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Hankel Convolution Operators on Spaces
of Entire Functions of Finite Order

Jorge J. Betancor

Abstract. In this paper we study Hankel transforms and Hankel convolution operators on spaces of

entire functions of finite order and their duals.

1 Introduction

Our objective in this note is to study Hankel transforms and Hankel convolution

operators of entire functions of finite order and their duals. Our investigation is

inspired by the ideas developed by Ehrenpreis [5]. However we need to introduce

new procedures to prove the results in the Hankel setting. Some of the arguments

used here are simpler than the one considered in [5, §5]. Moreover our procedures

can be used to prove the results in [5, §5] about the usual convolution operators and

Fourier transforms of entire functions of finite order.

The Hankel transform is defined as follows

hµ(φ)(y) =

∫ ∞

0

(xy)−µ Jµ(xy)φ(x)x2µ+1 dx,

where φ is, for instance, a function in the Lebesgue space L1(x2µ+1dx). Here Jµ repre-

sents the Bessel function of the first kind and order µ. Throughout this paper µ will

be greater than − 1
2
.

The Hankel convolution operations were investigated by Haimo [8] and Hirsch-

man [9] in the Lebesgue space Lp(x2µ+1dx), 1 ≤ p ≤ ∞. If f , g ∈ L1(x2µ+1dx), then

the Hankel convolution f #µg of f and g is defined by

( f #µg)(x) =

∫ ∞

0

f (y)µτx(g)(y)
y2µ+1

2µΓ(µ + 1)
dx, x ∈ (0,∞),

where the Hankel translated µτx(g) of g by x ∈ (0,∞) is given by

µτx(g)(y) =

∫ ∞

0

Dµ(x, y, z)g(z)
z2µ+1

2µΓ(µ + 1)
dz, y ∈ (0,∞),
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162 J. J. Betancor

and µτ0(g) = g. The function Dµ is the Delsarte kernel given by

Dµ(x, y, z) = (2µ
Γ(µ + 1))2

∫ ∞

0

(xt)−µ Jµ(xt)(yt)−µ Jµ(yt)(zt)−µ Jµ(zt)t2µ+1 dt,

x, y, z ∈ (0,∞).

The Hankel transform hµ is related with the Hankel convolution and the Hankel

translations of order µ by the following formulas (see [9])

hµ( f #µg) = hµ( f )hµ(g),

and

hµ(µτxg) = 2µ
Γ(µ + 1)(x.)−µ Jµ(x.)hµ(g), x ∈ (0,∞),

that are valid when, for instance, f and g are in L1(x2µ+1dx).

The study of the Hankel convolutions and Hankel translations on spaces of entire

functions was started by Belhadj and Betancor [1]. They extended the definition of

the Hankel translation to the complex plane. By He we denote the space of even and

entire functions. According to [1] (see also [4]), if f (z) =
∑∞

n=0 anz2n, z ∈ C, is in

He and w ∈ C, the Hankel translation µτw f is defined by

µτw( f )(z) =

∞
∑

n=0

an

n
∑

k=0

(

n

k

)

Γ(µ + 1)Γ(n + µ + 1)

Γ(n − k + µ + 1)Γ(k + µ + 1)
w2(n−k)z2k, z ∈ C.

Thus µτw defines a continuous linear mapping from He into itself. The Hankel con-

volution T#µ f of T ∈ H
′
e , the dual space of He, and f ∈ He is defined by

(T#µ f )(z) = 〈T, µτz( f )〉, z ∈ C.

In this note we analyze the Hankel translation and the Hankel convolution on

even and entire functions of finite order. Let a > 1. We represent by Za,e the space

of all the even and entire functions that have order ≤ a. That is, an even and entire

function f is in Za,e if, and only if, for every ε > 0,

| f (z)| = O(exp(|z|a+ε)), as z → ∞.

The space Za,e is endowed with the topology associated with the family {pa,ε}ε>0 of

seminorms, where, for every ε > 0,

pa,e( f ) = sup
z∈C

exp(−|z|a+ε)| f (z)|, f ∈ Za,e.

Thus Za,e is a Fréchet space. The dual of Za,e is denoted, as usual, by Z ′
a,e.

By Qa,e we represent the space of even and entire functions having order less

than a.
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For every z ∈ C, the function (zt)−µ Jµ(zt), t ∈ C, is in Za,e. Then we define the

Hankel transform hµ(T) of T ∈ Z ′
a,e as follows

hµ(T)(z) = 2µ
Γ(µ + 1)〈T(t), (zt)−µ Jµ(zt)〉, z ∈ C.

We establish that hµ is a one-to-one mapping from Z ′
a,e onto Qa ′,e. Here and in the

sequel, a ′ denotes the exponent conjugate to a. Also we prove that for every z ∈ C,

the Hankel translation µτz defines a continuous linear mapping from Za,e into itself.

If T ∈ Z ′
a,e and f ∈ Za,e, the Hankel convolution T#µ f of T and f is defined by

(T#µ f )(z) = 〈T, µτz f 〉, z ∈ C.

We prove that T defines a continuous Hankel convolution operator from Za,e into

itself. Moreover, if T 6= 0, then the Hankel convolution operator generated by T on

Za,e is surjective.

Throughout this paper, by C we denote a suitable positive constant not necessarily

the same in each occurrence.

2 Hankel Transforms and Hankel Convolutions on the Space Z
′
a,e

First we analyze the Hankel transform on the space Z ′
a,e.

Let a > 1. For every w ∈ C, the function fw defined by

fw(z) = 2µ
Γ(µ + 1)(zt)−µ Jµ(zt), z ∈ C,

is in Za,e. Indeed, let w ∈ C. It is clear that fw is an even and entire function.

Moreover, according to [6, (5.3.b)] and [5, (52) ′], we have that

| fw(z)| ≤ Ce|zw| ≤ C exp
( 1

a
|z|a +

1

a ′
|w|a ′

)

, z ∈ C.

Let T ∈ Z ′
a,e. We define the Hankel transform hµT of T through

hµ(T)(w) = 2µ
Γ(µ + 1)〈T(z), (zw)−µ Jµ(zw)〉, w ∈ C.

By [5, Proposition 3], we can write

(2.1) hµ(T)(w) = 2µ
Γ(µ + 1)

∞
∑

n=0

(−1)kw2k

2µ+2kΓ(µ + k + 1)
〈T(z), z2k〉, w ∈ C.

Hence hµ(T) is an even and entire function.

On the other hand, since T ∈ Z ′
a,e there exist C, ε > 0 such that

|〈T, f 〉| ≤ C sup
z∈C

exp(−|z|a+ε)| f (z)|, f ∈ Za,e.
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In particular, for every w ∈ C, we have

|hµ(T)(w)| ≤ C sup
z∈C

exp(−|z|a+ε)|(zw)−µ Jµ(zw)|

≤ C sup
z∈C

exp(−|z|a+ε + |z||w|)

≤ C sup
z∈C

exp
(

−|z|a+ε +
1

a + ε
|z|a+ε +

1

a ′ − η
|w|a ′−η

)

≤ C exp
( 1

a ′ − η
|w|a ′−η

)

.

Here a ′ is the conjugate exponent of a and 0 < η < a ′− 1 such that 1
a+ε + 1

a ′−η = 1.

Hence hµ(T) is in the linear space Qa ′,e that consists of all the even and entire func-

tions of order less than a ′.

Suppose now that hµ(T) = 0. Then according to (2.1), 〈T(z), z2k〉 = 0, for every

k ∈ N. By [5, Proposition 3] the linear space span{z2k : k ∈ N} generated by

{z2k : k ∈ N} is dense in Za,e. Hence 〈T, f 〉 = 0, for each f ∈ Za,e.

The results that we have just proved can be summarized in the following.

Proposition 2.1 The Hankel transform hµ is a one-to-one mapping from Z ′
a,e into

Qa ′,e, for every a > 1.

Our next objective is to see that hµ(Z ′
a,e) = Qa ′,e.

Next we analyze the behaviour of the Bessel operator ∆µ = z−2µ−1Dz2µ+1D on

Za,e.

Proposition 2.2 Let a > 1. The Bessel operator ∆µ defines a continuous linear map-

ping from Za,e into itself.

Proof Suppose that f (z) =
∑∞

n=0 anz2n, z ∈ C, is in Za,e. Then

∆µ f (z) =

∞
∑

n=0

4n(n + µ)anz2n, z ∈ C.

By using [5, Proposition 3] (see also [2, Proposition 4.5.3]), we have that

lim inf
n→∞

− log(4n(n + µ)|an|)
2n log(2n)

= lim inf
n→∞

− log(4n(n + µ)) − log |an|
2n log(2n)

≥ lim inf
n→∞

− log |an|
2n log(2n)

≥ 1

a
.

Hence, ∆µ f ∈ Za,e.
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The continuity of ∆µ follows from the closed graph theorem. Indeed, assume

that ( fn)n∈N ⊂ Za,e is such that fn → f and ∆µ fn → g, as n → ∞, in Za,e, where

f , g ∈ Za,e. Since the convergence in Za,e implies the convergence in He and ∆µ is

continuous from He into itself, ∆µ f = g. Thus we conclude that ∆µ is continuous

from Za,e into itself.

The operator ∆µ is defined on Z ′
a,e, as usual, by transposition.

According to [12, (6) and (7), Chapter 5] if δ denotes the Dirac functional we have

that

hµ((−∆µ)kδ)(z) = z2k, z ∈ C and k ∈ N.

Indeed, if k ∈ N,

hµ((−∆µ)kδ)(z) = 〈(−∆µ)kδ(t), 2µ
Γ(µ + 1)(zt)−µ Jµ(zt)〉

= 〈δ(t), 2µ
Γ(µ + 1)(−1)k

∆
k
µ,t ((zt)−µ Jµ(zt))〉

= 〈δ(t), 2µ
Γ(µ + 1)z2k(zt)−µ Jµ(zt)〉

= z2k, z ∈ C.

Proposition 2.3 Suppose that f (z) =
∑∞

n=0 anz2n, z ∈ C, is a function in Qa ′,e. Then

the series
∑∞

n=0 an(−∆µ)kδ converges in the weak * (equivalently in the strong) topology

of Z ′
a,e.

Proof Assume that g(z) =
∑∞

n=0 bnz2n, z ∈ C, is in Za,e. We can write

〈

n
∑

k=0

(−1)kak∆
k
µδ, g

〉

=

n
∑

k=0

ak(−1)k(∆k
µg)(0)

=

n
∑

k=1

(−1)kakbk22kk! Γ(µ + k + 1), n ∈ N.

Since f ∈ Qa ′,e, there exists η ∈ (0, a ′ − 1) such that f ∈ Za ′−η,e. By [5, Proposi-

tion 3] we can choose ε1, ε2 > 0 and k0 ∈ N such that

− log |ak|
2k log(2k)

≥ 1

a ′ − ε1

and
− log |bk|
2k log(2k)

≥ 1

a + ε2

,

for every k ∈ N, k ≥ k0, where 1
a ′−ε1

+ 1
a+ε2

= 1. Hence, for each k ≥ k0,

|ak||bk| ≤ (2k)
−2k( 1

a
′
−ε1

+ 1

a+ε2
)
= (2k)−2k.

Then, by using the Stirling formula, we obtain

|ak||bk|22kk! Γ(µ + k + 1) ≤ C(2k)−2kkke−k
√

2πk22k(µ + k)µ+ke−µ−k
√

2π(µ + k)

≤ Ce−2kkµ+1, k ≥ k0.

Therefore the series
∑∞

k=0(−1)kakbk22kk! Γ(µ + k + 1) is convergent.

Thus, according to [7, 5.b, p. 242], the proof is completed.
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By combining Propositions 2.1 and 2.3 we can obtain the following result.

Proposition 2.4 Let a > 1. The Hankel transform hµ is a one-to-one mapping from

Z ′
a,e onto Qa ′,e.

Proof We proved in Proposition 2.1 that hµ is a one-to-one mapping from Z ′
a,e into

Qa ′,e.

Now let f ∈ Qa ′,e. We define the functional T on Z ′
a,e through

〈T, g〉 =

∞
∑

n=0

an(−1)n〈∆n
µδ, g〉, g ∈ Za,e,

where f (z) =
∑∞

n=0 anz2n, z ∈ C. According to Proposition 2.3, T ∈ Z ′
a,e and we

have that

hµ(T)(z) =

∞
∑

n=0

an(−1)n〈∆n
µδ(t), (zt)−µ Jµ(zt)〉 = f (z), z ∈ C.

Hence hµ defines a mapping from Z ′
a,e onto Qa ′,e.

According to [5, Proposition 1] Za,e is a Montel and Schwartz space. Hence the

strong dual Z ′
a,e of Za,e is bornological [7, p. 257]. We consider on Qa ′,e the topology

induced by Za,e via the Hankel transform hµ, and then Qa ′,e is denoted by Q
µ
a ′,e. We

will prove that Qµ
a ′,e = Qν

a ′,e, provided that µ, ν > − 1
2
. We first describe the bounded

sets of Q
µ
a ′,e. Before making this we note that if f is an even and entire function, we

can write

f (z) =

∞
∑

n=0

∆
k
µ f (0)

22kΓ(µ + k + 1)k!
z2k, z ∈ C,

where ∆µ represents the Bessel operator ∆µ = z−2µ−1Dz2µ+1D. Then the following

formula

(2.2) ∆
k
µ f (0) =

22k
Γ(µ + k + 1)k!

2πi

∫

Γr

f (w)

w2k+1
dw,

holds for every k ∈ N, where, for every r > 0, Γr denotes the circular path Γ : w(t) =

reit , t ∈ [0, 2π). This formula will be useful in the sequel.

Proposition 2.5 Let a > 1 and let B be a subset of Qµ
a,e. Then B is a bounded subset of

Qµ
a,e if, and only if, for some ε > 0 there exists M > 0 for which

(2.3) |F(z)| ≤ M exp(|z|a−ε), z ∈ C and F ∈ B.
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Proof First suppose that B is a bounded subset of Qa,e.

We define W = h−1
µ (B). Thus W is a bounded set of Z ′

a ′,e. Then there exists

C, η > 0 for which

|〈T, f 〉| ≤ C sup
z∈C

exp(−|z|a ′+η)| f (z)|, f ∈ Za ′,e and T ∈ W.

By proceeding now as in the proof of Proposition 2.1, we can find ε > 0 such that for

a certain M > 0 we have

|F(z)| ≤ M exp(|z|a−ε), z ∈ C and F ∈ B.

Assume now that for some ε > 0 such that a − ε > 1, there exists M > 0 for

which (2.3) holds.

Our objective is to see that W = h−1
µ (B) is a bounded subset of Z ′

a ′,e. We choose

η > 0 being 1
a−ε + 1

a ′+η = 1. By [5, Proposition 3], if f ∈ Za ′,e,

〈T, f 〉 =

∞
∑

k=0

ak〈T, z2k〉, T ∈ Z ′
a ′,e,

where f (z) =
∑∞

k=0 akz2k, z ∈ C. Hence we can write, for every F ∈ Qa,e,

〈h−1
µ (F), f 〉 =

∞
∑

k=0

ak〈h−1
µ (F), z2k〉

=

∞
∑

k=0

(−1)kak(∆k
µF)(0),

where f (z) =
∑∞

k=0 akz2k, z ∈ C, is in Za ′,e. Let F ∈ B. By (2.2), we have

(∆k
µF)(0) =

22kk! Γ(µ + k + 1)

2πi

∫

Γr

F(w)

w2k+1
dw, k ∈ N,

where Γr denotes the circular path Γr : w(t) = reit , t ∈ [0, 2π). In particular, for

every k ∈ N, by taking

r =

( 2k

a − ε

) 1/(a−ε)

,

we obtain

|(∆k
µF)(0)| ≤ M22kk! Γ(µ + k + 1) exp

( 2k

a − ε

)( 2k

a − ε

)−2k/(a−ε)

.

Moreover, [5, Proposition 3] implies that if f (z) =
∑∞

k=0 akz2k, z ∈ C, is in Za ′,e,

|ak| ≤ C(2k)−2k/(a ′+η), k ∈ N.
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Hence, if f (z) =
∑∞

k=0 akz2k, z ∈ C, is in Za ′,e, Stirling’s formula leads to

|〈h−1
µ (F), f 〉| ≤

∞
∑

k=0

|ak||(∆k
µF)(0)|

≤ C

∞
∑

k=0

22k
Γ(µ + k + 1)k! exp

( 2k

a − ε

)( 2k

a − ε

)−2k/(a−ε)

× (2k)−2k/(a ′+η)

≤ C

∞
∑

k=0

kµ+1 exp
(

2k
( 1

a − ε
− 1

))

(a − ε)2k/(a−ε)

≤ C

∞
∑

k=0

kµ+1 exp
(

2k
( 1 + log(a − ε)

a − ε
− 1

))

≤ C,

since the function α(x) =
1+log x

x
< 1, x > 1. Moreover the constant C > 0 is not

depending on F ∈ B. Then we prove that W is a bounded set in Z ′
a ′,e when on Z ′

a ′,e

we consider the weak ∗ topology. Then W is also a bounded set in the strong dual

Z ′
a ′,e of Za ′,e because Za ′,e is reflexive [5, Proposition 1].

Thus the proof of Proposition is complete.

Proposition 2.6 Let µ, ν > − 1
2

and a > 1. Then Qµ
a,e = Qν

a,e where the equality is

understood algebraically and topologically.

Proof According to [5, Proposition 1], for every γ > − 1
2
, Qγ

a,e is a bornological

space (see [7, p. 257]). Since, by virtue of Proposition 2.5, a subset of Qa,e is bounded

in Qν
a,e if, and only if, it is bounded in Qµ

a,e, we conclude that the topology of Qν
a,e

coincides with the one of Qµ
a,e.

In view of Proposition 2.6, to simplify the following we will write Qa,e to refer to

Qµ
a,e, µ > − 1

2
.

As mentioned in the introduction, if f (z) =
∑∞

n=0 anz2n, z ∈ C, then the Hankel

translation µτw f , w ∈ C, is given by

(2.4)

µτw( f )(z) =

∞
∑

n=0

an

n
∑

k=0

(

n

k

)

Γ(µ + 1)Γ(n + µ + 1)

Γ(n − k + µ + 1)Γ(k + µ + 1)
w2(n−k)z2k

=

∞
∑

k=0

z2k Γ(µ + 1)

Γ(µ + k + 1)

∞
∑

n=k

(

n

k

)

w2(n−k)an

Γ(n + µ + 1)

Γ(n − k + µ + 1)
, w, z ∈ C,

where the convergence of the series is uniform in every compact subset of C × C (see

[1, 4]). Note that µτw f is an even and entire function, for every w ∈ C.

Proposition 2.7 Let w ∈ C and a > 1. The Hankel translation µτw defines a contin-

uous linear mapping from Za,e into itself.
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Proof Assume that f (z) =
∑∞

n=0 anz2n, z ∈ C is a function in Za,e. According to [5,

Proposition 2] µτw( f ) ∈ Za,e if, and only if, gw ∈ Za,e, where

gw(z) =

∞
∑

k=0

z2k Γ(µ + 1)

Γ(µ + k + 1)

∣

∣

∣

∞
∑

n=k

(

n

k

)

w2(n−k)an
Γ(n + µ + 1)

Γ(n − k + µ + 1)

∣

∣

∣
, z ∈ C.

Assume that z ∈ C. We can write

|gw(z)| ≤
∞
∑

k=0

|z|2k Γ(µ + 1)

Γ(µ + k + 1)

∞
∑

n=k

(

n

k

)

|w|2(n−k)|an|
Γ(n + µ + 1)

Γ(n − k + µ + 1)

= µτ|w|

(

∞
∑

n=0

|an|t2n
)

(|z|)

=

∫ |w|+|z|

||w|−|z||

D(|w|, |z|, t)

∞
∑

n=0

|an|t2n t2µ+1

2µΓ(µ + 1)
dt.

By using again [5, Proposition 2], the function
∑∞

n=0 |an|t2n, t ∈ C, is in Za,e. Hence

from [9, (2), Section 2] we deduce that for every ε > 0,

|gw(z)| ≤ C

∫ |w|+|z|

||w|−|z||

D(|w|, |z|, t) exp(ta+ε)t2µ+1 dt

≤ C exp(||w| + |z||a+ε)

∫ |w|+|z|

||w|−|z||

D(|w|, z, t)t2µ+1 dt

≤ C exp(2a+ε(|w|a+ε + |z|a+ε)).

Hence gw ∈ Za,e. Thus we prove that µτw f ∈ Za,e, w ∈ C.

The continuity of the mapping f 7→ µτw f , w ∈ C, can be proved by using the

closed graph theorem. Indeed, assume that w ∈ (0,∞). Let ( fn)n∈N be a sequence in

Za,e such that fn → f and µτw fn → g as n → ∞ in Za,e where f , g ∈ Za,e. Then since

the convergence in Za,e implies the convergence in He, µτw( f )(x) →µ τw( f )(x) as

n → ∞ for every x ∈ (0,∞). Hence µτw( f )(x) = g(x), x ∈ (0,∞). Since µτw f , g ∈
Za,e, we conclude that µτw( f ) = g. Thus we prove in this case the continuity of the

mapping f 7→ µτw f from Za,e into itself. On the other hand, if w ∈ C, we have that

for every x ∈ (0,∞),

µτw( fn)(x) = µτx( fn)(w) → µτx( f )(w) = µτw( f )(x), as n → ∞.

Then we obtain again that µτw( f ) = g and thus the proof is finished.

Proposition 2.7 allows us to define the Hankel convolution T#µ f of T ∈ Z ′
a,e and

f ∈ Za,e by

(T#µ f )(z) = 〈T(t), µτz( f )(t)〉, z ∈ C.

To study the behaviour of Hankel convolution on the space Za,e we need first to obtain

a representation of the elements Z ′
a,e.
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Proposition 2.8 Let T be a functional on Za,e. Then T ∈ Z ′
a,e if, and only if, there

exist a complex regular Borel measure γ on C and ε > 0 such that

(2.5) 〈T, f 〉 =

∫

C

f (z) exp(−|z|a+ε) dγ(z), f ∈ Za,e.

Proof Suppose that T admits the representation (2.5) for a certain complex regular

Borel measure γ on C and an ε > 0. Then, we have

|〈T, f 〉| ≤
∫

C

exp(−|z|a+ε)| f (z)| d|γ|(z)

≤ C sup
z∈C

exp(−|z|a+ε)| f (z)|, f ∈ Za,e,

Where, as usual, |γ| denotes the total variation measure of γ. Hence T ∈ Z ′
a,e.

Assume now that T ∈ Z ′
a,e. Then there exists C, ε > 0 for which

(2.6) |〈T, f 〉| ≤ C sup
z∈C

| f (z)| exp(−|z|a+ε), f ∈ Za,e.

We denote by C0 the space of continuous functions in C vanishing in infinity. If

f ∈ Za,e, then f (z) exp(−|z|a+ε) ∈ C0. Indeed, if 0 < η < ε, one has

| f (z)| exp(−|z|a+ε) ≤ | f (z)| exp(−|z|a+η) exp(|z|a+η − |z|a+ε)

≤ exp(|z|a+η(1 − |z|ε−η)) sup
w∈C

| f (w)| exp(−|w|a+η) → 0,

as |z| → ∞.

We define the mappings

J : Za,e −→ C0, f 7→ f (z) exp(−|z|a+ε),

and

L : J(Za,e) ⊂ C0 −→ C, f (z) exp(−|z|a+ε) 7→ 〈T, f 〉.
By (2.6) L is continuous when on J(Za,e) we consider the topology induced in it by

the usual topology of C0. By using Hanh-Banach and Riesz representation theorems

in a standard way, we can conclude that T admits a representation like (2.5) for a

certain complex regular Borel measure γ on C and an ε > 0.

Proposition 2.9 Let T ∈ Z ′
a,e, where a > 1. Then the mapping f 7→ T#µ f is contin-

uous from Za,e into itself.

Proof Assume, by Proposition 2.8, that γ is a complex regular Borel measure on C

and ε > 0 such that

〈T, f 〉 =

∫

C

exp(−|z|a+ε) f (z) dγ(z), f ∈ Za,e.
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In particular, for every f ∈ Za,e and z ∈ C,

(T#µ f )(z) =

∫

C

exp(−|w|a+ε)µτz( f )(w) dγ(w).

Assume that f (z) =
∑∞

n=0 anz2n, z ∈ C, is in Za,e. Then, for every z ∈ C,

(T#µ f )(z) =

∞
∑

k=0

z2k Γ(µ + 1)

Γ(k + µ + 1)

∞
∑

n=k

(

n

n − k

)

× an
Γ(n + µ + 1)

Γ(n − k + µ + 1)

∫

C

w2(n−k)exp(−|w|a+ε) dγ(w).

Indeed, let z ∈ C. We can write

µτz( f )(w) =

∞
∑

k=0

w2k Γ(µ + 1)

Γ(k + µ + 1)

∞
∑

n=k

(

n

k

)

an
Γ(n + µ + 1)

Γ(n − k + µ + 1)
z2(n−k), w ∈ C.

Moreover the series converges in Za,e. Hence

(2.7)

〈T, µτz f 〉 =

∞
∑

k=0

〈T(w), w2k〉 Γ(µ + 1)

Γ(k + µ + 1)

∞
∑

n=k

(

n

k

)

an

Γ(n + µ + 1)

Γ(n − k + µ + 1)
z2(n−k).

The last series converges absolutely. In fact, we have

∞
∑

k=0

|〈T(w), w2k〉| Γ(µ + 1)

Γ(k + µ + 1)

∞
∑

n=k

(

n

k

)

|an|
Γ(n + µ + 1)

Γ(n − k + µ + 1)
|z|2(n−k)

≤
∞
∑

k=0

∫

C

|w|2k exp(−|w|a+ε) d|γ|(w)
Γ(µ + 1)

Γ(k + µ + 1)

×
∞
∑

n=k

(

n

k

)

|an|
Γ(n + µ + 1)

Γ(n − k + µ + 1)
|z|2(n−k)

≤
∫

C

∞
∑

k=0

|w|2k Γ(µ + 1)

Γ(k + µ + 1)

×
∞
∑

n=k

(

n

k

)

|an|
Γ(n + µ + 1)

Γ(n − k + µ + 1)
|z|2(n−k) exp(−|w|a+ε) d|γ|(w)

≤ C

∫

C

exp(2a+ε/2(|z|a+ε/2 + |w|a+ε/2)) exp(−|w|a+ε) d|γ|(w) < ∞.
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Then, we can permute the order of summation in (2.7) obtaining

〈T, µτz f 〉 =

∞
∑

k=0

z2k Γ(µ + 1)

Γ(k + µ + 1)

∞
∑

n=k

(

n

n − k

)

× an
Γ(n + µ + 1)

Γ(n − k + µ + 1)

∫

C

w2(n−k)exp(−|w|a+ε) dγ(w).

Hence T#µ f is an even and entire function. Moreover, we have obtained that for

every ε > 0,

|(T#µ f )(z)| ≤ C exp(|z|a+ε), z ∈ C.

Thus we prove that T#µ f ∈ Za,e.

Suppose now that ( fn)n∈N is a sequence in Za,e for which fn → f and T#µ fn → g,

as n → ∞, in Za,e, where f , g ∈ Za,e.

According to Proposition 2.7, for every z ∈ C, µτz fn →µ τz f , as n → ∞, in Za,e.

Then,

〈T, µτz fn〉 = (T#µ fn)(z) → 〈T,µ τz f 〉 = (T#µ f )(z), as n → ∞,

for every z ∈ C. Hence, since the convergence in Za,e implies the pointwise conver-

gence, T#µ f = g. The closed graph theorem allows us to conclude that the convolu-

tion operator defined by T is continuous from Za,e into itself.

The Hankel convolution T#µS of T and S in Z ′
a,e is defined as follows

〈T#µS, f 〉 = 〈T, S#µ f 〉, f ∈ Za,e.

Thus T#µS ∈ Z ′
a,e.

The interchange formula of Hankel transform and Hankel convolution holds.

Proposition 2.10 Let T, S ∈ Z ′
a,e. Then

hµ(T#µS) = hµ(T)hµ(S).

Proof Let z ∈ C. According to [9, (1), Section 2], we have

hµ(T#µS)(z) = 〈(T#µS)(t), 2µ
Γ(µ + 1)(zt)−µ Jµ(zt)〉

= 〈T(w), 〈S(t), µτw(2µ
Γ(µ + 1)(zu)−µ Jµ(zu))(t)〉〉

= 〈T(w), 2µ
Γ(µ + 1)(zw)−µ Jµ(zw)〉〈S(t), 2µ

Γ(µ + 1)(zt)−µ Jµ(zt)〉
= hµ(T)(z)hµ(S)(z).
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By using Proposition 2.10 and the uniqueness of the Hankel transform (Proposi-

tion 2.1), we can establish the following algebraic properties of the Hankel convolu-

tion.

Proposition 2.11 Let T, R, S ∈ Z ′
a,e. Then

(a) T#µR = R#µT.

(b) (T#µR)#µS = T#µ(R#µS).

(c) T#µδ = T, where T denotes the Dirac functional.

(d) ∆µ(T#µR) = (∆µT)#µR.

We now show the surjectivity of the convolution operators defined on Za,e by the

elements of Z ′
a,e.

Proposition 2.12 Let T ∈ Z ′
a,e. If T 6= 0, the Hankel convolution operator generated

by T from Za,e into itself is surjective.

Proof Assume that T 6= 0. To see that T defines a surjective Hankel convolution

operator FT on Za,e into itself by FT( f ) = T#µ f , f ∈ Za,e, we will use the surjectivity

criterion in Meise and Vogt [10, 26.2]. To show that FT is surjective we have to prove

that if B is a subset of Z ′
a,e then, B is bounded in Z ′

a,e provided that T#µB is a bounded

set in Z ′
a,e.

Let B be a subset of Z ′
a,e such that T#µB is bounded in Z ′

a,e. Then, by Proposition

2.10, hµ(T#µB) = hµ(T)hµ(B) is a bounded set in Qa ′,e. Moreover, since hµ(T) 6= 0,

[5, Theorem 12] implies that hµ(B) is a bounded set in Qa ′,e and, then B is a bounded

set in Z ′
a,e.

Thus we conclude that the Hankel convolution operator FT generated by T is sur-

jective from Za,e onto itself.

References

[1] M. Belhadj and J. J. Betancor, Hankel convolution operators on entire functions and distributions. J.
Math Anal. Appl. 276(2002), 40–63.

[2] C. A. Berenstein and R. Gay, Complex variables, an introduction. Graduate Texts in Mathematics,
125, Springer-Verlag, New York, 1991.

[3] J. J. Betancor and A. Bonilla, On the universality property of certain integral operators. J. Math. Anal.
Appl. 250(2000), 162–180.

[4] F. M. Cholewinski and D. T. Haimo, The Weierstrass-Hankel convolution. J. Analyse Math.
17(1966), 1–58.

[5] L. Ehrenpreis, Solution of some problems of division, III. Amer. J. Math. 78(1956), 685–715.
[6] S. J. L. van Eijndhoven and M. J. Kerkhof, The Hankel transformation and spaces of type W. Reports

on Appl. and Numer. Analysis, 10, Dept. of Maths. and Comp. Sci., Eindhoven University of
Technology, 1988.

[7] H. G. Garnir, M. De Wilde, J. Schmets, Analyse fonctionnelle, Tome I. Birkhäuser Verlag, Basel,
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