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Abstract

In this paper we establish an integral formula for compact hypersurfaces in non-flat space forms, and
apply it to derive some interesting applications. In particular, we obtain a characterization of geodesic
spheres in terms of a relationship between the scalar curvature of the hypersurface and the size of its
Gauss map image. We also derive an inequality involving the average scalar curvature of the hypersurface
and the radius of a geodesic ball in the ambient space containing the hypersurface, characterizing the
geodesic spheres as those for which equality holds.
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1. Introduction

In a recent paper, Deshmukh [1] obtained an integral formula for compact hypersur-
faces in Euclidean space E"+1, and applied it to derive some interesting consequences
on such hypersurfaces, including a characterization of round sphere's as well as an
inequality involving the average scalar curvature and the extrinsic radius of the hy-
persurface (we also refer the reader to [2, 3, 4] for some other applications of this
integral formula obtained by the same author). More recently, Vlachos [5] obtained an
extension of this integral formula to the case of compact hypersurfaces in the non-flat
space forms, namely the sphere §n+l and the hyperbolic space H"+l, and applied it to
characterize geodesic spheres in space forms.
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In this paper we obtain another integral formula for compact hypersurfaces in
the non-flat space forms (see Proposition 2.1), which is similar to the previous ones
and allows us to derive new applications. In particular, we characterize the geodesic
spheres in non-flat space forms as follows (see Corollary 3.3 and Corollary 3.4):

• Let M" be a compact, oriented hypersurface immersed in §n+1 such that its
Ricci curvature satisfies Ric > (rc + 2)(n — 1). Let us assume that its Gauss map
image N(Af) c §"+1 is contained in a tubular neighbourhood of radius 0 < r\ < n/2
around an equator of Sn+1. If its scalar curvature 5 satisfies S < n{n — 1)/ sin2(rj),
then M is a geodesic sphere of S"+1.

• Let M" be a compact, oriented hypersurface immersed in Hn+l such that its
Ricci curvature satisfies Ric > — (n + 2)(n — 1). Let us assume that the Gauss map
image N(M) c §"+l is contained in a tubular neighbourhood of (timelike) radius
17 > 0 around an equator of de Sitter space §"+1. If its scalar curvature 5 satisfies
S < n(n — 1)/ sinh2(?j), then M is a geodesic sphere of H"+1.

As another application of our integral formula, we also extend Deshmukh's inequal-
ity for the average scalar curvature to the case of compact hypersurfaces in non-flat
space forms, characterizing the geodesic spheres as those for which equality holds
(see Theorem 3.5 and Theorem 3.6):

• Let M" be a compact, oriented hypersurface immersed in §n+1 such that
Ric > (n + 2)(n — 1). If Mn is contained in a geodesic ball in §n+1 of radius
0 < Q < n/2, then

av(« >

Moreover, the equality holds if and only if M" is a geodesic sphere of radius Q.
• Let M" be a compact, oriented hypersurface immersed in H"+1 such that

Ric > — in + 2) (n — 1) and the scalar curvature S is positive on M. If M" is contained
in a geodesic ball in W+l of radius Q > 0, then

Moreover, the equality holds if and only if M" is a geodesic sphere of radius Q.

2. The integral formula

Throughout this paper we will denote by Mn+l(c) the standard model for an
(n + l)-dimensional, complete and simply connected space with constant sectional
curvature c,c= 1 , -1 . Let E"+\ s = 0, 1, denote the (n + 2)-dimensional real vector
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space Kn+2 endowed with the metric tensor given by

n+l

(V, W) = ] P VjWj + (-l)SVn+2Wn+2.
i—l

Then A?n+1(l) = §n+1 c En+2 is the (n + 1)-dimensional Euclidean sphere,

§"+1 = {x e E"+2: (x,x) = 1},

and Mn+1(-1) = Hn+l c E?+2 is the (n + l)-dimensional hyperbolic space,

Hn+1 = {x e E?+2: {x,x) = -l,xn+2 > 1}.

Let ir : Mn -*• Mn+i (c) c E"+2 be an immersed, oriented, connected hypersurface
in M"+1 (c), and let N be its globally defined unit normal field. We will denote by V°,
V and V the Levi-Civita connections of E"+2, Mn+l(c) and Mn, respectively. Then
the Gauss and Weingarten formulas for M" in Mn+1(c) C E"+2 are given respectively
by

(1) V° Y = Vx Y - c(X, Y)yjr = Vx Y + (AX, Y)N - c(X,

and

(2)

for all tangent vector fields X, Y e 3£(M), where A stands for the shape operator of
M" in Mn+l(c) associated to N.

For a fixed arbitrary vector a e E"+2, let us consider the height function (a, \(r) and
the function (a, N), which are defined on M". From (1) and (2) we know that their
gradients are given by V(a, \fr) = aT, and

(3) V(a,N) = - A ( a T ) ,

where

(4) aT = a - (a, N)N - c(a, $)$ eX(M).

By taking covariant derivative in (4) and using (1) and (2), we obtain from V°a = 0
that

(5) VxaT = (a, N)A (X) - c(a,
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for X € X(M). Therefore, the Laplacian of (a, ^) is given by

n

(6) A (a, ir) = J2 ^^T, E,) = nH(a, N) - nc(a, +),

where {E\,... , £„} is a local orthonormal frame on M" and // = tr(A)/« is the
mean curvature function of M", and

(7) ^A(a, r{,)2 = (a, V>A(a, f) + |V(a, ^>|2

= /itf(«, V) (a, N) - Bc(a, V)2 + |aT|2.

On the other hand, from (3) the Laplacian of (a, N) is given by

n n n

A {a, N) = - £ (V£,(AaT), £,-) = - £ ((V£lA)aT, £,) - ^ (A(V£,a
T), £,-).

i=i ; = i i=i

Using now the Codazzi equation, (VxA)(aT) = (VaxA)(X), jointly with (5) we
conclude that

A(a,N) = - t r ( V , M ) - (a, N)|A|2 + ncH{a, f)

= -n{VH, a) - (a, N)|A|2 + ncH(a, f),

where \A\2 = tr(A2), and

1 2 = n ( a N)(V// a) (a N)2|A|2+«c//(a V)(a N> + |A(aT)|2(8) -A(a, W = -n(a, N)(V//, a) - (a, Ny\A\z+ncH (a, f){a, N) + |A(a' )|z.

Now, let us recall that the Ricci curvature of M" is given by

Ric(X, Y) = (n - l)c(X, Y) + nH(AX, Y) - {AX, A Y),

for X, Y € 3C(A/). This allows us to write

|A(aT)|2 = (n- l)c|aT|2 - «//(V(a, N), a) - Ric(aT, aT),

so that (8) becomes

(9) -A(a,N)2 = -n(V(//(a, N»,a) - (a, N)2|A|2 + ncH{a, ^)(a, N)

- Ric(aT, aT) + (n - l)c|aT|2.

Since

(V(//(a, N)), a) = <V(//(a, N)), V(a,

, N)V(a, V» - //(a, N)A(a, f),
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we obtain from (9), using (6), that

^ , N)2 = -ndiv(//(a, N)V(a, V» - Ric(aT, aT) + (n - l)c|aT|2

+ (n2H2 - |A|2)(a, N)2 - n(n - l)cH(a, ^)(a, N).

Finally, using (7) and the fact that (a, a) = |aT|2 + (a, N)2 + c(a, \Jr)2 we conclude
that

(10) - A {a, N)2 + n div (H (a, N)V (a, ir )) + ^ ^ - A {a, ir)2

= -Ric(aT,aT) + (n + 2)(n-l)c |aT | 2 + 5(a ,N) 2 -n(n- l )c (a ,a ) ,

where S stands for the scalar curvature of M",

S = tr(Ric) = n(n-l)c + n2H2 - \A\2.

Integrating now (10) on M", the divergence theorem implies our integral formula.

PROPOSITION 2.1. Let \J/ : M" ->• Mn+X{c) c E"+2 fee a compact, oriented hyper-
surface immersed in Mn+1(c), c — I, —1, and let a 6 E"+2 be a fixed arbitrary vector.
Then, if Ric and S denote respectively the Ricci curvature and the scalar curvature of
Mn, it holds that

(11) I (Ric(aT ,aT)- (« + 2) (n- l )c |a T | 2 )dV
JM

= /\s(a,N)2-n(n-l)c(a,a))dV,
JM

where dV is the n-dimensional volume element of M" with respect to the induced
metric and the chosen orientation.

3. Applications

In this section we will derive some consequences and applications of our integral
formula (11). As a first application, we obtain the following characterization of
geodesic spheres in Af"+1(c), which is inspired in the characterization of geodesic
spheres given by Deshmukh [1, Theorem 3] in the Euclidean case and by Vlachos [5,
Theorem 2] in the spherical and hyperbolic cases.

THEOREM 3.1. Let \jr : M" ->• Mn+l(c) C E"+2 be a compact, oriented hypersur-
face immersed in Mn+l (c) such that its Ricci curvature satisfies Ric > c(n + 2)(n — 1).
If there exists a point a € Mn+1(c) for which the scalar curvature S satisfies
5(a, N)2 < n(n — 1), then i//(M) is a geodesic sphere of M"+i(c) centered at the
point a.
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PROOF. It follows from the assumption on the Ricci curvature that

Ric(aT, aT) - (n + 2)(n - l)c|aT|2 > 0

with equality if and only if aT = V(a, \j/) vanishes everywhere. Therefore, using our
integral formula (11) we obtain that

(12) / (5(a, N)2-n(n- l ) )dV> 0,

with equality if and only if (a, \j/) is constant on M". On the other hand, from the
assumption on the scalar curvature we also have

f (S(a,N)2-n(n-l))dV < 0,
JM

which gives the equality in (12) and implies that

= {x e Mn+l(c) : (a,*) = b)

for a real constant b. If c = 1, then b = COS(Q) with 0 < Q < n and ir{M) is a
geodesic sphere in S"+1 centered at a with radius Q. If c = — 1, then b = cosh(g) with
Q > 0 and if (M) is a geodesic sphere in Hn+1 centered at a with radius Q. D

In the case where c = 1 (spherical hypersurfaces) the result above can be para-
phrased in a more geometric statement as follows. Since c = 1, the Gauss map N can
be regarded as a map N : M"—>§n+1, and for every a e §"+1 the function (a, N) gives
a measure of the spherical distance between a and N. Actually, for every p e M we
know that the spherical distance between a and N(p) is given by

ga(p) = arcos((a, N(p))).

For instance, when M = §"(3, r\) C §"+1 is a geodesic sphere in §n+1 centered at a
with radius r], 0 < r? < n, then it is easy to see that ga = \n/2 — rj \ is constant on M.
Moreover, M is a round /i-sphere of radius sin(rj) and its scalar curvature is given by
5 = n(n — l)/sin2(r;) = n(n — l)/cos2(g>a). Now, Theorem 3.1 can be rewritten in
terms of the spherical distance as follows.

COROLLARY 3.2. Let \// : M"^-Sn+i C E"+2 be a compact, oriented hypersurface
immersed in §"+1 such that Ric > (n + 2)(« — 1). For a given a e §"+1 and p 6 M,
let us denote by Qa(p) the spherical distance between a and the image ofp under the
Gauss map N. If there exists a point a e S"+1 for which

then ty{M) is a geodesic sphere ofSn+l centered at the point a.
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As another consequence of this, we have the following.

COROLLARY 3.3. Let \f/ : M " ^ § n + I C E"+2 be a compact, oriented hypersurface
immersed in §n + 1 such that Ric > (n + 2)(n — 1). Let us assume that its Gauss map
image N(A/) C §n + 1 is contained in a tubular neighbourhood of radius 0 < rj < n/2
around an equator ofSn+l. If its scalar curvature S satisfies

then \lr(M) is a geodesic sphere o /§" + 1 parallel to that equator.

PROOF. Let us assume that the spherical image of M" is contained in a tubular
neighbourhood ^ ( a , r?) in §"+1 of radius 0 < rj < n/2 around the equator given by
§n+i p| a± observe that

)) = {x e Sn+1 : -s in(j j) < (a,*) < si

so that (a, N)2 < sina(?j) on M". At each point p e M" we have that 0 < S(p) <
n(n — l)/sin2(r)) and, by the assumption on 5,

5(p)(a, N{p))2 < S(p) sm2(r,) < n(n - 1),

so that we may apply Theorem 3.1. •

On the other hand, when c = — 1 (hyperbolic hypersurfaces) the Gauss map of M"
can be regarded as a map N : M"->-§"+1, where §"+1 denotes the (n + l)-dimensional
unitary de Sitter space, that is,

§7+1 = {x 6 E?+2 : (x,x) = I).

As is well known, for n > 2 de Sitter space is the standard simply connected Lorentz-
ian space form with constant sectional curvature 1. In this case, if a € Hn+1, the
intersection §"+1 D a 1 defines a round n-sphere of radius 1 which is a totally geodesic
spacelike hypersurface in §"+1. We will refer to that sphere as the equator of de Sitter
space determined by a. In this terms, when c = — 1 Theorem 3.1 can be rewritten as
follows.

COROLLARY 3.4. Let \}r : M"-» Hn + I C E"+2 be a compact, oriented hypersurface
immersed in 0-0"+1 such that Ric > — (n + 2)(n — 1). Let us assume that the Gauss
map image N(M) C §"+1 is contained in a tubular neighbourhood of (timelike) radius
r) > 0 around an equator o /§" + 1 determined by a € W+l. If its scalar curvature S
satisfies

sinh2(?j)

then ir(M) is a geodesic sphere ofHn+i centered at a.
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The proof is similar to that of Corollary 3.3 by observing that the tubular neigh-
bourhood ^ (a, r)) in S"+1 of (timelike) radius r) around the equator §"+1 n a 1 is given
by

<^(a, n) = [x e S"+1 : -sinh(rj) < (a, x) < sinh(?])}.

On the other hand, in [1, Theorem 1, Theorem 2], Deshmukh gave an interesting
inequality involving the extrinsic radius of a non-negatively Ricci curved compact
hypersurface in Euclidean space M" and its average scalar curvature av(5), which is
defined by the Einstein functional

av(S) = — - — / SdV.
vol(M) JM

In this paper, and as another application of our integral formula (11), we extend
Deshmukh's inequality to the case of compact hypersurfaces in the other space forms,
also characterizing when the equality holds, as follows.

THEOREM 3.5. Let ty : Mn-+§"+l C E"+2 be a compact, oriented hypersurface
immersed in Sn+1 such that Ric > (n + 2)(n - 1). If the image i/(M) c §"+1 is
contained in a geodesic ball in Sn+l of radius 0 < Q < n/2, then

, ^ n(n-l)
av(5) > •

sm(e)
Moreover, the equality holds if and only if M" is a geodesic sphere of radius Q.

THEOREM 3.6. Let \j/ : M"->IH1''+1 C E"+2 be a compact, oriented hypersurface
immersed in Hn+1 such that Ric > — (n + 2)(n — 1) and the scalar curvature S is
positive on M. If the image \(r(M) C HT+1 is contained in a geodesic ball in W+i of
radius Q > 0, then

n(n - 1)
av(5) > V

sinh(g)

Moreover, the equality holds if and only ifM" is a geodesic sphere of radius Q.

COROLLARY 3.7. Letx// : A/"—>D-fl"+1 c E"+2 be a positively Ricci curved, compact,
oriented hypersurface immersed in Hn+i. If the image ij/(M) C Hn+i is contained in
a geodesic ball in Hn+l of radius Q > 0, then

Moreover, the equality holds if and only if Mn is a geodesic sphere of radius Q.
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PROOF OF THEOREM 3.5. Let us assume that \jr (M) is contained in a geodesic ball
, Q) in §"+1 of radius 0 < Q < 7t/2 centered at a point a e § n + 1 . Recall that

@(a, Q) = [x 6 §"+1 : 0 < cos(^) < (a, x) < 1},

so that (a, \(r)2 > cos2(g), and

(a, N)2 = 1 - (a, V)2 - |a|2 < 1 - cos2(e) = sin2(e)

on M, with equality if and only if aT = 0 and (a, \{r} = COS(Q) is constant on M.
Since 5 > 0 on M, then

5 sin2a?) > 5{a, N)2,

so that from (11) we obtain

sin2(Q) I SdV-n(n- l)vol(M)
JM

= f (S sm2(Q)-n(n-l))dV> f (5(a, N)2 - n{n - l))dV
JM JM

= I (Ric(aT, aT) - (n + 2)(n - l)|aT|2)dV > 0.
JM

That is,

vol(M)JM ~ sm2(Q)

Moreover, equality holds if and only if (a, \Jr) = cos(e) is constant on M, which
means that M is a geodesic sphere of radius Q centered at a. •

The proof of Theorem 3.6 is similar to that of Theorem 3.5 by observing that the
geodesic ball &(&, Q) in IH"+1 of radius Q centered at a point a is given by

^(a , Q) = [x e Hn+l : 1 < (a, x) < cosh(e)},

and using now that (a, N)2 = (a, \j/)2 — 1 — |a|2.
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