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AN ALGORITHM FOR RECOGNISING THE EXTERIOR SQUARE OF
A MULTISET

CATHERINE GREENHILL

Abstract

The exterior square of a multiset is a natural combinatorial con-
struction which is related to the exterior square of a vector space.
We consider multisets of elements of an abelian group. Two prop-
erties are defined which a multiset may satisfy: recognisability and
involution-recognisability. A polynomial-time algorithmis described
which takes an input multiset and returns either (a) a multiset which
is either recognisable or involution-recognisable and whose exterior
square equals the input multiset, or (b) the message that no such
multiset exists. The proportion of multisets which are neither recog-
nisable nor involution-recognisable is shown to be small when the
abelian group is finite but large. Some further comments are made
about the motivating case of multisets of eigenvalues of matrices.

1. Introduction

The exterior square of a vector space is a well-known and important construction, wil
applications in various areas of mathematics. In this paper the exterior square of a multi
is defined. This definition arises in a natural way, as it describes the relationship betwe
the eigenvalues of a matrix and the eigenvalues of the matrix representing the actiéh of
on the exterior square of the underlying vector space. This relationship is fully determine
by the nonzero eigenvalues, which belong to the multiplicative group of the splitting field
the characteristic polynomial &f. Therefore, the appropriate generalisation is to multisets
of elements of an abelian group. For most of the paper we consider the problem in f
generality.

Two properties are defined which a multiset may possess: the properties of recognisabi
and involution-recognisability. An algorithm is developed which can determine whether
given multiset is the exterior square of a recognisable or involution-recognisable multise
This strategy is adapted from that used by Peter Neumann and Cheryl Praeger in their wi
on the tensor products of multisets [6].

The worst-case complexity of the algorithm is analysed, under the assumption that t
elements of the abelian group can be linearly orderedni,et be positive integers such
thatm > 2 andn = m(m — 1)/2. Suppose that the input multisets havelements. The
basic operation is taken to be one multiplication, inversion or comparison of elements of tl
abelian group. Denote b, the cost of finding square roots in the abelian group. Then
the worst-case complexity of the algorithm is

(0] (nzm Co + n3m |Og(n)> .
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The exterior square of a multiset

Heuristic arguments are outlined which suggests that the improved bound
o (n Co + n® IOg(n))

is more appropriate for the majority of inputs.

The algorithm cannot recognise the exterior square of a multiset which is neither reco
nisable nor involution-recognisable. In Secti®we show that the proportion of multisets
which are neither recognisable nor involution-recognisable is small when the abelian gro
is finite but large. The theoretical results and heuristic arguments are illustrated by the rest
of practical tests, which are presented in Secfion

Finally, in SectiorB we consider the special case which motivated the general definitio
of the exterior square of a multiset; namely, multisets of eigenvalues of matrices. We shc
how the multiset algorithm can be used to recognise the exterior square of certain matric
over finite fields (up to conjugation). This might help us to solve the open problem o
efficiently recognising the special linear group in its exterior square action.

2. Notation and preliminary results

First we review the definition of a multiset. Létbe any set. The set of all multisets of
sizer with elements ir® is denoted by} and is defined by

el = e /sym(r),

where the symmetric group Syim acts on®” by permuting entries. lfwy, ..., ;) € ®"

then denote its image i®"} by {w1, ..., »}. By convention, ifw € ®} then we write
w = {w1, ..., »}. Supposethat € O andg € ©. Letmult(g; w) denote thenultiplicity
of g in w, defined by

mult(g; w) = [{i : g = wi} .
Write ¢ € w if mult(g; w) > 1. Say thatw is multiplicity-freeif mult(g; ) < 1 for all
g € ©. The multiset union, multiset intersection and multiset difference operations can &
be defined in terms of multiplicities, as follows. Let
mult(g; o U o) = mult(g; w) + mult(g; o’),
mult(g; o N ') = min{mult(g; w), mult(g; )},
mult(g; w \ @) = max0, mult(g; w) — mult(g; ')}

forall g € ® and allw, »’ € O}, Letk be a positive integer and € ©!. Define the
multisetkw € O} as follows:

mult(g; kw) = kmult(g; ).

We might wish to define a multiset using some propértgefined or®. Given we 0},
write

/

o ={gcw: P}
to denote the multiset defined by

0 if ¢ ¢w or not P(g),

. / —
mult(g; @) = { mult(g; @) otherwise
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Finally, if © is a finite set then

o)) = ('®'+’_1) ()

r

forr > 1.
2.1. The exterior square of a multiset

Suppose that is a set which supports a commutative multiplication operationa et
an element ofA"}, Theexterior squaref a, denoted by:?, is the multiset

{ajaj : 1<i < j<m}

For the remainder of this paper ket= m(m — 1)/2. Letb be an element oA, Thena
is said to be aexterior square roobf b if b = a”2. To justify the use of the term ‘exterior
square’ in this context, we show how this definition relates to the best-known exterior sque
construction, the exterior square of a vector spaceXLbe anm x m matrix over a field
F, and leta be the multiset of eigenvalues &f. It is not difficult to prove that”? is
the multiset of eigenvalues of the matrix which represents the actichmf the exterior
square of the underlying vector space. Note that K™ anda”? € K"}, whereK is
the splitting field of the characteristic polynomial ¥fover F. Clearly,«”? is determined
by the multiset of nonzero elementsdanFor this reason, we consider multisets of abelian
group elements. For the remainder of the papeAlbe an abelian group.

Suppose that we were given a multiset A"} and told that» has an exterior square
root. Suppose that we were also given a map

vl i 1<i<j<m)— {1,...n)

suchthaw;a; = by i, j) for1 <i < j < m. Then, writing the abelian group additively,
we haven linear equations im unknownszy, . . ., a,,. We can solve the system to find the
entries ofz using elementary linear algebra over the integers. Here, multiplying an equatic
by a positive integer corresponds to raising each side of the equation tetthpower, and
multiplying an equation by-1 corresponds to inverting each side of the equation. Dividing
an equation by a positive integercorresponds to takingth roots of both sides of the
equation inA, and so is allowed only when both sides have-inroot in A. Of course,
when given an element o} we do not in general have access to the helpful map
and simply testing all possible maps does not lead to an efficient algorithm as there &
n! of them. (Note that this approach does provide an algorithm, albeit a highly inefficier
one, which applies when the algorithm described in this paper does not: namely, for findil
exterior square roots which are neither recognisable nor involution-recognisable.)

It is easy to construct exterior square roots of elements'bfandA(®. Let 14 denote
the identity element ofi. Then an exterior square root {ifi} is given by{1,4, b1} for all
b1 € A. Letb be an element a3}, If b has an exterior square raothen, without loss of
generality,

b1 = aiaz, by = aiaz, bz = azas.

Thereforebibobs™ = a1?. Givenb € A3 if bibobs~1 has no square root thénhas

no exterior square root. Otherwise, letbe a square root dfibob3 L. Then the multiset
{w, w™tb1, w™1by} is an exterior square root éf For the remainder of the paper assume
thatm > 4.
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2.2. Preliminaries

To close this section, we make a few more definitions and establish some prelimina
results. Ifa € A} andt € A, define the multiseta € A"} as follows:

mult(g; ta) = mult(t~1g; a)

forall g € A. Observe that it is any element oft such that? = 1 then

(_L,a)/\Z — a/\2 (2)
foralla € A" Forae A" letaa—1 denote the multiset
faiaq; ™t 1<i#j<m) 3

with m(m — 1) elements, and let"2a—"2 denote the multiset
{aiaj(ara)™ 1 1<i<j<m, 1<k <I<m;i,j, kI distinct (4)

with 6(’;) elements. Note that the multiset?a—"2 contains only those elemets:; (axa;) ~*
wherei, j, k, [ are distinct. Therefore the multiset$?a —"? andbb~? are not equal, where
b = a’2. This point is clarified by the following result. The proof is elementary.

Lemma 2.1. Suppose that € A and leth = a”2. Then the multiset equality
bb~t = (m — 2)aa"t U a™2a"?

holds. In particularbb~1 contains no more than

m(m — 1)+ 6(’2’) - m(mT_l)(m2 — 5m+10)

distinct elements.

Givena € A leta* denote the multiset defined by
a* =aa tUa™’a "2 (5)

If b = a2 for somea € A then the set of distinct elementsin—1 is equal to the set
of distinct elements i *.

In the next two sections, two properties are defined which an elemeatdfmay
possess, theecognisableproperty and thénvolution-recognisableroperty. Ifb = a”?
anda is recognisable or involution-recognisable then an exterior square réotah be
constructed, using procedures developed below. These procedures are then combine
produce an algorithm which can determine whether a given multiset has a recognisable
involution-recognisable exterior square root.

The algorithm fails to find an exterior square of any multiset whenever the input ha
an exterior square root, but no exterior square root which is recognisable or involutiot
recognisable. In Sectiodithe proportion of multisets which are neither recognisable nor
involution-recognisable is shown to be small when the abelian group is finite but large.

3. Recognisable multisets

A multiseta € A"} is said to baecognisabléf there existsg € aa~! such thatg has
multiplicity 1 in a*. The proof of the next result is easy, and is omitted here.

Lemma 3.1. If « € A"} anda is recognisable then is multiplicity-free.
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The nexttwo results will be used to construct a procedure which searches for recognisa
exterior square roots of multisets.

Lemma 3.2. Suppose that € A" is recognisable, and lgi = 2. Then there exists
g € aa—1 such thamult(g; bb~1) = m — 2. LetS(g) be the multiset of size — 2 defined

by
S(g) = {u € b : there exist € b such thauv—! = g}. (6)

ThenS(g) is multiplicity-free.

Proof. By Lemma2.1there existg € aa~* with multiplicity m — 2 in bb~1. Without loss
of generality leg = a1 a>~ 1. ThenS(g) = {a1ax : 3 < k < m}. Sinceu is multiplicity-free
(by Lemmas3.1), it follows thatS(g) is multiplicity-free. O

By searching through elements of the multisethich do not lie inS(g) orin g~15(g)
an exterior square root @&f may be constructed. This is a consequence of the following
result.

Lemma 3.3. Leta € A be a recognisable multiset, and let= a”\?. Letg = ajap~t
and suppose that has multiplicitym — 2in bb~1. Let S(g) be as defined in equatidp).
For at least one elementof b \ (S(g) U g~1S(g)) the productgz has a square rooi» such
thatw = ray for somer € A, t2 = 1. Furthermore, the multiset

(w, g twUw™'S(e)
is an exterior square root df.
Proof. The multiset» \ (S(g) U g~18(g)) is given by
b\ (S(g) U g 'S(2)) = faraz} Ularay : 3<k <1< m}.

Whenz = a1as the productgz equalsa;2, which certainly has a square rootin Let w
be any square root @fz. Thenw = tay for somer € A such that?2 = 1. The multiset
{w, g tw)UwtS(g)
equalsta, which is an exterior square root by equation (2). O

Lemmas3.2 and 3.3 give rise to a procedure for finding recognisable exterior square
roots of multisets, as shown in FigutelLet L1(b) be the set defined by
L1(b) = {g € bb~ : mult(g; bb™Y) = m — 2}.

The input to the procedure is a multiget A", together with an elemegte L1(b). We
try to form a recognisable exterior square raaif b, using the quotieng. An analysis of
the complexity of this procedure is presented in Sechidn

Lemma 3.4. ProcedureRECis correct.

Proof. Let b € A" be input to Procedure REC, together with the quotiert L1(b).
Theng is an element ofb— with multiplicity m — 2. Suppose first thathas a recognisable
exterior square roat such thatg € aa~. Then Lemmas.2 and 3.3 guarantee that an
exterior square root df will be output. If b has no exterior square root then the procedure
will certainly return the messadfalse’. Suppose that the output of Procedure REC, with
input (b, g), is a multiseta € A", Thenb = a2, so it remains to prove that is
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PROCEDURE RECGiven an elemerit of A"} and a quotieng € L1(b), this
procedure outputs a recognisable exterior square roof b such thatz € A" and
g € aa~1, if one exists, and outputs the message ‘false’ otherwise.
Begin
let S(g) be the multiset defined in equation (6);
if S(g) is multiplicity-free then
forzinb\ (S(g) Ug~1S(g)) do
if gz has a square roat in A then
a:={w, g~ twpUw tS(g);
if a”\? = b then
returna;
endif;
endif;
endfor;
endif;
return the messagfalse’;
End.

Figure 1: Procedure REC

recognisable and that € aa—1. Now mult(g; bb~1) = m — 2 andg € a*. Let z be the
element ob \ (S(g) U g~1S(g)) which was involved in the construction of the multiget
Then, without loss of generalitgz = a12 andg a1 = a». Henceg = a1a> ! € aa™1,
as required. Moreover, using Lemridl, the multiplicity ofg in a* is 1. Thereforez is

recognisable. O

4. Involution-recognisable multisets

A multiseta € A" is said to benvolution-recognisablé there exists an elemegtof
aa~t such thag? = 1 and multg; a*) = 2.

Suppose that is an elementary abelian 2-group. Then no element!t is recognis-
able. Thisis one reason for defining the involution-recognisability property. Another reasc
is that without this property, the calculations of Sectiomould be much more complicated.
The proof of the next result is easy, and is omitted here.

Lemma 4.1. Leta be an element oA} which is involution-recognisable. Lgt be an
element ofia~1 such thatg = g~1 andmult(g; a*) = 2. Thena contains at least: — 1
distinct entries, and is multiplicity-free unlesg = 1.

The following series of lemmas demonstrates how one can construct an exterior squi
root of b from the multisetvb—1 if b has an involution-recognisable exterior square root.
The proof of the next result is similar to that of Lem\2.

Lemma 4.2. Suppose that € A"} is involution-recognisable, and lét = a"2. There
existsg € aa~1 such thatg? = 1andmult(g; bb~1) = 2(m — 2). LetT (g) be the multiset
of size2(m — 2) defined by

T(g) = {u € b : there exist® € b such thatiwv™! = g}. (7
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If ¢ # 1thenT(g) is multiplicity-free. Ifg = 1thenT(g) = 2S(g) whereS(g) is a
multiplicity-free multiset of size: — 2.

The next two results are proved by modifying the argument of Le@®aThe first can
be used to construct an exterior square rodt wheng = 1.

Lemma 4.3. Suppose that € A is involution-recognisable, and lét = a”?. Let
¢ = a1ax~ ! and suppose that = 1 and thatmult(g; bb~1) = 2(m — 2). LetT (g) be the
multiset defined in equatidid), and letS(g) be the set of size —2 such thafl' (g) = 2S(g).
For atleast one € b\ T'(g) the producigz has a square rood in A such that the multiset

{w, wyUw tS(g)
is an exterior square root df.

Wheng # 1 the situation is slightly more complicated. The next result can be used t
find an elementv of A such thatw = ta; for somer € A, wherer? = 1.

Lemma 4.4. Leta € A" be an involution-recognisable multiset, and tet= 2. Let
g = ai1a>~1, and suppose that? = 1, ¢ # 1 andg has multiplicity2(m — 2) in bb~1.
Let T (g) be the multiset defined in equatiff). For at least one elementofb \ T'(g) the
productgz has a square roow in A such thatw = ta; for somer € A, 12 =1.

In the proof of Lemma&.3an exterior square root éfwas constructed using the element
w and the sef(g) of sizem — 2. In the involution-recognisable case, no such set exists
unlessg = 1. Wheng # 1 letS’(g) be the set of unordered pais, b;} of elements ob
such thaw; b; =1 = b; b;~1 = g. If ¢ = ag ax~* then the se§’(g) is given by

S'(g) = {{arax, azax} : 3< k < m}.

The next result shows how the s¥tg) can be used to construct an exterior square root of
b.

Lemma 4.5. Suppose that € A, and thata is involution-recognisable. Lét = a”2.
Letg = a1ao~t, and suppose that? = 1, g # 1, mult(g; bb~1) = 2(m — 2). LetS'(g)
be the set of unordered paif#;, b;} of elements ob such thath; b, = b; b; ™! = .
Suppose that we have an element A such thatw = taj for somer € A, wherer? = 1.
Then an exterior square roatof b can be constructed.

Proof. The elementsy;, of a multiseta will be defined inductively, in such a way that
a2 = b. Leta; = w and leti, = gw. Thendy = ta; andd, = ra. Let us fix a labelling
on the elements of’(g) so thatS’(g) = {s1, ..., s;,m_2} where, without loss of generality,
sk—o = {arax, azay} for 3 < k < m. Letas be assigned the value~1x3 wherexs is
chosen at random from. Thenas is one ofras, Tgas. In either case, the multiset equality
(a1, a, as}"? = {ay, az, az}™?

holds. For the inductive step, assume that 4 < m and that the values @fy, ..., ax_1
have been assigned in such a way that

. ~ 2 2
{ag, ..., ak-1}" = 1ar, ..., ax—1}"".

Letd; be assigned the value—1x; wherex; is either element af,_», chosen at random.
Thenay is one oftay, Tgax. Suppose that the chosen valuesa@re- tas anday = tgay.
Thenasza, = gasay. We claim that

gasax & b\ {av. ..., a-1)"?. 8)
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Sinceg # 1 it follows thatgaszay # azax. Suppose for a contradiction thadza; = g;4;
for somei, j satisfying 1<i < j <m, j >k, (i, j) # (3,k). Theng =g, a; (azap)t
and multg; a*) > 2, contradicting the choice @f. The situation described by equation
(8) also arises wheiis = tgaz anda, = tay. In either case, replacg by ga,. Then

@ ..., a)" = lay, ..., )"
This inductive process stops when all the values of the multibatve been assigned. Then
a is an exterior square root éf by construction. O

In fact, the multisef: constructed above is one of or tga, both of which are exterior
square roots ob, by equation (2). Let us assume that CONSTRUCT is a function which
implements the method of Lemmdas. LetL,(b) be the set defined by

Lo(b) = {g € bb™' : mult(g; bb~1) = 2(m — 2) andg? = 1}.

Then CONSTRUCT takes as input a multidetan elemeng of La(b), the setS’(g) of
m — 2 unordered pairs of elementsioivhose quotient equajsand an elemenb of A. Let
the function return the messatjeiled’ if the method of Lemmad.5fails; otherwise, let it
return an exterior square root bf Lemmas4.2—4.5lead directly to Procedure INV (see
Figure2), which calls the function CONSTRUCT. The input is a multisend an element
g € La(b). We try to construct an exterior square roobafsing the quotieng. An analysis
of the complexity of this procedure is presented in Secfidn

The following lemma can be proved in much the same way as LeBwha

Lemma 4.6. ProcedurelNV is correct.

5. An exterior square root algorithm for multisets

Procedure REC and Procedure INV can be combined to give an algorithm for findin
exterior square roots which are recognisable or involution-recognisable (see Figline
output of the algorithm is either an exterior square root of the input, or one of the followin
messagesno exterior square root’, or ‘no recognisable or involution-recognisable exterior
square root'.

The following theorem proves that Algorithm MULT is correct, using Lemi®&sand
4.6.

Theorem 5.1. AlgorithmMULT is correct.

Proof. Clearly, the output of Algorithm MULT is correct whe@nhas no exterior square
root. On the other hand, if does have an exterior square root, thén' contains at most
m(m — 1)(m? — 5m + 10)/4 distinct elements, by Lemnfal. Now suppose thathas a
recognisable exterior square raofThen there existg € aa~* such that multg, a*) = 1.
Henceg € L1(b) and the output of Procedure REC upon inpuiofg) is an exterior square
root ofb, by Lemma3.4. This exterior square root biwill be output by Algorithm MULT,

and this output is correct. A similar argument shows that the output of Algorithm MULT
is correct ifb has an involution-recognisable exterior square root. Finally, supposé that
has an exterior square root, but not one which is recognisable or involution-recognisab
Now any multiset output by Procedure REC (INV) is recognisable by Ler@miaand
involution-recognisable by Lemmd.6. Therefore the output of Algorithm MULT upon
input of b is the messageao recognisable or involution-recognisable exterior square rpot’
and this output is correct. O
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PROCEDURE INV.Given an elemerii of A" and a quotieng € Ly (b), this
procedure outputs an involution-recognisable exterior square ¢anftb such that
a € A" andg € aa™1, if one exists, and outputs the message ‘false’ otherwise.
Begin
let T (g) be the multiset defined in equation (7);
if g #1then
if T(g) is multiplicity-free then
let S’(g) be the list of pairs of elements bfwhose quotient ig;
forzinb\ T(g) do
if gz has a square roat in A then
a := CONSTRUCT®b, g, S'(g), w);
if a is a multiset then
returna;
endif;
endif;
endfor;
endif;
else (x g=1%)
if T(g) = 25(g) for some multiplicity-free multise§(g) then
forzinb\ T(g) do
if gz has a square roat then
a:={w, wU w’lS(g);
if a”\? = b then
returna;
endif;
endif;
endfor;
endif;
endif;
return the messagdfalse’;
End.

Figure 2: Procedure INV
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ALGORITHM MULT. Given an elemerti of A", the algorithm outputs either
an exterior square roat € A" of b or one of the following messages: ‘no exterior
square root’ or ‘no recognisable or involution-recognisable exterior square root’.

Begin
form bb—1;
if bb~1 contains more tham (m — 1)(m? — 5m + 10)/4 distinct elements then
return the messagmro exterior square root’;
endif;
let L1(b) be the list of all elements inb—1 with multiplicity m — 2;
forg € L1(b) do
perform Procedure REC with inpg, g);
if the result is a multiset then
returnga;
endif;
endfor;
let Lo(b) be the list of all elements ibb—1 with order dividing 2 and
multiplicity 2(m — 2);
for g € Lo(b) do
perform Procedure INV with inpup, g);
if the result is a multiset then
returng;
endif;
endfor;
return the message
‘no recognisable or involution-recognisable exterior square root’;
End.

Figure 3: Algorithm MULT

Despite the fact that the output of Algorithm MULT is always correct, there is a sens
in which it fails on certain inputs. Suppose tltate A"} has an exterior square root, but
not one which is recognisable or involution-recognisable. Then Algorithm MULT canno
differentiate this multiset from one which has no exterior square root (ubbesscontains
too many distinct elements in the latter case). The likelihood of this ‘failure’ is related to th
proportion of elements id "} which are neither recognisable nor involution-recognisable.
An upper bound for this proportion is developed in Secion

5.1. Complexity analysis

We will now analyse the complexity of Algorithm MULT. As the basic operation we take
the cost of multiplying two elements of the abelian groupwvhich we assume is equal to
the cost of comparing or inverting elementstoflet C () denote the cost of finding square
roots of elements o, or of determining that a given element4tas no square root. The
value ofC 2, depends upon algorithms which exist for the abelian gréoLy/e assume that
there exists a linear ordering on the elementa of his speeds up the multiset calculations,
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as a multiset: in A"} may be represented as some kind of ordered structure. We assun
(see, for example 4]) that it costsO (r log(r)) operations to form an ordered structure
representing an element @f”!. While doing so we can simultaneously check whether
the multiset is multiplicity-free. The cost of comparing two elementsi6t, where one
is represented by an ordered structure, is also assumed to @quialg(r)). The cost of
forming the multiset difference \ «’ is assumed to b@ (s log(r)), wherea € Al is
represented by an ordered structures A} ands < r. Finally, it costsO (r) to scan the
ordered structure representing an elemem 6f; for example, to list all elements with a
given multiplicity. In this paper all logarithms are to base two.

We begin by estimating the complexity of Procedure REC. Recall th&(ggtdefined
in equation (6).

Lemma5.1. Let C(REC, n, A) denote the cost of performing ProcediR&C with input
(b, g), whereb € A" andg € L1(b). Assume that an ordered structure representing the
multisetb is available. Then

C(REC,n, A)= 0 (n Cay + n? Iog(n)) . 9)

Proof. Consider the complexity of the steps performed by Procedure REC. Before enterit
the inner loop we check that(g) is multiplicity-free, and form the multiset differenée\
(S(g)Ug1S(g)). This cost) (m log(m)) operations. Then we loop over the—2(m —2))
elementg of b\ (S(g) Ug15(g)), performing the following calculations. The prodyet

is computed, and a square rao®df gz is sought. This cost® (C()). It costsO (n log(n))
operations to form the multisetand test whether"2 = b. These costs dominate the costs
performed outside the inner loop, and the inner loop is performéd times. Thus the
complexity is eithetO (n C(2)) or O (n?log(n)), whichever is the larger. O

LetC(INV, n, A) denote the complexity of performing Procedure INV with inutg),
whereb € A" andg € L,(b). Then it is not difficult to show that

C(NV,n,A) =0 (n C2 + n? Iog(n)) : (10)

since the calculations performed by Procedures REC and INV are very similar. We now u
these results to analyse the complexity of Algorithm MULT.

Theorem 5.2. Let C(MULT, n, A) denote the cost of performing AlgoritidhULT with
input an element oA!”}, Then

C(MULT,n, A) = O <n2m Cia +n%m Iog(n)) . (11)

Proof. Algorithm MULT has three components. The first component involves forimng

and the listd.1(b) andL2(b), the second component consists of performing Procedure REC
with input (b, g) for (possibly) all elementg € L1(b), and the third component consists
of performing Procedure INV with inpub, g) for (possibly) all elementg € La(b). The
most expensive part of the first component involves forming an ordered structure to ho
the multisethb 1. Hence the complexity of the first componentign? log(n)). We now
consider the cost of the remaining components. For any elebnaint "} the equation

(m —2)|L1(b)| + 2(m — 2)|L2(b)| < n(n — 1)
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holds. Therefore the cost of the last two components of Algorithm MULT is at most

1
nm 1) X 2C(REC. n, A). CANV . n. A))

operations. Using equation8)(and (0), it follows that the complexity of the last two com-
ponents of Algorithm MULT isO (n%m C(2) or O (n®m log(n)), whichever is the greater.
This dominates the complexity of the first component, proving the theorem. O

We believe that, in most cases, this complexity estimate is much too high. In the ne
subsection, heuristic arguments will be outlined which suggest that, for most multise
b € A", at most one element dfy(b) U La(b) is processed by Algorithm MULT upon
input of b.

5.2. Heuristic arguments

First, consider the number of elementsiqf(b) processed by Algorithm MULT upon
inputofb € A If b = a”? for somea € A"}, but bhas no recognisable exterior square
root, theng ¢ aa—1 for all g € L1(b). On the other hand, i is recognisable, then the
number of elements df1(b) processed is at most

IL1(b) \ aa™ Y| + 1,

where here, the operation *\’ denotegdifference, not multiset difference. Using Lemgha,

it follows thatg € L1(b) \ aa~Lif and only if g € a”%a="2 butg ¢ aa—1, and the multi-
plicity of g ina”2a="%ism — 2. If A is a large, finite abelian group then the proportion of
elements i (8(2)} which contain an element of multiplicity — 2 is small. Assume that
the events

{c € A} mult(g; ¢) = m — 2 for someg € A}
and
(c e A6} . ¢ = 472472 for somea € A
are independent. It follows that; (a\?) \ aa~! = ¢ for most multisets; € A",

A recognisable multiset is said to beclearly recognisabléf

mult(g; a%a="?) £ m — 2forall g € a*2a="2,

The above result, if true, would imply that most recognisable multisets are clearly recogni
able. Suppose that= a"2 whereq is a clearly recognisable multiset i}, Then every
element ofL1(b) is a member ofia—1. Therefore, by Lemma&.4, an exterior square root
of b will be constructed when Procedure REC is performed with iripug), whereg is
anyelement ofL1(b).

Similarly, suppose that € A" andb has no exterior square root ™. If A is
finite but large then the proportion of elementsAdt”—D} which contain an element with
multiplicity m — 2 is small. Assume that the events

{c € AP=Dl - mult(g; ¢) = m — 2 for someg € A}

and
{c e A=Db. ¢ = pp~L for someb € AV {a"? i a e AU}

are independent. It follows thdt; (b)) = ¢ for most multiset$ € A} with no exterior
square root. These heuristic arguments can be made more precise, and can be adapt
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the case of involution-recognisable multisets. In particular, the arguments imply that mo
involution-recognisable multisets are clearly involution-recognisable, where an involutior
recognisable multiset is said to beclearly involution-recognisablé

mult(g; a”?a="?) # 2(m — 2) forall g € a"%a="?.

Combining these heuristic arguments suggests that, for most elebnem$", at most
oneelement of L1(b) U Lo(b) will be processed by Algorithm MULT. Recall that the
complexity of the first component of Algorithm MULT i€ (2 log(n)). Therefore, when
at most one element df1(b) U L2(b) is processed by Algorithm MULT, the complexity of
the algorithm is

0(n C(z) + n%log(n)).

These heuristic arguments suggest that this complexity estimate is more realistic than eq
tion (11) in most cases.

6. Counting multisets which are neither recognisable nor involution-recognisable

We have seen that Algorithm MULT cannot detect that a multiset has an exterior squa
root unless the exterior square rootis recognisable or involution-recognisable. In this secti
we obtain an upper bound for the proportion of multisets which are neither recognisab
nor involution-recognisable, whehis a finite abelian group. Lef[nnor, m, A] denote the
set of all elements oA which are neither recognisable nor involution-recognisable.

It is convenient to consider multiplicity-free multisets s,epara'[ely.fh&ég}e denote the
set of all multiplicity-free multisets im !} and let

{m}y 41 {m}
Amult =A " \ Afree'
This allows us to write

Z[nnor,m, Al = Z[mult&nnor, m, A1 U Z[free&nnor, m, A]

where
Z[mult&nnor, m, A] = Z[nnor,m, A]N Afglu}n’
Z[free&nnot m, A] = Z[nnor, m, A] N A"}

By Lemma3.1, a multiset with multiplicities is not recognisable. Similarly, using Lemma

we know that almost all involution-recognisable multisets are multiplicity-free. Hence
|AfTTJ,t||A{’”}|*1 is a good upper bound faZ [mult&nnor]||A"|~1. An upper bound for
the former quantity is stated below (the proof is easy, and is omitted here).

Theorem 6.1. Let® be any finite set. lfz > 2 then
O mm —1)

muIt|

CRIREE]

It remains to calculate an upper bound fdffree&nnor, m, A]||A"|~1. Some further
notation is required. Fix a linear ordering on the elementd oAssume throughout the
remainder of this section that elements of multisets,%g are labelled in ascending order

https://doi.org/10.1112/51461157000000231 Published online by CAdr}8dge University Press


https://doi.org/10.1112/S1461157000000231

The exterior square of a multiset

with respect to this ordering. Recall the multisédefined in Sectiog, equation (5). Given
ae A" define the multisetB; ;(a) for 1 <i < j < m as follows:

free
Tij@) ={aa ™ axa; ™ 1<k <m, kgli, j)IU
{aiak(ajal)fl 1<k#FISm, kL g {i, jl}

Define the multiset; j(a) for1 <i < j < m by
Qi j(a) =a*\ (Fi,j(a) Ulaiaj % a a,»_l}) )

The multiset?; ;(a) are used to produce equations which are satisfied by the elements
a, as shown in the next lemma.

Lemma 6.1. Leta be an element of [free&nnor, m, A] with the elements af labelled in
ascending order. Le®; ;(a) be the submultiset ef* defined above fot < i < j < m.
Then there exists an element; of Q; ;(a) such that the elements @fatisfy the equation

araj = ei;

forl<i<j<m.

Proof. Sincea is not recognisable, it follows that mat a;~%; a*) > 1for1<i < j <

m. Suppose that; a,-*l =a; a;~1. Then, since: is not involution-recognisable, it follows
that mult(a; aj‘lg a*) > 2 for this value of(i, j). Therefore there exists an element of
a*\ {a; a; 71, aj a;~1} which equalsy; a; 71, for 1 < i < j < m. If ¢; ; is an element of
I';,j (a) then the equation; aj_l = ¢;,; contradicts the fact that is multiplicity-free, and
so cannot be satisfied by the elements.of O

Suppose that; ; is an element of2; ;(a) which satisfies;iaj—l = ¢; j, Where 1<
i < j < m.LetE;; denote the equation obtained from the equatign~! = ¢; ; by
multiplying this equation by;; and by any element af whose inverse appears i ;.
Call E; ; theequation extensioaf ¢; ;. The elements af can be considered as variables
in the equationst; ;. Note that any variable which appearshp; appears to the first or
second power. An action of the symmetric group $ymcan be defined upon expressions
or equations involving the variables, . .., a,,, as follows. An element of Sym(m) acts
on an expression or equation involving the variallgs . ., a,, by replacinga; by ay, for
1 <k < m. ltis easy to prove the following lemma.

Lemma 6.2. Let a be an element of[free&nnor, m, A], and lete; ; be an element of
Q. j(a) suchthatthe elementsm$atisfy the equatioma; ! = ¢; ;,wherel <i < j < m.
Let E; ; be the equation extension&f;. Denote byE, . .., Es the following equations:
Ey:aiaz = azaa,
E>: a12 =azas,
Es: a1’ ap = as® aa,
Eq: a12 az = azagas,
Es :ajazaz = agasag.
ThenE; ; is equivalent under the action 8ym(m) to exactly one ofy, ..., Es.
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We can now prove the following theorem.

Theorem 6.2. Suppose that: > 4 and that2(m — 1) < |A|. Then

54|41 if m=4,

w1 _ | 25004170 it m =5,
|Z[free&nnor, m, AJ||A"™| 7" < 830|AI"Y  if m =6,
m® QIA)~H i m>T.

Proof. Let a be a given element of[free&nnor, m, A], and lete; » be an element of
21 2(a) such that the elements, ay of a satisfy the equation; ay”l = e12. LetE1o
be the equation extension ef ». Then, by Lemmd.2, the equatiork » is equivalent to
exactly one of equationBy, .. ., Es under the action of Symm). Lety : A” — A"} be
the natural map which sends thetuple (as, .. ., a,,) to the multisefay, ..., a,}. Letus
say that amn-tuple is multiplicity-free if it contains no repeated entries. Denotéihythe
set of all multiplicity-freem-tuples(as, . . ., a;;) in A™ such that the entries afsatisfy the
equationE,, for 1 < r < 5. If E1 2 is equivalent toE, thena is an element ofy (W,).
Therefore

Z[free&nnor,m, A] C Yy (W) U --- Uy (Ws).
Now W4 is empty ifm = 4 andWs is empty ifm < 6. Otherwise
(Wil < IAI(Al = 1) (Al = m + 2) (12)
for 1 < r < 5, as the equatio, allows the value of one element of antuple in W,
to be expressed uniquely in terms of the values of the remainirgl elements. Leb,

denote the order of the stabiliser of the equatiprunder the action of Sym). Then every
element ofyy (W,) has at least, preimages irW,. Therefore

Wil

[V (W)l <

forl<r <5 Nowvy =8(m— 4!, vo =2(m — 3)!,v3 =2(m — 4!, v4 = 6(m — 5)!if
m > 5andvs = 72(m — 6)!if m > 6. Suppose that > 7. Then

[y (W) + -+ + [ (Ws)|

AL (Al =m +2) (7 o5
Coml Tt Y (|A|>
N (A —m +1) m)

Therefore, using the values of, . . ., vs calculated above,

| Z[free&nnor, m, A]|

NN

O I -1
IZ[free&nnor,m,A]||A{m}|fl<m-(Vl + 45T

(Al —m +1)
2m!( -+ sTh
<
[Al
m® + 12m° + 45m* + 36m°
<
36|A|
m6
< -/,
9|A|
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since 2Zm — 1) < |A| andm > 7. The estimates for the small valuesmofcan be proved
similarly. O

Suppose that we had wanted to calculate the proportion of multiset®’invhich are
not recognisable, using this method. keie an element oA ! which is not recognisable.
Itis possible thaks 2 has the valuesai L. In this case the equation extensibn of e1 2
has the formu12 = a2, which does not allow us to solve for one element afiquely in
terms of the othemn — 1 elements. This is why the definition of the involution-recognisable
property makes the calculations of this section much easier. Note that only the equati
E1.2 was considered in the proof of Theorén?2. It is possible to extend these methods to
obtain a bound which is inversely proportional| 2 by considering both equatior; »
andE3 4. In fact one can prove that

12

| Z[free&nnor, m, A]||AY™ |71 <
64| A2

whenm > 12.

Suppose thak is an element ot} which has an exterior square root which is neither
recognisable nor involution-recognisable|Af| is larger thann® then Theorems.1 and
6.2 imply that such multisets are rare. Therefore, on most inputs, Algorithm MULT will
find an exterior square root if one exists.

7. Testing

The author has implemented Algorithm MULT in the programming language GAP
version 3.4 (se€f])). The test runs were performed on an Silicon Graphics R4000 Indigo. A
GAP version 3.4 is not compilable, it does not run particularly fast. For this reason, we ha
restricted our testing to multisets of size< 120 (in fact, we have usede {10, 45,105}).
However, for compilable programming languages on faster maching€sl.000 should be
achievable.

Tests were performed to illustrate two sections of this paper. The heuristic argumer
of Section5.2 are illustrated by the tests presented in Sectidrand Tablel. These tests
focus on how many times Procedures REC and INV are called by Algorithm MULT; the
heuristic arguments suggest that there is at most one call per input multiset. Then the res
of Section6 are illustrated by the tests described in Secfichand Table2. These tests
are designed to show that a high proportion of multisets are recognisable or involutiol
recognisable.

7.1. Testing the number of times ProceduRISCandINV are performed

We tested the number of times that Procedures REC and INV are called upon input
multisets chosen in two different ways. This gives two types of test. The first chooses 1
multisets fromA ™ uniformly at random, and inputs them to Algorithm MULT. For the
second type of test, 100 multisets are chosen frofi uniformly at random. In either
case, we note thital number of times Procedures REC and INV are performed over the
100 runs, and thaverageCPU time, in seconds, used by Algorithm MULT over these 100
tests (as recorded using the GAP functitmofile). The tests were performed using two
different abelian groups. The first abelian group, denoted by CY, is the cyclic group ¢
orderN, whereN = 116 — 1 = 1771560 (specifically, CY is thedditiveabelian group of
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Table 1: Results of test runs for multisets of various size over two abelian groups

m n A type Procedure REC ProcedureINV av.time

5 10 CY I 0 0 0.079
5 10 Cy 1l 100 0 0.140
10 45 CY I 0 0 3.652
10 45 Cy 1 100 0 6.627
15 105 CY I 0 0 26.769
15 105 Cy 1 100 0 63.957
5 10 EA I 0 0 0.236
5 10 EA 1 0 146 0.305
10 45 EA I 0 0 7.142
10 45 EA 1 0 100 8.016
15 105 EA I 0 0 48.441
15 105 EA 1 0 100 55.815

integers modulaV). The second abelian group, denoted by EA, is the elementary abelia
2-group of order 2 = 1048576. The results of these tests are presented in Table

We see that Procedures REC and INV were not called in any Type | test. In all bt
one of the tests of Type Il, exactly one call to Procedure REC was made per multiset ov
the abelian group CY, and one call per multiset to Procedure INV over the abelian grot
EA. This illustrates the heuristic arguments of Sectiof. The exception was the test
where 100 multisets were chosen from Aand their exterior square was presented to
Algorithm MULT. Here Procedure INV was performed 146 times, over the 100 tests. Thi
is many more times than the heuristic arguments would suggest. Howeverp ! for
every elemeni € EA. Suppose that € EAD). If the five elements;ajaa; are distinct,
1<i<j<k<l<5 thena”"2a="2 consists of these five distinct elements, each with
multiplicity six. Nowm = 5 and so 2n — 2) = 6. If the ten elements;q; are distinct,
1<i < j <5, thenLy(b) consists of the 10 distinct elementszaf* and the five distinct
elements ofi"2a—"2. The expected number of elementdo{b) to be processed up to and
including the first element afa—1 is

6 -1
Z 5 1 16
10 ( j >< .5> T
Vi 1/\j 11

Hence over 100 trials the expected number of times that Procedure INV is performed
1600/11, which is very close to our value of 146. This gives an illustration of a situation
where the heuristic arguments of SecttoPare not applicable. However, such situations are
very rare: even when working with elementary abelian 2-groups, the phenomenon descrit
above only occurs when = 5.

7.2. Testing the proportion of recognisable or involution-recognisable multisets

The tests performed in this section are designed to illustrate that most multisets are eitl
recognisable or involution-recognisable. Each test consisted of choosing 100 multisets
Al at random, and noting how many were recognisable, clearly recognisable, involutio
recognisable or clearly involution-recognisable. These quantities are listed in the colum
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Table 2: Numbers of recognisable or involution-recognisable multisets found in test rur
for various groups

m A #RI #R #CR #1| #ClI
5 CYG5%) 63 35 12 28 25
5 CYGBYH 100 99 99 1 1
5 CY®&% 100 99 99 1 1

10 CY10® 0 0 0 0 0

10 CY@oY) 100 100 100 0 0

10 CY@c® 100 100 100 0 0

15 CY(15) 0 0 0 0 0

15 CY@d5%) 100 100 100 0 0

15 CY@d5 100 100 100 0 0
5 EA2Y 80 0 0 80 0
5 EA29 100 0 0 100 0
5 EA2¥ 100 0 0 100 0

10 EAZ2’) 55 0 0 55 55

10 EA(2Y™ 100 0 0 100 100

10 EA(22% 100 0 0 100 100

15 EA@2®) 8 0 0 8 8

15 EA>% 100 0 0 100 100

15 EA>2%% 100 0 0 100 100

of Table2 headed #R, #CR, #1, #Cl respectively. The total number of multisets whicl
were either recognisable or involution-recognisable is also presented in the column heac
#RI. The first column holds the value @af while the second column holds a description of
the group from which the test set was taken. Two kinds of abelian group are considdred. If
is the additive group of the integers modwothen we write CYN) to describe the group.
The other kind of group considered is an elementary abelian group of drdehizh we
describe as E£&'). For each value of: we consider six abelian groups. The first three are
the groups CYm?/) for 1 < j < 3, while the final three are the groups EAC9")1y for
1<j<3

When |A] is of the order ofn?, we do not find a large proportion of multisets to be
recognisable or involution-recognisable. However, the situation improves enormously wh
|A| > m*. Hereall the multisets chosen in our tests were either recognisable or involution
recognisable. This suggests that Algorithm MULT might work quite well even in situa-
tions where the analysis of Sectiéris not reassuring. Also notice that, whan= 5, no
involution-recognisable multiset consisting of elements from an elementary abelian 2-groi
was found to be clearly involution-recognisable. This illustrates the analysis presented
the end of Sectio.1. In all other tests withA| > m?, every recognisable multiset was
also clearly recognisable; likewise, every involution-recognisable multiset was also clear
involution-recognisable. This lends further support to the heuristic arguments of Seétion
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8. The special case of multisets of eigenvalues

The definition of the exterior square of a multiset was motivated by the relationshi
between the eigenvalues of a matkixand the eigenvalues of the matrix which represents
the action ofX on the exterior square of the underlying vector space (with respect to som
fixed choice of basis). Denote the latter matrixX§?, and call it theexterior squaref X .

An algorithm which can determine whether a given matriggsialto the exterior square
of another is described in [2].

Another question is to determine whether a given matrixagjugateto the exterior
square of another matrix. We now describe how solve this problem when the given matt
is conjugate to the exterior square of an irreducible matrix.

A matrix is said to beseparableif it has no repeated eigenvalues. Suppose thig
a separable matrix iM (n, F)) with set of eigenvalueg. Let X € M(m, F). ThenY is
conjugate tax”? if and only if the setr of eigenvalues ok satisfiesx2 = g (for proof,
see [1]). Suppose that we could find an exterior squarear@dts. Let

fo ==,
i=1

and letX; be the companion matrix of. Any matrix with characteristic polynomigf
is conjugate taX . Finally, XfAZ andY are conjugate. In fact, we can easily construct a
matrix w such thaf X ;*2)" = v (see [1] for details).

The difficulty lies in finding an exterior square root of the geatf eigenvalues ot . If
B = «’*? whereux is recognisable or involution-recognisable, then Algorithm MULT will
succeed in finding an exterior square roopofVhat is the likelihood that is recognisable
or involution-recognisable? For the remainder of the paper, assumé tisafinite. The
analysis of Sectio® is not applicable, becausehas a very complicted distribution even
if X is chosen uniformly at random from, say, Gk, F) (or M (m, F)).

Instead, we can show thatis recognisable (or involution-recognisable) wheneXer
satisfies certain conditions. For example, supposeXhat GL(m, F) is irreducible. Let
K be the splitting field of the characteristic polynomialXof ThenK = F[6] for some
eigenvalue of X. Moreover,

a=1{09:0<i <m)

whereg = |F|. Itis not difficult to show thai is recognisable (for example, tae= 691
in the definition of recognisability). Suppose thiate GL(n, F) is conjugate toX"?,
and thatg is the (multi)set of eigenvalues df. Then Algorithm MULT will certainly
succeed in finding an exterior square rootgofTherefore we can constru¢k, w) such
that(X"2)" = v, as above.

Thus we know how to determine whether a given matrils conjugate to the exterior
square of a another matrk, at least in the case whekeis irreducible. The mag — X",
when restricted to Gln, F), is a group homomorphism. Therefore we can define the
exterior square of a matrix group. The problem of recognising the exterior square of a matri
up to conjugation, was motivated by the following problem: to construct an algorithm t
recognise the exterior square of the special linear group, up to conjugation. This is t
same thing as recognising the special linear group in its action on the exterior square
the underlying vector space. A polynomial-time Monte Carlo algorithm for recognising the
special linear group in its natural action was given by Neumann and Praeger [5].
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I am very grateful to the referee of this paper for bringing the recent work of Kantor an
Seress [3] to my attention. They describe a Monte Carlo algorithm which takes as inpu
list of generators of a black box group. @#ack box grougs one in which elements are
represented as bit strings of uniform lengthand the group operations can be performed
on these elements. Matrix groups are examples of black box groups. For subgroups
GL(n, F)wehaveN = 0 (n?log(|F])).) The algorithm determines whether the input group
is isomorphic (modulo scalars) to some classical group over a field of given characterist
and if so returns an explicit representation. The running time is polynomial &md g,
whereg is the size of the field over which the output representation is given. This algorithn
could be used to determine whether a given subgrdug. GL(n, F) is isomorphic to
SL(m, F) modulo scalars, and to construct an explicit representation if so. Then standa
meataxe methods could be used to determine whether the representation is the exte
square representation. This would give an algorithm for recognising the exterior squa
of the special linear group with running time polynomialdrand|F|. (The referee also
alerted me to the recent work of Bratus, Cooperman, Finkelstein and Linton. They ha
announced a similar algorithm, which determines whether the input group is isomorph
modulo scalars to the special linear group over a field of given characteristic, and retur
an explicit representation if so. Their algorithm is said to be simpler and more efficient the
that of Kantor and Seress (when the classical group is a special linear group), but still h
running time which is polynomial iv andg, with notation as above.)

We now outline an approach which uses the multiset algorithm described in this pap
which could lead to an algorithm with running time polynomiakiand log(| /). Let H be
the input group; thatis < GL(n, F) is given as afinite lisL ;7 of generators. Say € H
is helpfulif Y is conjugate to the exterior square of an irreducible matrix L a small
positive integer constant, say= 2 orr = 3. Choose elements € H uniformly at random
until one of the following happens: (i) we have fountelpful elementdsy, ..., Y,, or (i)
some maximum number of choices is exceeded. Ifn8LF) < G < GL(m, F) then the
proportion of irreducible matrices i@ is at least 1(m + 1) [5, Lemma 2.3]. Therefore, if
H is conjugate to the exterior square of a subgréugontaining Slim, F) then H should
contain a fair proportion of helpful matrices. By making sufficiently many random choice:
from H, we can ensure that the probability that we do not find at lkebstpful matrices
is at moste /2, for any given tolerance. The number of choices required is polynomial in
m and log(s ).

If (ii) happens, we return the messadgse’, meaning thatd is not conjugate to the
exterior square of a matrix group containing(&l, F). The probability that this output is
incorrect is at most /2. Otherwise we have matricesYy, ..., Y, € H such that

w;
Y, = (Xi/\2> ,

where(X;, w;) € GL(m, F) x GL(n, F) and X; is irreducible for 1< i < r.If H is
conjugate to the exterior square of some groupuch that Siun, F) < G < GL(m, F)
then the conjugating elememtis unique up to scalar multiplication. This follows singe\

V is an absolutely irreduciblESL(m, F)-module. The challenge is to use the information
we have to find a candidate conjugating maitrixe GL(n, F): in particular, to find it in
time polynomial inn and log(| F).

If we could find a candidate, up to scalar multiplication, then we proceed as follows.
LetLy =[Z1,..., Z;] be the list of generators of the input grofip Apply the algorithm
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givenin [2] to Z,»"’_1 to determine whether there exigds € GL(m, F) such that
02 =z"",

for 1 < i < k. If such a matrix cannot be found, for somethen H is not conjugate
to the exterior square of any subgroup of @i, F). Otherwise, letlL. = [Q1, ..., O]
and letG be the group generated by these matrices. We knowHhat (GAZ)“’. Use the
Neumann-Praeger algorithm [5] to determine whethef5LF) < G. There is a small
probability of an incorrect negative response, which we can ensure is atsjtfosthus
the overall probability of an incorrect negative response is at mdsote that all known
elements of the algorithm outlined above have running time which is polynomiadird
log(IF|) (see [15]).
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