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A RECONSTRUCTION OF STEEL’S MULTIVERSE PROJECT

PENELOPE MADDY AND TOBYMEADOWS

Abstract. This paper reconstructs Steel’s multiverse project in his ‘Gödel’s program’ (Steel,

2014), first by comparing it to those of Hamkins (2012) and Woodin (2011), then by detailed

analysis what’s presented in Steel’s brief text. In particular, we reconstruct his notion of a

‘natural’ theory, describe his multiverse axioms and his translation function, and assess the

resulting status of the Continuum Hypothesis. In the end, we reconceptualize the defect that

Steel thinks CH might suffer from and isolate what it would take to remove it while working

within his framework. As our goal is to present as coherent and compelling a philosophical

and mathematical story as we can, we allow ourselves to augment Steel’s story in places

(e.g., in the treatment of Amalgamation) and to depart from it in others (e.g., the removal of

‘meaning’ from the account). The relevant mathematics is laid out in the appendices.

The stubborn recalcitrance of some independent set-theoretic statements,
most prominently the Continuum Hypothesis (CH ), and the proliferation
of powerful techniques for generating newmodels have led some observers to
champion a stark revision in our understanding of the set-theoretic project:
the goal isn’t to develop a theory, as complete as possible, describing a single
universe of sets; rather, the target is an array of universes, a multiverse.
Several such theories have been proposed, and the general idea is now
prevalent enough to havemade its way into the prose of at least one textbook
(Weaver, 2014). To take the example of CH , most such theories posit an
array of universes withCH true in some and false in others, which is taken to
show that it has nodeterminate truth value, that efforts to settle it definitively,
one way or the other, are misguided. Against this backdrop, John Steel’s
approach is particularly intriguing: he offers his multiverse theory instead
as a means toward assessing CH , of exploring whether or not it’s defective,
whether or not the old enterprise of attempting to settle it is in fact viable.
It’s this undertaking of Steel’s that we intend to examine here.
Steel’s presentation of the motivations, structure, and current status of his
multiverse project appears in condensed form in his paper ‘Gödel’s Program’
(Steel, 2014). Our goal is to tell as coherent and compelling a philosophical
story as we can while capturing what we take to be the spirit of Steel’s
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A RECONSTRUCTION OF STEEL’S MULTIVERSE PROJECT 119

enterprise. Often this involves some filling in,1 some elaboratation,2 and
some outright departures, especially around his appeals to meaning and
synonymy,3 but also occasionally in the mathematics. In the end, we can’t
claim to have made every turn of the argument entirely air-tight, so we
conclude with a brief discussion of a few lingering questions.
We begin in Section 1 with a sketch of the historical background
against which multiverse thinking first emerged. Section 2 introduces Steel’s
approach by contrasting it with those of Hamkins (2012) and Woodin
(2011). The central notion of ‘natural theory’ is examined in Section 3, and
Steel’s multiverse theory itself is presented in Section 4. Section 5 explores
the relationship between the multiverse language and that of ordinary set
theory. CH is treated in Section 6, before the concluding Section 7.

§1. Historical background. In 1878, soon after proving that there are
more reals than naturals, Cantor asked ‘into how many and what
[cardinality] classes do [infinite sets of reals] fall?’4 He famously conjectured
that the answer is ‘two’ – theContinuumHypothesis –which he reformulated
in 1883 to the claim that the reals have the cardinality of the set of countable
ordinals, and in the 1890s to the now-standard 2ℵ0 = ℵ1. Cantor may have
hoped to prove CH by doing so for closed sets and generalizing from there,
but this method was doomed.5 At the famous international congress in
Heidelberg in 1904, König claimed to have disproved CH by showing that
the reals can’t be well-ordered, but by the next day Zermelo had found
an error in the proof.6 Hilbert’s well-known 1925 paper, ‘On the infinite’,
included an attempted proof that CH is true.7 Other less well-known efforts
to resolve CH were similarly unsuccessful.8

1E.g., we take the discussion of natural theories in Section 3 and the emphasis on
foundational theories to motivate MV at the beginning of Section 4 to fill in Steel’s line
of thought in Sections 2 and 3 and Section 5 of Steel (2014), and the description of a possible
route back to a universe theory in Section 6 to fill in his line of thought in Sections 5 and 6.
2E.g., the explicit appeal to axiomatizability in defense of Amalgamation in Section 4.

(The key Theorem 34 was provided by Woodin in response to our query.) See also footnote
77.
3E.g., the replacement of ‘settled by the meaning currently assigned to L∈’ with

‘impartiality’ and the replacement of ‘synonymous with t(ϕ) for some ϕ in LMV ’ with
‘legitimate T ’ in Section 5.
4Translated by Jourdain in the introduction to his translation of Cantor’s articles of 1895

and 1897 (Cantor, 1952, p. 45).
5The idea was to generalize the Cantor-Bendixson theorem, which says that any

uncountable closed set of reals has a perfect subset (and hence has the size of the continuum).
Unfortunately, as Bernstein showed in 1908, this can’t work, because the Axiom of Choice
implies that the reals can be decomposed into two uncountable sets, neither of which contains
a perfect subset.
6This inspired Zermelo to formulate the Axiom of Choice and to establish on that basis

that the continuum can be well-ordered.
7Hilbert (1967). Van Heijenoort’s introduction to the paper describes the relation between

Hilbert’s attempted proof and Gödel’s later proof of the relative consistency of CH.
8See Moore (1989).
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120 PENELOPE MADDY AND TOBYMEADOWS

The forces behind this impasse were gradually revealed: in the 30s, Gödel
used the inner model L to show that ZFC (if consistent) can’t disprove CH,
and in the 60s, Cohen used his new technique of forcing to show that ZFC
(if consistent) can’t prove it either. Foreseeing Cohen’s result as early as the
40s, Gödel proposed a search for new axioms, leading with the suggestion
of large cardinal axioms. At the time, inaccessible cardinals and Mahlo
cardinals were the best on offer, and Gödel recognized that ‘there is little
hope of solving [CH] by means of ... axioms of infinity’ like these, because,
for example, his proof of ‘the undisprovability of [CH] goes through for
all of them without any change’ (Godel, 1990, p. 182). By 1964, he held
out some hope for large cardinals ‘based on different principles’ (Godel,
1990, p. 261) – a footnote discusses measurables – but a postscript added
in 1966, in light of Cohen’s work, notes that ‘it seems to follow that the
axioms of infinity mentioned in [the] footnote ... are not sufficient to answer
the question of the truth or falsity of Cantor’s continuum hypothesis’ (ibid.,
p. 270). Lévy and Solovay confirmed this for all standard large cardinals in
Lévy and Solovay (1967).
A new species of axiom candidate emerged in the late 60s, using the
notion of determinacy.9 Determinacy was quickly shown to imply other,
more familiar regularity properties – if all sets of reals are determined
(AD), then they’re also Lebesgue measurable and have the Baire and
perfect subset properties – while the Axiom of Choice guaranteed the
existence of an undetermined set. To preserve Choice, interest focused on
positing the determinacy of definable sets: the projective sets (PD) or the
sets constructible from R (ADL(R)). These hypotheses settled questions of
descriptive set theory that had been open since the 20s and that Godel’s
and Cohen’s techniques showed could not be answered from ZFC alone.
The perceived downside was their lack of intrinsic support: ‘No one
claims direct intuitions ... either for or against determinacy hypotheses’
(Moschovakis, 2009, p. 472). This shortcoming was remedied in the late 80s,
whenMartin, Steel, andWoodin derivedPD andADL(R) from large cardinal
axioms. Unfortunately, it was known even before this that determinacy
assumptions can’t settle CH.10

This long history of failure to settle CH has led some observers to despair
and some skeptics to press their advantage:

The striking thing, despite all such progress, is that – contrary
to Gödel’s hopes – the Continuum Hypothesis is still completely
undecided ...Thatmay leadone to raise doubts not only aboutGödel’s
program but its very presumptions. Is the Continuum Hypothesis a
definite problem as Gödel and many current set theorists believe?
(Feferman, 2000, pp. 404–405)

9A subset A of Baire space (ùù) is determined iff one or the other player has a winning
strategy in an infinite game in which they alternate choosing natural numbers and the first
player wins iff the result is in A.
10See Steel (2016) for the history.
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Even believers in the determinateness of CH admit that the skeptics have
a point:

Those who argue that the concept of set is not sufficiently clear to fix
the truth value of CH have a position which is at present difficult to
assail. As long as no new axiom is found which decidesCH, their case
will continue to grow stronger, and our assertion that the meaning
of CH is clear will sound more and more empty. (Martin, 1976, pp.
90–91)11.

In other words, perhaps it isn’t that our methods have failed to crack CH,
but that the problem itself is somehow ill-formed.
This is the state of affairs that inspires multiverse thinking. Maybe it’s a
mistake to pursue a unified theory of a single domain of sets; maybe we
should allow for a range of theories describing a range of domains. Instead
of doggedly demanding an answer to the Continuum Problem, maybe we’re
failing to recognize the solution that’s right before our eyes:

The answer to CH consists of the expansive, detailed knowledge
set theorists have gained about the extent to which it holds and
fails in the multiverse, about how to achieve it or its negation in
combination with other diverse set-theoretic properties ...the most
important and essential facts about CH are deeply understood, and
these facts constitute the answer to theCH question. (Hamkins, 2012,
p. 429)

Various of these themes appear throughout the multiverse literature. We
now sketch three approaches, due to Hamkins, Woodin, and Steel.

§2. Motivation. A first step toward understanding Steel’s multiverse
language and theory is to recognize that his motivation is different from
those of othermultiverse theorists, most prominentlyHamkins andWoodin.
All three are concerned with CH in one way or another, all three engage in
multiverse thinking, but they do so for quite different reasons, with quite
different metaphysics and methods, and quite different outcomes. Our hope
is that highlighting these differences will bring all three into sharper focus.
Hamkins’s case for hismultiverse is grounded in thephenomenologyof set-
theoretic practice; his multiverse is posited to account for that mathematical
experience:

Our most powerful set-theoretic tools, such as forcing, ultrapowers,
and canonical inner models, are most naturally and directly under-
stood as methods of constructing alternative set-theoretic universes.
...wehave a robust experience in theseworlds ...Themultiverse view ...
explains this experience by embracing them all as real. (Hamkins,
2012, p. 418)

11Martin is more optimistic in his paper for Koellner’s EFI project (Martin, 2019).
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We seem to have discovered the existence of other mathematical
universes ... and the multiverse view asserts that yes, indeed, this is
the case. (Ibid., p. 425)

This generates a rich platonistic metaphysics:

The multiverse view is one of higher-order realism – Platonism about
universes. (Ibid., p. 417)

It includes worlds for many different set theories, both weak and strong:12

There seems to be no reason to restrict inclusion to onlyZFC models,
as we can include models of weaker theories ZF ,ZF–,KP, and so on,
perhaps even down to second-order number theory. (Ibid., p. 436)

Hamkins rejects any call for an explicit axiomatization, but he does identify
certain principles that ‘we might expect to find in the multiverse’ (ibid., p.
436). (It isn’t clear what sort of epistemic access we have to these principles,
what reason we have to think the platonic multiverse has these features.)
Finally, as we’ve seen, Hamkins takes the status of CH to be resolved:

On the multiverse view ... the continuum hypothesis is a settled
question; it is incorrect to describe CH as an open problem. (Ibid.,
p. 429)

In sum, then, the line of thought goes like this: the phenomenology of set-
theoretic practice is explained by, and therefore justifies, a generous abstract
ontology; some facts about this abstract ontology provide a final answer to
the CH.
Woodin’s concerns are in some ways orthogonal to Hamkins’s. He isn’t
out to explain set-theoretic experience, but to block what he sees as a way
of denying that CH has a determinate truth value:

Refinements of Cohen’s method of forcing in the decades since his
initial discovery of the method and the resulting plethora of problems
shown to be unsolvable ... have ... almost compelled one to adopt the
generic-multiverse perspective. (Woodin, 2011, pp. 16–17)
Let the multiverse (of sets) refer to the collection of possible
universes of sets. The truths of ...Set Theory are the sentences which
hold in each universe of the multiverse. The multiverse is the generic-
multiverse if it is generated from each universe of the collection by
closing under generic extensions (enlargements) and under generic
refinements (inner models of a universe which the given universe is a
generic extension of). (Woodin, 2011, p. 14)

Clearly, the generic multiverse is less encompassing than Hamkins’s wild
menagerie, including as it does only generic extensions and refinements.

12Philosophers of mathematics may be reminded of the Plenitudinous Platonism of
Balaguer (1998).
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Since a set-theoretic claim is to be true in this multiverse just when it’s true
simpliciter in all its worlds, we see that CH is neither true nor false.
To block this conclusion, Woodin focuses on the notion of multiverse
truth and shows (modulo a proper class of Woodin cardinals and the Ω-
conjecture) that its Π2 truths are Turing reducible to the truths of an initial
segment that’s uniformly definable in any one of its universes; this reduction,
he claims, is inconsistent with ‘the very nature of [the] conception’ of set-
theoretic truth (Woodin, 2011, p. 17).13 (Here, once again, it’s unclear
what sort of epistemic access is involved.) In this way, Woodin claims
to undercut the generic-multiverse conception of truth, and with it, the
purported challenge to the determinateness of CH.
Different as they are, there’s a sense in which Hamkins andWoodin stand
together on one side of a divide that separates them both from Steel. For
the two of them, the multiverse promise (Hamkins) or threat (Woodin) is
that the pretheoretic subject matter of set theory isn’t a single universe but
an array of universes.14 From this multiverse perspective, the language of
set theory is still L∈, but because it’s understood as describing a different
pretheoretic metaphysics, some statements in that language – CH most
conspicuously – have a new status. In stark contrast, Steel bypasses any
pretheoretic metaphysics. For Steel, the question at issue is whether the
language of set theory should be L∈, a language of sets, or a multiverse
language of sets and universes. As we’ll see (in Section 4), the pretheoretic
subject matter guiding the formulation of Steel’s multiverse language and
multiverse theory is again just theories, first-order theories in the language
L∈ of set theory.
It should be noted that this philosophically consequential contrast
between Hamkins and Woodin on one side and Steel on the other is
compromised when Steel formulates the central question about CH in this
way: is ‘the truth value of CH ... determined by the meaning we currently
assign to’L∈? (Steel, 2014, p. 154).15Here ‘the current meaning ofL∈’ looks
to function as a new sort of pretheoretic subject matter.16 In what follows,
we present this as Steel’s preferred way of identifying the defect CH might
suffer from – not being settled by the current meaning assigned to L∈ – but
eventually we argue not only that this is inessential, but that it in fact clashes
with the central mechanisms of Steel’s position. We offer a replacement
that’s better suited to the job and that removes any hint of back-sliding in
the direction of Hamkins and Woodin.

13See Meadows (2020) for an assessment of this argument.
14Koellner employs a more general terminology of ‘pluralism’ and ‘nonpluralism’, which

disagree on whether or not ‘there is an objective [unique?] mathematical realm’ (Koellner,
2014, paragraph 2).
15This is an improvement over the formulation of Steel’s question in Section 3 of Maddy

(2017): ‘is CH meaningful?’. To suggest that CH might be meaningless in any ordinary sense
is a nonstarter, but the possibility that a meaningful statement might lack a truth value is
not.
16This begins to resemble contemporary versions of conceptualism. See, e.g., the quotation

from Martin on p. 5.
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Steel’s focus, then, is linguistic, that is, on theories, and in particular on
‘framework theories’, that is, theories suited to the traditional foundational
role:17

Why not simply develop all natural theories ... ? Let 1000 flowers
bloom! ... The problem with this ... is that we do not want everyone
to have his own private mathematics. We want one framework theory,
to be used by all, so that we can use each other’s work. It is better for
all our flowers to bloom in the same garden ...
The goal of our framework theory is tomaximize interpretive power,
to provide a language and theory in which all mathematics, of today
and of the future so far as we can anticipate it, can be developed.
(Steel, 2014, pp. 164–165)

Given the overarching goal of ‘maximizing interpretive power’,18 Steel
takes large cardinals to be a good start on how to proceed beyondZFC: they
provide an effective measure of consistency strength; there’s good evidence
for their consistency, especially for those with canonical inner models (Steel,
2014, pp. 156, 164). The question, for him, is how we go on from there, and
what bearing this has on the meaning of set-theoretic language, and hence
on the determinacy of CH.
The key to Steel’s answer is his contention that the natural theories aren’t
a chaotic collection, that

In fact, the different natural theories ... are not independent of one
another. (Steel, 2014, p. 164)

His goal, then, is to give all these natural theories fair and equal
consideration:

We seek a language in which all these theories can be unified, without
bias toward any, in a way that exhibits their logical relationships ...
We want a neat package they all fit into. (Steel, 2014, p. 165)

In thisway, Steel hopes to addresswhat is for him the central question – isCH
settled by current set-theoretic meaning? – without prejudging the answer.
To understand how this goes, we must first understand natural theories and
the sense in which they aren’t ‘independent of one another’.

17Steel treats the terms ‘foundational theory’ (Steel, 2014, p. 154) and ‘framework theory’
(ibid., p. 164) interchangeably. For more on the foundational aspects of universe and
multiverse theories, see Maddy (2017).
18Steel distinguishes ‘interpretive power’ from ‘consistency strength’: ‘Maximizing

interpretive power entails maximizing consistency strength, but it requires more, in that we
want to be able to translate other theories/languages into our framework theory/language
in such a way that we preserve their meaning. The way we interpret set theories today is to
think of them as theories of inner models of generic extensions of models satisfying some
large cardinal hypothesis, and this method has had amazing success’ (Steel, 2014, p. 165).
This preference for so-called ‘meaning preserving interpretations’ is implicit in the analysis
of ‘natural theories’ in Section 3 below.
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§3. Natural theories. To begin at the beginning, what are ‘natural’
theories? Understandably, Steel isn’t precise about this, but he does give
us a hint:

By ‘natural’ we mean considered by set theorists, because they had
some set-theoretic idea behind them. (Steel, 2014, p. 157)

We might say a natural set theory is one with a serious mathematical
motivation. This is a broader class of theories than framework theories –
foundational theories in which ‘all mathematics ... can be developed’ –
but presumably all framework theories are natural. On the other extreme,
unnatural theories would include those ‘using self-referential sentences,
for example’ (ibid.) or what we might call ‘Gödelian trickery’ (e.g.,
ZFC+¬Con(ZFC)). This obviously isn’t enough to firmly delimit the class
of natural theories, but the intention behind the notion should be clear
enough. The claim, then, is that all such theories are interrelated. We can
see this, Steel tells us, in ‘logical relationships ... brought out in our relative
consistency proofs’ (ibid., p. 164).
The reference here is to the proofs involved in establishing that the
hierarchy of large cardinal axioms provides an apt measure of consistency
strength. What’s emerged over the years is that many theories set theorists
consider turn out to be equiconsistent with ZFC extended by one large
cardinal axiom or another. Moreover, these large cardinal axioms are
linearly ordered by their consistency strength. Of course it’s possible to
concoct a theory for which this fails, but as a straightforward matter of
empirical fact, it has been true for ‘natural’ theories entertained to date. So,
for example:

Theorem 1.

(1) Con(ZFC+ projective sets are Lebesgue measurable) ↔ Con(ZFC+
∃inaccessible cardinal).

(2) Con(ZFC + ù1 has a precipitous ideal) ↔ Con(ZFC + ∃measurable
cardinal).

(3) Con(ZFC+∆12-determinacy)↔ Con(ZFC+∃Woodin cardinal).

(4) Con(ZF+AD)↔ Con(ZFC+∃infinitely many Woodin cardinals).19

The pervasiveness of this phenomenon has led to the widespread belief that
the consistency strength of all natural theories can be measured by the large
cardinal hierarchy:

Phenomenon1.Every natural theory extendingZFC is equiconsistent
with a theory of the form ZFC+LCA, where LCA is some large
cardinal axiom.

Steel is calling attention to the nature of the proofs involved in establishing
these equiconsistencies because, as a matter of fact, they all follow a

19(1) is due to Solovay (1970) and Shelah (1984). (2) is due to Jech et al. (1980). (3) and
(4) are due toWoodin (seeWoodin andKoellner’s chapter in Foreman andKanamori, 2009).
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certain important pattern. If T is a natural theory extending ZFC and Φ
is the relevant large cardinal axiom, we proceed roughly as follows: in one
direction, using Cohen’s forcing technique, we start from a countable model
M ofZFC+Φ and define a poset P inM such that wheneverG is P-generic
overM,M[G] thinks T, that is, such that P forces T ; in the other direction,
starting from a modelM of T, we define an inner model N such that N
thinks ZFC+Φ.20

The prevalence of this form of proof suggests:

Phenomenon 2. For every natural theory extending ZFC, there’s an
LCA such that the ZFC+LCA proves that theory holds in an inner
model or a forcing extension.

The significance of Phenomenon 2 is precisely what Steel claims: it shows
how natural theories are interrelated. To see this, suppose T and S are
theories extending ZFC that are connected in the way these equiconsistency
proofs require, that is, suppose that in any model of S, we can define a P that
forces T and that any model of T contains an inner model of S. Then it’s a
straightforward consequence of the Lévy-Shoenfield absoluteness theorem
that they have the same Σ12 consequences:

Theorem 2. Suppose S and T are theories extending ZFC such that:

(1) S proves that there is some P such that 
P T .
(2) Every modelM of T has anM-definable inner modelN with the same
ordinals that satisfies S.

Then T =Σ12 S; i.e., T and S have the same Σ
1
2 sentences as consequences.

Proof. First recall that the Lévy-Schoenfield theorem21 tells us that if ø
is Σ12,M,N are models of ZFC andM is an inner model of N , then

M |= ø ⇔ N |= ø.

Let ø be Σ12. We show that T |= ø iff S |= ø.
(→) Suppose T |=ø and letM be a countable model of S. We claim that
M |= ø. To see this let G be P-generic overM. (1) tells us thatM[G] |= T
and soM[G] |= ø. Then sinceM is an inner model ofM[G], we see that
M |= ø.22

20For example, in (3) of Theorem 1, we take a countable modelM of ZFC with aWoodin
cardinal ä and then show that if we collapse ä using a G that’s Col(ù,ä)-generic overM,
we obtain a modelM[G] in which ∆12-determinacy is true. In the other direction, we take a

model of ZFC in which ∆12-determinacy is true and show that in a definable inner modelN ,
the HOD of N thinks N ’s ù2 is Woodin. See Neeman’s chapter in Foreman and Kanamori
(2009) for a detailed account of the forward direction, and Koellner and Woodin’s following
chapter for the converse.
21For a detailed account of this theorem, see Theorem 25.20 of Jech (2003) or Theorem

13.15 of Kanamori (2003).
22Note that we are forcing over models of ZFC that might not be well-founded. This is

well known to be harmless (see Corazza, 2007 for a comprehensive account of forcing in such
situations).
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(←) Suppose S |= ø and letM be a countable model of T. We claim that
M |= ø. By (2), we may fix anM-definable inner model N ofM such that
N |= S. By our assumption we see that N |= ø; and since N is an inner
model ofM we see thatM |= ø. ⊣

Given Phenomenon 2, it follows that no natural theories extendingZFC can
disagree about Σ12 statements:

If T ,S are natural theories extending ZFC, then either

T ⊆Σ12 S or S ⊆Σ12 T .

The idea here is that even if T and S are not equiconsistent, they will each
be equiconsistent with some large cardinal, so one of the directions from
Theorem 2 is always available. More specifically, exploiting Phenomenon
1, suppose T and S have been shown to be equiconsistent via forcing or
an inner model to large cardinal axioms LCT and LCS respectively. Then
since large cardinal axioms are linearly ordered by consistency strength,
we may suppose without loss of generality that LCT interprets LCS via an
inner model. By repeated use of Phenomenon 2 and Theorem 2 we then see
that: T and LCT have the same Σ12 consequences; LCT has possibly more Σ

1
2

consequences than LCS;23 and LCS and S have the same Σ12 consequences.
This means that natural theories extending ZFC cannot disagree about Σ12
sentences.24

And this style of consequence continues:25

ZFC+ x x#

exists

we
have

T Σ1
3
S S Σ1

3
Tor

For any two

natural theories

extending

ZFC+ infinite

Woodins
T Σ1 S S Σ1 T

ZFC+ infinite

Woodins &

Measurable

above

T Th(L( )) S S Th(L( )) T

23For this we rely on the fact that the known large cardinals are linearly ordered by
consistency strength.Moreover the proof that the consistency ofLCT implies the consistency
of LCS can – at worst – be established by defining a model M of LCS from a model N of
LCT and both of these models can be understood has having the same ù1. This then suffices
for a further use of the Lévy-Schoenfield theorem.
24Note that it is crucial that T and S are natural theories. For a pathological example,

observe that ZFC+¬Con(ZFC) is equiconsistent with ZFC but it clearly doesn’t agree with
ZFC on all Σ12 sentences.
25By “infinite Woodins,” we mean infinitely many Woodin cardinals.
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The proofs of specific cases of this phenomenon also follow the template
above.26 The upshot is that as we addmore large cardinal axioms, we remove
the possibility of disagreement between natural theories extending them:

(*) As natural theories proceed up the large cardinal hierarchy
in consistency strength, they agree on an ever-increasing class of
mathematical statements.

It’s worth recalling that these ever-increasing classes have their origin in
the work of the French analysts Baire, Borel, and Lebesgue in the early years
of the twentieth century. Alarmed by the role of pathological functions in
the foundations of analysis in the late nineteenth century, they set out to
bring order to the study of functions from reals to reals by classifying them
according to their complexity. The process began with the Borel hierarchy
({Σ0α}α<ù1), where the complexity of functions is reduced to that of sets
(for example, a function is Borel iff the inverse image of every Borel set is
Borel). Complexity for sets of reals is then defined in familiar topological
terms, and as hoped, the Borel sets turned out to be fairly well-behaved,
enjoying regularity properties like Lebesgue measurability and the perfect
set property. The Σ1ns involved in (*) arose as the effort to domesticate
parts of analysis continued in the Russian school of Lusin and Souslin.
The regularity properties were extended to Σ11, but stalled at the perfect
subset property for Π11 and Lebesgue measurability for Σ

1
2. Unbeknownst

to Lusin and Souslin, their failures weren’t from lack of imagination: ZFC
isn’t enough to settle these matters. With the introduction of determinacy
hypotheses, eventually derived from large cardinals, regularity was extended
to the entire projective hierarchy. Thus the original goal of delimiting the
more civilized, more well-behaved portion of analysis was extended.
So these classification hierarchies of Borel and projective sets of reals
originated in an effort to isolate the more straightforward, down-to-earth
portion of analysis; Steel refers to statements involving these sets as
‘concrete’. In these terms, (*) becomes:

Phenomenon 3. As natural theories proceed up the large cardinal
hierarchy in consistency strength, they agree on an ever-increasing
class of concrete mathematical statements.

26For example, in the cases where every set has a sharp, we show that there is a kind of
generalized proof theory for the Σ13 sentences in the sense that their truth can be witnessed by
the ill-foundedness of a certain tree. In this case, theMartin-Solovay tree suffices (see Chapter
15 of Kanamori, 2003). For the other two, we rely on a generalisation of this known as a
homogeneous tree (see Chapter 32 of Kanamori, 2003 and Neeman’s chapter in Foreman
and Kanamori, 2009). One might also think of the Lévy-Shoenfield tree used in Theorem 2
as providing a kind of proof theory for Σ12 facts. One might think of the ill-foundedness of
such a tree as being analogous the existence of an open branch in a proof tree or tableau in
first order logic. It turns out that – in the presence of sufficient sharps – this proof theory
remains intact through forcing and inner model constructions. Thus if T and U are natural
theories – so linked by either forcing or an inner model construction – then they agree about
how this proof theory works. In this way, the Σ13 sentences are preserved and disagreement is
removed.
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The trouble, of course, is that CH is immune to this kind of disagreement-
removal: it isn’t concrete; large cardinal axioms aren’t enough. This is what
raises the specter, for Steel, that ‘the truth value of CH is not determined by
the meaning we currently assign’ to the language of set theory (Steel, 2014,
p. 154). The language of ZFC all by itself might be luring us into asking
questions with no answers. This possibility can’t be ignored:

Certainly we do not want to employ a syntax which encourages us
to ask pseudo-questions, and the problem then becomes how to flesh
out the current meaning, or trim back the current syntax, so that we
can stop asking pseudo-questions. (Steel, 2014, p. 154)

As we’ll see, Steel’s multiverse language is his tool for this project. We focus
first on the ‘trimming’ option and return to the ‘fleshing out’ toward the end
of Section 6.

§4. Multiverse language and theory. With this understanding of natural
theories in hand, we return to the motivation for Steel’s multiverse. We
have good reason to adopt ZFC+LCs,27 but don’t know how to go on
from there. We’ve seen (in Section 3) that all natural theories will agree on
concrete mathematics. Maybe this is all we should ask of our foundational
or framework theory:

Why not simply develop all natural theories? ... Let 1000 flowers
bloom! (Steel, 2014, p. 164)

But we’ve also seen (in Section 2) that Steel rejects this solution on the
grounds that it wouldn’t provide a unified framework:

We do not want everyone to have his own private mathematics. We
want one framework theory, to be used by all, so that we can use
each other’s work. It is better for all our flowers to bloom in the
same garden. If truly distinct frameworks emerged, the first order of
business would be to unify them. (Ibid.)

The trouble is that our guiding principle – maximize interpretive power –
has given out. So Steel suggests:

Before we try to decide whether some such theory is preferable to
the others, let us try to find a neutral common ground on which to
compare them. We seek a language in which all these theories can be
unified, without bias toward any. (Ibid., p. 165)

The trick then is to find such a neutral language.
Phenomenon 2 of the previous section suggests that all natural theories
are realized in inner models or forcing extensions of models of ZFC+LCA
for some large cardinal axiom LCA. Rather than trying to codify the natural

27We use ‘ LCA’, e.g., in Phenomena 1 and 2, as a stand-in for some particular cardinal
axiom or other and ‘ LCs’ as a rough term for traditional large cardinal axioms in general.
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theories directly, we could concoct a collection of ‘worlds’ that manage to
realize each of them, a collection of worlds, then, that’s closed under inner
models and forcing extensions.
But notice that for present purposes, we don’t actuallywant to represent all
natural theories by worlds in our neutral ground. The point of the exercise,
after all, is the hope it might help us determine whether or not independent
statements like CH are settled by the current meaning we assign to the
language of set theory. In the past, questions of this sort have been answered
by findingways to extend our current list of axioms, aswe did by adding large
cardinal axioms to ZFC; this would be to determine that ‘some such theory
is preferable to the others’ (quoted above). Given our current commitment
to ZFC+LCs, then, the theories we’re interested in, the candidates for the
foundational role, are extensions of ZFC+LCs.
Unfortunately, there’s no precise characterization of LCs, of what are
often called ‘traditional large cardinal axioms’, so we can’t just narrow the
range of natural theories in our neutral ground by stipulating that all our
‘worlds’ must satisfy ZFC+LCs. But we could, at the very least, try to
avoid including theories with ‘antilarge-cardinal axioms’, like V = L, which
foreclose the addition of some large cardinals. Theories like this tend to
be realized in definable inner models, so one expedient would be to resist
closing our collection of worlds under those.28 Inner models generated by
forcing refinements don’t have this drawback, so they can be included.
Still, though the natural theories realized by definable inner models aren’t
represented by worlds in this collection, Steel emphasizes that ‘they are
already there, we can talk about them in the multiverse language already’
(Steel, 2014, p. 167). He means, of course, that they can be defined in
a world. This is crucial, as Steel has explained elsewhere, given that the
theories realized by those worlds are to be regarded as candidates for a
foundation:

It is a familiar but remarkable fact that all mathematical language
can be translated into the language of set theory, and all theorems of
‘ordinary’ mathematics can be proved in ZFC. In extending ZFC, we
are attempting to strengthen this foundation.
...In this light we can see why most set theorists reject V = L
as restrictive: adopting it restricts the interpretative power of the
language of set theory. The language of set theory as used by the
believer in V = L can certainly be translated into the language of set
theory as used by the believer inmeasurable cardinals, via the translation

28Steel doesn’t explicitly make the argument of this paragraph and the previous, but it’s
clear from the fact that he requires all worlds in his multiverse to satisfy ZFC that he’s not
expecting all natural theories to be represented by worlds (e.g., ZF +AD is left out). Late
in the paper, he remarks that ‘Our current understanding of the possibilities for maximizing
interpretive power [i.e., what a foundational theory is supposed to do] has led us to one
theory of the concrete, and a family of theoretical superstructures for it, each containing all the
large cardinal hypotheses’ (Steel, 2014, p. 178, emphasis added). This family is the multiverse,
and speaking informally now, he indicates that each world ought include all large cardinals.
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ϕ→ ϕL. There is no translation in the other direction. (Steel, 2000,
p. 423, emphasis added)

In other words, part of whatmakes large cardinals preferable toV =L is that
ZFC+V = L can be realized in a definable inner model,29 so it’s important
that those inner models are ‘already there’.
To this point, then, our collection of worlds is closed under generic
extension and refinement. Unfortunately, this doesn’t tell us as much as
it might seem. Sets appear here only in some world or other, so given a
world V and a poset P in V, the existence of sets P-generic over V depends
on which worlds exist. For that matter, the single world V by itself is ‘closed
under generic extension’ in the sense that for every poset P in V and every
G that’s P-generic over V, V [G] is in the collection – but only because there
aren’t any such Gs! We can do a little better by stipulating that

(Extension) Given a world V and P ∈ V , there is a world U and a G
in U such that G is P-generic over V and U = V [G],

but so far, this guarantees one P-generic set G and one generic extension
V [G], for each V and P. So the question arises, how many should there be
in our multiverse?
One immediately appealing answer is: all of them! This is the answer
Woodin intends, but just to say this in the intuitive setting where we’re
currently operating doesn’t help: ‘for every world V, every poset P in V, and
every G that’s P-generic over V, there is a world U such that U = V [G]’
doesn’t determine how many such Gs there are. To properly convey what he
has in mind – ‘to illustrate the concept of the generic-multiverse’ (Woodin,
2011, p. 14) – Woodin gives us a set-theoretic toy model: we start with a
countable transitive model (ctm) M of ZFC (or ZFC+LCA) and form
a collection of ctms by closing under generic extension and refinement.30

Because these models reside in our background universe, all P-generic Gs
are available when we close under generic extension. Here Woodin relies on
our understanding of that background universe to deliver this full array of
generics.
This approach would seem to align with Steel’s goals – such a generous
array of generic extensions promises to help realize all candidate founda-
tional theories. But it turns out that Steel has reason to resist Woodin’s
answer.31 To see this, we need to look more closely at Woodin’s toy model.

Definition 3. If M is a ctm of ZFC, VM is the smallest collection of
models containingM and such that:32

29And of course the natural theory ZF +AD, mentioned in the previous footnote, will be
satisfied in an inner model in any world with sufficient large cardinals.
30We adopt the convention of denoting transitive models by M and arbitrary models

byM.
31We take up the question of just how good his reason is in Section 7, but for now our goal

is to give the best formulation we can muster.
32For ease of exposition, we state this definition of Woodin’s VM and Definition 6

of Steel’s MG in terms of countable transitive models, but we actually intend a slight
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(1) IfN ∈VM andG isP-generic overN for someP∈N, thenN[G]∈VM ;
and

(2) If N ∈ VM and N = N
′[G] where G is P-generic over N′ for some

P ∈N′, then N′ ∈ VM .

VM has the following striking feature:

Theorem 4 (Woodin). For M a ctm of ZFC, there exist Cohen reals c and
d over M such that there is no ctm N of ZFC such that:

M[c]⊆N ⊇M[d],

where N has the same ordinals as M.33

Wemight say that the two extensionsM[c] andM[d] can’t be amalgamated.
It would be difficult to specify exactly how often this happens – the
phenomenon is not restricted to Cohen reals – but at least we can say
that in Woodin’s intuitive multiverse, the following claim is false:

(Amalgamation) IfV andV ′ are worlds, then there exist posets P and
P′ in V and V ′, respectively, and a world U, a G ∈U that’s P-generic
over V, and a G′ ∈U that’s P′-generic over V ′, such that

V [G] =U = V ′[G′].

For a precise account of what hangs on this, we needmoremachinery – we
get to this in a moment – but first a rough and informal sketch. In addition
to Extension, we’ve also been assuming that the multiverse is closed under
generic refinement:

(Refinement) If V is a world and V =U[G] where G is P-generic over
U for some P in U, then U is a world.

Obviously, Woodin’s toy model satisfies both Extension and Refinement but
not Amalgamation, so speaking loosely for now, it follows that

(i) Extension + Refinement doesn’t imply Amalgamation.

Using a different toy model, we show below (p. 19) that

(ii) Extension + Refinement is consistent with Amalgamation.34

generalization of both to all countable models (see Appendix B for VM and Definition 25 of
Appendix A forMG). The no-go theorem for Woodin’s multiverse (p. 17 and Theorem 34 of
Appendix B) holds on either version of the definition. The point of the generalization
is that it enables theorems like 8 and 12 on Steel’s multiverse, which capture its purely
linguistic character (as opposed to metaphysical approaches involving an abstract ontology
of universes). The generalized versions are used in the two completeness claims on p. 17 to
allow a direct comparison.
33See Fuchs et al. (2015), Section 2, Observation 35 for a proof of this. Also note that this

result holds for the more general case of arbitrary countable models.
34This follows directly from Theorem 26 in Appendix A.
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So we see that Extension and Refinement alone are too weak for a viable
multiverse theory: they aren’t enough to settle even the elementary matter
of Amalgamation.
How is the question of Amalgamation to be settled? Steel’s thinking here
comes out in his complaint that

Neither Hamkins nor Woodin presented a language and a first-order
theory in that language, both of which would seem necessary for a
true foundational theory. (Steel, 2014, p. 170)

So far, the candidate foundational theories Steel has been out to bring
together for comparison in the multiverse are universe theories in the first-
order language of set theory, like ZFC+LCs. Presumably in this quotation,
when Steel speaks of a foundational theory in a multiverse language, he’s
thinking of what would happen if our exploration of all candidate universe
theories in the ‘neutral common ground’ of the multiverse were to conclude
that no such theory is ‘preferable’ to the others as a foundation (Steel,
2014, p. 165).35 In that eventuality, our current foundational theorizing
about a single universe would be prompting us to pose questions with no
answers, that is, to ask which of a range of candidate foundational theories
is ‘correct’ where there is no correct or incorrect. Some change would be in
order, perhaps to amultiverse theory as foundation, inwhich case, obviously,
we’d need an explicit multiverse theory to replace ZFC+LCs. What Steel
actually ends up proposing in that eventuality (see Sections 5 and 6) is that
we ‘trim back current syntax [i.e., the syntax of L∈], so that we can stop
asking pseudo-questions’ (ibid., p. 154), which for him roughly comes to the
same as adopting a particular multiverse theory as our foundation. Either
way, an explicit multiverse theory is essential to Steel’s project. Speaking of
Woodin’s multiverse, he writes ‘it is not at all clear what its theory would be’
(ibid., p. 170). The question, then, is whether Woodin’s multiverse can be
suitably axiomatized.36

To address this question, we need to adopt a meta-mathematical
perspective on Woodin’s intuitive multiverse, and the only way we know
to do this is to drop back into the theory we can agree on – ZFC+LCs –
and reason there about a set-theoretic surrogate. At this point, we again call
on Woodin’s VM , this time not as an intuitive guide to his intentions (as on
p. 14), not as a simple tool for proving (i) (as on p. 15), but as a set-theoretic
surrogate for his intuitive multiverse in our meta-mathematical inquiry. Any
such meta-mathematical surrogate will be imperfect in some ways – even the
original identifications of validity with truth in all set-theoretic models and
of ordinary proof with a formal proof predicate have their infelicities – but
without such surrogates, meta-mathematics is impossible.

35This leaves open the likelihood that some theories will be of more mathematical interest
than others.
36See footnote 77.
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The question, then, is whether there’s a recursive set of axioms, T, in a
suitable multiverse language such that for allϕ in this language the following
are equivalent:

(1) T ⊢ ϕ.
(2) IfM is a countable model of ZFC, then VM |= ϕ.

Alas, the answer is no.37

This means that if Steel wants an axiomatizable multiverse, he can’t follow
Woodin and include ‘all’ generic extensions. In fact, a look at the proof of this
no-go theorem reveals that it’s Theorem 4, the violation of Amalgamation,
that blocks the possibility of axiomatization.38 So the natural move for Steel
is to add Amalgamation to Extension and Refinement. Syntactically, Steel’s
multiverse theory,MV , builds on formal versions of these three assumptions.
Semantically, he presents a toy model,MG, for some countable modelM
of ZFC,39 much as Woodin gives us VM, and that model,M

G, appears as
a meta-mathematical device in the proof of (ii), just as VM does for (i). It
can then be proved that for all ϕ in the multiverse language, the following
are equivalent

(1) MV ⊢ ϕ.
(2) IfM is a countable model of ZFC, thenMG |= ϕ.

So Steel has reason to resist Woodin’s approach and to answer the question
‘howmany generics’ by adding Amalgamation to the characterization of his
intuitive multiverse.
To make this rough story precise, we need a first-order language and
theory. Steel proposes LMV , a two-sorted language with a sort for worlds
and a sort for sets. (We reserve upper case letters like V ,U ,V0, ...U0, ... for
worlds and lower case letters like x,y,z,x0, ... for sets.40) The language has a
single relation symbol ∈ and the atomic well-formed formulae include x ∈ y
and x ∈V but not V ∈ x. Steel formulates his multiverse theory,MV , in this
language.
The first two axioms of MV codify our basic understanding of the
multiverse’s worlds and sets. At a minimum, worlds must be extensional
and worlds must think all axioms of ZFC hold:

MV -0 ∀V∀U(∀x(x ∈ V ↔ x ∈U)→ V =U);
MV -1ϕ ∀Vϕ

V

37As remarked in footnote 32, we use the generalized definitions of both VM andMG

in these equivalences to maintain a strict parallelism. The no-go theorem for Woodin’s
multiverse is Theorem 34 of Appendix B.
38In his comparison of Woodin’s multiverse with his own, Steel explicitly notes that the

former ‘does not satisfy amalgamation’ (Steel, 2014, p. 170, footnote 22).
39Recall footnote 32.
40In a slight departure from Steel, we avoidW as world variable and reserve it for the class

term in Theorem 5.
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for any axiom ϕ of ZFC.41 Steel points out that ‘one can add large cardinal
hypotheses that are preserved by small forcings ... as follows: given an large
cardinal hypothesis ϕ, we add “ ϕW for all worldsW”’ (Steel, 2014, p. 166).
Also, all worlds are transitive and have the same ordinals:

MV -2 ∀V∀x ∈ V x⊆ V ;

MV -3 ∀V∀U∀x(x ∈OnV ↔ x ∈OnU).

The fourth axiom guarantees that the only way sets appear in the multiverse
is in worlds:

MV -4 ∀x∃V x ∈ V .

The next group of axioms forMV specifies the structure of the multiverse
by codifying the principleswe’ve been treating informally. First Extension:

MV -5 (Extension) ∀V∀p ∈V∃U∃g ∈U(g is p-generic/V ∧U =V [g]).42

Informally, this says just what it should: given a poset in some worldV, there
will be a V -generic g for that poset such that V [g] is a world.
Stating Refinement is trickier, requiring the following theorem:43

Theorem 5 (NBG) (Laver, Woodin). There is a class termW(·) ∈ L∈ such

that the following are equivalent:44

(1) N is a generic refinement of the universe; and
(2) N =Wr for some r.

In other words, every generic refinement of a universe can be defined in that
universe using a parameter. Refinement then becomes:

MV -6 (Refinement) ∀V∀r ∈ V∃U(U = (Wr)
V ).

Informally, this says that for any world V and parameter r ∈ V , there is a
world corresponding to the generic refinement as calculated by the formula
Wr in V.45

41The first of these was not included in the original axioms provided by Steel, however it is
required. (Thanks to Gabriel Goldberg for this observation.) The second of these is – strictly
speaking – an axiom schema.
42Contrary to ordinary practice we are using lower case letters for posets and generics

to indicate that these are sets. We shall only do this in the official version of the axioms
and when it will help avoid confusion. We write g is p-generic /V to mean that p is a poset
and g is a filter over p which has a nonempty intersection with every dense subset of p in
V ; and we write U = V [G] to mean that for all x ∈ U∃ó ∈ Vp Val(ó,g) = x and for all
ó ∈ Vp∃x ∈U x= Val(ó,g). Val is a valuation function as defined in Kunen (2006) and Vp

is the class of p-names according to V.
43For a detailed account of this theorem, see Reitz (2007).
44By a class term, we mean a term which defines a class and in this case takes a parameter

as an argument. For another example, consider L[x].
45Since Laver and Woodin’s theorem is provable in ZFC, the class termW(·) is available

in any universe, V, of the multiverse.
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The final axiom ofMV is Amalgamation:

MV -7 (Amalgamation)

∀U0∀U1∃p0 ∈U0∃p1 ∈U1∃V∃g0,g1 ∈ V

(g0 is p0-generic/U0∧g1 is p1 -generic/U1∧V =U0[g0] =U1[g1]).

Informally, this says that given any two worlds U0,U1, there is a world V
which is a generic extension of both those worlds. The theory MV then
consists of the schema MV -1ϕ and the axioms MV -0 and MV -2 through
MV -7.
Like Woodin, Steel provides a toy model to illustrate the structure of his
multiverse. Informally, the construction goes like this. Begin (as Woodin
does) with a countable transitive model,M, ofZFC; take some poset P∈M
and form a generic extension M[G] of M; take some poset Q ∈M[G] and
form a generic extensionM[G][H]; repeat this process transfinitely to form a
sequence of models where each new model is a generic extension of all of its
predecessors. Along the way, make sure that every poset from any model in
the sequence is used cofinally often to generate new extensions.46 Finally, add
all generic refinements of models in this sequence. The result isMG. From
the construction, it’s obvious that MG satisfies Extension and Refinement.
As for Amalgamation, notice that every world is a generic refinement of
some witnessing world in the sequence, so it’s also a generic refinement of
every world further along the sequence. This means that any two worlds are
generic refinements of witnesses somewhere in the sequence, so both will
be refinements of whichever of these witnesses appears furthest along. (See
Theorem 26 in the Appendix A for the proof.)
To formalize this idea, the universality of collapse forcing means that we
needn’t close under arbitrary posets, that those of the form Col(ù,α) for
α ∈M are enough. Since the collapse forcings absorb smaller forcings, we
can find those models by looking back into the generic refinements. Thus
we end up with the following definition:47

Definition 6. ForM a ctm of ZFC and G, Col(ù,<OrdM)-generic over
M, letMG be the set of countable models N such that for some α ∈OrdM ,
P ∈N and H, P-generic over N

N[H] =M[G ↾ α].

46Strictly speaking, we need to use iteration at the limit stages and we need to demand
that the poset used at such a limit is a set in M. Then Theorem 34 of Fuchs et al. (2015)
tells us that there is a generic extension of M which has all of the predecessors as generic
refinements.
47For ease of exposition, we’ve described and expressed this in terms of ctms, but what

follows actually employs a generalization,MG, defined in terms of all countable models. As
explained in footnote 32, this adjustment, including the parallel change to VM, makes no
significant difference inWoodin’s case and preserves the fundamentally linguistic character of
Steel’s project (as opposed to metaphysical approaches like those of Woodin and Hamkins).
The particulars are spelled out in Appendices A and B.
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SinceMG is a model ofMV , it follows that Amalgamation is consistent
with Extension and Refinement, as advertised in (ii) on p. 15, above. In fact,
we’re now in a position to show thatMV is equiconsistent with ZFC:

Proposition 7. Con(ZFC)↔ Con(MV).

Proof. (→) This follows from the proof of Theorem 26 in Appendix A.1.
(←) Suppose ZFC ⊢ ø∧¬ø for some ø ∈ L∈. Fix finite ∆ ⊆ ZFC such
that ∆ ⊢ø∧¬ø. ThenMV ⊢ ∀V (

∧
∆)V ; and soMV ⊢ ∀V (ø∧¬ø)V .48 ⊣

SoMV is a reasonable theory with natural models of the formMG.
At this point, recall the key drawback ofWoodin’smultiverse: the theory of
his meta-mathematical surrogate,VM, can’t be axiomatized.We saw that for
Steel this is disqualifying, because his goal is essentially linguistic: he wants
to determine whether we should ‘trim’ the syntax of L∈ to avoid asking
pseudo-questions; to accomplish this, he seeks to axiomatize the theory of
his meta-mathematical surrogate,MG. We know that the axiom systemMV
is sound for models of the formMG, but we need for it to be complete, as
well. And it is:

Theorem 8. For all ϕ in the multiverse language, the following are
equivalent:

(1) MV ⊢ ϕ.
(2) If M is a countable model of ZFC, then MG |= ϕ, where G is
Col(ù,<Ord)M-generic overM.

(See Appendix A.) So Steel has given a multiverse language and theory
intended to characterize the range of candidate foundational theories and
to realize his goal of a ‘neutral ground on which to compare them ...without
bias toward any’ (Steel, 2014, p. 165).49Wecannow try to determinewhether
CH is indeed a pseudo-question.

§5. The translation function. Recall from Section 2 that the central
question for Steel is whether CH is settled by the meaning we currently
assign toL∈.More generally, theworry is that a range of sentences ofL∈may
be defective in this way, that attempting to answer them is chasing pseudo-
questions. It’s fairly easy to explicate this type of concern in a metaphysical
theory like Hamkins’s or Woodin’s – there’s an abstract ontology of worlds
in some of which CH is true and others of which it’s false – but we’ve seen
that Steel’s thinking is strictly linguistic. In that context, it’s not obvious

48This proof is overly detailed for such a simple observation. However, we want to
draw attention to the supervaluation-like aspect of the translation employed as it becomes
significant later on.
49We raise a question about this in Section 7.
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how to characterize the potential problem without providing a substantive
theory of meaning (no hint of which appears in Steel, 2014).50

Perhaps we can make more progress on characterizing the defect at issue
by coming at the question from the other end, that is, by looking at the
role it ends up playing in Steel’s thought. Recall that in search of a ‘neutral
common ground’ on which to compare all candidate foundational theories,
he devises a multiverse language, LMV , and multiverse theory,MV – having
previously argued that all such candidates will be represented by its worlds
(the extended discussion of Section 3 and the opening pages of Section 4).
Now suppose that none of these theories ‘is preferable to the others’ as
a foundation (Steel, 2014, p. 165).51 In that case, Steel contemplates two
options: we could ‘flesh out the current meaning’ or we could ‘trim back
the current syntax, so that we can stop asking pseudo-questions’ (Steel,
2014, p. 154). The option we’re exploring here (until late in Section 6) is the
latter. Given that all candidates are on equal footing, Steel’s suggestion is
that only the sentences ofLMV (and their synonyms) express propositions.52

Assuming Steel’s reference to ‘expressing propositions’ is a way of indicating
that the sentences in question are capable of being true or false (‘truth-apt’
in the philosophical jargon), this appears to be a way of saying that the
sentences of LMV aren’t subject to the defect Steel has in mind; to put it
the other way around, they enjoy the virtue of being settled by the meaning
assigned to LMV .
The parenthetical proviso – ‘and their synonyms’ – is included so that
many of our familiar L∈ sentences will also enjoy this virtue, namely those
synonymous with LMV sentences and thus without defect. To isolate these
favored sentences ofL∈, Steel offers a translation fromLMV toL∈; sentences
of L∈ in the range of that translation function mean the same as the
corresponding LMV sentences.53 So, for example, Steel suggests that the
LMV claim that every world contains a measurable cardinal is synonymous

50It’s not even clear what kind of theory would be called for. Obviously the everyday
meaning of ‘set’ isn’t what’s at issue. If anything, a more limited community of trained set
theorists would be the relevant target, but even if the boundaries of that group could be
drawn in some principled way, would we turn to linguists or sociologists or anthropologists
for answers? Most likely, some sort of a priori philosophical theory of meaning would be
required. We consider it an attraction of the reconstruction described below that it avoids
this prospect.
51This leaves open the likelihood that some theories will have more mathematical interest

than others. (Recall footnote 35.)
52This appears to be the Weak Relativist Thesis of Steel (2014), p. 167.
53To be clear, Steel isn’t suggesting that the LMV sentence serves to confer meaning on

the corresponding L∈ sentence via the translation function; rather the translation allows us
to isolate from among the sentences of L∈, all of which are antecedently meaningful, (some
of) those that are without defect. In fact, Steel goes further; he regards LMV as meaningless
syntax until the translation function is introduced. This seems to us problematic: it’s hard
to see how picking some meaningless syntax and mapping it somehow to L∈ could tell us
anything significant about the sentences in its range. We take the discussion of Section 3 and
the opening pages of Section 4 to provide a robust understanding what the formalization in
LMV andMV is intended to capture.
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with the L∈ claim that there is a proper class of measurable cardinals, so
this L∈ claim is not defective.54 Still, he continues,

Clearly we cannot state the CH in this way. The same goes for the
many other statements about the uncountable which are sensitive to
set forcing, no matter what large cardinals there may be. (Steel, 2014,
p. 167)

But this isn’t the end of the story.CHmay still not be defective, because there
may be ‘traces of CH and these other sentences in the multiverse language’
(ibid.) – that is, there may be other sentences of LMV with which they’re
synonymous.
Steel goes on to explore this possibility – we follow him on this in the
next section – but for now our focus is on the characterization of the
potential defect and its corresponding virtue. It seems to us that the gloss
‘unsettled/settled by the current meaning’ is a problematic fit for the role of
defective/virtuous as just described. First, assuming LMV sentences enjoy
this virtue, it isn’t obvious that a translation would preserve it. To take a
familiar example, whatever being ‘settled by the current meaning’ comes to,
it seems there might well be a sentence ofL∈ that translates to a synonymous
sentence of LN (the language of arithmetic), where the former is settled by
the current meaning of L∈ but the latter is unsettled by the current meaning
ofLN (e.g., a strong consistency statement). Second,more importantly, what
reason is there to think that all LMV sentences enjoy this virtue in the first
place? Why should the meaning currently assigned to LMV do any better at
settling all sentences ofLMV than themeaning currently assigned toL∈ does
at settling all sentences of L∈?55 There may be answers to these challenges,
but clearly much more would need to be said.
Fortunately, there’s no need to get into these thickets; we offer an alter-
native characterization of defective/virtuous that has the added advantage
of tying more directly into the line of thought we’ve been tracing.56 To see
this, recall we’re assuming that our examination of the various candidates
shows them all to be on equal footing and that our best response is to
trim the syntax of L∈. On those assumptions, consider the state of two
imaginary set theorists, a universe theorist and a multiverse theorist. The
universe theorist speaks L∈, embraces ZFC+LCs, and persists in trying to
figure out the ‘correct’way to extend it;57 under our current assumptions, this

54See Steel (2014), p. 167, and Proposition 41 in Appendix C.
55There are, of course, the familiar Gödel sentences unsettled by LMV , but – to get ahead

of our story, well into Section 6 – is there anymore reason to think that the meaning currently
assigned to LMV settles CH

C than to think that the meaning currently assigned to L∈ settles
CH?
56Here we appear to depart from Steel, but see footnote 59.
57The universe theorist bears some resemblance to Steel’s strong absolutist (Steel, 2014,

p. 168): perhaps it’s unobjectionable to say that she understands V̇ – it’s just her V – but
initially she isn’t privy to LMV , so she takes no stand on whether V̇ is expressible there.
She might be characterized as a thin realist (Maddy, 2011) who hasn’t yet considered the
possibility of switching from a theory of sets to a theory of sets and universes.
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universe theorist is just wrong, making amistake. In contrast, ourmultiverse
theorist is aware that no candidate is preferable, speaks LMV , and embraces
MV . This multiverse theorist thinks, with considerable justification on
our assumptions, that the universe theorist is missing the fact that all the
candidate foundational theories represented byworlds in themultiverse have
equal standing.58

To put this another way, we might say that from the multiverse theorist’s
perspective, the universe theorist’s L∈ sentences may reflect an improper
bias, restricting attention to one world, while all LMV sentences are suitably
impartial. Steel expresses this idea with an analogy:59

‘the laws of physics are the same in all inertial frames’ has a parallel
to ‘the laws of set theory are the same in all universes of the
generic multiverse’. Just as there is something called coordinate-free
geometry,MV and its extensions might be called ‘coordinate-free set
theory’. (Private communication, 12/10/18, quotedwith permission.)

Just as statements of coordinate geometry can be partial to one coordinate
system, the sentences ofL∈ can be partial to oneworld of themultiverse. Just
as statements of coordinate-free geometry aren’t partial to any particular
coordinate system, the sentences of LMV aren’t partial to any particular
world of the multiverse. This impartiality, we submit, is the virtue that LMV
sentences enjoy, that the translation function must preserve, and that CH
might lack.
How this works obviously depends on the specifics. The mathematical key
to this line of thought is a recursive function, t :LMV →L∈, defined inZFC.
The hope is that the universe claim t(ϕ) in some sense captures the spirit of
the multiverse claim ϕ, in particular, that it preserves its multiverse virtue
of impartiality. The definition of t (see Appendix C) rests on three basic
facts: (1) since Steel’s multiverse includes Amaglamation, for any worlds
V0 and V1, there exists another world U that’s a generic extension of them
both, so any world in the multiverse is just a generic extension followed
by a generic refinement away from any other; (2) the forcing relation is
definable;60 and (3) generic refinements are definable (Theorem 5). With
these building blocks, we can show that

Theorem 9. There is a recursive function t : LMV → L∈ such that for all
sentences ϕ ∈ LMV , MV proves that the following are equivalent:

(1) ϕ;
(2) ∀Ut(ϕ)U ;
(3) ∃Ut(ϕ)U .

58Again, equal standing as candidates for our fundamental foundational theory. See
footnote 51.
59Cf. footnote 56. Perhaps we aren’t departing so much, after all.
60Here we just mean definable in the sense of the standard fact that the forcing relation for

Σn formulae is definable for any n ∈ ù.
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Proof. See the proof in Appendix C. (As noted there, in Proposition 40,
Amalgamation is essential for this result.) ⊣

So the multiverse theorist, speaker of LMV , supporter of the theoryMV ,
sees that eachworld of hismultiverse contains an encodingof eachmultiverse
truth. From his multiverse perspective, a universe theorist, speaker of L∈,
is confined to one of the multiverse’s worlds; she’s a supporter of the theory
of that particular world. But, the multiverse theorist continues, despite this
universist’s parochial stance, she still has access to multiverse truth via the
t function. (The multiverse theorist also sees that the universe theorist is
making a serious mistake, the nature of which will come clear in just a
moment.)
But this encoding ofmultiverse truth isn’t quite enough. If the impartiality
of ϕ ∈ LMV is to be found in the universe language L∈, that impartiality
has to be something the speaker of L∈, the universe theorist, can appreciate.
But an L∈ speaker doesn’t understand LMV and has no reason to be moved
by Theorem 9, a proof-theoretic fact about an entirely foreign theory,MV .
t(ϕ) is there in her language, but it might be said that she understands it
in a sense analogous to that in which I ‘see’ a well-camouflaged pheasant
hiding in the brush: photons from its feathers reach my eyes, I’m aware of
its colors, but the bird itself I don’t discern.
What brings the significance of t(ϕ) home to the universe theorist is the
following theorem, which is loosely speaking equivalent to Theorem 9:

Theorem 10. There is a recursive function t :LMV →L∈ such that ifM is a
countable model of ZFC, G is Col(ù,<Ord)M-generic overM, andϕ ∈LMV ,
then:

M |= t(ϕ)⇔MG |= ϕ.

Proof. See Appendix C. ⊣

For any countable modelM, our universe theorist can clearly understand
the structureMG. She can then understand LMV as interpreted inMG and
MV as a theory that’s true there. And, finally, Theorem 10 shows her the
significance of t(ϕ): in Steel’s words, the L∈ sentence t(ϕ), evaluated inM,
says in effect that the LMV sentence ‘ ϕ is true in some (equivalently all)
multiverse(s) obtained from me’ (Steel, 2014, p. 166). Thus the pheasant
emerges from its surroundings.
In fact, there’s a perfectly ordinary sense in which t is ‘meaning-
preserving’: ϕ makes a certain claim about the multiverse; t(ϕ), evaluated
in M, makes the very same claim about MG. As an LMV sentence, ϕ is
impartial because it takes into account the full range of theories represented
in the multiverse; the L∈ sentence t(ϕ) inherits the virtue of impartiality
via t, because it takes into account the full range of MG, the universe
theorist’s best understanding of the multiverse. So, here is (our version
of) Steel’s proposal: on the assumed outcome of our investigation – that
is, on the assumption that there are no good reasons to prefer any of
our candidate foundational theories to the others – the language L∈ is
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prompting us to pose pseudo-questions, sowe should ‘trim back our syntax’,
the syntax of L∈, to favor sentences in the range of t. (This where the
multiverse theorist takes the universe theorist to bemaking a seriousmistake:
she thinks all sentences of L∈ are just as good as those that fall in the
range of t.)
How is this to be done? We’re out to specify which sentences of L∈ are
legitimate, which don’t tempt us to pseudo-questions. We’ve seen that what
makes sentences ofLMV legitimate is their impartiality, and that t ismeaning-
preserving in the rough-and-ready sense sketched above, so certainly L∈
sentences in the range of t are legitimate. But it won’t do to simply stop there.
As is clear from the sketch above and the official definition in Appendix C,
the outputs of t are quite complex constructions, not the sort of thing that
turns up in ordinary set-theoretic practice; for example, even the sentence
affirming the existence of the empty set – ∃x∀y (y /∈ x)) – isn’t in the range
of t. To procure its legitimacy, Steel would require that ∃x∀y (y /∈ x) be
synonymous with t(ϕ) for some ϕ ∈ LMV , but t(ϕ) involves a great deal
more mathematical machinery than ∃x∀y (y /∈ x) – and Steel acknowledges
that this makes the synonymy claim problematic (Maddy, 2017, p. 314).
Short of requiring synonymy in some recognizable sense, it seems to us
enough that it’s provably equivalent to a formula of the form t(ϕ). So we
say

Definition 11. ϕ ∈ L∈ is legitimateT , where T extends ZFC, if there is
some ø ∈ LMV such that

T ⊢ ϕ↔ t(ø).

Here T can extend ZFC, as in stronger versions of MV . Without the
subscript, we use ‘legitimate’ more loosely, for statements ofL∈ that preserve
the impartiality of LMV . So being legitimateT for some reasonable T is a
good indicator of being legitimate.
On this definition, not only ∀y (y /∈ x), but any ϕ ∈ LMV that provably
holds (or fails) in every world of the multiverse is also legitimate:

Theorem 12. Let ϕ ∈ L∈. Then following are equivalent:

(1) MV ⊢ (∀VϕV ∨∀V¬ϕV ).
(2) ϕ is legitimateZFC .

It follows immediately that all theorems of ZFC are legitimate. In fact, even
some undecidable sentences like ¬Con(ZFC) are legitimate; because such
simple claims are unaffected by forcing, they have the same truth value in all
worlds of any particularMG. Steel’s example noted above – the L∈ sentence
‘there is a proper class of measurable cardinals’ – also comes out legitimate
because it’s equivalent in ZFC to t(∀V(there is a measurable cardinal)V )
(see Appendix C4). Indeed, at this point, with ZFC as our background
theory, the legitimate statements ofL∈ are exactly those that are determinate
in Woodin’s multiverse, that is, true in all worlds or false in all worlds
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ofVM.
61 Steel’s focus in the next section is on the possibility of undermining

this extensional equivalence, of extending legitimacy to some statements that
are indeterminate in Woodin’s multiverse.
In sum, then, though this reconstruction doesn’t match the letter of
Steel’s presentation – substituting ‘impartiality’ for ‘settled by the current
meaning’ as the relevant virtue and ‘provable equivalence’ for ‘synonymy’
as the impartiality-preserving relation within L∈ – it seems to us roughly in
the spirit of his project. Notably, it doesn’t require a notion of ‘meaning’
any more sophisticated than the explicit and transparent relation described
above between ϕ and t(ϕ).62 In contrast to the metaphysical theorizing
of Hamkins and Woodin, its treatments of the multiverse language, the
multiverse theory, and the relations between these and our current universe
language and theory are all purely linguistic and proof-theoretic. Those
of us who prize the independence of mathematical practice from external
questions of meaning, truth, and existence will welcome these outcomes.

§6. The status of CH. We turn at last to the continuum problem.
Concerned that our only guide to formulating foundational theories is
‘maximize interpretive power’, recognizing that it gives out at ZFC+LCs
and that this theory is too weak to settle CH, we embraced a multiverse of
candidate foundational theories. Assuming, as we have been, that no new
guide has emerged to give us reason to prefer some of these candidates over
others, we propose to trim the syntax ofL∈ to legitimate claims, as described
in the previous section. The problem of CH can now be formulated with
some precision: is CH legitimate, that is, is there a ϕ in LMV such that the
L∈ sentence t(ϕ) is provably equivalent to CH in some reasonable theory?
Now obviously the legitimacy of CH can’t be established by the route
suggested in Theorem 12 because CH is true in some worlds and false in
others. But (as noted in passing above) Steel doesn’t see this as the end of
the story:

Themultiverse language is ... sufficiently expressive to state versions of
the axioms ofZFC, and of the large cardinal hypotheses preserved by
set forcing: we replace ϕ by ‘for all worldsW ,ϕW ’. Clearly we cannot
state CH this way. The same goes for the many other statements
about the uncountable which are sensitive to set forcing, no matter
what large cardinals there may be. Whether there are traces of CH
and these other sentences in the multiverse language is the issue we
consider next. (Steel, 2014, p. 167)

61A little care is required here. Woodin’s original definition of determinateness focused on
countable transitive models. So a sentence is determinate if it is true inVM for some ctmM of
ZFC. The sentences which are determinate in this sense are not the legitimateZFC sentences.
However, this distinction is merely an artifact of the move between ctms and the arbitrary
countable models used in the definition of legitimate. So if we relax the transitivity restriction
and consider VM for arbitrary countableM then they are the same.
62We regard this as an improvement. Recall footnote 50.
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How might this happen? Well, perhaps there’s ‘a distinguished reference
world ...an individual world that is definable in the multiverse language’
(Steel, 2014, p. 168). Steel credits Woodin with the observation that such a
world would be unique and contained in all other worlds. This special world,
if it exists, is called the ‘core’ of the multiverse:

Definition 13. A world C is a core of the multiverse iff ∀x(x ∈ C→
∀U(x ∈U)).

So defined, C is included in every world, thus in their intersection, and
because it’s one of the worlds being intersected, it’s equal to the intersection.
Of course the intersection itself will be definable in any case, but it’s only the
core if it’s a world:
There is a core iff ∃U∀x(x ∈U →∀V(x ∈ V)).
For ϕ ∈ LMV , let ϕC be ϕ relativized to ∀U(x ∈ U).63 Supposing, then,
there is such a core, Steel considers CHC in LMV 64 and suggests that in L∈,
t(CHC) might be ‘synonymous’ with CH itself. In that way, CHC would be
the ‘trace of CH’ in the multiverse language.
Before examining this move, we should note that since the appearance of
Steel (2014), Usuba (2017) has proved that the multiverse does have a core,
assuming the existence of an extendible cardinal (EXT):65

Theorem 14. MV +∀U(EXTU) ⊢ ∃U(U is the core).66

Returning to the question of CH, Steel grants that any ordinary kind
of synonymy is a stretch here: t(CHC) involves mathematical machinery
unknown to Cantor, but surely we don’t want to suggest that Cantor
didn’t understand the meaning of CH!67 Though the switch to ‘legitimate T ’
(Definition 11) replaced the problematic ‘synonymous’ in this context with
provable equivalence, this is of no immediate help here, because

ZFC 0 (CH↔ t(CHC)).68

That is, CH isn’t legitimate ZFC. But this isn’t really the question we should
be asking, since the existence of the core depends on an extendible cardinal,

63Observe that relativizing to the core in this way does not imply that there is a core.
64It might seem that CHC violates impartiality even in the multiverse language because it

only involves what happens in the single world C, but recall that C itself is defined in terms
of all worlds.
65A cardinal κ is ç-extendible iff there is an elementary embedding j : Vκ+ç → Vè with

critical point κ for some ordinal è. κ is extendible if it is ç-extendible for every ordinal ç. In
Steel’s terminology (Steel, 2014, pp. 167–168), Usuba’s result suggests that a weak relativist
is also a weak absolutist.
66In fact, we only need to add that ∃U(EXTU ) for this to work. We’ve used the stronger

assumption because it’s Steel’s standard way of adding large cardinals to MV (see the
parenthetical comment afterMV -1 ϕ in Section 4).
67See footnote 58 of Maddy (2017), p. 314.
68See Proposition 44(1) in Appendix C.
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well beyond the reach of ZFC on its own. For that matter, how does the
universe theorist, speaker of L∈, understand talk of the core in the first
place?
To answer this question, recall Theorem 10 and the surrounding discus-
sion. The universe theorist understands an LMV claim ϕ by interpreting it
inMG, and the theorem tells her that the L∈ claim t(ϕ), interpreted inM,
encodes the claim that ‘ ϕ holds in the multiverse generated from me’. So
consider the case of the LMV claim ‘there is a core’ as above. t(‘there is a
core’), interpreted inM, says thatMG thinks there is a core. So the universe
theorist understands t(‘there is a core’) itself to say that the multiverse
generated from her single universe – if there were such a thing – would have
a core.
This line of thought can be expressed directly in L∈ using W(·) from
Theorem 5.
There is a core iff ∃r∀x(x ∈Wr↔∀s(x ∈Ws)).69

This says that the core is a generic refinement of every generic refinement.
Usuba’s theorem can be reformulated to

Theorem 15. ZFC+EXT ⊢ ‘there is a core’.

In this sense, then, if we allow our universe theorist to augment ZFC
to ZFC +EXT , just as our multiverse theorist has augmented MV to
MV+∀U(EXTU), she can see that the multiverse generated from her single
universe – if there were such a thing –would have a core.With thismachinery
in hand, our question can be improved to

ZFC+EXT ⊢ (CH↔ t(CHC))?

But the answer is still no; CH isn’t legitimateZFC+EXT , either.
70 Still more is

needed if CH is to be legitimized.
Addressing this challenge, Steel remarks that

One can think of [ L∈] as the multiverse language, together with a
constant symbol V̇ for a reference universe. (Steel, 2014, p. 167)

The idea is that the multiverse theorist might understand the universe
theorist simply as speaking of that reference universe; in other words,
what the universe theorist takes for the single universe, V,71 is really the

69Observe that this sentence merely says thatWr has no generic refinements, not that it is
the intersection of all the worlds. SoWr is a world that satisfies what Rietz calls the Ground
Axiom (i.e., Wr is not a generic extension of any world), but we may wonder if there are
other worlds also satisfying it (Reitz, 2007). This is ruled out byUsuba’s DownwardDirected
Ground theorem (Usuba, 2017), which tells us the generic refinement relation is downward
directed; i.e., givenWr andWs, generic refinements of the universe, there is someWt which
is a generic refinement of bothWr andWs.
70See Proposition 44(2) in Appendix C.
71We use V for the universe theorist’s unique world, in contrast with the variable V over

the multiverse theorist’s many worlds.
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interpretation of V in the extended multiverse language. But this only works
if H is given a definition in LMV . Steel continues:

If the multiverse has a core, then surely it is important, whether it is
the denotation of V̇ or not! Indeed, if there is an inclusion-least world
in the multiverse, why not use Ḣ to denote it, and agree to retire V̇
until we need it? (Steel, 2014, p. 169)

This is more than a little cryptic, but the suggestion seems to be that the
multiverse theorist understand the universe theorist as talking about the core
or even that the universe theorist take the core to be her single universe (at
least until the need arises for something else). The universe theorist is being
asked to agree that there are no proper generic refinements of her single
universe, that is, to agree that ∀x∀r(x ∈Wr) or more succinctly, V = C.72

This does the trick:

ZFC+EXT+V = C ⊢ (CH↔ t(CHC)).

(This follows from Theorem 17.) In fact, every statement of L∈ is
legitimateZFC+EXT+V=C, potentially removing any worry about pseudo-
questions! But why should the universe theorist regardZFC+EXT+V= C

as a reasonable theory? In particular, why should she identify her universe
with C?
Assuming, as we have been, that the available guides offer us no reason
to prefer some candidate foundational theories with large cardinals over the
others, there can be no reason to opt for V = C over all the rest, but there’s
another way to look at the role of the core in Steel’s thinking here. We’ve
seen how, at the beginning of the paper, he imagines two possible reactions
‘for those who ...believe that the truth value of CH is not determined by the
meaning we currently assign to the syntax of’ L∈, namely, ‘trim back the
current syntax’ or ‘flesh out the current meaning’ (Steel, 2014, p. 154).We’ve
replaced ‘believing the truth value of CH isn’t determined by the current
meaning’ with the less-loaded ‘taking ”maximizing interpretive power” to be
the only guide we have to formulating foundational theories andZFC+LCs
to be all we can glean from this guide’; and we’ve been exploring how to
‘trim’ under this assumption – which allows no reason to opt for V= C. The
‘fleshing out’ alternative comes up in a moment, but for now, it’s important
to note that there’s actually an intermediate position in play here.
In Steel’s meaning-theoretic idiom, that intermediate position is the
possibility that there’s more to the current meaning than we’ve so far
appreciated, that ZFC+LCs isn’t all that’s implicit there. In our less-loaded
idiom, there might be good reasons to favor some candidate foundational
theories represented in the multiverse over others. Though the complexities
of ‘trimming’make it easy to lose sight of this fact, the original motivation of
the multiverse was ‘to find a neutral common ground on which to compare’

72This is known as the Ground Axiom in Reitz (2007), however we are using it to assert
that the universe is a solid bedrock in Reitz’s terminology. These can be seen to be equivalent
by the Downward Directed Grounds theorem (Usuba, 2017).
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the various candidate theories ‘without bias toward any’ (Steel, 2014, p. 165).
Steel’s thought was that attending to themultiverse, placing all the candidate
theories side-by-side, might reveal hidden aspects of meaning, or, in our
terms, uncover previously unnoticed reasons for preferring one to another
candidate. He now points out that attending to the multiverse has, in fact,
revealed a new ‘fundamental question’ (ibid., p. 169): does the multiverse
have a core? The suggestion above, that the universe theorist is talking about
the core, is really the suggestion that thinking about the core in the context
of the multiverse gives us reason to prefer its theory to the other candidates
for our fundamental, foundational theory.
So far so good, but why should this be so, what makes the theory of C
preferable? Think of it this way. We’ve just recalled that Steel introduced
the multiverse as a way of drawing all the candidate theories together, to
be viewed side-by-side, on equal footing (‘without bias’). What’s emerged
from this exercise, from the pure mathematics of the situation, is that the
candidate theories aren’t actually on a par – one is singled out as more
fundamental. Furthermore, from the perspective of that special theory, each
of the other candidates is only a forcing extension away. This means that
a universe theorist working in the core can understand everything about
alternative theories simply by studying what’s forced by particular posets;73

in this sense, the entiremultiverse of theories is accessible to her. Thequestion
then arises: why not regard the core as the interpretation of V̇? What would
be lost by preferring the theory ZFC+EXT+V = C?
This is undeniably a provocative line of thought. Perhaps a compelling case
could be made for answering these questions affirmatively, though we won’t
attempt to fill one in here. But, if this could be done, it might be argued that
multiverse thinking would, in the end, reveal something important about
L∈, namely that all its sentences are legitimate, after all. Steel describes the
situation this way:

Perhaps ... some future mathematics [will be] built around an
understanding of the symbol V̇ that does not involve defining V̇ in the
multiverse language [i.e., as the core]. But at the moment, it is hard
to see what that is. (Steel, 2014, p. 168)

Short of such a future, this would be a remarkable outcome: by openly facing
the possibility that some sentences of L∈ are defective, by giving multiverse
thinking its due, Steel would end up dispelling the very concern that he
started with.
As it happens, though, even this dramatic conclusion wouldn’t have the
mathematical power it might appear to promise: it turns out that ZFC+
EXT+V= C is a much less informative theory than one might have hoped.
In the wake of Usuba’s theorem, Steel74 alludes to work of the set-theoretic

73We might think in terms of Kunen’s ‘forcing over V’ in Kunen (2006), pp. 234–235, or
‘forcing over the Universe’ in Kunen (2011), pp. 281–282.
74Private correspondence, 2/19/17, quoted with permission.
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geologists, who have shown, for example, that V = C can’t settle CH. But
this failure is just the beginning:

Theorem 16 (Reitz, 2007). If V satisfies ZFC, then there is a class forcing
extension V[G] such that V[G] |= V = C.

In other words, a model of V = C can be generated from any model of
ZFC. Moreover, the generated model can be constructed in such a way as
to preserve any rank initial segment of the original universe. Or to put it the
other way ‘round, a model ofZFC+V= Cmight have as an initial segment,
an initial segment of any universe whatsoever. This suggests that assuming
V = C pins down very little about what V is actually like.
At this point, it seems unlikely that any more can be gleaned from the
‘current meaning’ ofL∈, so Steel turns at last to the possibility that wemight
‘flesh out’ that meaning in some principled way. Notice, by the way, that in
our less-loaded idiom, the contrast between ‘revealing hidden aspects of the
meaning’ and ‘fleshing out themeaning’ is a distinction without a difference:
both come down to finding soundmathematical reasons to prefer one theory
in the multiverse to others. In any case, Steel sees the line between ‘revealing
hidden aspects’ and ‘fleshing out’ as having been crossed when we try to say
more about the core.
We’ve just seen that the key role of the core here is to legitimize all sentences
of L∈:

Theorem 17. For each ϕ ∈ L∈, there is a ø ∈ LMV such that

ZFC+V = C ⊢ ϕ↔ t(ø).

Proof. See Appendix C.1. ⊣

As it happens, a number of familiar inner models could substitute for C in
this theorem – L, L[0#], the core model K – because each of these satisfies
V = C. But, as we’ve seen (in Section 4), these don’t appear as worlds in
Steel’s multiverse due to their antilarge-cardinal effects. There is, however,
a developing program around an axiom candidate designed in the hope
of overcoming this problem, namely, V=Ultimate-L.75 This axiom implies
V = C,76 and if all goes as advertised, it would also be consistent with all
traditional large cardinals; in a sense to be made precise, V=Ultimate-L
would imply that the universe is as L-like as possible without antilarge-
cardinal effects.
To this point, then, Steel has argued that V = C is implicit in the meaning
of L∈. But we’ve also seen that ZFC+LCs+V = C is too weak a theory to
settle CH, or much else. In stark contrast, V=Ultimate-L would be a very
powerful assumption indeed – beginning, though by no means ending, with

75See Woodin (2017).
76Woodin (2017), Theorem 7.8.
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a solution to the Continuum Problem:

ZFC+V =Ultimate-L ⊢ CH.

So here, at last, is Steel’s second option: assuming the Ultimate-L project
succeeds, rather than ‘trimming back the syntax’ of L∈ to avoid asking
pseudo-questions, he proposes that we opt instead to ‘flesh out’, to extend its
meaning to include V=Ultimate-L, that we move from ZFC+LCs+V = C

to ZFC+LCs+V=Ultimate L. Indeed something like this may have been
what Steel had in mind in ‘Gödel’s program’, before Usuba’s theorem: ‘the
multiverse may indeed have a core, and this core may admit a detailed
fine-structural analysis that resembles Gödel’s L’ (Steel, 2014, p. 178).
Steel presents no detailed case for this idea; presumably his reasons would
dovetail with those offered by other advocates of V=Ultimate-L. But for
now, this remains speculative, as Steel clearly acknowledges:

Perhaps the mathematics will turn out some other way. Perhaps
the multiverse has no core [written pre-Usuba], but some other,
more subtle structure. There are many basic open questions at
the foundations of set theory: the extent of generic absoluteness,
the existence of iterable structures, the Ω-Conjecture, the form of
canonical inner models with supercompacts, and the properties of
HOD in models of determinacy, to give my own partial list. Our
path toward a stronger foundation will be lit by the answers to such
questions. (Steel, 2014, p. 179)

§7. Caveats and conclusions. This completes our reconstruction of Steel’s
multiverse project. We’ve done our level best to tell the story as fully and
persuasively as we can, but certainly don’t pretend that the line of thought
sketched here is air-tight at every turn. We conclude with a brief look at
some lingering concerns.
Themost troubling questions center on the assumption ofAmalgamation.
Recall that this axiom is essential to the turn of argument in Section
4: the failure of Amalgamation is what makes (the meta-mathematical
surrogate for) Woodin’s multiverse unaxiomatizable; with Amalgamation,
Steel’s axioms successfully axiomatize his natural toy models. One awkward
question then iswhywe should insist on axiomatization in this strong sense.77

Steel is after a theory of sets and worlds that represents the full range of
candidate foundational theories. It’s obvious that he needs axioms, but why
wouldn’t it be sufficient to isolate a set of axioms that captures this central
idea well enough to generate a mathematically successful theory, even if
it wasn’t complete for some natural collection of toy models? Without
a satisfactory answer to this question, we have no reason to adopt the

77This requirement isn’t explicit in Steel (2014), but it seems implicit in his remark about
Woodin’s multiverse: ‘it is not at all clear what its theory would be’ (Steel, 2014, p. 170). (If
‘axiomatization’ in a looser sense were intended, why notMV -Amalgamation?) In any case,
appeal to full axiomatizabilty was the only way we could find to mount a principled case for
Amalgamation.
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axiomatizabilty requirement, and we’re left without a principled argument
for Amalgamation.
Unfortunately, Amalgamation can’t simply be jettisoned. Its involvement
in the mathematics of Steel’s theorizing goes far deeper than the question
of axiomatizability: it’s essential to the translation function of Theorems
9 and 10 in Section 5, which could hardly be more fundamental. The
history of set theory has accustomed us to the notion that an axiom can
be defended by appeal to its mathematical benefits – these are so-called
extrinsic justifications, going back to Zermelo, endorsed by Gödel, now
playing a central role in contemporary set-theoretic practice – so one thought
would be to defend the addition of Amalgamation toMV by pointing to its
welcome mathematical consequences.
The trouble with this approach is that MV isn’t a pure mathematical
theory; it’s a meta-mathematical theory – a piece of applied mathematics
intended to provide representations for all candidate foundational theories –
and for applied mathematical theories, mathematical benefits aren’t enough,
we need representational accuracy.78 Not perfect accuracy, of course, but
whenever simplifications or idealizations are employed,we have to have good
reason to believe that no relevant distortions are being introduced.79 That’s
what we don’t have in this case. Presumably the candidate foundational
theories are what they are independently of our theorizing about them.
When Steel narrows his multiverse theory by adding Amalgamation, what
reason do we have for thinking that he hasn’t ruled out some perfectly good
candidates?
Finally, at least in passing, we should flag the assumption that ‘maximizing
interpretive power’ is the only guide we have to extending our theory of sets.
Though Steel has good reasons for this position, it bears noting that there
are differing opinions in the field, particularly among supporters of forcing
axioms.80 But ‘noting’ is enough for our purposes – this obviously isn’t the
place to engage that debate!
So, in sum, what have we learned from Steel’s discussion of his multiverse?
The concluding argument for V=Ultimate-L more-or-less coincides with
what its current defenders offer as a straightforward case for adding it
directly as a new axiom to some extension of ZFC. What distinguishes
Steel’s project is the path he travels to get there: after taking seriously the
possibility that there are no grounds on which to extend past ZFC+LCs,
he explores his multiverse language and theory; the mathematics itself leads
him to ask whether the multiverse has a core, and post-Usuba, we find
that it does; Steel then suggests that V = C, which returns us to universe
thinking about the theory of that structure and the debate overV=Ultimate-

78For comparison, there would be mathematical benefits to describing fluid flow with
something more tractable than the Navier-Stokes equations, but as it happens, the world just
isn’t that cooperative.
79Sticking to fluid dynamics for comparison, applied mathematicians who assume that

fluids are continuous present detailed analyses of when and why this idealization is benign.
80See, e.g.,Magidor (2019), Todorcevic (2019). For abroader discussion, see Schatz (2019).
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L. Metaphysically, we’ve seen (in Section 2) that much of the current
multiverse discussion involves a robust ontology of sets and universes. Here
Steel presents a stark alternative: a linguistically definedmultiverse intended
to capture the full range of candidates for extending ZFC+LCs. His goal
isn’t metaphysical truths about an abstract realm, but a fair adjudication of
the whether CH is a viable set-theoretic question. Though the discussion is
couched in terms of ‘the current meaning assigned to L∈’, we’ve argued that
this is inessential, that the substance of Steel’s thought can be formulated
more effectively in philosophically innocent mathematical terms. By these
means, we steer away from the vagaries of mathematical meaning, truth, and
existence and toward the methodologically central questions: how exactly
do we select our theories and by what right? At that point, Steel’s approach
offers something rare: a novel and distinctive approach to answering
them.81

Appendix. The goal of this appendix is to fill in the mathematical aspects
of the story we’ve told above. In parts A and B, we prove two claims from
Section 4: that MV is sound and complete for the natural class of models
and that no such theory is available for Woodin’s multiverse. In part C, we
define the translation function t from LMV to L∈, and prove the key results
(Theorem 9, Theorem 10, and Theorem 12 from Section 5, and Theorem 17
from Section 6). In some cases, we provide proofs for explicit claims of Steel
(2014); in others, both claim and proof are part of our reconstruction. We
don’t believe any of this material has previously appeared in print.
Because our target audience includes mathematically-informed philoso-
phers as well as set theorists, we have included more details and examples
than usual. Anyone acquainted with forcing, large cardinals, and ultra-
powers at the level of Kunen (2011) and the first seventeen chapters of
Jech (2003) should be well-served. Citations to ancillary resources have also
been included where they might be helpful. Our hope is that this explicit
treatment will serve as a foundation for future philosophical work on the
generic multiverse and multiverse theories more generally.
In overview, our proof in partAof the soundness and completeness ofMV
beginswith a sketch of a general framework for a particular class forcing over
arbitrary countable models ofZFC. (We’re grateful to Gabriel Goldberg for
suggesting this framework, which allowed us to shorten the appendices
significantly.) In part B, we prove that Woodin’s generic multiverse is
not amenable to a similar soundness and completeness theorem: using a

81Many thanks to John Steel for his rich and challenging paper, for his patience with our
many questions and misunderstandings, and for his invaluable comments on many earlier
drafts. Though we haven’t reflected his thought faithfully at every turn – our departures
have been noted along the way – perhaps we’ve at least provided a starting point for further
investigations. Thanks also to Peter Koellner, Jeffrey Schatz, an anonymous referee, and
especially toGabrielGoldberg andHughWoodin (grateful acknowledgments of their specific
contributions appear elsewhere in the text and footnotes) for helpful comments on earlier
drafts. We’d also like to thank our BSL editor, Patricia Blanchette, for her patient and
judicious handling of the manuscript.
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result Woodin kindly allowed us to include, we show that Woodin’s generic
multiverse – when generalised to arbitrary countable models – has a theory
from which the full theory of analysis can be computed. Thus, it has no
recursive axiomatisation. Finally, in part C, we give a full definition of Steel’s
translation function t and prove that it works as claimed in Steel (2014). The
appendix ends with the proof that addingV=C toZFC is enough to remove
all threat of illegitimacy from sentences of L∈.

A. Soundness and completeness for MV.

A.1. Preliminaries. In this section we establish that MV is sound and
complete with respect to a natural class of models (see Theorem 8). Before
we launch into the main proofs, we first provide some background on a
couple of slightly exotic elements that we need: class forcing to collapse all
cardinals; and forcing over ill-founded models. First we discuss some class
forcing basics.82 Our goal is to show how to collapse all of the cardinals
in a model while retaining some ability to refer to the ground model. We
make use of this in the proof of Soundness and in defining the translation
function.
We work for the moment with transitive models. Let P = Col(ù,<Ord).
Loosely following Kunen (2011), we work in a forcing language FLP(V̌) =
{V̌ ,∈,ó}ó∈VP which expands L∈ with constant symbols from VP and an

extra 1-place relation symbol V̌ = {〈x̌,1〉 | x ∈ V}. It should be clear that

V̌ denotes V in any generic extension; i.e., Val(V̌ ,G) = V whenever G is
P-generic over V. To deal with V̌ in the definition of the forcing relation, we
add an extra clause. For a P-name ó and p ∈ P, we let

p 
 ó ∈ V̌ iff {q ∈ P | ∃x ∈ V q 
 ó = x̌} is dense below p.

V̌ gives us sufficient ability to refer to the ground model in the context of
the forcing relation.
If we force using P, then we cannot preserve all of ZFC. In particular, it is
easy to see that powerset must fail. However, the rest of the axioms survive.
Indeed, we can even preserve uses of replacement which make use of V̌ .
Let ZFC– be ZFC without the powerset axiom. For Ṅ a one-place relation
symbol, let L∈(Ṅ) be the expansion of L∈ with Ṅ. Let ZFC–(Ṅ) be ZFC–

with Ṅ allowed in the Replacement and Separation schemata.

Fact 18. Let M be a transitive model of ZFC. Let P = Col(ù,<Ord).
Then

(1) If G is P-generic over M, then

〈M[G],M,∈〉|=ϕ((ô0)G, ... , (ôn)G)⇔∃p ∈ G M |=“p 
 ϕ(ô0, ... ,ôn)”,

where ϕ(v0, ... ,vn) is a formula of FLP(V̌).
(2) 
P ZFC

–(V̌).

82For a detailed discussion see Friedman (2000).
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This can be established by showing that P is pretame. The proof is
identical to the proof of Lemma 2.26 in Friedman (2000). Alternatively,
it can be shown quite directly by using a couple of facts about P. First,
the homogeneity of P and its factors can be used to show that whenever
p 
P ϕ(ó0, ... ,ón), then p ↾ α 
P↾α ϕ(ó0, ... ,ón) where α is the supremum
of those â such that q(â) 6= ⊤ for some q ∈ P in the transitive closure of
some ói for some i ≤ n. This is enough to ensure that definability holds.
Second, since P is essentially an Ord-length finite support product of Ord-
cc forcings, every antichain in P is set-sized. This – in conjunction with the
previous fact – allows us to obtain a version of the mixing lemma which
then allows us to prove a simple modification of the standard proof that
Replacement is forced.83

Now we consider forcing over possibly ill-founded models. We’ll just
describe some standard results.84 Let M be a countable model of ZFC.
Let P be a poset which is such that either: P = (Col(ù,<))M; or P ∈M.
LetMP be the P-names as defined withinM. We say G ⊆ P isM-generic if
G is a filter and for all dense (D ⊆ P)M with D ∈M, we have G∩D 6= ∅.85

We defineMP/G as follows. Let the domain ofMP/G be the set of [ó]MG
where ó ∈ MP and [ó]MG = {ô | (ô ∈ V

P)M ∧ ô ∼G ó} where ô ∼G ó iff
∃p ∈ G(p 
 ô = ó)M. Let the membership relation ofMP/G, denoted ∈MG ,
be such that for ó,ô ∈MP we have

[ó]MG ∈
M
G [ô]

M
G ⇔∃p ∈ G (p 
 ó ∈ ô)

M.

And for V̌ we let

[ó]MG ∈
M
G [V̌ ]

M
G ⇔ ∃p ∈ G (p 
 ó ∈ V̌)M.

Note that versions of the truth and definability lemmas still hold.

Fact 19. For ϕ(v0, n) ∈ FLP(V̌) and ô0, ... ,ô1 ∈MP we have

〈MP/G,M,∈MG 〉 |= ϕ([ô0]
M
G , ... , [ôn]

M
G ) ⇔ ∃p ∈ G (p 
 ϕ(ô0, ... ,ôn))

M.

Moreover, a representation [Ġ]MG of G exists inM
P/G.

Fact 20. G = {p | (p ∈ P)M ∧ ([p̌]MG ∈ [Ġ]
M
Ġ
)M

P/G} where Ġ = {〈p̌,p〉 |

p ∈ P}M.

IfMP/G is well-founded, we’ll follow standard conventions and assume
that it has been collapsed into a transitive model. But in general this will not
be the case. IfMP/G is ill-founded it is essentially an uncollapsed ultrapower

83For example, see page 254 of Kunen (2011).
84For a detailed account see Corazza (2007).
85We follow Kunen’s notation of relativisation here (see page 141 in Kunen, 2006). Thus

forM = 〈M,E〉 and ϕ ∈ L∈ we write ϕ
M to indicate the result of replacing ∈ by E and

relativising all quantifiers to M. Note also that G∩D doesn’t capture our strict intention,
since G is a set in V (the ambient universe) while D ∈ M which might not have ∈ as its
membership relation. Strictly, we should say for all D ∈ M with (D is dense in P)M there
is some g ∈ G with gED (i.e., (g ∈ D)M. For convenience, we’ll adopt the sloppy notation
since it should cause no confusion.
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and so it is not strictly the case thatM is a generic refinement ofMP/G.
IndeedM is not literally a submodel ofMP/G. However, we do have the
following:

Fact 21. The embedding iMG :M→M
P/G where for all x ∈M

iMG (x) = [x̌]
M
G

is such thatMP/G thinks that it is the generic extension of iMG “M by i
M
G “G

over iMG (P).

With this in mind, it is convenient to modifyMP/G in such a way that it
does containM as a submodel.

Definition 22. LetMult[G] be the result of replacing iMG “M byM; i.e.,
let the domain ofMult[G] be

(MP/G\iMG “M)∪M

and for x,y ∈Mult[G], let the membership relation, ∈G, be such that

x ∈G y⇔(x,y ∈M∧ (x ∈ y)
M)∨

(x,y ∈MP/G∧x ∈MG y)

(x ∈M∧y ∈MP/G∧ iMG (x) ∈
M
G y).

Then we are able to ensure that (from the perspective ofMult[G])Mult[G]
is a generic extension ofM in the conventional sense of say Kunen (2006).

Proposition 23.

(1) OrdM =OrdMult[G] andMult[G] is an end extension ofM.
86

(2) Mult[G] thinks it is a generic extension of M by G over P; i.e., x ∈
Mult[G] iff there is some ô inM

P such that (Val(ô, [Ġ]MG ) = x)
Mult[G].

(3) There exists r ∈Mult[G] such that i
M
G “M= (Wr)

Mult[G] if P ∈M.

IfM is transitive, let us use the standard notationM[G] to denote the
{Val(ó,G) | ó ∈MP}.87 Turning our attention back to the case where P =
(Col(ù,<))M, we see that 〈Mult[G],M,∈G〉 is able to define all of the generic
refinements ofMult[G].88

Proposition 24. LetM |= ZFC and G be Col(ù,<Ord)M-generic over
M. Then for all α ∈OrdM

(1) 〈Mult[G],M,∈G〉 |= ZFC
–(M);

(2) G ↾ α ∈M;
(3) (M[G ↾ α])Mult[G] is definable in the model 〈Mult[G],M,∈G〉.
(4) For all α ∈OrdM and all r ∈M[G ↾ α], (Wr)

M[G↾α] is definable in

〈Mult[G],M,∈G〉.

86N = 〈N,F〉 is an end extension ofM= 〈M,E〉 iff whenever xFy ∈N ∩M, x ∈M.
87This only makes sense ifM is well-founded.
88Note that since this is a class forcing, we cannotmake use of Laver andWoodin’s theorem.
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A.2. Soundness. With this in hand, we can now provide a general
definition of Steel’s generic multiverse.

Definition 25. SupposeM is a model ofZFC andG isCol(ù,<Ord)M-
generic overM. We letMG be the model with sets fromMult[G] and whose
worlds are those N such that there exists α ∈OrdM and r ∈M[G ↾ α] such
that89

x ∈N ⇔ 〈Mult[G],M,∈G〉 |= x ∈ (Wr)
M[G↾α].

Recall that – by our definitions – ifM is transitive, thenMult[G] =M[G]
and observe that if N is a world inMG, then 〈Mult[G],M,∈G〉 thinks that
N [H] =M[G ↾ α] for someN -genericH.90We now show thatMG provides
a model of ourMV . This is the required fact for establishing soundness.

Theorem 26 (Steel). Suppose M is a model of ZFC and G is
(Col(ù,<Ord))M-generic overM. ThenMG |=MV.

Proof. By Fact 18 we see that 〈M[G],M,∈G〉 |= ZFC–(M). Then using
Proposition 24, it can be seen thatM[G ↾α] and all of its generic refinements
are definable in 〈Mult[G],M,∈G〉. Moreover, from the perspective of
〈M[G],M,∈G〉 each of these worlds is transitive. This is sufficient for us
to carry out the rest of the proof within 〈Mult[G],M,∈G〉.
(MV -0) This holds by definition. (MV - 1ϕ) Let ϕ be an axiom of ZFC
and letN be some world inMG. ThenN |=ZFC by definition.We note that
(MV -2) and (MV -3) are entailed by (MV -7), so we’ll cover the former two
with a proof of the latter at the end. (MV -4) This holds by the definition
ofMG.
(MV -5: Extension) Suppose N is a world and P ∈ N is a poset. Fix

Q ∈ N and H, which is Q-generic over V, such that N [H] =M[G ↾ α] for
some α ∈ OrdM. Fix â ∈ OrdM such that â > |P|N . Then we may fix a
complete embedding ó : P→Col(ù, [α,â)) with ó ∈N .91 Then we see that
J = ó–1(G ↾ [α,â)) is P-generic overM[G ↾ α]; and since N ⊆M[G ↾ α], J
is also P-generic overN . Finally sinceN ⊆N [J]⊆M[G ↾ â], we see by the
quotient lemma that there is some R ∈N [J] and K, which is R-generic over
N [J], such thatM[G ↾ â] =N [J][K].92 Thus N [J] is a generic refinement
ofM[G ↾ â] and is thus, a world.
(MV -6: Refinement) Suppose N ∈MG and N = V[J] for J, P-generic
over V . Since N ∈MG, we may fix Q ∈ N and H, Q-generic over N , such
that

N [H] =M[G ↾ α]

89Thanks toGoldberg for suggesting the frameworkwhich allows for this simple definition.
90We don’t need to expand the signature to accommodate N since Laver and Woodin’s

theorem guarantees thatN is definable fromM[G ↾ α] in 〈Mult[G],M,∈G〉.
91This can be obtained using the embedding of Proposition 10.20 of Kanamori (2003).
92For the quotient lemma see, for example, exercises VII(D4) and VII(D5) in Kunen

(2006).
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for some α. But thenM[G ↾ α] = V[J][H] is a generic extension of V by the
iteration lemma and so V ∈MG.93

(MV -7: Amalgamation) LetN and V be worlds such thatN [H] =M[G ↾

α] and V[I] =M[G ↾ â] where H and I are N -generic and V-generic
respectively and α,â ∈ OrdM. Without loss of generality, suppose that
α ≥ â . Then

N [H] =M[G ↾ α]

=M[G ↾ â][G ↾ [â ,α)]

= V[I×G ↾ [â ,α)]. ⊣

A.3. Completeness. Now we show that any countable model of MV is
of the desired natural form. This is the fact required for the completeness
proof.

Theorem 27 (Steel). LetW be a model ofMV satisfying extensionality for
worlds withM∈W and |W|= ù. Then for some Col(ù,<OrdM)-generic H

W =MH .

Proof. We shall define a sequence of generics 〈Gi | i ∈ ù〉 and indices
〈ni | i ∈ ù〉 which will allow us to capture every world in W as a generic
refinement. Then using Lemma 28, we will use 〈Gi | i ∈ ù〉 to define our
desiredH. Let 〈κn | n ∈ù〉 be a sequence ofM-cardinals which is cofinal in
M. Let 〈Nn | n ∈ ù〉 enumerate the worlds inW . Let

• Let n0 be least such that there exists Col(ù,κn0)-generic G over M
where N0 is a ground ofM[G] ∈W . Let G0 be such a G.

• Let ni+1 be least such that there exists Col(ù, [κni ,κni+1))-genericG over
M[

∏
j≤iGj] where Ni+1 is a ground ofM[

∏
j≤iGj×G] ∈W . Let Gi+1

be such a G.

It can be seen using the universality properties of collapse forcing and the
axioms ofMV that this sequence is well-defined in the sense that such an ni
and Gi exist for all i ∈ ù. 〈Gi | i ∈ ù〉 can then be used to define a sequence
〈G∗
α | α<Ord

M〉 where each G∗
α is Col(ù,{α})-generic overM and every

product of a finite subsequence is generic overM. We then use Lemma 28
to obtain H which is Col(ù,<OrdM)-generic overM and such that for all
α ∈OrdM

M[H ↾ {α}] =M[G∗
α].

Claim. MH =W .

Proof. (⊆) Suppose N ∈ MH . Fix N -generic J such that N [J] =
M[H ↾ α] for some α ∈ OrdM. Then we see that since M[H ↾ α] ∈ W
by construction, we must haveN ∈W by Refinement. (⊇) SupposeN ∈W .

93See Proposition 10.9 of Kanamori (2003).
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Then N =Ni for some i ∈ ù. Then we see from our construction that Ni is
generically extended byM[H ↾ κni ]. Thus, Ni ∈M

H . ⊣

The following lemma allows us to take a countable set of finitely mutually
generic sets and make a finite support product of equivalent generics over
homogeneous posets. It’s a generalization of a theorem of Hamkins. 94

Lemma 28. LetM be a countable model of ZFC. Let 〈Pα | α ∈OrdM〉 be
definable inM where each Pα ∈M is weakly homogeneous according toM.
Let 〈G∗

α | α ∈Ord
M〉 be finitely mutually generic; i.e., such that for all finite

partial functions f : ù⇁OrdM,
∏

i∈dom(f )

G∗
f (i) is

∏

i∈dom(f )

Pf (i)-generic overM.

Then there exists H such that:95

(1) H is
∏fin
α∈OrdM

Pα-generic overM; and

(2) M[H ↾ {α}] =M[G∗
α] for all α ∈Ord

M.

Proof. We take an enumeration of the dense sets of P=
∏fin
α∈Ord Pα which

are definable inM and a countable enumeration of the ordinals ofM and
use this to construct our generic in the fashion of the proof of the Baire
category theorem. Along the way, we exploit the homogeneity assumption
to make some adjustments to the elements of the 〈Gα | α ∈Ord

M〉 sequence.
Let 〈Dn | n ∈ù〉 enumerate the dense subsets of P which are definable inM.
Let f :ù ∼=OrdM enumerate the ordinals ofM . We use this to rearrange
the sequence 〈Gα | α ∈OrdM〉 into a sequence of length ù which will allow
us to define the generic by constructing an ù-sequence of points which
intersects every dense set. To implement this and make the following more
readable, we let P†

n = Pf (n); P
† =

∏fin
n∈ù P

†
n and G

†
n =G

∗
f (n)
for all n ∈ù. Then

for p ∈ P, let p†(n) = p( f (n)); and for n ∈ ù let D†
n = {p

† | p ∈ Dn}.96 We’ll
define sequences 〈H†

n | n ∈ ù〉 and 〈pn | n ∈ ù〉 by recursion such that for all
n ∈ ù:

• M[H†
n ] =M[G

†
n]; and

• pn ∈D
†
n∩

∏fin
n∈ùH

†
n and pn ≤ pm for all m< n.

We then let Hα =H
†

f –1(α)
for all α ∈ OrdM and H =

∏fin
α∈OrdM

Hα. This will

suffice for the lemma. To obtain this we just need to define these sequences
such that for all n ∈ ù, pn ∈D

†
n, pn ↾ (n+1) ∈H

†

0 ×···×H
†
n whereM[G

†
n] =

94See Theorem 13 of (Hamkins, 2015). The setting of that theorem is the concrete context
of adding Cohen reals and, as such, it may be helpful for the reader to consult that proof
first.
95I’m using Kunen’s notation for infinite products with finite support; i.e.,

∏fin
n∈ù Pn = {p∈∏

n∈ù Pn | |{n ∈ ù | p(n) 6= 1Pn}|< ù}.
96It’s probably worth observing that P† cannot be defined inM, while

∏
i<nP

†
i ∈M for

all n ∈ ù.
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M[H†
n ] and pn ≤ pm for allm< n. Suppose we’ve done this up to n. We define

pn+1 and H
†

n+1 as follows. First we note that there is some p ≤ pn such that
p ∈D†

n+1 and p ↾ (n+1) ∈H
†

0 ×···×H
†
n . To see this observe that

D∗ = {q ∈ P
†

0×···×P†
n | ∃q ∈D

†

n+1 (q ↾ (n+1) = q ∧ q≤ pn)}

is dense below pn ↾ (n+1). Thus, we may fix some p ∈ D∗∩ (H†

0 ×···×H
†
n)

and thus some p ∈ P† witnessing that p ∈D∗. Let pn be such a p ∈ P†. Now
it might not be the case that pn ∈ H

†

0 ×···×H
†
n ×G

†

n+1. So using the weak

homogeneity of Pn+1, fix ó : P
†

n+1
∼= P

†

n+1 such that ó(pn(n)) = g for some

g ∈ G†

0. Then let H
†

n+1 = (ó
–1)“G†

n+1. This ensures that the sequences have
the desired properties and the result follows. ⊣
A.4. Main theorem. The soundness and completeness theorems now
follow easily.

Theorem 8. For all ϕ in the multiverse language, the following are
equivalent:

(1) MV ⊢ ϕ.
(2) If M is a countable model of ZFC, then MG |= ϕ, where G is
Col(ù,<Ord)M-generic overM.

Proof. (1→ 2) SupposeMV ⊢ ϕ andM is a countable model of ZFC.
Then by Theorem 26, we see that MG |= ZFC and so by (1) and the
soundness theorem,M |= ϕ.
(2→ 1) SupposeW is an arbitrary model ofMV . Taking a Skolem hull
if necessary, we may assume that W is countable. Then by Theorem 27
W =MG for some Col(ù,<Ord)M-generic overM. Thus, by (2) we see
thatW |= ϕ and by the completeness theorem, we haveMV ⊢ ϕ. ⊣

B. Unaxiomatisability of VM. In this section, we show that Woodin’s
generic multiverse – unlike Steel’s – is not amenable to axiomatisation. First
recall the following theorem of Usuba.

Theorem 29. (Usuba) For all r0,r1 there exists s such that

Ws ⊆Wr0 ∩Wr1.

Less formally, this tells us that whenV is a generic extension ofU0 andU1,
then V is a generic extension of someU2 ⊆U0∩U1. Now note the following
Corollary of Theorem 29:

Corollary 30. Suppose N is a countable transitive model of ZFC. Then
N ∈ VM iff there exists r ∈M, P ∈ (Wr)M and P-generic G over (Wr)M , such
that

N = (Wr)
M [G].

In other words, VM is the set of ctmsN accessible by a generic refinement
followed by a generic extension from M. We use this fact to define a
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provisional version of Woodin’s generic multiverse adapted to the non-well-
founded setting. The obvious way to attempt to form VM over a possibly
ill-founded M would be just use the corollary above with M instead of
transitive M. However, this leads to problems. For example, suppose M
is transitive; P,Q ∈ M are posets; G is P-generic over M and H is Q-
generic over M[G]. Then G×H is P×Q-generic over M and importantly,
M[G][H] = M[G×H]. However, the situation is different if we use the
ill-founded method above. IfM is ill-founded, P,Q ∈M are posets; G is
P-generic overM andH isQ-generic overM[G], then we do get thatG×H
is P×Q-generic overM; but in generalM[G][H] is merely isomorphic and
not identical toM[G×H].
We address this problem by identifying – for any modelM of ZFC – a
canonical structure that is simply definable overM and from whichMmay
be recovered up to isomorphism. These structures will be used to represent
the worlds of our generalised generic multiverse. (This definition is due to
Woodin; we’re grateful for his permission to include it here.)
ForM= 〈M,∈M〉 a countable model of ZFC, consider the structure

〈OrdM,∈M,OrdRel(M)〉,

where

OrdRel(M) = {p ∈M |M |= p⊆Ord×Ord}

is the set of ordinal-domain relations according to M. Call this the ord-
structure of M. We claim that there is only one model of ZFC up to
isomorphism with this ord-structure. To see this suppose N = 〈N,∈N 〉
is a countable model of ZFC that has the same ord-structure as M. Let
ð :M → N be defined as follows. For each x ∈M, fix Ax ∈ OrdRel(M) be
such thatM thinks that the transitive collapse of Ax is the transitive closure
of {x}. Let ð(x) be the∈N -greatest element of whatN thinks is the transitive
collapse of Ax. This makes sense since Ax ∈ OrdRel(M) =OrdRel(N ). We
can then see that ð is an isomorphismbutwe’ll just show that ð is an injection
as the rest of the proof is similar. Suppose that ð(x) = ð(y). Then N thinks
that the transitive collapse of Ax is the transitive collapse of Ay. This means
that there is some f ∈N such thatN thinks that f :Ax ∼=Ay. And since it is
clear that f ∈OrdRel(N ) =OrdRel(M), we see thatM also thinks that the
transitive collapse of Ax is the transitive collapse of Ay. Thus, x= y.
Now we can generalise the generic multiverse to the case of ill-founded
models. Recall that we have set up a forcing definition for ill-foundedmodels
such that generic extensions literally contain their grounds as submodels.
Thus, it is easy to see that every world in the generic multiverse uses the
same set of objects for ordinals and has the same ordering upon them. This
means that we can represent each world N in the multiverse by OrdRel(N )
as that is the only part of the ord-structure which varies.

Definition 31. Let VM be the set of OrdRel(N ) for which there exists
r ∈M, P ∈ (Wr)M, P-generic G over (Wr)M such that

N = ((Wr)
M)ult[G].
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Now we might worry that since we are representing worlds by sets of
ordinal-domain relations, we are restricted to only being able to compare
such relations between worlds and not arbitrary sets in those worlds. This
is – in general – correct and appears to be forced upon us by our use of
ill-founded models. However, much can still be recovered. For example,
if we start with a countable transitive model M, then we can recover the
Woodin’s original generic multiverse by taking a model N for each world
in the multiverse and then collapsing each of those models into transitive
models.97

In the more general case of ill-founded models, we cannot perform this
collapse. However, we can still unambiguously identify many sets across
different worlds. We illustrate this with a couple of examples. Suppose N0
andN1 are in VM whereM is ill-founded. First, suppose x ∈ L

N0 . Then let
α ∈ OrdN0 be such that N1 |= Enum(x,α) where Enum(v0,v1) a formula of
L∈ which says that x is the αth set in the canonical enumeration of L and this
formula absolute for L. Then it is clear that x should be identified with that
y ∈ N1 where N1 |= Enum(y,α). Second we note that if X0 ∈ N0 is what N
thinks is a family of ordinal-domain relations, then we can check whether
X0 is represented in N1 by asking whether there is some X1 ∈ N1 such that
for all p ∈OrdSet(N0) =OrdSet(N1) such that

N0 |= p ∈ X0 ⇔ N1 |= p ∈ X1.

This allows us to – so to speak – find the reals of one world in any other, if
they are present. We can then generalise this to compare families of families
of ordinal-domain relations; and we can continue iterating this idea along
the well-founded part of OrdM, but not beyond. Even in the case where
our generating modelM is not an ù-model this gives us more than enough
agreement to be able to carry out the following argument.
B.1. VM is unaxiomatisable. We now show that there cannot be a
recursive axiomatization of VM. (These results are due to Woodin who
has kindly allowed us to include them here.) Our strategy is to demonstrate
that – in fact – the true theory of arithmetic can be obtained from the theory
of any VM! To do this we show that the real ù can be defined in any such
VM - even though its version of ù may be nonstandard. We then define a
translation which gives us the required reduction. Given a countable model
M of ZFC, we shall suppose below – without loss of generality – that the
real Vù is a submodel of the well-founded part ofM.

Lemma 32 (Woodin). For M an arbitrary (and possibly ill-founded )
countable model of ZFC, there is a formula ϕù ∈ L∈ such that for all x ∈ùM

x ∈ ùV ⇔ VM |= ϕù(x).

Proof. Our strategy is as follows. We first show that in VM, there exist
reals c,d ∈ (2ù)M which instantiate an alternating pattern which has ùV -
many alternations. We call such a pair anù-pair. We then observe that there

97The extra collapse step is required since we are using our ultrapower approach to forcing.
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is a formula ϕalt which when given reals c,d ∈ (2ù)M can identify howmany
alternations have occurred according toM. From the perspective of V, this
could be a nonstandard number of alternations. We then use ϕalt to define a
formula which identifies the real natural numbers.
To see that an ù-pair exists in VM, let 〈Dn〉n∈ù enumerate (in V) the
subsets of P= (2<ù)M which are dense according toM. We define c and d
by recursion as follows. Let c0 ∈M be such thatM|= c0 ∈D0 and let p0 be
the empty sequence.
Let dn ∈M be such that the following are satisfied inM:

• dn ∈Dn; and
• dn = d

a

n–1s
a
n 〈1〉

aqn+1 where sn is a sequence of length lh(cn) which
constantly outputs 0 and where we let dn–1 be the empty sequence
if n= 0.

Let cn+1 ∈M be such that the following are satisfied inM:

• cn+1 ∈Dn+1; and

• cn+1 = c
a
n t

a
n 〈1〉

apn+1 where tn is a sequence of length lh(qn) which
constantly outputs 0.

It should then be clear that the sequences 〈cn〉n∈ù and 〈dn〉n∈ù can be used
to define Cohen reals forM. The following diagram might be helpful.

c c0 0’s 1 p1 0’s 1 p2 . . .

d 0’s 1 q0 0s 1 q1 0’s . . .

Since these sequences clearly yield M-generics, it can be seen that c =⋃
n cn ∈ 2

ù and d =
⋃
n dn ∈ 2

ù are both represented in VM. We now define
ϕù. But first we let ϕ∗

alt(x,c,d) be a formula in the language of arithmetic
with two function parameters which says that there is some â-function with
domain x tracking some of the alternating pattern of 0’s which could occur
between c and d as outlined above. So if we were working in the standard
model of arithmetic N, then 〈N,c,d〉 |= ϕ∗

alt(n,c,d) holds when at least n
blocks of 0’s occur in the pattern described above.
Then let ϕalt(x,c,d) be the standard translation of ϕ∗

alt(x,c,d) from the
language of arithmetic into the language of set theory. This means that if
c,d ∈ (2ù)M then we’ll haveM|= ϕalt(x,c,d) iffM thinks there are at least
x∈ùMmany blocks of 0’s occurring as in the diagram above, where x could
– in general – be nonstandard. Note also that since ùM =ùN for all worlds
N , we’ll haveM |= ϕalt(x,c,d) iff VM |= ϕalt(x,c,d). In this situation, let
us say that x is captured by c and d in the sense that there at least x many
alternations in the pattern instantiated by c and d. We then let ϕù(x) say
that for all c,d ∈ 2ù

• if ∀y(ϕalt(y,c,d)→∃z(z> y∧ϕalt(z,c,d))),
• then ϕalt(x,c,d).

Informally, this says that x is captured by every pair c,d that tracks an
alternation which has a limit length.
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Claim. For all x ∈ ùM

x ∈ ùV ⇔ VM |= ϕù(x).

Proof. (⇒) Suppose x ∈ ùV . Suppose that c,d ∈ VM support an
alternation of limit length, then the length of the alternation cannot be
finite, so xmust be captured by c and d. (⇐) Suppose x /∈ùV . Then x∈ùM

and must be nonstandard. Work in VM. Fix an ù-pair c,d in VM. Then it
can be seen that x is not captured by c and d since they only capture V -finite
naturals. ⊣

Lemma 33 (Woodin). There is a recursive function f : ù → ù such that
for all countable modelsM of ZFC and all sentences ø in the language of
arithmetic, we have

N |= ø ⇔ f (ø) ∈ Th(VM),

where N is the standard model of arithmetic.

Proof. Using Lemma 32, we can define ù with a formula ϕù(v0) ∈ LMV
in the VM for any countable M. For a formula ø from the language of
arithmetic, we let f (ø) be the result of: first using the standard translation
of arithmetic into set theory; and then relativising all the quantifiers using
the formula ϕù(v0). ⊣

With this in hand, we are able to establish the main result of this section.

Theorem 34 (Woodin). There is no recursive T ⊆ LMV such that for all
ϕ ∈ LMV

T ⊢ ϕ⇔∀M(|M|= ù∧M |= ZFC→ VM |= ϕ).

Proof. Suppose not and fix such a recursive T. Let f be the recursive
function given by Theorem 33. Then we see that

ϕ ∈ Th(N)⇔∀M (|M|= ù∧M |= ZFC→ VM |= f (ϕ))

⇔ T ⊢ f (ϕ).

But this means that Th(N) can be computed from T which means that T is
not recursive. ⊣

C. The translation. In this section, we provide a definition of the Steel’s
translation function and show that it works.98

Definition 35. AssumeM is an inner model of ZFC.

98Thanks to Goldberg for providing this simplified approach to the proof. Our original
strategy provided a direct proof of Theorem 9 from the theory MV . However, the strategy
was extremely syntactic and difficult to read.
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• A triple 〈r,P,G) defines a world U relative to M if (Wr)
M is defined, P

is a poset in (Wr)
M , and G ⊆ B is a (Wr)

M-generic ultrafilter such that

U = (Wr)
M [G].

• Let XM denote the class of triples that define some world relative toM.
• Let ∼ be the equivalence relation defined on XM by x ∼ y if x and y
define the same world.

• Let SM be the class of equivalence classes of ∼ using Scott’s trick.

The following definition is carried out in the multiverse language.

Definition 36. Let f be the function sending a pair of worlds 〈M,U〉 to
the ∼-equivalence class in SM of triples that represent U relative toM.

Proposition 37. MV proves that f is a total function.

Proof. Suppose U andM are worlds. Using Amalgamation fix a world
U∗ such that U and M are both grounds of U∗. Then by the Downward
Directed Grounds theorem in U∗ fix U† such that U† is a ground of both U
andM. Thus there exists r ∈M, P ∈ (Wr)M and G ∈M which is P-generic
over (Wr)M such that U = (Wr)M [G]. ⊣

Lemma 38. There is a total recursive function e : LMV →L∈(Ṁ) with the
following property. Suppose W |=MV ,M is a world of W , and N is the
collection of sets ofW and ∈W is the membership relation inW . Then

W |= ϕ(Ex,U0, ... ,Un–1)⇔ 〈N,M,∈W〉 |= e(ϕ)(Ex,u0, ... ,un–1)

where ui = (f (M,Ui))W for i < n.

Proof. The function e is defined by recursion on formula complexity:

• If x is a set variable and u is a world variable,

e(x ∈U) = ∃(r,B,G) ∈ u (x ∈WṀr [G]).

• For all atomic formulae ϕ not covered by the previous bullet, e(ϕ) = ϕ.
• e(¬ϕ) = ¬e(ϕ) and e(ϕ∧ø) = e(ϕ)∧ e(ø).
• If x is a set variable e(∃xϕ) = ∃x e(ϕ).
• If U is a world variable, e(∃Uϕ) = ∃u ∈ SṀ e(ϕ).

A simple induction on the complexity of formulae of L∈ then suffices. ⊣

Definition 39. If ϕ is a sentence in the multiverse language, then t(ϕ) is
the sentence in the language of set theory asserting that


Col(ù,<Ord) e(ϕ)
∗,

where we use the forcing language FLP(V̌) and where e(ϕ)∗ is the result of
replacing every instance of Ṁ in e(ϕ) with V̌ .
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Theorem 10 (Steel). If M is a countable model of ZFC, G is
Col(ù,<Ord)M-generic overM and ϕ ∈ LMV , then:

M |= t(ϕ)⇔MG |= ϕ.

Proof. (⇒) SupposeMG |= ϕ. Then by Theorem 26 we see thatMG |=
MV and so by Lemma 38

〈Mult[G],M,∈G〉 |= e(ϕ).

And by Lemma 18, we see that

∃p ∈ GM |= “p 
Col(ù,<Ord) e(ϕ)
∗”.

Then since e(ϕ)∗ only uses -̌names (i.e., V̌) we see by the homogeneity of
collapse forcing99 that:

M |= “ 
Col(ù,<Ord) e(ϕ)
∗”;

i.e.,M |= t(ϕ). (⇐) Similar. ⊣

Theorem 9. There is a recursive function t : LMV → L∈ such that for all
sentences ϕ ∈ LMV , MV proves that the following are equivalent:

(1) ϕ;
(2) ∀Ut(ϕ)U ;
(3) ∃Ut(ϕ)U .

Proof. LetW |=MV and taking a Skolem hull if necessary suppose that
W is countable. It suffices to show that (1), (2), and (3) have the same truth
value inW . First we note that by Theorem 27,W =MG for some worldM
inW and Col(ù,<)M-generic G overM. Suppose ϕ is true and letU be an
arbitrary world. By Theorem 10we see that t(ϕ)U holds. Thus ∀U t(ϕ)U and
since W must contain at least one world we have ∃U t(ϕ)U . Now suppose
∃U t(ϕ)U and fix such a U. We then see by Theorem 10 that ϕ is true. ⊣

C.1. Applications. Now we establish some applications of the translation
function. First we observe thatwithout theAmalgamation axiom,we cannot
have a translation function.

Proposition 40. There is no recursive function s : LMV→L∈ such that for
all ϕ ∈ LMV

MV minus Amagamation ⊢ ϕ↔∀V s(ϕ)V .

Proof. Suppose not and fix such a t. Let M be a countable model of
ZFC and letMG be the multiverse defined fromM using some GCol(ù,<
OrdM)-generic overM. LetVM be theWoodin genericmultiverse generated
fromM. Then we see that:

(1) MG |=MV minus Amalgamation+Amalgamation;
(2) VM |=MV minus Amalgamation+¬Amalgamation.

99See 10.19(a) in (Kanamori, 2003).
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Then since bothMG and VM are models of MV minus Amalgamation, we
see that:

MG |=Amalgamation ⇔ M |= s(Amalgamation)

⇔ VM |=Amalgamation

which is impossible. ⊣

Nowwe showhow large cardinals are naturally represented in the language
of the multiverse.

Proposition 41 (ZFC). t(∀V∃κ (κ is measurable)V ) iff there is a proper
class of measurable cardinals.

Recall the following fact from Lévy and Solovay:

Fact 42. Let κ be a cardinal and let P be a poset with |P|< κ. Then

(1) if κ is measurable, then 
P κ is measurable; and
(2) if κ is not measurable, then 
P κ is not measurable.

Proof. (of Proposition 41) First observe that ∀V∃κ (κ is measurable)V

translates by t as

∀P 
 ∀r∃κ (κ is measurable)Wr

(←) LetPbe arbitrary. LetG beP-generic overV. Let r∈V [G].100 Thenwe
want to show that (Wr)V [G] still has a proper class of measurable cardinals.
First we observe that we have a definable inner model U = (Wr)V [G] with
some Q ∈U and H ∈ V [G] which is Q-generic over U and such that

U[H] = V [G].

Now by Fact 42 (1), we see that for any κ > |P|V which is measurable
according to V, κ remains measurable in V [G]. Thus V [G] still has a proper
class of measurable cardinals. Suppose now – for a contradiction – that
there are no measurable cardinals in U. Let κ > |Q|U where κ is measurable
according to U[H]. We can obtain such a cardinal since U[H] = V [G]. But
since U says that κ is not measurable, Fact 42 (2), tells us that κ is not
measurable according to U[H] either: contradiction.
(→) Suppose α is such that for all κ > α, κ is not measurable. Let

P = Col(ù,{α}) and let G be P-generic over V. Let κ > α; then by Fact
42 (1), we see that κ is not measurable according to V [G]. Let r ∈V [G] be a
vacuous refinement parameter; i.e., let r be such thatV [G] = (Wr)V [G]. Then
we see that:

V [G] |= ∃r∀κ(κ is not measurable)Wr

100Now that we’re familiar with the generic multiverse, we’ll allow ourselves to fall back
into the conventional luxury of talking about V -generics, although – of course – such talk is
easily removed.
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and so exploiting the homogeneity of P101 we see that


P ∃r∀κ(κ is not measurable)
Wr

⇒ 1P ∀r∃κ(κ is not measurable)
Wr

which suffices for our claim. ⊣

We now establish that the range of the t function is the set of sentences
which are provably generically invariant.

Theorem 12. Let ϕ ∈ L∈. Then following are equivalent:

(1) MV ⊢ ∀VϕV ∨∀V¬ϕV ; and
(2) ϕ is legitimateZFC .

Proof. (1→ 2) Suppose ϕ ∈ L∈. LetM be a countable model of ZFC.
Recall that

M |= t(∀VϕV ) ⇔ MG |= ∀VϕV .

And by assumption we have

MG |= ¬∀VϕV ↔∀V¬ϕV .

It will suffice to show that

M |= t(∀VϕV )↔ ϕ.

SupposeM|= t(∀VϕV ). ThenMG |= ∀VϕV and soM|= ϕ. SupposeM|=
¬t(∀VϕV ). ThenMG |= ¬∀VϕV . ThusMG |= ∀V¬ϕV and soM |= ¬ϕ.
(2→ 1) Suppose (1) is false and fix a multiverse W such that W |=MV
and there exist worldsM0,M1 ∈W such that

M0 |= ϕ andM1 |= ¬ϕ.

Now suppose for a contradiction that there is some ø ∈ LMV such that

ZFC ⊢ t(ø)↔ ϕ.

Recall that if N is a countable model of ZFC, then for all multiverses U
with U |=MV and N ∈ U , we have

U |= ÷ ⇔ N |= t(÷).

Thus, we see that our chosen ø is such that:

(1) W |= ø ⇔ M0 |= ϕ; and
(2) W |= ø ⇔ M1 |= ϕ

which is clearly impossible. ⊣

It is then easy to see that this generalises if we extend our theories with
large cardinals in the manner outlined above. For example, letting ZFC+

101See Theorem 10.19(a) of (Kanamori, 2003).
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pc(EXT) be the theory extending MV with a proper class of extendible
cardinals, in every world.

Theorem 43. For ϕ ∈ L∈, the following are equivalent:

(1) MV +∀Vpc(EXT)V ⊢ ∀VϕV ∨∀V¬ϕV ; and
(2) ϕ is legitimateZFC+pc(EXT).

We then note that against the backdrop of ZFC, CH is not legitimate.
Moreover, the mere existence of a core does not alter this.

Proposition 44. We have:

(1) ZFC 0 CH↔ t(ø) for any ø ∈ LMV ; and
(2) ZFC+pc(EXT) 0 CH↔ t(ø) for any ø ∈ L∈.

Proof. (1) Suppose not. Then by Proposition 12 we see that MV ⊢
∀VCHV ∨ ∀V¬CHV . This is clearly impossible. (2) Similar except use
Theorem 43. ⊣

Finally, we show that if we are at the core, then the obvious translation
function allows us to establish that every sentence in the language of set
theory is legitimate.

Theorem 17. For each ϕ ∈ L∈, there is a ø ∈ LMV such that

ZFC+V = C ⊢ ϕ↔ t(ø).

We’ll first establish the key lemma.
Let s : L∈→LMV be such that for ø ∈ L∈ we have

s(ø) = øC;

i.e., ø relativized to the formula defining the core in L∈.

Lemma 45. For all sentences ϕ ∈ L∈,

ZFC+V = C ⊢ t◦ s(ϕ)↔ ϕ.

Proof. LetW be such thatW |=MV andM∈W . Then we note that

M |= t◦ s(ϕ)⇔W |= s(ϕ)

⇔W |= ϕC

⇔M |= ϕ.

For the first⇔ we rely on Theorem 26 and Theorem 9. ⊣

Proof. (of Theorem 17) Let ϕ ∈ L∈. Let ø be s(ø). Then by Lemma 45,
we see that

ZFC+V = C ⊢ t(ø)↔ ϕ

as required. ⊣
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