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General Toeplitz kernels and
(X, Y)-invariance

M. Cristina CAmara, Kamila Klis-Garlicka®, and Marek Ptak

Abstract. Motivated by the near invariance of model spaces for the backward shift, we introduce a
general notion of (X, Y)-invariant operators. The relations between this class of operators and the
near invariance properties of their kernels are studied. Those lead to orthogonal decompositions for
the kernels, which generalize well-known orthogonal decompositions of model spaces. Necessary
and sufficient conditions for those kernels to be nearly X-invariant are established. This general
approach can be applied to a wide class of operators defined as compressions of multiplication oper-
ators, in particular to Toeplitz operators and truncated Toeplitz operators, to study the invariance
properties of their kernels (general Toeplitz kernels).

1 Introduction

Invariant subspaces play an important role in the study of operators. In particular,
shift invariant subspaces (with various definitions) have attracted much attention
in mathematics and engineering. For instance, Beurling’s theorem characterizes all
nontrivial shift invariant subspaces of the Hardy space H? := H*(ID) (D is the unit
disk), where the shift operator is multiplication by z, as being of the form 6 H?, where
0 is an inner function. From this result, one can deduce that all nontrivial $*-invariant
subspaces of H* are of the form Kj = H* © OH?; these are called model spaces. They
provide the natural setting for truncated Toeplitz operators (see (2.8)), which have
generated enormous interest and are important in connection with applications in
mathematics, physics, and engineering (see, for instance, [15]).

Model spaces can also be seen as a particular case of Toeplitz kernels, i.e., kernels
of Toeplitz operators with symbol 6 (for definition of Toeplitz operator, see (2.5)).
Kernels of Toeplitz operators are not, in general, S$*-invariant subspaces of H?, but
they are nearly S*-invariant. We say that a closed subspace M c H? is nearly S*-
invariant if

(11) for all f € M such that f(0) =0, we have S* f € M.
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Nearly S*-invariant subspaces were first introduced by Hitt [20], following Hayashi’s
work on kernels of Toeplitz operators [19]. These results were resumed and further
developed by Sarason in [28, 29] and since then nearly S*-invariant subspaces have
been studied by many mathematicians. Hitt proved, in particular, the following.

Theorem 1.1 [20]  Any nontrivial nearly S*-invariant subspace of H* has the form
N = gK, where g is the element of N of unit norm which has a positive value at the origin
and is orthogonal to all elements in N vanishing at 0, K is an S* -invariant subspace and
the operator M, is an isometry from K into H*.

Hayashi gave a complete characterization of the nearly S*-invariant subspaces
which are kernels of Toeplitz operators as being those where g is outer and g? is a
rigid function.

Recently, nearly S*-invariant subspaces of H* with finite defect m € N were intro-
duced in [11] and their study has quickly attracted attention [12, 22, 27]. In most of
these papers, the emphasis is put on characterizations of those spaces in terms of
model spaces which generalize Hitt’s results.

Here, we will not take the same approach; rather we will study conditions for the
kernels of operators in a wide class to be nearly invariant, or almost invariant (see
Definition 1.4), in connection with certain invariance properties of the operators and
with orthogonal decompositions of their kernels generalizing well-known orthogonal
decomposition of the model spaces.

We also adopt a more general setting, by studying invariance properties with
respect to a general operator X € B(J). This is motivated by the following obser-
vation. Imposing a zero at 0 for f in (1.1) is equivalent to imposing that zf € H, in
which case $* f = Zf. So (1.1) can be equivalently reformulated as

(12) if fe M, zf € H, thenzf € M,

which is the reason why nearly $*-invariant spaces are also called nearly M;-invariant,
or simply nearly z-invariant (in H?) [7]. More generally, for any function # in a wide
class, including all # € H>[7], Toeplitz kernels are nearly #-invariant, meaning that
for a Toeplitz kernel ker T,

1.3) if fekerT, nfe H?, then nf ekerT.

Definition 1.2 Let 3, H be Hilbert spaces such that H c . Let £ # {0} be a closed
subspace of H, and let X € B(JH). We say that £ is nearly X-invariant w.r.t. (with
respect to) H if and only if, for all h € £, such that Xh € H we have Xh € L. If there
exists a finite dimensional space F ¢ H such that, for all 4 € £ with Xh € H, we have
Xf e L &3, we say that £ is nearly X-invariant w.r.t. H with defect m, where m is the
smallest dimension of such subspace .

Two other related definitions are the following.

Definition 1.3 Let £ + {0} be a closed subspace of H c J{, and let X € B(H). We
say that £ is H-stable for X if X£ c H.
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Definition 1.4 A subspace £ c H{ is said to be almost-invariant for the operator
X € B(H) if there exists a finite dimensional space F c H such that

XLclLeT.

The smallest possible dimension of JF is called the defect of L.

Remark 1.5 Asabovelet £L ¢ H c K, and let X € B(H). It is clear that if £ is nearly
X-invariant w.r.t. H with defect m and £ is H-stable for X, then £ is almost-invariant
for X with defect m.

Near X-invariance can be interpreted as meaning that, under the action of X, any
element of £ is mapped either into £ or into H{\H; no element of £ is mapped into
H\L. We can interpret X-invariance with defect analogously. On the other hand,
this can be related, for model spaces, with certain orthogonal decompositions. For
example, if & and 6 are inner functions with « < 0 (i.e., g € H* and g ¢ C), then we
have two well-known decompositions:

(i) Kj = aK; @ K2 and
(i) K§=K3 @ 2K2.
In the case (i), the first term in the orthogonal sum is such that @ (aK3 ) ¢ K3, whereas

for the second term, we have &K2 c H? := ZHZ. So the multiplication operator Mg
maps any element of K} either into K3 or into L*\ H2. Thus the orthogonal decompo-
sition (i) reflects the fact that K; is nearly @-invariant w.r.t. H?.

In the case (ii), we see that the first term is mapped by the multiplication operator
M, into K}, whereas the second term is mapped into H*\Kj. So the decomposition
(ii) can be seen as reflecting the fact that Kj is H>-stable for M, and, if dim K3, < oo,
it is almost-invariant for M|gq, i.e., the Toeplitz operator T,.

Since model spaces are particular cases of Toeplitz kernels, a natural question
arises: is it possible to obtain, for more general kernels of operators, orthogonal
decompositions that generalize those that are known for model spaces and allow us to
establish conditions for their being nearly invariant or almost-invariant with respect
to a given operator?

The near S*-invariance of Toeplitz kernels can also be related with the fact that
Toeplitz operators T are shift-invariant [2], i.e., for any f, g € H?, we have

(1.4) (Tf.g) =(Tzf,zg).

Indeed, if f eker T and zf € H?, then from (1.4), we have (Tzf,g) = (Tf,zg) =0
for any g € H?, since Tf = 0; therefore, Zf € ker T. We see, thus, that the near S*-
invariance of Toeplitz kernels can be derived from the shift-invariance of Toeplitz
operators. A second natural question arises from this observation: how are certain
invariance properties of an operator related with those of its kernel?

In this paper, we study these questions. We extend the notion of shift-invariant
operator (thus including, in particular, the usual notion of shift-invariant operator
in applications [32]), and we generalize the concept of nearly S*-invariant subspace,
possibly with defect.

In Section 2, we study some basic properties of (X, Y)-invariant operators and we
focus on compressions of multiplication operators to closed subspaces of L?, showing
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in particular that those compressions are X-invariant for all X € L* (so, in particular,
they are all shift-invariant). In Section 3, we study the relations between X-invariance
of operators and the near invariance properties of their kernels, and in Section 4, we
show that those relations lead to orthogonal decompositions for the kernels, which
generalize well-known orthogonal decompositions of model spaces. These results
allow us to establish necessary and sufficient conditions for those kernels to be nearly
X-invariant, with or without defect. They also allow for a general approach to the
study of a wide class of operators defined as compressions of multiplications operators
(general Toeplitz operators [6]) and the invariance properties of their kernels (general
Toeplitz kernels). In Sections 5 and 6, we apply those results to Toeplitz operators and
truncated Toeplitz operators.

2 (X, Y)-invariant operators
Let H, X be Hilbert spaces. Let X be a bounded linear operator on 3, i.e., X € B(H).
Let Y € B(X), and let H c H, K c X be closed subspaces. We will use the notation
(21 Hyxy={feH:XfeH} and Ky={geK:YgeK}.
An operator A € B(H, K) is called (X, Y)-invariant if and only if we have
(2.2) (AXf,g) =(Af,Yg) forall feHy,geKy.
In particular, if X € B(H) and A € B(H), we say that A is X-invariant if and only if
(2.3) (AXf,g) = (Af,X"g) for feHy,geHxx,
ie., Ais (X, X*)-invariant.

Proposition 2.1 Let Hc Hand K c K. Let A€ B(H,K) and X € B(H), Y € B(X).
Then:
(1) IfAX = Y*Aon Hy, then A is (X, Y )-invariant.
(2) Ais (X,Y)-invariant if and only if A* is (Y, X)-invariant.
(3) If Ae B(H) and AX = XA on Hy, then A is X-invariant.
Now let Py, denote the orthogonal projection

PH Zg'f—>Hx.

X

We will also denote by Py, , whenever the context is clear, the orthogonal projection
from H onto Hy.
Note that if X is a co-isometry, i.e., XX* = I, then

(2.4) feHy- ifand onlyif X" f € Hy.

Lemma 2.2 Let Hc H and Kc XK. Let A€ B(H,K) and X € B(H), Y € B(X).
Then the following are equivalent:

() (AXf,Y*q) = (Af, @) for f € Hx and g € Ky»;
(2) PKY*A|HX = PKy*(YAX)|HX'

Proof Note that, for all f € Hx and g; € Ky+, we have
(AXf,Y &) = (YAX S, g&1) = (Pk,. (YAXf), &1)
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and

(Af, g1) = (Px,. (Af), &1)-
Thus, the lemma holds. ]

Lemma 2.3 Let Hc H and K c XK. Let A€ B(H,K) and X € B(H), Y € B(X).
Assume that Y is a co-isometry. If A is (X,Y)-invariant, then P, Alg, =
Px,. (YAX)|ny-

Proof Let f e Hxand g = YY" g € Ky+. Then, by (2.4), g = Y*g; € Ky. Since A is
(X, Y)-invariant, then

(AXf,Y"g@1) = (Af, YY" &1) = (Af, &1)-
Now the result follows from Lemma 2.2. ]

Proposition2.4 Let Hc Hand K c K. Let A€ B(H,K) and X € B(H), Y € B(X).
Assume that X and Y are co-isometries. If A is (X, Y)-invariant, then A is (X*,Y™)-
invariant.

Proof Forall f; € Hx~, g € Ky, we have that X* f; e Hx, Y* g € Ky, and
(AX" fi, 1) = (AX"f1, YY" @) = (AXX" f1, Y" 1) = (Afr, Y ). ]

Proposition 2.5 Let Hc Hand K c K. Let A€ B(H,K) and X € B(H), Y € B(X).
If Y is unitary, then the following are equivalent:

(1) Ais(X,Y)-invariant.

(2) (AXf, Y @) = (Af, @) for f € Hx and g € Ky~.
(3) PKY* A|Hx = PKY* (YAX)|HX.

If moreover X is unitary, then the above are equivalent to
(4) Ais (X*, Y*)-invariant.

Denote

8(X,Y)={AeB(H,K):Ais (X, Y)-invariant}.

Clearly, 8(X, Y) is a subspace of B(H, K).
Proposition 2.6 Let H=H =K =X and X ¢ B(H). Then 8(X, X*) ={X}/ ={T ¢
B(H): TX=XT}.

Let ¢ € L. The linear operator T, € B(H?) is called a Toeplitz operator with the
symbol ¢ if
(2.5) Ty f = Pp2(9f) for feH”.

The Toeplitz operator T, is usually denoted by S and identified with the unilateral shift.
Due to the Brown-Halmos characterization of Toeplitz operators, that is, A € B(H?)
is a Toeplitz operator if and only if $*AS = A, we have the following.

Example 2.7 Let H=H=H?*=X=K, X=S=T,, Y =S* Then Hx = Ky« = H?
and (3) in Proposition 2.5 is just Brown-Halmos condition, S*AS = A. Therefore, A €
B(H?) is a Toeplitz operator if and only if it is S-invariant, ((S, $*)-invariant).
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Note also that taking H = K = L%, X = M,, Y = M; and H = K = H? Hx = Ky~ =
H?, then (3) in Proposition 2.5 gives

A=PpA|, = P M:AM, , = $*AS.

So we also can say that A € B(H?) is a Toeplitz operator if and only if it is M,-
invariant,((M,, M; )-invariant).

It is also worth noting that, by Proposition 2.5, each Toeplitz operator A = T,,, ¢ €
L™, is (M3, M,)-invariant. Indeed, for all f € (H*)yy,, g € (H?) p., we have

@6) (T, M:fog) = (92f.g) = [ 92fgdm = (gf.zg) = (T,f. M.g).

Recall the definition of Hankel operators. Let ] € B(L?), (Jf)(z) = zf(z). Denote
by I, the Hankel operator with symbol y € L™ defined as Tyy: H* - H*, T, f = P2 Jy f
for f € H2. Tt is known that an operator I' € B(H?) is a Hankel operator if and only if

(2.7) S*T =TS.
Hence, we have the following.

Example2.8 LetH = H = H? = K = K. Then A € B(H?) is a Hankel operator if and
only ifit is (S, S)-invariant.

Let a, 6 be nonconstant inner functions. Consider the model spaces K2 = H*> ©
aH? and Kj = H*> © 6H?, and let P,, Py denote the orthogonal projections from L?
onto K2 and Kj, respectively. It is known that K2 n L* is dense in K. Let ¢ € L%
Define

(2.8) AP f=Py(pf)  for feKinL™.

IfA‘("p’e can be extended to a bounded operator from K}, to K3, i.e., A;’e € B(K2,K3),
then it is called the asymmetric truncated Toeplitz operator [3]. In particular, if 0 = «,
it is called a truncated Toeplitz operator and the notation AG = AQ* will be used. In
[30], Sarason showed that an operator A € B(K3) is a truncated Toeplitz operator if

and only if
(2.9) (Azf,zg) = (Af,g) for f,geKp suchthat zf,zg € Kj

and called this property shift-invariance. In [17], this characterization was extended to
the asymmetric case.

Example2.9 Leta, 0 be nonconstant inner functions. Assume that H = X = L2, H =
K2, K =K and X = M,, Y = M;. Then condition (2) in Proposition 2.5 is the same
as condition (2.9) (case 6 = ). Thus an operator A € B(KZ,Kj) is an asymmetric
truncated Toeplitz operator if and only if it is (M, Mz)-invariant. In case 0 = a, A €
B(K3) is a truncated Toeplitz operator if and only if it is M -invariant.

Similarly to (2.6), it can be checked that each bounded asymmetric truncated
Toeplitz operator A‘;‘,’e is (M, M;)-invariant.

Example2.10 Recall now the notion of (asymmetric) truncated Hankel operators [17].
Let ¢ € L%. Define

(2.10) BYPf=PoJ(pf)  for feKinL™.
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and assume that Bg’e can be extended to a bounded operator from K32 to Kj. We skip
the word “asymmetric” if a = 0. To give one more example of definition (2.2), let us
take H=K =L* H=K2,K = K; and X = M, Y = M,. It can be easily shown using
[17, Proposition 4.2(b)] that an operator is an (asymmetric) truncated Hankel operator
ifand only if it is (M, M )-invariant.

We will be particularly interested in compressions of multiplication operators to
several closed subspaces of 7 = L2, If H, K c L? are closed and ¢ € L™, let

T;I’K = PKM¢PH|H.

If K = H, we write T(f . These are particular cases of the so-called general Wiener—
Hopf operators [1, 13, 31], which we call general Toeplitz operators [6].

Proposition 2.11 Let X € B(L?*), and let H, K be closed subspaces of L*. Then Tf’K is
X-invariant, whenever X commutes with multiplication by ¢ in L*.

Proof Let f € Hx, g€ Kx+. Then

(T,PXXf, g) = (PxoX [, g) = (pXf, g).
On the other hand,

(Xof,g) = (of  X*g) = (Pxof, X*g) = (T)"f,X"g). =

Corollary 2.12 Let H,K be closed subspaces of L*. Then Tf’K is My -invariant for
all y € L™. In particular, all compressions of a multiplication operator M,, to a closed
subspace of L* are shift-invariant.

3 Invariance and preannihilator

In this section, we will consider (X, Y)-invariance from a different point of view. For
that we use the language of preannihilators and rank-one and rank-two operators in
the preannihilator. Let 3, K be separable Hilbert spaces. Each rank-one operator from
XK to H is usually denoted by x ® y, where x € I, y € X, and it acts as (x ® y)h =
(h, y)x for h € X. The weak* topology (ultraweak topology) in B(J,X) is given
by trace class operators of the form ¢ = }3.° x, ® y, with x, € J(, y, € X such that
Yoo llxn]? <00, X5t | ynl? < 0o. Let By (XK, H) denote the space of all such trace
class operators and | - ||; be the trace norm. Denote also by Fy the set of all operators
in B (X, H) of rank at most k. Note that B(H, X) is a dual space to B;(XK, H) (see
[24, Chapter 16] for details) and the dual action is given by

o)

B(H,K) x By(K,H) 3 (T,t) =< T,t>= Y (Txp, yn).
n=0
For a closed subspace 8 ¢ B(H, K), the preannihilator of § is defined as
S, ={teB(K,H):<T,t>=0forall T € §}.
Let N c By (X, H). Recall that the annihilator of N is given by

N+ = {T e B(H,K):< T, t >=0forall t € N}.
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We will usually write, for T € B(H,K) and t € B, (K, H), that T 1 ¢ if and only if <
T, t >= 0. Note that 8§ ¢ B(H, K) is weak*-closed if and only if § = (8, )*. Recall after
[21] that a weak™-closed subspace 8 ¢ B(H, K) is called k-reflexive (k =1,2,3,4...),
. i
if S = (8, nFx) .

Now we recall previous definitions (Definitions 1.2-1.4) from this perspective.

Proposition 3.1 Let £, H be subspaces of a Hilbert space H such that L c H c H, and
let X € B(H). Then:

(1) £ is invariant for X if and only if

(3.1) X1x®y  forall xel, yeHeoLl.

(2) L is almost-invariant for X if and only if there exists a finite dimensional subspace
J such that
(3.2) X1lx®y  forall xe[),yeﬂ{e(ﬁ@f}').

(3) L is nearly invariant for X with respect to H if and only if
(3.3) X1x®y  forall xelLnHyx, yeHo L.

(4) L is nearly invariant for X with respect to H with defect m if and only if there exists
a finite dimensional subspace F c H such that

(3.4) X1x®y  forall xeLmHX,yeHe(LéBff"),
where m is the smallest dimension of such subspace J.

Now we present a result concerning the topological behavior of the subspace of all
(X, Y)-invariant operators.

Proposition3.2 LetHc Hand K c K. Let Ae B(H,K) and X € B(H), Y € B(X).
Then

8(X,Y)={AeB(H,K):Ais (X,Y)-invariant}
is 2-reflexive.
Proof Note that for A € B(H, K) condition (2.2) is equivalent to
(3.5) <AXfeg-foYg>=0 for feHx,geKy.
Let us denote
(3.6) N={xfog-foYg feHygeKy}

By (3.5), we have
(3.7) 8§(X,Y),oN  and S8(X,Y) o N*.
Thus
(S(X,Y).)* cN* c 8(X, Y).
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Hence, $(X, Y) is weak*-closed (WOT-closed), since it is characterized by annihilat-
ing some trace class (finite rank) operators. Moreover, $(X, Y) is 2-reflexive because

(&XJﬁNﬁgfc(Nmyﬁl:NLC&XJq. =

4 Kernels of (X, Y)-invariant operators

It is a well-known property that kernels of Toeplitz operators are nearly S*-invariant.
It was also proved in a recent paper [27] that kernels of truncated Toeplitz operators
are nearly S$*-invariant with defect not greater than 1. More generally, in this section,
we study the invariance properties of the kernels of (X, Y)-invariant operators.

One may look at the property of near X-invariance of a space £ c H as meaning
that, for any element f € £, either Xf is also in £, or it does not belong to H. In
other words, looking at how X acts on elements of £, we see that either (i) Xf € £, or
(ii) Xf e H\L, or (iii) X f € H\H; if £ is nearly X-invariant, then only (i) and (iii)
can hold.

It is thus natural to ask, when £ = ker A, where A € B(H, K), for which elements
f € ker A does each of the properties (i)-(iii) hold.

On may also consider the question of describing the part £ of ker A such that
X*L ckerA, or X*£ c H, and compare with the analog results for X. Indeed, these
questions are related, since we have, for co-isometric X,

(4.1) (ker A)x+ c X(ker A)x.

To see this note that, by (2.4), f € (ker A) x+ if and only if X* f € (ker A)x. It follows
that f = XX* f € X(ker A) x. Note also that if X is unitary, then

(ker A)x+ = X(ker A)x.

Our first result is a very simple but fundamental one, when considering those
questions. Let (£)3; = H © £ for any closed subset £ c H.
We have the following.

Proposition4.1 LetHc Hand K c K. Let Ae B(H,K) and X € B(H), Y € B(X).
IfAis (X, Y)-invariant, then
AXf € (Ky)x forall fekerAnHy.
Proof If f eker Aand Xf € H, then, for all g € Ky,
(AXf,g)=(Af,Yg) =0, since Af=0. =
As a consequence, we obtain the following necessary and sufficient condition for
ker A to be nearly X-invariant.

Theorem 4.2 Let Hc H, Kc X, Ae B(H,K) and X € B(H), Y € B(K). Assume
that Ais (X, Y)-invariant. Then ker A is nearly X-invariant w.r.t. H if and only if AX f €
Ky forall f € ker An Hy.

Proof The space ker A is nearly X-invariant (in H) if and only if AXf =0 for all
f eker An Hy. Since AXf € (Ky)y, by Proposition 4.1, it will be zero if and only if
AXf € Ky. n
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Corollary 4.3 If A is (X, Y)-invariant and Ky = K, then ker A is nearly X-invariant
w.r.t. H.

Theorem 4.4 Let Hc H and K c X, and let A€ B(H,K), X € B(H), Y € B(X).
Assume that A is (X, Y)-invariant. If (Ky )y, is finite dimensional, with dimension N,
then ker A is nearly X-invariant w.r.t. H with defect m < N.

Proof IfAXf e Ky forall f € ker A n H, then by Proposition 4.1, we have AX f = 0
for all f € ker An Hx and ker A is nearly X-invariant w.r.t. H. Suppose now that there
is f € ker An Hx with AXf ¢ Ky (therefore, we necessarily have AXf +0,1ie, Xf ¢
ker A). Define

J={ge(Ky)x:g=AXf forsame feckerAnHy}.

We have J# {0} because AXf #0 and AXf e (Ky): by Proposition 4.1. So let
{g1-82>---»gm}> with m <N, be a basis for J. For each gj, j=1,2,...,m, let f; be
an element of ker A n Hy such that g; = AX f;. We have that

A Mg} ={feH:Af =g} = {Xfj + h: h e ker A}.

Now take h;j = (I - Piera) X fj € A™'{g;}, which is such that Ah; = gjand hje Ho
ker A. Then, for any f € ker A n Hx, we have

AXf =) cigj= ) (cjAhj) = A(Z thj)’
=1 = =1

with ¢; € C. Hence,
m
Xf-Y cjhjekerA
=1
and we can write that
XfekerA@span{h;:j=1,2,...,m}. ]
Remark 4.5 From now on, we will use the notation
(hjlj=,...m :==span{hj: j=1,...,m}.
We also define
H% =ker An Hy.

Corollary 4.6  Let A be (X, Y)-invariant. If (Ky)x = [ fv] for some fy € K, thenker A
is nearly X-invariant w.r.t. H if and only if AXf1fy for all f € H%. Otherwise ker A
is nearly X-invariant w.r.t. H with defect 1 and, if f, is the element of H§ such that
AX fo = fy, then the defect space is [ho]| with hy = (I = Pker ) X fo-

Two simple examples illustrate these results.

Example 4.7 Let A be a Toeplitz operator (} = K = L?, H = K = H?) and take X =
M;, Y = M,; we have Ky = (H?)p, = H? 50, by (2.6) and Corollary 4.3, ker A is nearly
M;-invariant w.r.t. H>.
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Taking X = M,,Y = M;, we have (Ky)* = Cand it is easy to see that, for a Toeplitz
operator T with nontrivial kernel, there is always fy € ker T such that Tgzfy = 1. So
we conclude from Corollary 4.6 that nontrivial Toeplitz kernels are nearly S-invariant
with defect 1 and thus also almost-invariant for M, with defect 1, at most (see Remark
1.5). These are in fact well-known properties that illustrate Proposition 2.2 in [11],
stating that nearly S*-invariant spaces of the form gKj, as in Hitt’s theorem where
K = K is a model space, are almost-invariant for S with defect 1.

Example 4.8 Let A be an asymmetric truncated Toeplitz operator between model
spaces H = K2, K = Kj, with a, 6 nonconstant inner functions, and let X = M;,
Y = M,. Then (Ky)x = ((K3)m, éﬁ = [k¢], with k¢ = (6 - 6(0)); so, by Example
2.9 and Corollary 4.6, kernels of (asymmetric) truncated Toeplitz operators are nearly
S*-invariant with defect 1, at most (see also [27], Section 4 for the symmetric case).

Orthogonal decompositions of kernels

The study of near invariance properties for kernels of operators raises some natural
questions. For instance, if ker A is nearly X-invariant w.r.t. H, which elements are kept
in ker A under the action of X? If ker A is nearly X-invariant w.r.t. H with defect, which
elements “stay” in H upon the action of X?

In this section, we show that the relations between (X, Y)-invariance of an oper-
ator A and the near invariance properties of its kernel, with respect to X and Y,
yield decompositions of the kernel in terms of orthogonal sums where the terms
behave differently under the action of X. These decompositions generalize well-known
decompositions of model spaces, such as those presented in the introduction.

To motivate the results that follow, we present two simple examples.

Example 5.1 (Model spaces) Let 0 be an inner function and assume, to begin with,
that 6(0) = 0. In this case, we have two decompositions

(5.1) Kg=zK; ®C, Kj=K; @ 4C,

where C = K2.1f(0) # 0, Kj cannot be decomposed similarly in terms of K2 and K3,

but taking into account that K3 = ker T and K3 = ker Tj,, we can generalize (5.1) by

writing

(5.2) K3 =zker T,z @ [kd] = (K3): ® [K{],
Kj =ker T3 & [kg ] = (Kj): @ [k ]

with

(5.3) kS =1-6(0)0, k% =2(6-06(0)).

From the first decomposition in (5.2), we see that zKj c K; @ [z] and
M;(zker T,5) c K3, M;(kY) e L*\H?,

which reflects the fact that K7 is nearly M;-invariant w.r.t. H*.
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From the second decomposition in (5.2), we see that zKj c Kg @ [0] (cf. [11],
Proposition 2.2) and

M, (ker T,5) c K3, M, (kY) e H\K3,

so we may interpret it as saying that K is H-invariant for M, and nearly S-invariant
with defect 1, w.r.t. H, therefore almost-invariant for S with defect 1.

These are well-known properties; still, they provide an interpretation of the equali-
ties in (5.2) which will lead to future results generalizing model space decompositions.

Example 5.2 (Kernels of truncated Toeplitz operators on K3 with analytic symbols)
The kernels of operators in this class are of the form yK3%, where y and § are inner

functions such that 8 < 0, y = 6/f and B divides v -the inner factor of v, [26], [10,
Theorem 7.2]. Let A be a truncated Toeplitz operator with ker A = yKﬁ. Then, from
(5.2), we have

(5.4) ker A= y(K}): @ [ykh] with (kerA): = y(K}):.

Let us assume that y(0) = 0, in which case ny; is not nearly S*-invariant. Note

that, since y(0) = 0, both terms of the orthogonal sum are mapped into H* by
multiplication by z. On the other hand, only the elements of (ker A); are mapped into
ker A. We thus conclude that ker A is almost S*-invariant (or, equivalently, almost Sg-

invariant, where Sg = A? is the truncated shift) with defect 1 and defect space [2yk€ ]

These decompositions of the kernels of certain operators, in terms of direct sums
of subspaces behaving in different ways under multiplication by z and z, can be seen
as resulting from the relation between the shift-invariance of the operator and the
invariance properties of their kernels, as we show next.

Recall that for A € B(H,K) and X € B(H), H c H,

(5.5) HY% = ker An Hy.
Proposition 5.3 Let Ae B(H,K) and X € B(H), H c H. Then
ker A = HY @ Pyer 4 Hy.

Proof We have to prove that H 3‘} is the orthogonal complement of Pyer 4 Hy, in ker A.
Let f eker A, f1PeraHy. Then f1Hy and so f e ker An Hy = H}‘}.
Conversely, if f € H%, then, for all g € H%,

{f> Prera ) = {f>8) =0
because f € Hy and g € Hy,. ]
Recall that
(kerA)x = {f ekerA: Xf ckerA} c Hy.

In its turn, we can decompose H as follows.
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Proposition5.4 LetX e B(H), Y e B(K),HcH,KcXK.IfAe B(H,K)is(X,Y)-
invariant, then

Hy = (ker A)x ® Py (X" A*Ky),
where we abbreviate (Ky )y to Ky.
Proof Let f € (ker A)x. Then obviously AX f = 0, and hence, for all g € K5, we have
0=(AXf,g) = (X[, A"¢) = (f, X"A"¢) = (f, Py (X" A"g)).
Therefore, f1Pya(X*AKy ) forall f € (ker A)x. Conversely, let f € H% and
(5.6) fLPya (X*A'KY).
For all g € Ky, we have, by (2.2), 0 = (AXf, g) = (Af, Yg) so
0=(Xf,A"g) = (f. X"A"g) = (f, Py (X" A"g)).
Hence,
(5.7) JLPys(X*A™Ky).

From (5.6) and (5.7), we conclude that, for f € (ker A)y, flPH;(X*A*K), so for all
g € K, we have

0=(f, Py (X"A"g)) = (f, X" A"g) = (AX[. g),
and hence AXf =0, s0 X f € ker A and thus f € (ker A). ]

Clearly, ker A is nearly X-invariant w.r.t. H if and only if H{ = (ker A)x, so we have
the following.

Corollary 5.5 Let X € B(H), Y € B(X), Hc H, K c K. Assume that A € B(H,K)
is (X, Y)-invariant. Then the subspace ker A is nearly X-invariant w.r.t. H if and only if
Py (X*AKy) = {0}, ice, (AXf,g) =0 forall f € Hy, g € Ky.

The subspace ker A is nearly X-invariant w.r.t. H with defect if and only if

(5.8) dim Pyy (X*AK}) < oo.
As a consequence of the previous results, we have the following.

Theorem 5.6 Let X € B(H), Ye B(K), HcH, KcX. IfAe B(H,K) is (X,Y)-
invariant, then we have the orthogonal decomposition

(5.9) ker A = (ker A)x ® Pys (X" A"Ky) @ Prer aHy.
Moreover, if X, Y are co-isometries, then A is (X*, Y*)-invariant, and we have
(5.10) ker A = (ker A)x» ® Py, (XA*Ky+) ® PeeraHyo

Corollary 5.7 Let X € B(H), Hc K. If A € B(H) is X-invariant, then we have the
orthogonal decomposition

(5.11) ker A = (ker A)x @ Pys (X*A*Hy.) @ Prer aHx.
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Moreover, if X is a co-isometry, then A is X*-invariant, and we have

(5.12) ker A = (ker A)x+ ® Pya (XA*Hy) ® PieraHye.
o
Remark 5.8 1In (5.9), we have that (ker A) x consists of the elements of ker A which
are mapped into ker A by X;
(5.13) M (X) = Pya (X" A"Ky)

consists of elements which are mapped into H\ ker A by X; and
(5.14) M (X) := Peer aHy

consists of elements which are mapped into H\H by X.
Similarly, having (5.10), we can consider the following spaces:

(5.15) (ker A)x+;  Mu(X"):= Pya(XA'Ky.);  MJ(X") = PieraHxo.
According to definitions (5.13) and (5.14), we have the following.

Corollary 5.9 Let X e B(H), Ye B(X), HcH, Kc XK. IfAe B(H,K) is (X, Y)-
invariant, then:

(1) ker An Hy = H4 = (ker A)x & M/,(X).

(2) ker A is nearly X-invariant w.r.t. H if and only if M/, (X) = {0}.

(3) Ifdim M’ (X) < oo, ker A is nearly X-invariant with defect.

(4) MY (X) = {0} if and only if X (ker A) c H, i.e., ker A is almost-invariant for X.
(5) ker A is almost-invariant for X = Py X|y if M’ (X) = {0}, dim M, (X) < co.

Corollary 5.10 Let X € B(H), Y € B(X), H c H, K c K. Assume that A € B(H,K)
is (X, Y)-invariant. f Ky = [ fy |, Hy = [ fx ], then

ker A = (kerA)X [$] [PH?}(X*A*fY)] ® [PkerAfX]~
In this case, ker A is nearly X-invariant with defect at most 1.

Remark 5.11 With the same assumptions as in Corollary 5.10 and taking Corollary
5.9(1) into account, we have, for f € HA4,

Xf € X(ker A)x ® [XPys (X*A" fy)],

where the direct sum is orthogonal if X is unitary, and the second term in the sum
gives the defect space for the near X-invariance of ker A.

We finish this section by establishing a relation between X-invariance and conjuga-
tions that will be used later. Recall that by a conjugation on J{, we mean an antilinear
operator which is involutive and isometric [16].

Proposition 5.12  Let C be a conjugation on H, and let H c H be a Hilbert space. If
C(H) = H and X € B(H) is such that CX* = XC, then C(Hx) = Hx~.

Proof LetfeH,XfeH . ThenCfeHand X*Cf=CXfecH. ]
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6 Toeplitz operators

Now we apply the previous results to kernels of Toeplitz operators. In what follows, we
assume that G € L and Tg: H? - H? isdefined by Tg f = P*G f forall f € H?, where
P is the orthogonal projection from L? onto H?. Since, for any nonzero Toeplitz
kernel strictly contained in H?, one can associate a unimodular symbol [8, 29], we
may assume that |G| = 1. We assume also that ker Tg # {0}. We have the following
8, 23].

Proposition 6.1 Let G € L*. For |G| = 1, we have ker Tg # {0} if and only if G admits
a factorization of the form G = O,z10;", where I is an inner function, O, € H? is outer.

Since the existence of a factorization such as described in Proposition 6.1 is in
general difficult to verify, unless G belongs to some special class such as that of
nonvanishing piecewise continuous functions on the unit circle T [25], one may
alternatively consider the Riemann-Hilbert problem

(6.1) Gf.=f with f, eH? f eH?”:=zH2

Indeed, ker T consist of all solutions f. to this problem, so ker T # {0} if and only
if there exists a nonzero solution to (6.1) (which may be obtained using a variety of
methods developed to solve Riemann-Hilbert problems).

Consider K =K =L? andlet X = Mg, or simply X = B, with § inner,and Y = X*.
We have that T is f-invariant by Corollary 2.12 and, in this case,

(6.2) H = H?, HX:(HZ)ﬁ:HZ, Hy- :(HZ)B:ﬁHZ,

(6.3) Hy = {0}, Hx. = K.

To apply the decomposition given in Theorem 5.6, we first describe the spaces
(ker T ) and (ker Tg ) 5.

Proposition 6.2  Let 3 be an inner function, and let G € L*°. Then
(ker Tg)p = ker Tgg; (ker Tg) g = Pker Tpg.

Proof We have ker Tg¢ c ker Tg, where the inclusion is strict if 8 ¢ C. On the other
hand, if f €ker Tgg, then BGf = f- € H, so G(Bf) = f- and it follows that Bf €
ker T. Hence, ker T c (ker Tg ) g. Conversely, if f € (ker T ) g, then f, Bf € ker T,
s0 G(Bf) = f- € H?, which is equivalent to (G) f = f_, and thus f € ker Tgg.

The second equality follows by (4.1). [ ]

Remark 6.3 The relations between ker T and ker T were studied in [5] where
it was shown, in particular, that ker Tgg = {0} if dimker Tg < 0o and dim Kf; >

dimker Tg. However, it may be difficult to see whether or not ker Tg = {0} when
ker Tg is infinite dimensional and f3 is not a finite Blaschke product (see, for instance,
[5] for some examples).

The decomposition theorem now yields the following.
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Theorem 6.4 Let G e L* and f be an inner function. The following orthogonal
decompositions hold:

(6.4) ker T = ker Tgg @ Prer 15 (Gé?é) = (HZ);G;

(6.5) ker Tg = Bker Tgg ® Prer 75 Kf;

Proof The decompositions follow from Corollary 5.7, Propositions 5.4 and 6.2, and
(6.2) and (6.3). For (6.4), we took into account that, for A = Tg,

PHQ(BP+GK[23) = Pkel‘A(BP+GK[2§) = Pyer Te (BGKf?)
and fGK} = GZKj. ]

Remark 6.5 With the notation (5.13) and (5.14), we see that in (6.4), we have
M’ (B) = {0}, which reflects the fact that S ker T ¢ H?. It also follows that ker Tg is
almost-invariant for Mg if 8 is a finite Blaschke product. On the other hand, regarding
(6.5), with X = f3, one sees that M’,(f8) = {0} which corresponds to ker Tg being
nearly -invariant.

Example 6.6 1f G = &, where a is an inner function, then ker T = K2. If B < a, the
decompositions (6.4) and (6.5) become

2 2 = 2 >

Kg = K ® Py (azK}) = K ® Pu(5PZK})
_ 12 2\ _ 12 2
_K%eaPa(%Kﬁ)_K%eB%Kﬁ

and
K} = BK: ® P,K; = BK: @ K3,
«a=B s ® Lo Ky B s ®Kp
and we recover the known decompositions for K2,

(6.6) K2 = KZ% ® %K,ﬁ, K2 = ﬁK% ® Kj.

Now consider, for a given inner function a, the usual conjugation C, in L* given
by C. f = azf. This conjugation leaves the model space K2 invariant, i.e., Cu K2 = K2.
Moreover, as shown in [4], it is the only (up to multiplication by a constant of
modulus 1) conjugation C such that CM, = M;C and CK?2 c K2. It is not difficult
to see that this unique conjugation C, maps the two decompositions (6.6) onto each
other, i.e.,

(6.7) Ca(KZ%) = ﬁKZ%, Ca(%Ké) = K.
Recently, in [14], it was shown that, for a given unimodular function G, the only (up

to multiplication by a constant of modulus 1) conjugation C such that CM, = M;C and
Cker Tg c ker Tg has the form

(6.8) Cof = Gzf, fel*
Using this conjugation, the results in (6.7) may be generalized for all Toeplitz kernels
as follows.
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Proposition 6.7 Let G € L* be a unimodular function, and let Cg be the conjugation
defined by (6.8). Then

(6.9) CG (ker TG)B = (ker TG)ﬁ,

(6.10) Co (Pher 13 K}) = Prer 16 (CoK}) = Pher 7, (GZK3).

Proof The first equality is a consequence of Proposition 5.12, with I = ker T, since
CoMj = MpCg. The second equality is a consequence of Cg being a conjugation on
ker Tg. [ |

We thus have, as it happened in the case of model spaces:

Corollary 6.8 The two decompositions in Theorem 6.4 are mapped into each other by
the conjugation Cg defined on ker Tg.

The following example also raises an interesting question.

Example 6.9 Let|G|=1and take 8 = z. If G = 0, then ker Tg = K3. Since Pp(20) =
k8, we have

(6.11) K3 =ker T,; ® [kg].

In Example 6.9, k¢ is a maximal function for the Toeplitz kernel K}, i.e., it cannot
belong to any Toeplitz kernel strictly contained in K3, such as ker T,5 [7]. However,
(6.11) tells us furthermore that there exists a maximal function for Kg which is
orthogonal to ker T,5 = (K3)..

This raises the following question: given any Toeplitz kernel, ker Tg, is there a
maximal function which is orthogonal to (ker T¢).? Since, from (6.4),

ker Tg = (ker Tg), ® [ Prer 1 (2G) ],

that question in equivalent to asking whether Py, 1, (£G) is a maximal function for
ker Tg.

It was shown in [7] that every Toeplitz kernel has a maximal function and, in [5, 8]
that fy is a maximal function for ker T if and only if G fyr = zh, where h € H? is
outer. We have

Pker Te (éG) = Pker Tg (CGl) = CG(Pker Tcl) = 2kaer T(;1
and thus
GPier 15 (2G) = ZPyer 1o 1.

Therefore, Pyer 7 (EG) is a maximal function for ker Tg if and only if Py, 1,1 is outer.
Now, using Hitt’'s/Hayashi’s representation ker Tg = gK; (Theorem 1.1), where g is an
outer function, and the expression for Py, 7, given in [18], we have

Prer1o1 = gP1g-1=gIP"IP* g = g g(0)(1-1(0)I)

which is outer, since g(0) # 0. We have thus proved the following.
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Proposition 6.10 Let G € L be a unimodular function. There exists a maximal
function fy in ker Tg such that

ker Tg =ker T, ® [ fm]-

Ifker Tg = gKj is Hitt’s representation of ker T according to Theorem 1.1, then such a
maximal function is given by

fM = Prer 16 (2(-;) = 2Gg_g(0)(1 - I(O)I-)
7 Truncated Toeplitz operators

Now we apply the previous results to truncated Toeplitz operators, for X = $ and X =
B, identifying as before M, with «, for o € L.

Let 6, 8 be nonconstant inner functions. Consider the model space Kj c L? and
the operator X = M (we will simply write X = B). Let G € L™, and let A%: K§ - K3
be defined by A% f = PyGf, f € K2. In this case, we have 3{ = L?, H = K3 and from
Proposition 6.2 and Theorem 6.4,

(71)  Hp = (Kg)p = ker Ty, (Hp)ie = (K3)j = Po(62K),

(72)  Hy=(Kg) = Bker Tyg, (Hp)iz = (K3)5 = Po(KR),

where we abbreviate, for a € L, [(Kj)q 1. to (K3)z-
6

Two particular cases are worth mentioning. The first is the case where (K3)p =
ker Tgg = {0}, which was mentioned in Section 5. In this case, we have from Theorem

6.4 that Py (02K3) = Py(0BK}) = K and Py(K}) = Kp.
The second case is with 8 < 0, where

(73) Hy = (K§)g = K3, (Hp)gz = (K3)j = 5Kp»
(7.4) Hy = (K§)5 = BKG, (Hp)ga = (K§)j = K.
In what follows, we will use the notation
(75) (K3)5 = ker A% n (K)x.
We start by applying Theorem 5.6 for X = 3:

Theorem 7.1 Let 0, 3 be nonconstant inner functions, and let G € L*°. Then

(7.6) ker AZ, = (ker A% ) ® Mg (B) & ME(B),
where

(77) M (B) = My (M) = Pigye BAG(PT(0FK})),
(78) Mg(/;)) = MX‘(’;(MB) :PkerA‘(’;(Ké)’

abbreviating (K;)é =Kj o (K§)p and (Kg)z = Kj © (K3) > respectively.

https://doi.org/10.4153/50008414X23000196 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X23000196

698 M. C. Camara, K. Kli$-Garlicka, and M. Ptak

Remark 7.2 Note that M, (B), M{(3) cannot be zero simultaneously (when ker Al
is not zero). In that case ker A% would be -invariant and in consequence f ker A%, c
ker A% c H?. That would give ker A% c Bker A%, implying that ker A% c pNH? for
any N, which is a contradiction.

Corollary 7.3 With the same assumptions and notation as in Theorem 7.1, the following
are equivalent:

(1) ME(B) ={0}.
(2) ker AeG is Ké -stable for M.

(3) ker A7 c BKG N Kj = Bker Ty = (K3) .

(4) ker A% = (kerA?;)[; ® Prer at ﬁA%(P*(GBKﬁ)).

Proof The equivalence (1) <> (2) is obvious. Regarding (1) <> (3), we have that
Piera? (K3) = {0} ifand only if Py, A2 (PoK3) = Pyer m (1<2)l = {0}, which is equiv-
alent to ker A%, c (Ke) = Bker Tgg. In this case, we have (Kz)ﬁ ker A% n (Ko)ﬁ =

ker A9 > so the decomposition (4) follows from Theorem 7.1. Conversely, if (4) holds,
then no element of ker A% is mapped outside ker A% by M 4> s0 (1) holds. u

In the following corollary, note that saying that a closed subspace K of K} is nearly
S$*-invariant w.r.t. H* is equivalent to saying that K is nearly S*-invariant w.r.t. K3,
since K} is itself nearly S*-invariant.

Corollary 7.4 With the same assumptions and notation as in Theorem 71, the following
are equivalent:

1) M (ﬁ) {0}.

2) kerA is nearlyﬂ invariant (w.r.t. H, w.r.t. Ké)

(3) AY (ﬁf) (K3)p = ker Tgg, for all f e (Kz)ﬁ

(4) Pg(6Gf) =0, forall fe (Kz)g

Proof The first equivalence is trivial. Note that Mg(B) ={0} if and only if
P(Kg)g(ﬁA%(P+6[3Kﬁ)) ={0}. This is equivalent to the fact that, for all he
(Kf,)é, fe (K;)g,we have

= (BAGH. f) = (h AG(BS)),
thatis, A% (Bf) € (K2)p = ker Tg- So the second equivalence is proved.

Now, we have that f € (Kz)ﬁ ifand only if f e ker A%, Bf € K2,50 Gf = h_ + Oh,
with h_ € H?, h, € H?,and h, = P*(6Gf). Assume (3). Then A% (Bf) € (K3)p ifand
only if BAS (Bf) € K2, ie., OPTO(BAL(BSf)) =0, 50

0=P*0BPyGpf = P*OBPy(Oh.) = P*OBPOP fh,
~P*0B(I- 6P*§)0P fh, = BP~fh, — P*BP* (P~ fh,)
=Pgh, = PsP*(0Gf) = Pg(0Gf).
Thus, (4) holds and (4) = (3) is also clear. ]
Applying Theorem 5.6 to ker A% for X = B, we obtain the following.
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Theorem 7.5 Let 0,  be nonconstant inner functions, and let G € L*°. Then
(7.9) ker A% = (ker A%); © My (B) ® ME(B),
where, for H = K3,

(710)  MG(B) = My (Mp) = Prasye (BA% (K3)5) = Pisyo (BASPo(K2)),

(711) Mg(ﬁ) = M,A,% (Mﬁ) = PkerA‘(’; (Kg)ﬁ = PkerA%(HBKé)’
abbreviating (Ké)lﬁ =K o (K§)p and (K;)Z =K} o (Kﬁ)l;, respectively.

Remark 7.6 Note that M (), M{(f3) cannot be zero simultaneously, because then
ker A% would be B-invariant and thus S ker A% c ker A%. Repeating the reasoning we

would get BN ker A% c ker A% c K2 for any N. Thus 6B ker A% c zH? and therefore
Oker A% c BNZH? for all N, meaning that ker A% c 6N, fNzH? = {0}.

Now we study the relations between the decomposi_tions of Theorems 7.1 and 7.5,
and the usual conjugation on K32, defined by Cy f = 6z f. Note that, from Proposition
6.7, we have

(712) Co(Kp)p = (K5) -

Truncated Toeplitz operators are complex-symmetric for the conjugation Cy, i.e.,
(7.13) CoA%Co = AY.

Proposition 7.7 Let G € L™, and let  be an inner function. Then:

(1) Co(ker A%) =ker(A%)* =ker A%.

(2) Cg(kerAeG)B = (kerAeG-)/;.
(3) CePkerAf;Ce = PkerAsG'

(@) Co(K3)§ = (K3)5.

Proof (1) was proved in [9, Section 3]. For (2), let f ¢ (kerAQG)B. Then, by

(713), Co f € A% and BCy f = POZf = 02(Bf) = Co(Bf) € ker A%, by (1), because B ¢
ker A%. Therefore (2) holds. Condition (3) follows from (2) and the properties of a
conjugation. Equalities (4) and (5) follow from (1)-(3) and Proposition 5.12 taking
into account that (Kf,)g = ker A n (K3) and (K3)§ = ker AZ n (K3)g. n

Note that, from Proposition 7.7, we have that Cy (ker AHG- )5 = (ker A%)p. Therefore,
we have the following.

Corollary 7.8 'The orthogonal decomposition of ker A% in Theorem 75 and the
orthogonal decomposition of kerABG according to Theorem 7.1 are mapped into each

other by_ the conjugation Co _and we have (kerA%)s =C9(kerA%)l;, Mg(B) =
CoMg(B), Mg (B) = Co Mg(P).
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Now we consider, in particular, the case § = zand X = M; (or simply X = z), which
allows us also to compare the results thus obtained with some other existing results
on near S*-invariance for kernels of truncated Toeplitz operators.

The equalities (7.1) and (7.2) now take the form

(714) (K5): =ker T g, (Kg): = [k
(715) (Kg)z =zker T,5 = {p € K : 9(0) =0}, (K3): = [kg ]

where [ f] = span{f} and we abbreviate [ (K3 )4 ]1 to (K3)z-
0
In what follows, we take G € L*.

Proposition 7.9  Let 0 be an inner function, and let G € L*°. We have that

(716) (ker 4%). = {9 € (K3). : (P*(GBCo9)) (0) = 0},
(717) (ker A%): = {g € (K}): : (P*(GB9)) (0) = 0}
(718) - {9 < K} : 9(0) = 0, (P*(GBy)) (0) = 0}

Proof Let¢ € (K3),. We have ¢ € ker A% if and only if

(719) Gy =¢_+0¢,, 9. cH;,

and z¢ € ker A% if and only if

(7.20) Gzp =y_+0y,, v, e H>.

From (719), we also get

(721) Gzp =z¢_+0z¢,, ¢, cH2,

and, if ¢_ = z77; with 77, € H2, we can write

(7.22) Gzg =77 + 029, =1, — 7,(0) + 77, (0) + Oz¢,.

Comparing (7.22) with (7.20), we conclude that ¢ € (ker A%), if and only if 77, (0) = 0.
Since ¢_ = P~ (Gg), we have

1. = 2p- = 2P~ (Gg) = 2(zP" (2G§)) = P*(GOCq9),

and thus (7.16) follows.
Now let ¢ € ker A%, z¢ € ker A%, which is equivalent to

(7.23) Go=¢_+0¢,, 9(0)=0, GZp = y_ + Oy,
with ¢, € H2, v, € H2. From the first equality in (7.23), we get

(7.24)
Gzp =z¢_+ 029, =Z9_ + 0Z(9+ — 9.(0)) + 9.(0)2(6 - 6(0)) + ¢,.(0)26(0)

and comparing with the third equality in (7.23) we conclude that (7.23) holds if and
only if ¢(0) = 0, ¢, (0) = 0. Since ¢, = P*(0G¢), (717) holds. |

Now, from Corollary 7.3, we have the following.

https://doi.org/10.4153/50008414X23000196 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X23000196

General Toeplitz kernels and (X, Y )-invariance 701

Proposition 710 Let 0 be an inner function, and let G € L*. The following are
equivalent:

(1) ker A% is K;—stablefor M;.

(2) ker A% 1Kk

(3) £(0) =0 forall f e ker A%.

(4) ker A% = (kerA%); @ [PkerA% (zPaGkS)].

If any of these conditions holds, then ker A% is nearly z-invariant (w.r.t. H?, w.r.t. K3)
with defect 1 and almost-invariant with defect 1 for S; = PyzPy) K-

Proof We have that ker A% 1 k¢ if and only if ker A% 1 1 which is the same as f(0) =
0, forall f € ker A(’G. That is equivalent to ker AGG c zKé n Ké =zker T, 5 so(2)and (3)
are equivalent and, by Corollary 7.3, they are also equivalent to (1) and to

ker A% = (ker A%); @ [PkerA% (zA%P+(02))]

which in its turn is equivalent to (4). Since, with the notation of Theorem 71, M (2) =
{0} (so ML (2) +{0}), we have that ker A is K3-stable for M; and nearly S*-
invariant with defect L. ]

From Corollary 7.4, we also get the following.

Proposition 711 Let 8 be an inner function, and let G € L*. The following are
equivalent:

(1) ker A% is nearly z-invariant (w.r.t. H, w.r.t. K;).
() A%L(zf) Lk, forall f eker A%, £(0) = 0.

(3) P*(GOf)(0) =0, forall f eker A%, £(0) =0.
(4) There exists f, € ker A%, such that £,(0) # 0.

Proof We first remark that (K2)§ = ker A% n (K2); = {¢ e ker A% : ¢(0) = 0}. To
see (1) < (2) recall from Corollary 7.4 that ker AoG is nearly z-invariant if and only
if M((z) = {0}, ie, AL(Zf) eker T,5 = (K3),, for all f e ker A%, £(0) =0, which
is equivalent to (2) since (K2)% = [k§]. On the other hand, by Corollary 7.4, (1) is
equivalent to

(7.25) P.(Gf) =0, for all f eker A%, £(0) = 0.

Since f € ker A% if and only if Gf = f- + 0f, with f. € H2, we have that for all f ¢
ker A%, £(0) = 0 the condition (7.25) is equivalent to

zP - zP*(Of_ + f.) = zP" zf, = 0.
This is equivalent to
zf, € H%,
which holds if and only if
£.(0) =0,
In other words,

P*(8Gf) (0) =0 for all f eker AZ, £(0)=0.
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So (1) < (3). Regarding the last equivalence, (3) < (4), we have that if M (z) =
{0}, then M{(z) # {0}, so by (3) in Proposition 710, there must be some f; € ker A%
with £,(0) # 0. Conversely, assume that there exists f; € ker A% with £;(0) # 0. Let g
be any element of ker A%. Then there exists h, € H?and g_, h_ € H? such that fig = g_

and Gg=h_+0hy,ie,
6 0 g\ (g
G 0)\-hy) \h_)"

Analogous relation holds also for f;, so

(6 o) A)-( )

with f, € H?, fi_, fo— € H?. Calculating the determinants on both sides, we get

gh+hifi=gfo-—h fi.
Note that the left-hand side is an element of H' and the right-hand side is an element

of zH!. Thus, both have to be 0 and it follows that h, = %, with £1(0) # 0, so h, must

]
vanish at 0, whenever g(0) = 0, i.e, forall g = H?G. So (3) follows. |

As a consequence of Propositions 7.9 and 710 and Theorem 7.1, we can now state
the following.

Theorem 7.12  Let 0 be an inner function and G € L*°. We have that either:

(1) there exists f, € ker A% with £,(0) # 0 and, in that case, ker A% is nearly z-invariant
(w.r.t. H?, w.rt. Kﬁ) and

(7.26) ker A% = (ker A%); @ [PkerA"G k8] = (kerA%); @ [PkerA%I] ,

or
(2) f(0) = 0forall f € ker A% and, in that case, ker A%, is nearly z-invariant with defect
1 and K§-stable for M, and we have

(727) ker A% = (ker A%); ® [PkerA% (zA%icg)] = (K3)$.

Remark 713 We recover in Theorem 712 some results obtained, in a different way,
in [27, Section 4], namely that ker AGG is nearly z-invariant (w.r.t. Kf,) if there exists
f e ker A% with £,(0) # 0, and ker A% is nearly z-invariant with defect 1 if £(0) =0
for all f € ker AZ. Another interesting result from [27] is that, in the latter case, if n
is the greatest natural number such that ker A% c z"H?, then z™" ker A% is a nearly
S*-invariant subspace. Again, we can obtain this result differently, by observing that

(7.28) z " ker A% = ker Ag.n,

where not all functions in ker Ag,» vanish at 0, so by Proposition 7.10, it is nearly
Z-invariant (w.r.t. Ké). To prove (7.28), take f € ker AeG c Kz N z"H?, then for some
h, € H, h_ e H*, we have Gf = h_ + Oh,. Thus (Gz")(z™"f) =h_+0h,, so f =
Z"(z7"f) with z7" f e ker A . For the reverse inclusion, note that, if (Gz")f =
h_+ 0h,, then G(2"f) = h_ + 0h, and 2" f € ker A%, so z" ker A% , c ker AZ.
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We now compare the decomposition obtained in Example 5.2 with (726). We can
assume that G € K2, and ker A%, = nyzs with <0, y=0/B,y(0) =0, <G’ (inner

part of G). So, by Theorem 712, ker A% is nearly z-invariant with defect 1 and K32-
invariant for M;, and we have

ker A% = (ker 43): @ [Py (A5 )],

where P, 4o = P, K2 = yPgyP*. One can see that

(ker AZ)z = (yK)z = y(Kp):.
It is left to show that [P, a2 (ZA% icg)] = [ykg]. Indeed, we have
(729) Py (zA%kS) = yPsj(zA%kS) = yPs70G,
because
ALY = Po(Gz(60 - 6(0))) = Pa(G20) - Po(Gz0(0)) = CoG = 02G.
Hence, from (7.29),
Py (zAgkg) = yPs(76G) = yPs(G),

where BG € H2, because 8 divides the inner factor G'. Thus Pg(BG) =ceC and

YPs(PG) = cyky.

Note that the dichotomy of Theorem 7.12 does not extend to other cases with
B # z, as we show in the following simple example where both Mg () and MZ(f)
are different from {0}.

Example 714 Let G = 2%, 0 = z*. Then ker A% = zK?, so, for X = Z%, the decomposi-
tion (7.6) has the form

ker A% = (ker A%);. @ ML (2%) @ MJ(Z?) = [2°] @ [£] @ [2].

One can also study the z-invariance properties of kernels of truncated Toeplitz
operators and obtain the decomposition given in Theorem 7.5 with 8 =z, using
Theorem 712 and Corollary 7.8.

Theorem 7.15 Let 8 be an inner function and G € L*°. We have either

(730) ker AG = (ker AG); ® [Pe; 40 ko,

where the second term in the orthogonal sum corresponds to M{.(2) in Theorem 71, or
9 9 916

(7.31) ker A7 = (ker AG), @ [PkerA"G (zAGkg) ],

where the second term in the orthogonal sum corresponds to M (z) in Theorem 7.1.

Corollary 716  The following are equivalent:

(1) ker A% is nearly z-invariant (w.r.t. K3).
(2) ker(A%) is nearly z-invariant (w.r.t. Kj).
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(3) (éA%kg,f) =0 forall f eker A%, (Cof)(0) = 0.

(4) (P~Gf) € zH? for all f e ker A%, (Co£)(0) = 0.

Proof The equivalence between (1) and (2) is a direct consequence of the previous
results.

By Theorem 711, (2) is equivalent to the fact that, for all f € ker A% such that £(0) =
0, the first equality holds and

0= (Ag(2f). ko) = (AL (2/). Coky) = (ko, CoAG(2f))
= (ko, AGCo(2f)) = (AGko, 6f) = (4G ks, Cof ).
For f = Cyf, we have, thus, that the above is equivalent to (éA%, fy=0forall fe
kerA%, (Cgf)(O) = 0. Hence (2)<(3).
Now we show that (3)<>(4). Note that, for f such as in (3), we have
0= (2AgK( f) = (ko, AGzf) = (Kj, Gzf)
= (Ko, Gf) = (2,Gf) - (26(0)0, Gf).
Since f € ker A%, we have that Gf = P~(Gf) + 0P*8(Gf), so the previous equality is

equivalent to

0=(z,P"Gf) - 0(0)(z0, P"Gf) — 6(0)(z0, 0P G f)
=(z,P"Gf) - 0(0)(P"26,P Gf)
=(2,P~Gf) - 6(0)6(0)(z, P"G)
~(1-[6(0))(z P Gf).
This is equivalent to
(z,P~Gf) =0,
ie, P Gf e zH?. [
Analogously, we have the following.

Corollary 717  The following are equivalent:

1) ker A% is nearly z-invariant with defect 1 (w.r.t. Kﬁ).
(2) ker(A% )~* is nearly z-invariant with defect 1 (w.r.t. K;).
(3) ker ABleg.

(4) (Cof)(0) =0 forall f e ker AZ.

(5) zkerAeG c Kg.
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