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Abstract
The physical meaning and essence of Fresnel numbers are discussed, and two definitions of these numbers for off-

axis optical systems are proposed. The universal Fresnel number is found to be N = (a2/λz) ∗ C1 + C2. The

Rayleigh–Sommerfeld nonparaxial diffraction formula states that a simple analytical formula for the nonparaxial

intensity distribution after a circular aperture can be obtained. Theoretical derivations and numerical calculations reveal

that the first correction factor C1 is equal to cos θ and the second factor C2 is a function of the incident wavefront and

the shape of the diffractive aperture. Finally, some diffraction phenomena in off-axis optical systems are explained by

the off-axis Fresnel number.
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1. Introduction

Diffraction fields can be exactly solved by the Fresnel

diffraction integral, but the calculation is highly compli-

cated. The Fresnel number N allows a qualitative or semi-

quantitative analysis of the diffraction field, thereby provid-

ing a clear physical picture and intuitive method. Some

examples are the connections between the Fresnel number

and the focal shift[1], the confirmation and application of the

π phase jump in the boundary diffraction wave[2] and the

Fresnel patterns in a system with a lens[3]; these examples

are analyzed quantitatively by the Fresnel number.

If a plane wave is normally incident upon a circular

aperture, the standard Fresnel number is defined as[4]

Nst = a2

λz
,

where a is the radius of the circular aperture, λ is the

wavelength of the incident light, and z denotes the distance

from the diffractive aperture to the axial point under the

conditions a � λ, z � a.

The essence of the Fresnel number is the variation of

the optical path in the propagation; the physical meaning

is the number of Fresnel half-wave zones included in the

diffractive aperture[4]. The diffracted field is analyzed by

the nature of the central point using the Fresnel number.

For axially diffracted fields, the diffraction pattern changes

with the distance in the Fresnel diffraction region; maximal
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and minimal on-axis intensities are observed with a parity

change in N . In the Fraunhofer diffraction region (N < 1)

the rays produced by diffractive apertures are superimposed

at the central point with almost the same phase; hence, the

diffraction pattern remains stable[3].

The Fresnel number can be expanded to the off-axis point;

the number of Fresnel half-wave zones for this point can be

calculated to elucidate the properties of radially diffracted

fields. For example, the locations of the minimal and

secondary maximal intensities in the radially diffracted field

of a grating can be obtained by the half-wave zone method[5].

Light beams fall under normal or oblique incidences in

optical systems, and their Fresnel number of normal inci-

dence is given in Refs. [6–8]. The application of the Fresnel

number in high power laser systems has been discussed

in Ref. [9]. The physical meaning and application of

complex Fresnel numbers in Gaussian beams diffracted by

hard apertures have also been studied[10]. However, oblique

incidence[11] and tilted optical elements[12] are often used

in practice; hence, a universal Fresnel number to explain

the diffraction phenomena in an off-axis optical system is

necessary. In this paper an expression for the off-axis

Fresnel number is provided through theoretical derivations

and numerical calculations.

2. Definition of the off-axis Fresnel number

The Fresnel number is defined in two ways. First, the number

physically represents the optical path difference between a

wavelet from the aperture edge to the observation point and
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Figure 1. Diagram representing off-axis beams.

a wavelet from the aperture center to the observation point;

the path difference is then divided by λ/2[3]. Second, the

positions of extreme axial intensities correspond to integral

Fresnel numbers[7]. Odd and even values of N yield the

maximum and minimum axial intensities respectively.

By taking the direction of the center wavelet as the

auxiliary axis L , the focal point C is defined as the in-

tersection of the auxiliary axis and the observation screen

(Figure 1); θ is the angle between the incident beam and

the optical axis. The diffractive aperture is on the (x1, y1)

plane and the calculated diffraction field is on the (x, y)

plane, which is parallel to the (x1, y1) plane and has a

normal distance z from it. Based on this point, the off-

axis Fresnel number can be obtained using two methods.

One is through the basic definition of the Fresnel number:

the off-axis Fresnel number can be expressed as N =
2Δ/λ, where Δ is the optical path difference between the

wavelet of the aperture edge to the focal point and the

wavelet of the aperture center to the focal point. The other

is by defining an equivalent off-axis Fresnel number: the

integral Fresnel numbers correspond to locations of intensity

extrema on the auxiliary axis. The axial position z of the

intensity extrema is obtained through the I –z curve (I is

the normalized intensity on the auxiliary axis) derived from

numerical calculations; z is sorted in descending order, the

values of which correspond to Fresnel numbers 1, 2, . . . , N
(N is the number of intensity extrema) which are obtained

by fitting the N–z curve. The off-axis Fresnel number is

then corrected as

N = Nst C1 + C2, (1)

where C1 is the correction factor determined by the incident

angle and C2 is the correction factor determined by the

incident wavefront and the shape of the diffractive aperture.

3. Resolution of the expression for the off-axis Fresnel
number

In the case of a plane wave, the off-axis Fresnel number

is obtained through theoretical derivations and numerical

calculations. The scope of application is discussed by

comparison with the result obtained through numerical cal-

culations.

3.1. Theoretical derivation

The coordinate system is chosen so that the incident plane

wave is perpendicular to x1, subtends an angle of π + θ/2

with the y1 axis in the counterclockwise direction and forms

an angle of θ with the optical axis z. Taylor series expansion

is carried out around L (L = z/ cos θ) if L is taken as

the auxiliary axis. The meridian plane comprises axes L
and z; the sagittal surface consists of axes L and x1. The

optical path differences are calculated separately in these two

surfaces (Figure 2).

3.1.1. Meridian plane

As shown in Figure 2(a), a plane wave is obliquely incident

on the aperture, and the line DEB is the intersection line of

the equiphase surface and the meridian plane. Optical paths

before line DEB are equal, so only optical paths after it have

to be calculated.

(1) The optical path of the upper wavelet (DAC).

L1m = D A + AC = 2a sin θ + [z2 + (z tan θ − a)2] 1
2

= 2a sin θ + z
cos θ

[
1 +

(
a

z/ cos θ

)2

−
(

a
z/ sin 2θ

)] 1
2

≈ a sin θ + z
cos θ

+ a2 cos θ

2z
.

When a � z the last two items in the bracket are much less

than 1, so Taylor series expansion is performed around L
(L = z/ cos θ ).

(2) The optical path of the lower wavelet (BC).

a

Figure 2. Beam propagation in the (a) meridian plane and (b) the sagittal surface.
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L2m = BC = [z2 + (z tan θ + a)2] 1
2

= z
cos θ

[
1 +

(
a

z/ cos θ

)2

+
(

a
z/ sin 2θ

)] 1
2

≈ a sin θ + z
cos θ

+ a2 cos θ

2z
(a � z).

(3) The optical path of the center wavelet (EC).

L0m = EC = a sin θ + z
cos θ

.

It can be seen that the optical paths on the upper and lower

edges are equal (Lm = L1m = L2m); the difference between

optical paths on the edge and on the center is given as

Δm = Lm − L0m = a2 cos θ

2z
.

3.1.2. Sagittal surface

(1) The optical paths of the wavelets from the upper and

lower edges are equal (as shown in Figure 2(b)).

Ls =
[(

z
cos θ

)2

+ a2

] 1
2 ≈ z

cos θ
+ a2 cos θ

2z
.

(2) The optical path of the wavelet from the center.

L0s = z
cos θ

.

(3) The optical path difference.

Δs = Ls − L0s = a2 cos θ

2z
.

The derivation implies that the optical path differences in

the meridian plane and the sagittal surface are equal and are

given as Δ = a2 cos θ/2z; the off-axis Fresnel number can

be expressed as

N = Nst ∗ cos θ.

The equivalence of the optical path differences suggests that

the diffraction patterns are the same in the horizontal and

vertical directions.

3.2. Numerical calculation

The Rayleigh–Sommerfeld (R–S) nonparaxial diffraction

integral is adopted to handle beams under oblique incidence;

some approximations are introduced to avoid complicated

calculations. A simple analytical formula for the nonparaxial

intensity distribution is derived to reduce the computational

complexity.

3.2.1. Nonparaxial intensity diffraction behind a circular

aperture

The obliquely incident beam is no longer paraxial; hence,

the R–S formula is used to calculate the distribution of the

diffracted field[13, 14]. The coordinate system is selected as

shown in Figure 1.

E(x, y, z) = 1

jλ

∫ ∫
E1(x1, y1, 0)

exp( jk R)

R

×
(

1 + j
k R

)
z
R

dx1dy1,

R = [(x − x1)
2 + (y − y1)

2 + z2] 1
2 , (2)

where a is the radius of the circular aperture, z is the distance

from the diffraction screen to the observation screen, R
denotes the distance from the source point (x1, y1, 0) to

the field point (x, y, z), and E1(x1, y1, 0) = exp[ jk(a +
y1) sin θ] is the amplitude distribution of the incident field.

Although the R–S formula can accurately calculate the

nonparaxial scalar diffraction field and yield an accurate

off-axis Fresnel number, it is difficult to obtain a universal

expression for this number because of the complexity of

the mathematical and numerical calculations. Thus, it is

necessary to adopt an effective approximation to obtain

a concise expression for the off-axis Fresnel number.R is

expanded into a Taylor series around L [15]:

R = [(x − x1)
2 + (y − y1)

2 + z2] 1
2

≈ L + x2
1 − 2xx1

2L
+ y2

1 − 2yy1

2L
, (3)

where L =
√

x2 + y2 + z2 is the distance along the auxiliary

axis and L2 � (x2
1 + y2

1 − 2xx1 − 2yy1)max.

The circular function is expressed as a series expansion

with a complex Gaussian function[16]

circ
(√

x2
1 + y2

1

a2

)
=

10∑
N=1

AN exp

(
−BN

x2
1 + y2

1

a2

)
,

where AN and BN are the expansion coefficients.

Using the expression into Equation (2) yields

E(x, y, z) = π cos2 θ

jλz
exp

[
jk

(
z

cos θ
+ a sin θ

)]

×
10∑

N=1

AN

BN /a2 − jk cos θ/2z

× exp

{
( jk cos θ/z)2[x2 + (y − z tan θ)2]

4(BN /a2 − jk cos θ/2z)

}
. (4)

The coordinates of the focal point C are expressed as

x0 = 0, y0 = z tan θ ; substitution this expression into Equa-

tion (4) gives the complex amplitude distribution of the focal

point C ,

E(x0, y0, z) = π cos2 θ

jλz
exp

[
jk

(
z

cos θ
+ a sin θ

)]
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Figure 3. The diffraction patterns obtained by the R–S (upper panel) and analytical (lower panel) formulas.

×
10∑

N=1

AN

BN /a2 − jk cos θ/2z
. (5)

The intensity of the focal point on the auxiliary axis is given

as

I (x0, y0, z) = E(x0, y0, z) · E∗(x0, y0, z). (6)

3.2.2. In silico simulations

(1) Comparison with the diffraction pattern.

Taking a = 0.5 mm, λ = 632.8 nm, z = 93 mm, θ = 20◦,

the diffracted patterns (Figure 3) are simulated by using

Equations (2) and (4); the analytical formula significantly

reduces the numerical complexity effort because of the

analytical treatment.

Both patterns are roughly similar; however, a difference

still exists because the analytical formula is derived under

approximation conditions. The diffraction pattern obtained

by the R–S formula is not circular; the radial intensity distri-

butions are different in the horizontal and vertical directions.

The diffraction pattern obtained using the analytical formula

exhibits the same intensity distribution in both directions; the

patterns are coincident with those obtained in Section 3.1,

in which the optical path differences are approximately

equal in both directions. However, the focal point extrema

using the two methods are consistent, which indicates the

validity of the analytical formula in calculating the off-axis

Fresnel number.

(2) Off-axis Fresnel number derived through numerical

calculations.

From the definition of the equivalent off-axis Fresnel

number, I –z and N–z curves are acquired from analytical

calculations. Figure 4 compares the curves under normal

and oblique incidence; the result implies that the position

z of the intensity extrema under oblique incidence exhibits

an offset to the left relative to the normally incident one.

This offset is attributed to L , which is taken as the auxiliary

axis by employing an axis transformation in the off-axis case

(Figure 1). If the axial distance between the extreme values is

defined as the diffractive period, the period becomes shorter

when a beam is obliquely incident (Figure 4(a)).

The simple analytical formula is used to calculate the off-

axis Fresnel number. Based on the standard Fresnel number,

the off-axis Fresnel number is expressed as N = Nst ∗ C1,

where C1 is the correction factor. Through curve fitting,

the correction factors under different incident angles are

obtained from the simulation. The solid line in Figure 5

represents the curve of C1, and the dots represent the value

of cos θ ; C1 is substantially equal to cos θ .

The off-axis Fresnel number can be expressed as

N = Nst ∗ cos θ. (7)
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Figure 4. I –z (a) and N–z (b) curves.

Figure 5. Curve of C1.

The same expression is obtained in Section 3.1. Com-

parison of the expression with the standard Fresnel number

yields an equivalent propagation distance zeff = z/ cos θ

under oblique incidence. This parameter is the propagation

distance along the auxiliary axis L . When θ approaches zero,

Equation (7) becomes N = a2/λz, the normally incident

Fresnel number.

3.3. Scope of application

The off-axis Fresnel number is established under certain

approximations. Hence, the ratio of the propagation distance

and radius has to meet specific conditions. The accuracy

of the Fresnel number obtained by the R–S formula allows

comparison of the N–z curves derived from the R–S and

analytic formulas, which gives the scope of application of

the expression. Figure 6 illustrates the N–z curves under

different incident angles and upon setting a = 0.5 mm,

λ = 632.8 nm.

The curves agree with each other well for N � 8; the

expression derived in this paper is established for a relatively

fine beam. When the propagation distance z is small with

respect to the radius a, the R–S formula and numerical

R–S

R–S

R–S

R–S

Figure 6. N–z curves under different incident angles.

calculation are used to determine the Fresnel number. In

laser systems, z is usually much larger than a; therefore the

expression is generally applicable.

4. Further improvement

The correction factors C1 and C2 are introduced into the

definition of the Fresnel number in Equation (1). The

expression for C1 is acquired as C1 = cos θ , which implies

consistency between normal and oblique incidences in the

diffractive process; the two incidences can be unified by axis

transformation.

To further explore the correction factor C2 under oblique

incidence, an obliquely incident spherical wave is selected

with a curvature center at point S and a curvature radius of Rc

(Figure 7). The optical path difference is calculated between

the wavelet from the edge and the wavelet from the center to

the focal point C, in both the meridian and sagittal planes;

the difference remains equal:
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Figure 7. Diagram of an obliquely incident spherical wave.

Δ = a2 cos θ

2λ
+ a2

2Rc
.

The equivalence of the optical path differences yields the off-

axis Fresnel number for an incident spherical wave:

N = a2 cos θ

λz
+ a2

λRc
. (8)

The correction factor C2 = a2/λRc is identical to the

factor under normal incidence, indicating that the factor

is not related to the incident angle, but is determined by

the curvature radius of the incident wavefront; this result

proves the correctness of the off-axis Fresnel number. In

the propagation process, the effect of the wavefront on the

optical path is not related to the incident angle.

Equation (8) reveals that the Fresnel number N is related

to a, z, Rc and θ , which explains the function of the off-axis

optical system in the design of laser systems. Adjustment of

θ by oblique incidence or tilted optical elements improves

the radial intensity distribution, which reduces the harm to

optical elements caused by vibration generated by diffrac-

tion.

The off-axis Fresnel number is also applicable for non-

circular apertures and complex optical systems. For a non-

circular aperture, C2 is independent of the incident angle;

this value is a function of the aperture shape. Hence, C2 is

similar to the correction factor under normal incidence[3]. C2

is equal to 0.23 from our results for a square aperture (which

is almost the same as the factor in Ref. [7]). In complex

optical systems, the optical path difference can be solved

by adopting matrix optics along the auxiliary axis L . The

essence is the axis transformation in off-axis optical systems.

5. Conclusions

The off-axis Fresnel number is defined in this paper: N =
(a2/λz) ∗ C1 + C2. Theoretical analysis and numerical

calculation yield C1 = cos θ ; C2 is independent of the

incident angle, but dependent on the incident wavefront and

the aperture shape. In summary, the following conclusions

are reached. (1) During propagation, normal and oblique

incidences are consistent and can be unified by the axis trans-

formation factor C1 = cos θ . (2) The Fresnel number can be

utilized to prove that the effects of the incident wavefront

and the aperture shape are not related to the incident angle

θ . (3) The Fresnel number has a significant function in

the design of laser systems, such as the effect of off-axis

optical systems. Change of θ by oblique incidence or tilted

optical elements improves the radial intensity distribution.

This improvement reduces harm to optical elements, which

is caused by diffraction-generated vibrations.

The Fresnel number is no longer confined to normal inci-

dence;the number can be used to explain more diffractive op-

tical phenomena, such as the design of off-axis laser systems.

The expression is also suitable for incident waves of arbitrary

shape, non-circular diffractive apertures and complex optical

systems.
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