUBTRACTIVE BASES OF Z*^m* IN AVERAG[E](#page-0-0)

GUANGPING LIANG, YU ZHANG and HA[O](https://orcid.org/0000-0001-5134-0572)DE ZUO \mathbb{P}^{\boxtimes}

(Received 4 July 2024; accepted 1 October 2024)

Abstract

Given a positive integer *m*, let \mathbb{Z}_m be the set of residue classes mod *m*. For $A \subseteq \mathbb{Z}_m$ and $n \in \mathbb{Z}_m$, let $\sigma_A(n)$ be the number of solutions to the equation $n = x + y$ with $x, y \in A$. Let \mathcal{H}_m be the set of subsets $A \subseteq \mathbb{Z}_m$ such that $\sigma_A(n) \geq 1$ for all $n \in \mathbb{Z}_m$. Let

$$
\ell_m = \min_{A \in \mathcal{H}_m} \left\{ m^{-1} \sum_{n \in \mathbb{Z}_m} \sigma_A(n) \right\}.
$$

Ding and Zhao ^{['}A new upper bound on Ruzsa's numbers on the Erdős–Turán conjecture', *Int. J. Number Theory* 20 (2024), 1515–1523] showed that $\limsup_{m\to\infty} \ell_m \leq 192$. We prove

$$
\limsup_{m\to\infty}\ell_m\leq 144
$$

and investigate parallel results on subtractive bases of \mathbb{Z}_m .

2020 *Mathematics subject classification*: primary 11B13; secondary 11B34.

Keywords and phrases: representation functions, Ruzsa's numbers, prime number theorem, additive bases.

1. Introduction

Let $\mathbb N$ be the set of natural numbers and A a subset of $\mathbb N$. A remarkable conjecture of Erdős and Turán $\lceil 6 \rceil$ states that if all sufficiently large numbers *n* can be written as the sum of two elements of *A*, then the number of representations of *n* as the sum of two elements of *A* cannot be bounded. Progress on this conjecture was made by Grekos *et al.* [\[8\]](#page-8-1), who proved that the number of representations cannot be bounded by 5, later improved to 7 by Borwein *et al.* [\[1\]](#page-8-2). For more on the Erdős–Turán conjecture, see the books of Halberstam and Roth [\[10\]](#page-8-3) and Tao and Vu [\[17\]](#page-8-4).

A set *A* is called an *asymptotic basis* of natural numbers if all sufficiently large numbers n can be written as the sum of two elements of A . Motivated by Erdős' question, Ruzsa [\[12\]](#page-8-5) constructed an asymptotic basis *A* of natural numbers which has a bounded square mean value. Ruzsa also considered a variant on the Erdős–Turán conjecture. Let \mathbb{Z}_m be the set of residue classes mod *m* and *A* a subset of \mathbb{Z}_m . For any

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

 $n \in \mathbb{Z}_m$, let

$$
\sigma_A(n) = \# \{ (x, y) : n = x + y, \ x, y \in \mathbb{Z}_m \}.
$$

The Ruzsa number R_m is defined to be the least positive integer r so that there exists a set $A \subseteq \mathbb{Z}_m$ with $1 \leq \sigma_A(n) \leq r$ for all $n \in \mathbb{Z}_m$. In his argument, Ruzsa proved that there is an absolute constant *C* such that $R_m \le C$ for all positive integers *m*. Employing Ruzsa's ideas, Tang and Chen [\[15\]](#page-8-6) proved that $R_m \le 768$ for all sufficiently large *m*. Later, in [\[16\]](#page-8-7), they obtained $R_m \leq 5120$ for all positive integers *m*. In [\[2\]](#page-8-8), Chen proved that $R_m \le 288$ for all positive integers *m*, and this was recently improved to $R_m \le 192$ by Ding and Zhao [\[5\]](#page-8-9). However, Sándor and Yang [\[13\]](#page-8-10) showed that $R_m \ge 6$ for all *m* ≥ 36.

Ding and Zhao [\[5\]](#page-8-9) provided an average version of Ruzsa's number. Precisely, let H_m be the set of subsets $A \subseteq \mathbb{Z}_m$ such that $\sigma_A(n) \geq 1$ for all $n \in \mathbb{Z}_m$. Ding and Zhao defined the minimal mean value as

$$
\ell_m = \min_{A \in \mathcal{H}_m} \left\{ m^{-1} \sum_{n \in \mathbb{Z}_m} \sigma_A(n) \right\}.
$$

As they pointed out, their result on $R_m \leq 192$ clearly implies

$$
\limsup_{m \to \infty} \ell_m \le 192. \tag{1.1}
$$

Ding and Zhao [\[5,](#page-8-9) Section 3] thought that '*any improvement of the bound [\(1.1\)](#page-1-0) would be of interest*'. In this note, we shall make some progress on this problem.

THEOREM 1.1. *We have*

$$
\limsup_{m \to \infty} \ell_m \le 144.
$$

Parallel to the additive bases of \mathbb{Z}_m , one naturally considers the corresponding results on subtractive bases of \mathbb{Z}_m . Let *A* be a subset of \mathbb{Z}_m . For any $n \in \mathbb{Z}_m$, let

$$
\delta_A(n) = #{(x, y) : n = x - y, x, y \in \mathbb{Z}_m}.
$$

In [\[3\]](#page-8-11), Chen and Sun proved that for any positive integer *m*, there exists a subset *A* of \mathbb{Z}_m so that $\delta_A(n) \geq 1$ for any $n \in \mathbb{Z}_m$ and $\delta_A(n) \leq 7$ for all $n \in \mathbb{Z}_m$ with three exceptions. Their result was recently improved by Zhang [\[18\]](#page-8-12) who showed that $\delta_A(n) \leq 7$ could be refined to $\delta_A(n) \leq 5$, again with three exceptions. The exceptions cannot be removed by their method. Motivated by the minimal mean value defined by Ding and Zhao, we consider a parallel quantity

$$
g_m := \min_{A \in \mathcal{K}_m} \left\{ m^{-1} \sum_{n \in \mathbb{Z}_m} \delta_A(n) \right\},\
$$

where \mathcal{K}_m is the set of subsets $A \subseteq \mathbb{Z}_m$ such that $\delta_A(n) \geq 1$ for all $n \in \mathbb{Z}_m$. Obviously, Zhang's bound implies that

$$
\limsup_{m \to \infty} g_m \le 5
$$

since the total sums of $\delta_A(n)$ for the three exceptions contribute only $O(n)$ second main result gives a small improvement on this bound √ *m*). Our second main result gives a small improvement on this bound.

THEOREM 1.2. *We have*

$$
\limsup_{m\to\infty}g_m\leq 2.
$$

There is an old conjecture known as the *prime power conjecture* (see, for example, [\[7,](#page-8-13) [9,](#page-8-14) [11\]](#page-8-15)) which states that if *A* is a subset of \mathbb{Z}_m with $\delta_A(n) = 1$ for any nonzero $n \in \mathbb{Z}_m$, then $m = p^{2\alpha} + p^{\alpha} + 1$, where p^{α} is a prime power. The reverse direction was proved by Singer [\[14\]](#page-8-16) as early as 1938.

As mentioned by Ding and Zhao [\[5\]](#page-8-9), it is clear that $\liminf_{m\to\infty} \ell_m \geq 2$ from [\[13,](#page-8-10) Lemma 2.2]. They conjectured that $\liminf_{m\to\infty} \ell_m \geq 3$ [\[5,](#page-8-9) Conjecture 3.3]. Based on the results of Singer and Theorem [1.2,](#page-2-0) it seems reasonable to *conjecture* that

$$
\lim_{m\to\infty}g_m=1.
$$

If true, these conjectures reflect rather different features between additive bases and subtractive bases.

2. Proof of Theorem [1.1](#page-1-1)

For any integer *k*, let

$$
Q_k = \{(u, ku^2) : u \in \mathbb{Z}_p\} \subset \mathbb{Z}_p^2.
$$

We will make use of the following lemmas.

LEMMA 2.1 (Chen [\[2,](#page-8-8) Lemma 2]). *Let p be an odd prime and m a quadratic nonresidue of p with* $m + 1 \not\equiv 0 \pmod{p}$, $3m + 1 \not\equiv 0 \pmod{p}$ *and* $m + 3 \not\equiv 0 \pmod{p}$. *Put*

$$
B=Q_{m+1}\cup Q_{m(m+1)}\cup Q_{2m}.
$$

Then, for any $(c, d) \in \mathbb{Z}_p^2$ *, we have* $1 \leq \sigma_B(c, d) \leq 16$ *, where* $\sigma_B(c, d)$ *is the number of solutions of the equation* $(c, d) = r + v$, $r, v \in R$ *solutions of the equation* $(c, d) = x + y, x, y \in B$.

LEMMA 2.2 (Prime number theorem; see, for example, [\[4\]](#page-8-17)). Let $\pi(x)$ be the number of *primes p not exceeding x. Then,*

$$
\pi(x) \sim x/\log x \quad \text{as } x \to \infty.
$$

LEMMA 2.3. *Let m be a positive integer and A a subset of* Z*m. Then,*

$$
\sum_{n\in\mathbb{Z}_m}\sigma_A(n)=|A|^2,
$$

where |*A*| *denotes the number of elements of A.*

PROOF. Clearly,

$$
\sum_{n\in\mathbb{Z}_m}\sigma_A(n)=\sum_{n\in\mathbb{Z}_m}\sum_{\substack{a_1+a_2=n\\ a_1,a_2\in A}}1=\sum_{\substack{a_1,a_2\in A\\ a_1+a_2\in\mathbb{Z}_m}}1=\sum_{a_1,a_2\in A}1=|A|^2
$$

This completes the proof of Lemma [2.3.](#page-2-1) \Box

LEMMA 2.4. Let p be a prime greater than 11. Then there is a subset $A \subset \mathbb{Z}_{2p^2}$ with $|A| \leq 12p$ *so that* $\sigma_A(n) \geq 1$ *for any* $n \in \mathbb{Z}_{2p^2}$ *.*

PROOF. Let *p* be a prime greater than 11. Then there are at least $(p-1)/2 > 5$ quadratic nonresidues mod p , which means that there is some quadratic nonresidue *m* so that

$$
m+1 \not\equiv 0 \pmod{p}
$$
, $3m+1 \not\equiv 0 \pmod{p}$ and $m+3 \not\equiv 0 \pmod{p}$.

Let *B* = Q_{m+1} ∪ $Q_{m(m+1)}$ ∪ Q_{2m} , $A_1 = \{u + 2pv : (u, v) \in B\}$ and $A = A_1$ ∪ $(A_1 + p)$, where $A_1 + p := \{a_1 + p : a_1 \in A_1\}$. Obviously, A can be viewed as a subset of \mathbb{Z}_{2p^2} .

We first show that $\sigma_A(n) \ge 1$ for any $n \in \mathbb{Z}_{2p^2}$, that is, $A \in \mathcal{H}_{2p^2}$ (by the definition of \mathcal{H}_m). We follow the proof of Chen [\[2,](#page-8-8) Theorem 1]. For any $(u, v) \in B$, we have $0 \le u, v \le p - 1$. Let *n* be an element of \mathbb{Z}_{2p^2} with $0 \le n \le 2p^2 - 1$. Then, we can assume that

$$
n = c + 2pd
$$

with *p* ≤ *c* ≤ 3*p* − 1 and −1 ≤ *d* ≤ *p* − 1. By Lemma [2.1,](#page-2-2) there are (u_1, v_1) , $(u_2, v_2) \in B$ so that

$$
(c,d) = (u_1, v_1) + (u_2, v_2) \pmod{p},
$$

or in other words,

$$
c \equiv u_1 + u_2 \pmod{p}
$$
 and $d \equiv v_1 + v_2 \pmod{p}$.

Suppose that

 $c = u_1 + u_2 + ps$ and $d = v_1 + v_2 + ph$,

with $s, h \in \mathbb{Z}$. Then, $s = 0$ or 1 or 2 since $0 \le u_1 + u_2 \le 2p - 2$ and $p \le c \le 3p - 1$. Hence,

$$
n = c + 2pd
$$

= $u_1 + 2pv_1 + u_2 + 2pv_2 + ps + 2p^2h$
= $u_1 + 2pv_1 + u_2 + 2pv_2 + ps \pmod{2p^2}$.

If $s = 0$, then in \mathbb{Z}_{2p^2} ,

$$
n = (u_1 + 2pv_1) + (u_2 + 2pv_2) \in A_1 + A_1 \subset A + A.
$$

If $s = 1$, then in \mathbb{Z}_{2n^2} ,

$$
n = (u_1 + 2pv_1 + p) + (u_2 + 2pv_2) \in (A_1 + p) + A_1 \subset A + A.
$$

.

If $s = 2$, then in \mathbb{Z}_{2n^2} ,

$$
n = (u_1 + 2pv_1 + p) + (u_2 + 2pv_2 + p) \in (A_1 + p) + (A_1 + p) \subset A + A.
$$

Hence, in all cases, $\sigma_A(n) \geq 1$ for $n \in \mathbb{Z}_{2n^2}$.

It can be easily seen that $|A_1| \leq 2|B|$ from the construction. Therefore, for the set *A* constructed above,

$$
|A| \le |A_1| + |A_1 + p| = 2|A_1| \le 2 \times 2|B| = 4|B|
$$

and

$$
|B| \leq |Q_{m+1}| + |Q_{m(m+1)}| + |Q_{2m}| = 3p,
$$

from which it follows that

 $|A| \leq 12p$.

This completes the proof of Lemma [2.4.](#page-3-0) \Box

The final lemma gives a relation between the bases of \mathbb{Z}_{m_1} and \mathbb{Z}_{m_2} with certain constraints.

LEMMA 2.5. Let $\varepsilon > 0$ be an arbitrarily small number. Let m_1 and m_2 be two positive *integers with* $(2 - \varepsilon)m_1 < m_2 < 2m_1$. If A is a subset of \mathbb{Z}_m , with $\sigma_A(n) \geq 1$ for any $n \in \mathbb{Z}_m$, then there is a subset B of \mathbb{Z}_m , with $|B| \leq 2|A|$ such that $\sigma_B(n) \geq 1$ for any $n \in \mathbb{Z}_m$.

PROOF. Suppose that $m_2 = m_1 + r$, so that $(1 - \varepsilon)m_1 < r < m_1$. Let

$$
B = A \cup \{a + r : a \in A\}.
$$

Then, $|B| \le 2|A|$. It remains to prove $\sigma_B(n) \ge 1$ for any $n \in \mathbb{Z}_m$.

Without loss of generality, we may assume $0 \le a \le m_1 - 1$ for any $a \in A$. For $0 \le n \le m_1 - 1$, there are two integers $a_1, a_2 \in A$ so that $n \equiv a_1 + a_2 \pmod{m_1}$. Since $0 ≤ a_1 + a_2 ≤ 2m_1 - 2$, it follows that

$$
n = a_1 + a_2
$$
 or $n = a_1 + a_2 - m_1$.

If $n = a_1 + a_2$, then clearly $n \equiv a_1 + a_2 \pmod{m_2}$. If $n = a_1 + a_2 - m_1$, then

$$
n + m_2 = n + m_1 + r = a_1 + (a_2 + r),
$$

which means that $n \equiv a_1 + (a_2 + r) \pmod{m_2}$. In both cases, $\sigma_B(n) \ge 1$ for any *n* with $0 \le n \le m_1 - 1$. We are left to consider the case $m_1 \le n \le m_2 - 1$. In this range,

 $0 < n - r \le m_2 - 1 - r = m_1 - 1$.

Thus, there are two elements \tilde{a}_1 , \tilde{a}_2 of *A* so that

 $n - r \equiv \tilde{a_1} + \tilde{a_2} \pmod{m_1}$.

Again, by the constraint $0 \le \tilde{a_1} + \tilde{a_2} \le 2m_1 - 2$,

$$
n - r = \widetilde{a_1} + \widetilde{a_2} \quad \text{or} \quad n - r = \widetilde{a_1} + \widetilde{a_2} - m_1.
$$

If $n - r = \tilde{a_1} + \tilde{a_2}$, then we clearly have $n - r \equiv \tilde{a_1} + \tilde{a_2}$ (mod m_2). Otherwise, we have $n - r = \tilde{a_1} + \tilde{a_2} - m_1$. So, it can now be deduced that

$$
n + m_2 = \widetilde{a_1} + r + \widetilde{a_2} + r,
$$

which is equivalent to $n \equiv (\widetilde{a_1} + r) + (\widetilde{a_2} + r) \pmod{m_2}$.

PROOF OF THEOREM [1.1.](#page-1-1) Let $\varepsilon > 0$ be an arbitrarily small given number. Then, by Lemma [2.2,](#page-2-3) there is some prime *p* so that

$$
\sqrt{\frac{m}{4}} < p < \sqrt{\frac{m}{2(2-\varepsilon)}},\tag{2.1}
$$

provided that *m* is sufficiently large (in terms of ε). By Lemma [2.4,](#page-3-0) there is a subset $A \subset \mathbb{Z}_{2p^2}$ with $|A| \le 12p$ so that $\sigma_A(n) \ge 1$ for any $n \in \mathbb{Z}_{2p^2}$. From [\(2.1\)](#page-5-0),

$$
(2 - \varepsilon)2p^2 < m < 2 \times 2p^2. \tag{2.2}
$$

Thus, by Lemma [2.5,](#page-4-0) there is a subset *B* of \mathbb{Z}_m with

$$
|B| \le 2|A| \le 24p \tag{2.3}
$$

such that $\sigma_B(n) \geq 1$ for any $n \in \mathbb{Z}_m$. Hence, by Lemma [2.3,](#page-2-1)

$$
\ell_m = \min_{\widetilde{A} \in \mathcal{H}_m} \left\{ m^{-1} \sum_{n \in \mathbb{Z}_m} \sigma_{\widetilde{A}}(n) \right\} \leq m^{-1} \sum_{n \in \mathbb{Z}_m} \sigma_B(n) = \frac{|B|^2}{m}.
$$

Employing (2.2) and (2.3) ,

$$
\frac{|B|^2}{m} \le \frac{(24p)^2}{(2-\varepsilon)2p^2} = 144 \times \frac{2}{2-\varepsilon}.
$$

Hence, it follows that

$$
\limsup_{m \to \infty} \ell_m \le 144 \times \frac{2}{2 - \varepsilon}
$$

for any $\varepsilon > 0$, which clearly means that

$$
\limsup_{m \to \infty} \ell_m \le 144.
$$

This completes the proof of Theorem [1.1.](#page-1-1) \Box

3. Proof of Theorem [1.2](#page-2-0)

The proof of Theorem [1.2](#page-2-0) is based on the following remarkable result of Singer.

LEMMA 3.1 (Singer [\[14\]](#page-8-16)). Let p be a prime. Then, there exists a subset A of \mathbb{Z}_{p^2+p+1} *so that* $\delta_A(n) = 1$ *for any* $n \in \mathbb{Z}_{p^2+p+1}$ *with* $n \neq 0$ *.*

The next lemma is a variant of Lemma [2.3.](#page-2-1)

$$
\sum_{n\in\mathbb{Z}_m}\delta_A(n)=|A|^2,
$$

where |*A*| *denotes the number of elements of A.*

PROOF. It is clear that

$$
\sum_{n\in \mathbb{Z}_m}\delta_A(n)=\sum_{n\in \mathbb{Z}_m}\sum_{\substack{a_1-a_2=n\\ a_1,a_2\in A}}1=\sum_{\substack{a_1,a_2\in A\\ a_1-a_2\in \mathbb{Z}_m}}1=\sum_{a_1,a_2\in A}1=|A|^2.
$$

This completes the proof of Lemma [3.2.](#page-6-0) \Box

We need another auxiliary lemma.

LEMMA 3.3. *Let* ε > ⁰ *be an arbitrarily small number. Let m be a positive integer and p a prime number with*

$$
(2 - \varepsilon)(p^2 + p + 1) < m < 2(p^2 + p + 1).
$$

If A is a subset of \mathbb{Z}_{p^2+p+1} *with* $\delta_A(n) \geq 1$ *for any* $n \in \mathbb{Z}_{p^2+p+1}$ *, then there is a subset B of* \mathbb{Z}_p *with* $|R| \leq 2|A|$ *such that* $\delta_B(n) \geq 1$ *for any* $n \in \mathbb{Z}$ $of \mathbb{Z}_m$ *with* $|B| \leq 2|A|$ *such that* $\delta_B(n) \geq 1$ *for any* $n \in \mathbb{Z}_m$ *.*

PROOF. Suppose that $m = (p^2 + p + 1) + r$. Then, $(1 - \varepsilon)(p^2 + p + 1) < r < (p^2 + p + 1)$. Let

$$
B = A \cup \{a + r : a \in A\}.
$$

Then, $|B| \le 2|A|$. It remains to prove $\delta_B(n) \ge 1$ for any $n \in \mathbb{Z}_m$.

Without loss of generality, we can assume $0 \le a \le p^2 + p$ for any $a \in A$. For $0 \le n \le p^2 + p$, there are two integers $a_1, a_2 \in A$ so that

$$
n \equiv a_1 - a_2 \pmod{p^2 + p + 1},
$$

which means that

$$
n = a_1 - a_2
$$
 or $n = a_1 - a_2 + (p^2 + p + 1)$

since $-p^2 - p \le a_1 - a_2 \le p^2 + p$. If $n = a_1 - a_2$, then we clearly have $n \equiv a_1 - a_2$ (mod *m*). If $n = a_1 - a_2 + (p^2 + p + 1)$, then

$$
n - m = n - (p2 + p + 1) - r = a1 - (a2 + r),
$$

from which it can be deduced that $n \equiv a_1 - (a_2 + r) \pmod{m}$. In both cases, we have $\delta_B(n) \ge 1$ for any *n* with $0 \le n \le p^2 + p$. We are left to consider the case $p^2 + p + 1 \le$ $n \leq m - 1$. In this case,

$$
0 < n - r \le m - 1 - r = p^2 + p.
$$

Thus, there are two elements \tilde{a}_1 , \tilde{a}_2 of *A* so that

$$
n - r \equiv \widetilde{a_1} - \widetilde{a_2} \pmod{m}.
$$

Again, by the constraint $-p^2 - p \le \tilde{a}_1 - \tilde{a}_2 \le p^2 + p$, we have

$$
n-r = \widetilde{a_1} - \widetilde{a_2}
$$
 or $n-r = \widetilde{a_1} - \widetilde{a_2} + (p^2 + p + 1)$.

If $n - r = \tilde{a_1} - \tilde{a_2}$, then we clearly have $n - r \equiv \tilde{a_1} - \tilde{a_2}$ (mod *m*). Otherwise, we have $n - r = \tilde{a_1} - \tilde{a_2} + (p^2 + p + 1)$, from which it clearly follows that

$$
n-m=\widetilde{a_1}-\widetilde{a_2}.
$$

So we also deduce $n \equiv \tilde{a_1} - \tilde{a_2} \pmod{m}$.

We now turn to the proof of Theorem [1.2.](#page-2-0)

PROOF OF THEOREM [1.2.](#page-2-0) Let $\varepsilon > 0$ be an arbitrarily small given number. By Lemma [2.2,](#page-2-3) there is some prime p so that

$$
\frac{\sqrt{2m-3}-1}{2} < p < \frac{\sqrt{\frac{4}{2-\varepsilon}m-3}-1}{2}
$$

providing that m is sufficiently large (in terms of ε). Equivalently,

$$
(2 - \varepsilon)(p^2 + p + 1) < m < 2(p^2 + p + 1). \tag{3.1}
$$

By Lemma [3.1,](#page-5-3) there is a subset *A* of \mathbb{Z}_{p^2+p+1} so that $\delta_A(n) = 1$ for any $n \in \mathbb{Z}_{p^2+p+1}$ with $n \neq 0$. Employing Lemma [3.2,](#page-6-0)

$$
|A|^2 = \sum_{n \in \mathbb{Z}_{p^2+p+1}} \delta_A(n) = \sum_{n \in \mathbb{Z}_{p^2+p+1}, n \neq \overline{0}} \delta_A(n) + \delta_A(0) = p^2 + p + |A|,
$$

from which it follows clearly that

$$
|A|=p+1.
$$

By Lemma [3.3](#page-6-1) and [\(3.1\)](#page-7-0), there is a subset *B* of \mathbb{Z}_m with

$$
|B| \le 2|A| \le 2(p+1) \tag{3.2}
$$

such that $\delta_B(n) \ge 1$ for any $n \in \mathbb{Z}_m$. Thus, by the definition of g_m and Lemma [3.2](#page-6-0) again,

$$
g_m = \min_{\widetilde{A} \in \mathcal{K}_m} \left\{ m^{-1} \sum_{n \in \mathbb{Z}_m} \delta_{\widetilde{A}}(n) \right\} \leq m^{-1} \sum_{n \in \mathbb{Z}_m} \delta_B(n) = \frac{|B|^2}{m}.
$$

From [\(3.1\)](#page-7-0) and [\(3.2\)](#page-7-1),

$$
\frac{|B|^2}{m} \le \frac{4(p+1)^2}{(2-\varepsilon)(p^2+p+1)} \le \frac{4}{2-\varepsilon/2},
$$

provided that *m* (hence *p*) is sufficiently large (in terms of ε). Hence, we conclude that

$$
\limsup_{m \to \infty} g_m \le \frac{4}{2 - \varepsilon/2}
$$

for any $\varepsilon > 0$, which clearly means that

$$
\limsup_{m \to \infty} g_m \le 2.
$$

This completes the proof of Theorem [1.2.](#page-2-0) \Box

Acknowledgement

The authors would like to thank Professor Yuchen Ding for his generous help and very helpful comments.

References

- [1] P. Borwein, S. Choi and F. Chu, 'An old conjecture of Erdős–Turán on additive bases', *Math. Comp.* 75 (2006), 475–484.
- [2] Y.-G. Chen, 'The analogue of Erdős–Turán conjecture in \mathbb{Z}_m ', *J. Number Theory* 128 (2008), 2573–2581.
- [3] Y.-G. Chen and T. Sun, 'The difference basis and bi-basis of Z*m*', *J. Number Theory* 130 (2010), 716–726.
- [4] H. Davenport, *Multiplicative Number Theory*, 2nd edn, Graduate Texts in Mathematics, 74 (Springer-Verlag, New York, 1980).
- [5] Y. Ding and L. Zhao, 'A new upper bound on Ruzsa's numbers on the Erdős–Turán conjecture', *Int. J. Number Theory* 20 (2024), 1515–1523.
- [6] P. Erdős and P. Turán, 'On a problem of Sidon in additive number theory, and on some related problems', *J. Lond. Math. Soc. (2)* 16 (1941), 212–215.
- [7] T. A. Evans and H. B. Mann, 'On simple difference sets', *Sankhya* 11 (1951), 357–364.
- [8] G. Grekos, L. Haddad, C. Helou and J. Pihko, 'On the Erdős–Turán conjecture', *J. Number Theory* 102 (2003), 339–352.
- [9] R. K. Guy, *Unsolved Problems in Number Theory*, 3rd edn, Problem Books in Mathematics, 1 (Springer-Verlag, New York, 2004).
- [10] H. Halberstam and K. F. Roth, *Sequences* (Clarendon Press, Oxford, 1966).
- [11] M. Hall Jr, 'Cyclic projective planes', *Duke Math. J.* 14 (1947), 1079–1090.
- [12] I. Z. Ruzsa, 'A just basis', *Monatsh. Math.* 109 (1990), 145–151.
- [13] C. Sándor and Q.-H. Yang, 'A lower bound of Ruzsa's number related to the Erdős–Turán conjecture', *Acta Arith.* 180 (2017), 161–169.
- [14] J. Singer, 'A theorem in finite projective geometry and some applications to number theory', *Trans. Amer. Math. Soc.* 43 (1938), 377–385.
- [15] M. Tang and Y.-G. Chen, 'A basis of Z*m*', *Colloq. Math.* 104 (2006), 99–103.
- [16] M. Tang and Y.-G. Chen, 'A basis of Z*m*, II', *Colloq. Math.* 108 (2007), 141–145.
- [17] T. Tao and H. Van Vu, *Additive Combinatorics*, Cambridge Studies in Advanced Mathematics, 105 (Cambridge University Press, Cambridge, 2010).
- [18] Y. Zhang, 'On the difference bases of Z*m*', *Period. Math. Hungar.*, to appear. Published online (10 July 2024).

GUANGPING LIANG, School of Mathematical Science, Yangzhou University, Yangzhou 225002, PR China e-mail: 15524259050@163.com

YU ZHANG, School of Mathematics, Shandong University, Jinan 250100, PR China e-mail: yuzhang0615@mail.sdu.edu.cn

HAODE ZUO, School of Mathematical Science, Yangzhou University, Yangzhou 225002, PR China e-mail: yzzxzhd@yzu.edu.cn