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Abstract

It is conjectured that a hyperbolic knot complement does not contain a closed embedded totally geodesic
surface. In this paper, we show that there are no such surfaces in the complements of hyperbolic 3-bridge
knots and double torus knots. Some topological criteria for a closed essential surface failing to be totally
geodesic are given. Roughly speaking, sufficiently 'complicated' surfaces cannot be totally geodesic.
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1. Introduction

The following conjecture was proposed by Menasco and Reid in [9].

CONJECTURE 1.1 ([9, Conjecture 1], [5, Problem 1.76]). A hyperbolic knot in the
3-sphere does not have a closed, totally geodesic surface embedded in its complement.

We remark that there are cusped hyperbolic 3-manifolds containing a closed em-
bedded totally geodesic surface. Thus, it seems that Conjecture 1.1 applies only to
'simple' 3-manifolds like the 3-sphere. This conjecture was solved for alternating
knots [7], almost alternating knots [2], toroidally alternating knots [1], closed 3-braids
[6], Montesinos knots [10] and tunnel number one knots [9]. In fact, except for tun-
nel number one knots, any closed incompressible surface in these knot complements
is meridionally compressible. This implies that there exists an accidental parabolic
element, and so the surface is not even quasi-Fuchsian. For tunnel number one knots,
the conjecture was solved algebraically in [9].
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In this paper we give another topological settlement of the conjecture for tunnel
number one knot and prove the following result.

THEOREM 1.2. Hyperbolic 3-bridge knots and double torus knots do not have a
closed totally geodesic surface embedded in their complements.

Moreover, we give slightly stronger results for free genus one knots. We also give
two topological criteria for a closed essential surface failing to be totally geodesic in
the complement of a hyperbolic knot K. Roughly speaking, sufficiently 'complicated'
surfaces cannot be totally geodesic.

For a closed surface 5 in 53 — K, we define the order o(S; K) of S for K as follows
[11]. Let it : Ht(S) —> HX(S3 — K) be the homomorphism induced by the inclusion
map i : S —• 53 — K. Since Im(i«) is a subgroup of Hi(S3 — K) = Z(meridian),
there is an integer m such that Im(i«) = w2. Then we define o(S; K) = \m\.

THEOREM 1.3. Let K be a hyperbolic knot in S3 of genus g, S a closed essential
surface in S3 — K having order o.Ifo>3g — 3, then S is not totally geodesic.

The canonical genus gc(K) of K is defined to be the minimum among genera of
Seifert surfaces built by Seifert's algorithm on all diagrams of K. Let Vi denote
the volume of a regular ideal tetrahedron in H3 and V? that of a regular truncated
tetrahedron with dihedral angles n/3g' in M3.

THEOREM 1.4. Let K be a hyperbolic knot in S3 of canonical genus g, S a closed
essential surface of genus g' in S3 — K. If g'Vg > 60gVi, then S is not totally
geodesic.

2. Partial settlements

Throughout this paper, we denote by K a knot in S3. We always denote the regular
neighbourhood of K by N(K) and the exterior of K, which is the space obtained by
removing the interior of N(K) from S3, by E(K).

We start with giving some definitions. Let 5 be a closed essential surface in E(K).
A nontrivial simple closed curve / on S is called an accidental peripheral when there
is an annulus A in E(K) such that A (15 = dA n 5 = / and A n dN(K) = dA -1. We
call such an essential surface 5 with an accidental peripheral an accidental surface.
Let Mi and M2 denote the closure of components of S3 — 5, where Mi contains K. If
5 is accidental, then we can construct an essential annulus A i in M\ — K by pasting
two copies of an accidental annulus A for 5 and an annulus dN(K) — A. But the
converse does not hold generally. An example is given in [3, Figure 2]. The following
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gives us a topological necessary condition for a closed essential surface isotopic to a
totally geodesic surface.

LEMMA 2.1. If K is hyperbolic and S is totally geodesic in S3 — K, then S is not
accidental and neither M\ — K nor M2 contains an essential annulus.

REMARK. This lemma is well known, but we give a proof for the convenience of the
reader. We remark that this necessary condition is rather far from complete, see [3].

PROOF. Suppose that 5 is totally geodesic. Then the representation of it\ (5) induced
by a faithful discrete representation of n\ (S3 — K) is Fuchsian. Therefore, it does not
contain an accidental parabolic element. Assume Mx — K or M2 contains an essential
annulus. Then its double contains an essential torus. However, when 5 is totally
geodesic, both doubles of Mt — K and M2 are hyperbolic, and hence atoroidal. It is a
contradiction. •

For tunnel number one knots, Conjecture 1.1 was solved in [9, Corollary 4] by an
algebraic method. The next theorem gives us a purely topological proof.

THEOREM 2.2. If K is a tunnel number one knot in S3, 5 a closed essential surface
in E(K), M\ and M2 the closure of components ofS3 — S, where Mi contains K, then
S is accidental or M2 contains an essential annulus.

PROOF. Let V! U V2 be a genus two Heegaard splitting of E(K), where Vi is a
compression body and V2 is a handlebody. By an isotopy of S, we may assume that
5n Vi consists of mutually parallel essential separating disks and non-separating disks
in Vi, where the labels are consecutive in VJ. Suppose that \S D Vi | is minimal among
all surfaces isotopic to S. Note that 15 D Vi | ^ 0 because of the incompressibility of
S. If 5 fl V2 is a single disk, then 5 is a 2-sphere and hence compressible. Otherwise,
since 5 n V2 is 3-compressible in V2, a 3-compression of S n V2 yields a band b in
VJ. By the minimality of \S n V{\, b forms an incompressible non-3-parallel annulus
A in Vi together with some disk of 5 PI Vi. If A is non-separating in Vi, then there
is an accidental annulus for A in Vi. If A is separating in Vi, then either there is an
accidental annulus for A in Vi, or a sub-annulus Ao of 3 Vi — A gives an essential
annulus in Mi or M2. In particular, if Ao is in Mu then the next 3-compression of
5 n V2 yields a separating annulus parallel to A, and there is an essential annulus
in M2. •

It follows from Lemma 2.1 and Theorem 2.3 that hyperbolic 3-bridge knot com-
plements do not contain a closed embedded totally geodesic surface.
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THEOREM 2.3. Let K be a 3-bridge knot in S3, S a closed essential surface in
E(K), Mi and M2 the closure of components ofS3 — S, where Mi contains K. Then
S is meridionally compressible or M2 contains an essential annulus.

PROOF. Suppose that 5 is meridionally incompressible. Let (Bu 7i) U (B2, T2) be
a 3-bridge tangle decomposition of (S3, K), D, (i = 1, 2) a disjoint union of disks
in fi, which are co-bounded by the strings of 7] and arcs in 3B,. By an isotopy of
S, we may assume that S n Dx = 0, S D Bi consists of essential disks in Bi — Tt,
S n D2 consists of essential arcs on 5 PI B2, and (5 D B2) — D2 consists of open
disks. Under the above conditions, we assume that \S D B\\ is minimal among all
surfaces isotopic to 5. By the incompressibility of 5, |5 n Bi\ > 1. We perform a
3-compression of 5 n B2 along an outermost disk in D2, and obtain an incompressible
annulus A! in Bx — 7\ which consists of a disk of 5 C\ Bx and a resultant band b. It
follows from the meridional incompressibility of 5 that S n Bx consists of mutually
parallel disks which divide (Bu T,) into the trivial 1-string tangle (Bn, Tn) and the
trivial 2-string tangle (B22, T22), and the band b runs over (B22, T22). Note that 15D Bx |
is an even integer greater than 1 since 5 separates S3 into M\ (D K) and M2. If we
perform the 3-compression of 5 D B2 along the next outermost arc, then we obtain an
incompressible annulus A2 in B\ — Ti which is parallel to A. Hence, there exists an
annulus Ao in B\ — T\ connecting Ax and A2. We note that Ao is contained in M2. If
Ao is 3-parallel in M2, then it contradicts the minimality of \S D B\\. Since 5 D D2

are essential arcs in 5 D B2, A, (i = 1, 2) is incompressible in M2. Therefore, Ao is
incompressible in M2, thus A0 is an essential annulus in M2. •

A knot K in S3 is said to be a double torus if K is contained in a genus two Heegaard
surface of S3. It is known that 2-bridge knots, pretzel knots, tunnel number one knots,
and free genus one knots are double torus. Combined with previous results, the next
theorem completes the proof of Theorem 1.2.

THEOREM 2.4. Let K be a non-cable double torus knot with respect to a genus two
Heegaard splitting (F; Vj, V2) of S3, S a closed essential surface in E(K). Then S is
accidental or Mi — K or M2 contains an essential annulus.

REMARK. The condition 'non-cable' cannot be omitted. It is easy to see that cable
knots with tunnel number one companion knots are double torus. In general, an
accidental surface for the companion knot is not accidental for a cable knot if it is
disjoint from its companion solid torus.

PROOF. We divide the proof into two cases, whether F — K is incompressible in
S3 - K or not.
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Suppose that F — K is compressible in S3 — K and let D be a compressing disk
for F — K in S3 — K. We may assume that by exchanging it if necessary, D is a
non-separating disk in V,. Put V[ = cl(Vx - N(D)) and F' = 3 V[. Then V,' is a solid
torus and its core, say y, is a tunnel number one knot. Therefore, /if is a tunnel number
one knot or a cable knot with a companion knot y. In the former case, Theorem 2.3
gives the conclusion. In the latter case, if y is non-trivial, then this contradicts the
assumption of K. Hence y is trivial and K is a torus knot. Since any incompressible
closed surface in a torus knot complement must be isotopic to a peripheral torus, this
case does not occur.

Next, suppose that F — K is incompressible in S3 — K, and assume that |5 n F\
is minimal up to isotopy of 5. Then each loop of 5 D F is essential in both S and
F — K. If there are mutually parallel loops of 5 n F in F or there is a loop of S D F
which is parallel to K in F, then M,- contains an essential annulus or S is accidental.
Otherwise, 5 n F consists of a single loop which separates F into two once punctured
tori F,(c Mi), and K is non-separating in F,. Since the loop 5 n F is essential in 5,
Fi is incompressible in Mx. Let D be a compressing disk for 5 in S3, hence in M{.
We may assume that by modifying D if necessary, D D Fx consists of essential arcs
in F,. Note that by the incompressibility of 5 in S3 — K, D D F{ ^ 0. Let a be an
outermost arc of D D Fi in D, and let S be the corresponding outermost disk in D. We
perform a 3-compression of F{ along S in Mu and get an annulus F[ disjoint from Fi.
Since F\ is incompressible in Mi, F,' is also incompressible in Mu hence in Mi — K.
If F[ is essential in Mx — K, then we have the desired conclusion. So, suppose that F[
is parallel to a sub-annulus Ax in 3Mi, and let V be the solid torus co-bounded by F[
and Ax. Now, to recover Fu we attach a band b corresponding to the 3-compressing
disk 8, to F[. If b is contained in V, then we can find a compressing disk for F! in
Mi, a contradiction. Otherwise, Fi is parallel to a sub-surface in 3M!, thus in S. This
implies that K is isotopic to a loop in 5, hence S is accidental. •

A Seifert surface F for K in 53 is said to be free if the fundamental group n\ (S3 — F)
is free. We define the free genus of A" as the minimal genus over all free Seifert surfaces
for K. For free genus one knots, we also obtain the following theorem.

THEOREM 2.5. If K is a free genus one knot in S3, 5 a closed essential surface in
E(K), M{ and M2 the closure of components of S3 — S, where Mx contains K, then
S is accidental or M2 contains an essential annulus.

PROOF. Let F be a genus one free Seifert surface for K. We may assume that F D 5
consists of essential loops in both F and S, and assume that \F fl 5| is minimal. Since
7T] (S3 — F) is a free group, F fl 5 ^ 0. If there is a loop of F n 5 which is parallel
to K in F, then S is accidental. Otherwise, all loops of F D 5 are non-separating and
mutually parallel in F. Since 5 separates S3, hence F, there is an annulus component
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A of F — S in M2. Then, the minimality of \F n S\ assures us that A is essential

in M2. D

3. Criteria for failing to be totally geodesic

Theorem 1.3 follows from the next theorem and Lemma 2.1.

THEOREM 3.1. Let K be a knot in S3 of genus g, S a closed essential surface in
E(K) having order o. If o > 3g — 3, then S is accidental or Mi — K or M2 contains
an essential annulus.

PROOF. Suppose that o > 3g — 3 holds. Let F be a minimal genus Seifert surface
for K. We assume that \S D F\ is minimal among all minimal genus Seifert surfaces.
Then each curve of 5 D F is essential in both S and F.

Let us show that |5 D F\ > o. To do this, we construct a finite connected graph,
say Gs, by identifying a connected component of S — (5 n F) with a vertex, and a
curve of 5 n F with an edge. We fix an orientation of each edge of Gs induced from
orientations of S, F and S3. If Gs is a tree, then each edge is a cutting edge, and so
each curve of S D F is separating on 5. But this contradicts the fact that o > 0. Hence
Gs has at least one cycle. Let c be a cycle of Gs with an arbitrary orientation. We give
the weight +1 to an edge of c when the orientation of the edge coincides with that of
c, and —1 otherwise. Then \S D F\ — |£(GS)| > \o(c)\ holds, where o(c) is the sum
of the weights of edges of c. On the other hand, a loop on 5 can be constructed for c
such that the linking number of it and K is equal to o(c). This implies that \o(c)\ > o,
and hence \S n F\ > o.

By the above argument and the assumption, | 5 D F | > o > 3g — 3 holds. In
the case that n := \S D F\ > 3g — 2, we find an accidental annulus for 5 or a
sub-annulus bounded by two curves of 5 f) F on F, since there are at most 3g — 2
mutually non-parallel and non-3-parallel simple closed curves on F. This sub-annulus
is essential in M,, since otherwise, we can reduce |S D F\. In the remaining case,
that is, n = 3g — 2, we consider the graph GF constructed from F in the same way
as Gs- Suppose that the curves of S (~l F are mutually non-parallel and non-3-parallel
on F. Then that curves give a pants decomposition of F. This decomposition admits
a checkerboard-coloring, since each pair of pants is contained in Mi or M2. Let us
note that GF has the following properties:

(1) There is a vertex v0 € V(GF) having degree 2;
(2) Every v e V(GF) - {v0} has degree 3.

Then the next lemma gives us a contradiction. Consequently, SO F has some mutually
parallel curves or a 3-parallel curve in F, and hence we can find an accidental annulus
for 5 or an essential annulus in Mh D
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LEMMA 3.2. Let G be a finite graph satisfying the following two properties:

(1) There is a vertex v0 e V(G) having degree 2;
(2) Every v € V(G) - [v0] has degree 3.

Then G is not a bipartite graph.

PROOF. Suppose that there is a 2-coloring / : V(G) —*• {B, W}, and assume
that f(v0) = B. Let Vw be the set [v e V(G)\ f (v) = W] and let Vb be the set
{v € V(G)\ f (v) = B}. Then the number of edges which are incident to the vertices
of Vb is 3(| Vb\ — 1) + 2, and the number of those for V,,, is 3| V^|. However, since
every edge of G connects a vertex of Vb and one of Vw, these values must be equal.
Hence a contradiction. •

REMARK. In the proof of Theorem 3.1, we note that | 5 D / r | = o > 0 i f and only
if 5 n F consists of mutually parallel non-separating loops in 5.

Finally we prove Theorem 1.4.

PROOF OF THEOREM 1.4. On one hand, it was shown in [4] that the volume of
the complement of a hyperbolic knot is less than 120g Vj, where g is the canonical
genus of the knot and Vj is the volume of a regular ideal tetrahedron in H3. On
the other hand, it was shown in [8] that the minimal volume of complete hyperbolic
3-manifolds with a totally geodesic boundary of genus g' is g'Vg<, where Vg> is the
volume of a regular truncated tetrahedron with dihedral angles n/3g' in H3. Recall
that A" is a hyperbolic knot in S3 of canonical genus g and S is a closed essential
surface of genus g' in E(K). Now, suppose that 5 is totally geodesic in S3 — K. Let
Mi and M2 be the closure of components of S3 — 5, where Mx contains K. Then both
M} — K and M2 are hyperbolic 3-manifolds with totally geodesic boundary, and so
vol(53 - K) = vol(Mi - K) + vol(M2). As a consequence, we get 60g Vx > g'Vg'.

D

REMARK. Since Vi is approximately 1.01494 and Vg* is computed by using the
formula given in [8], we can see that the inequality 60g Vi > g'Vg- fails if g = 1
and g' > 16. Therefore, there is no closed embedded totally geodesic surface of
genus g' > 16 in a hyperbolic knot complement of canonical genus one. Note that
Vg' / Vo as g' -*• co, where Vo is the volume of a regular ideal octahedron in H3 and
is approximately 3.6639.
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