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Active fluids encompass a wide range of non-equilibrium fluids, in which the self-
propulsion or rotation of their units can give rise to large-scale spontaneous flows. Despite
the diversity of active fluids, they are commonly viscoelastic. Therefore, we develop a
hydrodynamic model of isotropic active liquids by accounting for their viscoelasticity.
Specifically, we incorporate an active stress term into a general viscoelastic liquid model
to study the spontaneous flow states and their transitions in two-dimensional channel,
annulus and disk geometries. We have discovered rich spontaneous flow states in a channel
as a function of activity and Weissenberg number, including unidirectional flow, travelling-
wave and vortex-roll states. The Weissenberg number acts against activity by suppressing
the spontaneous flow. In an annulus confinement, we find that a net flow can be generated
only if the aspect ratio of the annulus is not too large nor too small, akin to some three-
dimensional active-flow phenomena. In a disk geometry, we observe a periodic chirality
switching of a single vortex flow, resembling the bacteria-based active fluid experiments.
The two phenomena reproduced in our model differ in Weissenberg number and frictional
coefficient. As such, our active viscoelastic model offers a unified framework to elucidate
diverse active liquids, uncover their connections and highlight the universality of dynamic
active-flow patterns.
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1. Introduction
Active matter represents a range of non-equilibrium systems comprising self-propelled
units such as active particles (Datt & Elfring 2019; Maity & Burada 2022), bacteria,
cells (Dombrowski et al. 2004; Sokolov et al. 2007; Dunkel et al. 2013) or biopolymers
(Fürthauer et al. 2019; Lemma et al. 2021; Chandrakar et al. 2022; Zarei et al.
2023). Active fluids are a typical class of active matter which can form a gas or
liquid phase or be suspended in another liquid. The constituents in an active fluid can
convert other forms of energy into mechanical work by inducing stresses and interacting
with the environment, such as driving flows in the background fluid, moving against
neighbour units and undergoing phase separation. Active fluids are promising for emergent
applications in biomedicine (Ghosh et al. 2020), robotics (Ceron et al. 2021) and
materials science (Needleman & Dogic 2017), and have the potential to revolutionise
our understanding of how living systems operate and to provide new design principles
for biomimetic, functional and autonomous materials (Zhang et al. 2021). However, our
current understanding of their dynamic behaviours is still overwhelmed by the microscopic
details of the specific system.

A paradigmatic class of active fluids is active liquid crystals (LCs) (Zhang et al. 2021),
which comprise locally aligned dense units with anisotropic shapes, forming different LC
phases in non-equilibrium conditions. One of such active LC phases is namely active
nematic (Doostmohammadi et al. 2018), which widely exists in many biological and
synthetic systems (Narayan, Ramaswamy & Menon 2007; Sanchez et al. 2012; Zhou
et al. 2014; Kawaguchi, Kageyama & Sano 2017; Saw et al. 2017; Kumar et al. 2018;
Li et al. 2019). Though active LC systems are diverse, their spontaneous flows can
be well understood by a hydrodynamic model (Denniston, Orlandini & Yeomans 2001;
Marenduzzo et al. 2007a), in which active stresses drive positive topological defects into
self-propulsion (Aditi Simha & Ramaswamy 2002; Shankar et al. 2018). Nevertheless, the
success of the hydrodynamic model of active LCs cannot be extended directly to active
fluids without LC order (Marchetti et al. 2013), in which a nematic director field does not
exist.

In the present work, we propose an active viscoelastic model in an attempt to provide
a unified framework to describe distinct isotropic active fluids. Here we focus on two
experimental systems. One is microtubule-based active fluids, in which the active motion
of the kinesin motor clusters can lead to the relative slidings of microtubule bundles,
driving different spontaneous flow patterns tuneable by confinement geometry (Wu
et al. 2017). The other active fluid is bacterial suspensions (Liu et al. 2021; Nishiguchi
et al. 2024). In addition to geometric confinements (Wioland, Lushi & Goldstein 2016;
Bhattacharjee & Datta 2019), the inclusion of different amounts of DNA molecules in
the bacteria-based active fluid can also be used to control its flow state via tuning its
viscoelasticity (Liu et al. 2021). As DNA concentration increases, the spontaneous flow in
a disk can transition from a turbulent-like state to a unidirectional giant vortex, and to an
oscillatory mode in which a single vortex flow can periodically switch between clockwise
(CW) and counter-clockwise (CCW) directions (Liu et al. 2021). Despite the richness
of the flow patterns observed in these different isotropic active fluidic systems, little is
known about the universality of these flow patterns and how they depend on the system
specifics.

The hydrodynamic model of active LCs has been used to understand isotropic active
fluids in both two-dimensional (2-D) (Fielding, Marenduzzo & Cates 2011; Caballero,
You & Marchetti 2023) and three-dimensional (3-D) geometries (Chandragiri et al. 2020;
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Figure 1. Flow state transitions of an active viscoelastic fluid in a 2-D channel. (a) Flow state diagram in terms
of the activity ζ and Weissenberg number Wi. The background colour represents the magnitude of the time-
averaged flow rate Q. The solid magenta line marks ζc obtained by linear stability analysis. (b) Schematic of
the network structure for the PTT model. (c) Unidirectional flow state (Wi = 10−0.5, ζ = 3.35). The left half-
part of the channel shows the velocity field U with background colour indicating the magnitude |U|. The other
half-part shows the orientation r of the polymer molecules and their order magnitude S. (d) Travelling-wave
state (Wi = 10−0.5, ζ = 3.4). (e) Vortex-roll state (Wi = 10−0.5, ζ = 3.5). ±1/2 defects are present. (f ) Dancing
state (Wi = 10−0.5, ζ = 3.8). (g) Turbulent-like state (Wi = 10−0.5, ζ = 4.2).

Varghese et al. 2020). In these models, a nematic order parameter is required. For many
polymer-based viscoelastic liquids, however, there is no LC ordering but instead require a
stress tensor.

In this study, we try to ask whether a hydrodynamic model of active fluids without LC
order can be used to describe various isotropic active fluidic phenomena. To this end,
we modify a viscoelastic liquid model by including an active stress term (Aditi Simha &
Ramaswamy 2002). We then use the model to study different 2-D confinement geometries.
Our model produces rich spontaneous flow states (see figure 1a) and can reproduce distinct
dynamical flow patterns observed in the various experiments, which we elaborate in the
following.
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2. Problem formulation

2.1. Governing equations
We simulate a 2-D active viscoelastic fluid using the Phan-Thien–Tanner (PTT) model
(Thien & Tanner 1977; Phan-Thien 1978) in which the constitutive equation is derived
from a network theory for polymeric liquids (see figure 1b). The network junctions in this
model are allowed to exhibit a certain degree of effective slip relative to the background
continuum, and the relaxation time is assumed to be dependent on the local stress. The
dimensionless governing equations of the active viscoelastic system (derivation presented
in the supplementary material available at https://doi.org/10.1017/jfm.2025.177) consist of
the incompressible Navier–Stokes equation and the constitutive equation:

∇ · U = 0, (2.1a)

∂U
∂t

= −∇ P + ∇2U + 1 − β

β
(1 − ζ )∇ · τ − νU, (2.1b)

∂τ

∂t
+ U · ∇τ + ξ (τ · D + D · τ ) − τ · ∇U − [τ · (∇U)]T = 2

Wi
D − f (τkk)

Wi
τ + κ∇2τ ,

(2.1c)

where P denotes pressure, and U and τ are the velocity vector and polymer-induced sym-
metric stress tensor, respectively. Here D = [∇U + (∇U)T ]/2 is the rate-of-strain tensor.
The two dimensionless control parameters are the Weissenberg number Wi = Ucλ/Lc with
Uc = ηs/(ρ0Lc), where ν is the friction coefficient and ρ0 denotes the liquid density, and
the viscosity ratio β = ηs/(ηs + ηp), where λ is the polymer relaxation time for τkk → 0,
Lc represents a characteristic length of the system, τkk refers to the trace of the stress
tensor, and ηs and ηp are the contributions to viscosity from the solvent and the polymer,
respectively. To account for activity of the self-propelled units, we adopt an active stress
term −ζτ that is linear with respect to the stress tensor, which implies that any anisotropy
in the conformation of the polymer can induce an anisotropic stress that enhances such
anisotropy; this term is similar to the swim pressure proposed by Omar, Wang & Brady
(2020) and the active stress term in the active LC theory (Marenduzzo et al. 2007b). The
effect of substrate friction from the third dimension is described by −νU in equation
(2.1b). We consider Stokes limit by dropping the non-linear inertial term in equation (2.1b).
An artificial diffusion term κ∇2τ is introduced in equation (2.1c) to enhance numerical
stability (here κ = 10−3). In the PTT model, the dimensionless parameter ξ (0 < ξ < 1)
accounts for the slip between the network and the background continuous medium.
Additionally, the linear relaxation function f (τkk) = 1 + εWiτkk (Thien & Tanner 1977)
is used, where the dimensionless parameter ε controls the extensibility of the polymer
(Thien & Tanner 1977) which is different from the constant molecular length in the active
LC model. In addition, compared with the pure active LC model (Marenduzzo et al.
2007b) and the combined model for active LCs and viscoelastic polymers (Hemingway
et al. 2015), the governing equations (2.1) have different forms, particularly in the
momentum equation.

2.2. Simulation details
The governing equations (2.1) are numerically solved using the open-source pseudo-
spectral package Dedalus (Burns et al. 2020). The Fourier basis is applied for the
periodic directions and the Chebyshev polynomials for the wall-normal direction. The
time integration is performed using the RK222 scheme which is a second-order, two-step,
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implicit/explicit Runge–Kutta method. On the wall, a no-slip boundary condition is used
for the velocity field, and a Neumann condition ∂τ/∂w⊥ = 0 is used for the polymer stress,
with w⊥ denoting the wall-normal direction. In contrast to LC models, here no preferred
molecular alignment direction is imposed on the boundary. All the simulations reported
here are started with zero velocity and a randomised polymer stress of small magnitude.
The flow rate Q is defined by Q = ∫∫

U‖dx/V, where U‖ denotes the velocity component
parallel to the wall, and V denotes the volume of the system. Here Q is used as an order
parameter to distinguish the coherent and turbulent flow states. When Q �= 0, a coherent
flow emerges. In the following, the viscosity ratio is set to β = 0.7 which is close to the
experimental observations (Wu et al. 2017; Gagnon et al. 2020). The active viscoelastic
fluid is assumed to exhibit a strong slip effect and weak extensibility, with parameters
ξ = 0.7 and ε = 10−2. The friction force is not considered (i.e. ν = 0) unless specified
otherwise.

3. Results

3.1. Channel geometry
We start with a flat channel with lateral length L = 4 and grid resolution Nx × Ny =
144 × 36. Above a critical activity ζc, there is an onset of a spontaneous flow (i.e.
unidirectional flow) as shown in figure 1(a). Weissenberg number is defined as Wi = ηsλ/

{ρ0L2
c} (with Lc = H∗ in figure 1(b), the dimensionless channel height would be 1). As

Wi increases, ζc becomes higher, which is consistent with our linear stability analysis (the
solid magenta line in figure 1a) as well as the mixed model of LC and viscoelastic liquids
(Hemingway et al. 2015). Note that ζc approaches a constant value at a vanishing Wi. This
limit can be understood by considering an unconfined 2-D domain. Indeed, our stability
analysis of an infinite 2-D domain shows that ζc is only determined by the viscosity ratio,
namely ζc = 1/(1 − β) (see supplementary material). For β = 0.7 used in the simulation,
the critical activity ζc = 1/(1 − β) ≈ 3.3 agrees quantitatively well with the vanishing Wi
result in figure 1(a).

As activity further increases, the steady unidirectional flow sequentially transitions
into travelling-wave, vortex-roll, dancing and finally turbulent state at the highest ζ as
shown in figure 1(c–g) (see supplementary movie 1). Many of these 2-D channel flow
states except the vortex-roll state are also found in active nematic models (Shendruk
et al. 2017; Chandragiri et al. 2019). In the unidirectional flow state, the flow rate Q
increases as activity ζ increases. Upon further increase of ζ , Q drops abruptly as the
system transitions into the travelling-wave state, in which the spontaneous flow starts
to develop in the vertical direction. Owing to the random initial conditions of the stress
tensor field, rightward and leftward flows in the unidirectional and travelling-wave states
can be observed in our simulation with equal probability (see supplementary material).
Based on the linear stability analysis (see supplementary material), the wavelength
ltw of the travelling-wave state increases with Wi and decreases with ζ as shown in
figures 2(a) and 2(b). In the vortex-roll state, the stretching of the polymers gives rise
to a birefringent field, in which ±1/2 defects can be identified (see figure 1e), and this
resembles active nematic systems (Zhang et al. 2021). The ±1/2 topological defects
refer to regions where the principal axis corresponding to the largest eigenvalue of the
local stress tensor changes abruptly, which is similar to that seen in nematic LCs. The
development of the local nematic order has also been observed in 3-D microtubule
suspensions (Wu et al. 2017).
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Figure 2. Effect of (a) Weissenberg number Wi and (b) activity ζ on the wavelength ltw in the travelling-
wave state in the 2-D channel by linear stability analysis (see supplementary material). Here ζ = 3.4 in
(a) and Wi = 100.5 in (b). (c) Normalised velocity-velocity correlation function C(r) at different activity ζ .
The inset shows the velocity correlation length lv determined by C = 0.8. Region I denotes the vortex-roll
state, and region II represents the dancing and turbulent states. (d) Effect of ζ on the r.m.s. velocity, Vrms . The
error bars denote the standard deviation for time series of r.m.s. velocity. In (c,d), the Weissenberg number
is Wi = 10−0.5.

Figure 2(c) shows the effect of activity ζ on the normalised velocity-velocity correlation
function C(r) = 〈U(r) · U(0)〉/〈U(0)2〉, where r denotes the dimensionless horizontal
distance and 〈·〉 denotes the ensemble (spatio–temporal) average. The velocity correlation
length lv is found to be independent of ζ except at the transition from the vortex-
roll into the turbulent state, at which lv undergoes an abrupt decrease. Such a feature
is also observed in the active microtubule experiment (Sanchez et al. 2012) and in
nematic LC models (Thampi, Golestanian & Yeomans 2013). Additionally, the measured
root-mean-square (r.m.s.) velocity Vrms saturates at high ζ as presented in figure 2(d)
which is consistent with the experiments (Sanchez et al. 2012; Henkin et al. 2014;
Tan et al. 2019), while the nematic LC model did not exhibit such saturation trend
(Thampi et al. 2013).

3.2. Annulus geometry
In the annulus geometry, the aspect ratio is defined by Γ = Ri/Ro, where Ri and
Ro denote the inner and outer radii, respectively. The grid resolution is set to
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Figure 3. Flow state transitions of an active viscoelastic fluid in a 2-D annulus. (a) Flow state diagram in terms
of ζ and aspect ratio Γ at Wi = 1. (b) Effect of aspect ratio Γ on the average flow rate at ζ = 5.2. The error
bars denote the standard deviation of time series for flow rate. (c) Variation of the arc wavelength λa with the
thickness (1 − Γ ) of the annulus at ζ = 4.4. The inset contour denotes the velocity magnitude under different
aspect ratio Γ , which helps to identify the number of repeated arc segments, Na .

Nθ × Nr = 216 × 36. Here the outer radius is chosen as the characteristic length, namely
Lc = Ro. This geometry parameter Γ ∈ (0, 1) can be used to investigate the effect of
geometric confinement on the flow states. Different from the channel geometry, the
annulus geometry exhibits stationary, unidirectional, travelling-wave and turbulent states
only as shown in figure 3(a), consistent with the previous numerical results which were
obtained for 2-D apolar active suspension confined in an annulus by using a coarse-grained
LC model (Chen, Gao & Gao 2018). As Γ increases, the confinement becomes stronger,
and the system undergoes transitions from the turbulent flow into the travelling-wave state
and into the unidirectional flow state (see figure 3a,b). Figure 3(b) shows that for Γ → 1
(thin annulus) or Γ → 0 (wide annulus), the system is in the stationary or the turbulent
state, in which a net flow vanishes. Note that in a 3-D experiment of a microtubule-
based active fluid, the flow rate also shows a non-monotonic dependence on the aspect
ratio of the confinement (Wu et al. 2017). Because the azimuthal direction of the annulus
requires periodicity, the wavelength of the travelling-wave state should be a fraction of the
lateral length. As shown in figure 3(c), it is observed that such wavelength λa increases
with the increasing width 1 − Γ , consistent with experimental results (Chandrakar
et al. 2020).

3.3. Disk geometry
Next we study disk confinement where its radius is taken as the characteristic length
Lc, and the grid resolution is Nθ × Nr = 216 × 36. Different from the previous two
geometries, a disk only has one single wall which may induce more interesting flow
phenomena. Similar to that in a channel, the active flow in a disk also tends to be turbulent
at high ζ and small Wi (see supplementary material for the flow state diagram of the
disk geometry). This effect of Wi agrees well with the experimental result for low DNA
concentration (and hence small Wi) reported in Liu et al. (2021). The effective friction
due to the confining substrates can tune the flow structure in active fluids (Liu et al.
2021; Caballero et al. 2023). Here we incorporate it into our model by setting ν = 1.1.
We observe the flow which shows periodic chirality switching, with one full-scale vortex
followed by the next one with opposite chirality (see figure 4(c) and supplementary
movie 2). Moreover, the chirality switching shows a frequency that decreases as Wi
increases, which is proportional to the polymer relaxation time as shown in figure 4(a).
The detailed process of switching from CW to CCW vortex is presented in figure 4(c).
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Figure 4. Chirality-switching vortex flows of the active viscoelastic fluid in a 2-D disk. (a) Chirality-switching
frequency f as a function of Wi at ζ = 4.5. The friction coefficient is set to ν = 1.1. The bottom-left inset
shows the time series of Q at Wi = 2.4, and the top-right inset shows the transient two-vortex structure in
our model and in former experiment (Liu et al. 2021). (b) Temporal evolution of viscous dissipation rate and
frictional dissipation rate. (c) Sequential snapshots show the chirality switching from CW to CCW. The colour
indicates velocity magnitude.

The system is started with a full-scale CW vortex at t1, which gradually decays (at t2),
while a secondary CCW vortex is formed close to the wall (at t3). The decay of the
CW vortex progresses. Concomitantly, the CCW vortex continues to grow (at t4 and t5).
Finally, the CCW vortex reaches its full scale (at t6). It is interesting to note that the
centres of the vortices also rotate, first in the CW sense (before t4) and then in the CCW
sense (after t4). This chirality switching repeats periodically. These numerical observations
agree well with the experiment of bacterial active fluids, where the switching can be
made slower by adding more DNAs into the fluid (Liu et al. 2021). A similar chirality-
reversal vortex flow was observed in a microtubule-based active nematic confined to a
disk region; however, the reversal does not appear to persist periodically (Opathalage et al.
2019). Figure 4(b) shows the frictional dissipation rate D f = ν

∫ |U|2dx and the viscous
dissipation rate Dv = 1

2

∫ [∇U + (∇U)T ] : [∇U + (∇U)T ]dx, and their time variations are
consistent with a fast decrease of the absolute flow rate |Q| from a peak (from t1 to t3)
followed by a relatively slow increase of |Q| toward the next peak (from t4 to t6).
A proper orthogonal decomposition (POD) analysis (Berkooz, Holmes & Lumley 1993) of
the vorticity field reveals that the dominant modes are 1-, 2- and 4-vortex flows as shown
in figure 5 which is consistent with a recent bacterial active fluid experiment (Nishiguchi
et al. 2024). Using different ζ and Wi, our system can generate chirality-switching flows
with more vortices (see supplementary material). As Wi decreases, a transition from
2-vortex to 4-vortex state can take place, again in good agreement with the bacteria
experiment (Nishiguchi et al. 2024). A similar periodic flow reversal phenomenon was
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Figure 5. Energy of different modes for chirality-switching vortex flows of the active viscoelastic fluid in a
2-D disk with ν = 1.1, ζ = 4.5 and Wi = 2.4. Inset shows the first three modes obtained by the POD analysis.

predicted in a channel of an active nematic sandwiched between two viscoelastic layers
(Mori et al. 2023).

4. Conclusion
We have developed an active viscoelastic liquid model to describe active liquids without
LC order. We studied its spontaneous flow patterns in 2-D channel, annulus and disk
geometries. In addition to the geometric confinement (i.e. aspect ratio of annulus here), the
current model is also capable of controlling the flow state by Weissenberg number which is
one macroscopic parameter measuring the viscoelasticity of the liquid. Our model features
a different mathematical form compared with existing models, and it can reproduce
active-flow patterns and characteristics typical of distinct experimental systems within
a single framework. Therefore, we argue that flow patterns observed in bacteria-based
systems, e.g. periodic chirality-switching flow, should also occur in microtubule-based
systems, and vice versa: the non-monotonic dependence of channel flow on aspect ratio
found in microtubule-based systems should also be found in bacteria-based systems
(Wioland et al. 2016). Note that for gel-like active LCs exhibiting a nematic or polar
order (Hemingway et al. 2015, 2016), the well-developed active LC model will be needed.
In addition, the present 2-D simulations are unable to explicitly capture the inherently
3-D phenomena observed in isotropic active fluids except for quasi-2-D phenomena which
can be reproduced through the addition of a frictional term to account for the viscous
damping by the confining walls in the third direction. In future work, we plan to extend
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our research to 3-D systems, leveraging the inherently 3-D nature of the PTT model used
in current work. Furthermore, exploring the influence of pre-defined polymer orientations
at the boundaries also offers a compelling direction for further investigation.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.177.
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