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With the advent of modern microscopy methods, there is an increasing need for efficient and robust image 
segmentation methods. Machine learning has demonstrated the greatest potential, as a trained model that can 
be applied to large new sets of images, after learning from a limited set of hand or computer aided 
segmentations. Furthermore, deep learning can treat extremely complicated features, such as pore-back 
artifacts. 
 
Pore-back artifacts are associated with porous material imaged with focused ion beam scanning electron 
microscopy (FIB-SEM). Electron signals go behind the imaging plane, and light the back wall of a pore. 
Depending on the depth of the pore geometry, a gradient of greyscale contrast is often collected in the same 
pore space, which leads to difficulties in segmentation. The Pore-back artifact problem is most pronounced 
when the porosity of the sample is high. 
 
In this project, a combination of Random Forest machine learning 0 and deep residual U-net (ResUnet) neural 
network deep learning 0 was used to segment pore-backs from a FIB-SEM image stack of a membrane sample 
with 80% porosity, Figure 2a. 
 
The 3D image stack was first segmented with supervised Random Forest machine learning, with manual 
corrections to the pore-backs. Selected images from the first segmentation were then used as training sets for 
a second segmentation with a deep learning model, where a U-net shaped network is combined with residual 
units replacing the neural units of the network to integrate skip connections into the U-net, preventing the loss 
of information as the network gets deeper.  
 
To determine the correlation of training efficiency with length scale of primary features, the second neural 
network-based segmentations were trained with two varying sized training sets from the first segmentation. 
One training set was selected from the top of the stack in the first segmentation, while the other training set 
was selected using segmented images indexed evenly throughout the FIB-SEM stack of 600 images. The 
training set was composed of either 5 or 20 images in each case, resulting in a total of four trials, as summarized 
in Table 1. The set of 5 distributed images was indexed 120 slides from one another, while the set with 20 
distributed images was trained 30 slides apart from one another.  
 
To compare the quality of the network’s predictions, accuracy and loss functions were tracked and reported on 
three selected locations in the stack, as summarized in Table 1. The preliminary results show that with a training 
set of 20 images, the predictions made by the network that are close to the initial index are similar to the 
distributed model in accuracy and loss. But, for higher indices, i.e., Index-434 and Index-598, the predictions 
made by the distributed model are more accurate on than those made by the model trained on the initial index 
model. 
 
When a much smaller training set of 5 images is used, however, the initial-model proved more effective 
throughout the entire distribution of the 3D sample set than the distributed-model. The loss and accuracy both 
indicate that the initial-index model is better for such a limited training set. 
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The results of these experiments indicate that the training sample distribution has a significant impact on 
prediction quality. Using a wider distribution for the images helps when the network has enough data to learn 
from. However, having the quality degrade on all factors for the set including 5 images suggests that using a 
set with increased diversity might have given the network too much variation with too little data. This suggests 
that whether or not the training data for a ResUnet should be indexed across the sample or together depends 
on how large the training set is. The results also demonstrate that the augmented ResUnet can be applied to 3D 
image sets of polymer membranes with very small data sets to provide initial segmentation, and have an 
accuracy approaching 90% when the training set is 20 images distributed throughout the dataset for 
segmentations throughout a very large image-set. Ongoing work also includes further integration of Random 
Forest machine learning with deep learning, where both the segmentation of the initial training set and the final 
target set can be automated. 
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Figure 1. Loss and Accuracy results from predictions at varying indices within the 3D FIB-SEM image-set. 
 

Figure 2. Predictions by Each Model on Index-598. (a) FIB-
SEM of porous polymer membrane with a porous background. 
Figures (b)-(f) are 5 segmentations: (b) Ground truth from 
Random Forest Machine Learning and manual correction; (c) 
20 Initial-Model; (d) 20 distributed -Model; (e) 5 Initial 
Model; (f) 5 Distributed  
 
 
 
 
 

Predicted image 20 Initial 20 Distributed 5 Initial 5 Distributed 
Index-47, Loss 0.442 0.425 0.786 1.18 
Index-47, Accuracy 0.912 0.914 0.832 0.738 
Index-434, Loss .649 .300 .771 1.038 
Index-434, Accuracy 0.881 0.945 0.837 0.758 
Index-598, Loss 0.764 0.613 0.908 1.246 
Index-598, Accuracy 0.863 0.892 0.793 0.731 
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