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AN ALGORITHM FOR RECOGNISING THE EXTERIOR SQUARE OF
A MULTISET

CATHERINE GREENHILL

Abstract

The exterior square of a multiset is a natural combinatorial con-
struction which is related to the exterior square of a vector space.
We consider multisets of elements of an abelian group. Two prop-
erties are defined which a multiset may satisfy: recognisability and
involution-recognisability. A polynomial-time algorithm is described
which takes an input multiset and returns either (a) a multiset which
is either recognisable or involution-recognisable and whose exterior
square equals the input multiset, or (b) the message that no such
multiset exists. The proportion of multisets which are neither recog-
nisable nor involution-recognisable is shown to be small when the
abelian group is finite but large. Some further comments are made
about the motivating case of multisets of eigenvalues of matrices.

1. Introduction

The exterior square of a vector space is a well-known and important construction, with
applications in various areas of mathematics. In this paper the exterior square of a multiset
is defined. This definition arises in a natural way, as it describes the relationship between
the eigenvalues of a matrixX and the eigenvalues of the matrix representing the action ofX

on the exterior square of the underlying vector space. This relationship is fully determined
by the nonzero eigenvalues, which belong to the multiplicative group of the splitting field of
the characteristic polynomial ofX. Therefore, the appropriate generalisation is to multisets
of elements of an abelian group. For most of the paper we consider the problem in full
generality.

Two properties are defined which a multiset may possess: the properties of recognisability
and involution-recognisability. An algorithm is developed which can determine whether a
given multiset is the exterior square of a recognisable or involution-recognisable multiset.
This strategy is adapted from that used by Peter Neumann and Cheryl Praeger in their work
on the tensor products of multisets [6].

The worst-case complexity of the algorithm is analysed, under the assumption that the
elements of the abelian group can be linearly ordered. Letm, n be positive integers such
thatm > 2 andn = m(m − 1)/2. Suppose that the input multisets haven elements. The
basic operation is taken to be one multiplication, inversion or comparison of elements of the
abelian group. Denote byC(2) the cost of finding square roots in the abelian group. Then
the worst-case complexity of the algorithm is

O
(
n2mC(2) + n3m log(n)

)
.
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The exterior square of a multiset

Heuristic arguments are outlined which suggests that the improved bound

O
(
nC(2) + n2 log(n)

)

is more appropriate for the majority of inputs.
The algorithm cannot recognise the exterior square of a multiset which is neither recog-

nisable nor involution-recognisable. In Section6 we show that the proportion of multisets
which are neither recognisable nor involution-recognisable is small when the abelian group
is finite but large. The theoretical results and heuristic arguments are illustrated by the results
of practical tests, which are presented in Section7.

Finally, in Section8 we consider the special case which motivated the general definition
of the exterior square of a multiset; namely, multisets of eigenvalues of matrices. We show
how the multiset algorithm can be used to recognise the exterior square of certain matrices
over finite fields (up to conjugation). This might help us to solve the open problem of
efficiently recognising the special linear group in its exterior square action.

2. Notation and preliminary results

First we review the definition of a multiset. Let2 be any set. The set of all multisets of
sizer with elements in2 is denoted by2{r} and is defined by

2{r} = 2r/Sym(r),

where the symmetric group Sym(r) acts on2r by permuting entries. If(ω1, . . . , ωr) ∈ 2r
then denote its image in2{r} by {ω1, . . . , ωr}. By convention, ifω ∈ 2{r} then we write
ω = {ω1, . . . , ωr}. Suppose thatω ∈ 2{r} andg ∈ 2. Let mult(g; ω)denote themultiplicity
of g in ω, defined by

mult(g;ω) = | {i : g = ωi} |.
Write g ∈ ω if mult(g;ω) > 1. Say thatω is multiplicity-free if mult(g;ω) 6 1 for all
g ∈ 2. The multiset union, multiset intersection and multiset difference operations can all
be defined in terms of multiplicities, as follows. Let

mult(g;ω ∪ ω′) = mult(g;ω)+ mult(g;ω′),
mult(g;ω ∩ ω′) = min{mult(g;ω),mult(g;ω′)},
mult(g;ω \ ω′) = max{0,mult(g;ω)− mult(g;ω′)}

for all g ∈ 2 and allω,ω′ ∈ 2{r}. Let k be a positive integer andω ∈ 2{r}. Define the
multisetkω ∈ 2{kr} as follows:

mult(g; kω) = kmult(g;ω).
We might wish to define a multiset using some propertyP defined on2. Given ω∈ 2{r},
write

ω′ = {g ∈ ω : P (g)}
to denote the multiset defined by

mult(g;ω′) =
{

0 if g 6∈ ω or not P (g),
mult(g;ω) otherwise.
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The exterior square of a multiset

Finally, if 2 is a finite set then

|2{r}| =
(|2| + r − 1

r

)
(1)

for r > 1.

2.1. The exterior square of a multiset

Suppose thatA is a set which supports a commutative multiplication operation. Leta be
an element ofA{m}. Theexterior squareof a, denoted bya∧2, is the multiset

{aiaj : 1 6 i < j 6 m}.
For the remainder of this paper letn = m(m− 1)/2. Letb be an element ofA{n}. Thena
is said to be anexterior square rootof b if b = a∧2. To justify the use of the term ‘exterior
square’ in this context, we show how this definition relates to the best-known exterior square
construction, the exterior square of a vector space. LetX be anm×m matrix over a field
F , and letα be the multiset of eigenvalues ofX. It is not difficult to prove thatα∧2 is
the multiset of eigenvalues of the matrix which represents the action ofX on the exterior
square of the underlying vector space. Note thatα ∈ K{m} andα∧2 ∈ K{n}, whereK is
the splitting field of the characteristic polynomial ofX overF . Clearly,α∧2 is determined
by the multiset of nonzero elements inα. For this reason, we consider multisets of abelian
group elements. For the remainder of the paper letA be an abelian group.

Suppose that we were given a multisetb ∈ A{n} and told thatb has an exterior square
root. Suppose that we were also given a map

ψ : {{i, j} : 1 6 i < j 6 m} → {1, . . . n}
such thataiaj = bψ({i,j}) for 1 6 i < j 6 m. Then, writing the abelian groupA additively,
we haven linear equations inm unknownsa1, . . . , am. We can solve the system to find the
entries ofa using elementary linear algebra over the integers. Here, multiplying an equation
by a positive integerr corresponds to raising each side of the equation to therth power, and
multiplying an equation by−1 corresponds to inverting each side of the equation. Dividing
an equation by a positive integerr corresponds to takingrth roots of both sides of the
equation inA, and so is allowed only when both sides have anrth root inA. Of course,
when given an element ofA{n} we do not in general have access to the helpful mapψ ,
and simply testing all possible maps does not lead to an efficient algorithm as there are
n! of them. (Note that this approach does provide an algorithm, albeit a highly inefficient
one, which applies when the algorithm described in this paper does not: namely, for finding
exterior square roots which are neither recognisable nor involution-recognisable.)

It is easy to construct exterior square roots of elements ofA{1} andA{3}. Let 1A denote
the identity element ofA. Then an exterior square root of{b1} is given by{1A, b1} for all
b1 ∈ A. Let b be an element ofA{3}. If b has an exterior square roota then, without loss of
generality,

b1 = a1a2, b2 = a1a3, b3 = a2a3.

Thereforeb1b2b3
−1 = a1

2. Givenb ∈ A{3}, if b1b2b3
−1 has no square root thenb has

no exterior square root. Otherwise, letw be a square root ofb1b2b3
−1. Then the multiset

{w, w−1b1, w
−1b2} is an exterior square root ofb. For the remainder of the paper assume

thatm > 4.
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2.2. Preliminaries

To close this section, we make a few more definitions and establish some preliminary
results. Ifa ∈ A{r} andτ ∈ A, define the multisetτa ∈ A{r} as follows:

mult(g; τa) = mult(τ−1g; a)
for all g ∈ A. Observe that ifτ is any element ofA such thatτ2 = 1 then

(τa)∧2 = a∧2 (2)

for all a ∈ A{m}. For a∈ A{m} let aa−1 denote the multiset

{ai aj−1 : 1 6 i 6= j 6 m} (3)

with m(m− 1) elements, and leta∧2a−∧2 denote the multiset

{aiaj (akal)−1 : 1 6 i < j 6 m, 1 6 k < l 6 m; i, j, k, l distinct} (4)

with 6
(
m
4

)
elements. Note that the multiseta∧2a−∧2 contains only those elementsaiaj (akal)−1

wherei, j , k, l are distinct. Therefore the multisetsa∧2a−∧2 andbb−1 are not equal, where
b = a∧2. This point is clarified by the following result. The proof is elementary.

Lemma 2.1. Suppose thata ∈ A{m} and letb = a∧2. Then the multiset equality

bb−1 = (m− 2)aa−1 ∪ a∧2a−∧2

holds. In particular,bb−1 contains no more than

m(m− 1)+ 6

(
m

4

)
= m(m− 1)

4
(m2 − 5m+ 10)

distinct elements.

Givena ∈ A{m} let a∗ denote the multiset defined by

a∗ = aa−1 ∪ a∧2a−∧2. (5)

If b = a∧2 for somea ∈ A{m} then the set of distinct elements inbb−1 is equal to the set
of distinct elements ina∗.

In the next two sections, two properties are defined which an element ofA{m} may
possess, therecognisableproperty and theinvolution-recognisableproperty. Ifb = a∧2

anda is recognisable or involution-recognisable then an exterior square root ofb can be
constructed, using procedures developed below. These procedures are then combined to
produce an algorithm which can determine whether a given multiset has a recognisable or
involution-recognisable exterior square root.

The algorithm fails to find an exterior square of any multiset whenever the input has
an exterior square root, but no exterior square root which is recognisable or involution-
recognisable. In Section6 the proportion of multisets which are neither recognisable nor
involution-recognisable is shown to be small when the abelian group is finite but large.

3. Recognisable multisets

A multiseta ∈ A{m} is said to berecognisableif there existsg ∈ aa−1 such thatg has
multiplicity 1 in a∗. The proof of the next result is easy, and is omitted here.

Lemma 3.1. If a ∈ A{m} anda is recognisable thena is multiplicity-free.
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The next two results will be used to construct a procedure which searches for recognisable
exterior square roots of multisets.

Lemma 3.2. Suppose thata ∈ A{m} is recognisable, and letb = a∧2. Then there exists
g ∈ aa−1 such thatmult(g; bb−1) = m− 2. LetS(g) be the multiset of sizem− 2 defined
by

S(g) = {u ∈ b : there existsv ∈ b such thatuv−1 = g}. (6)

ThenS(g) is multiplicity-free.

Proof. By Lemma2.1there existsg ∈ aa−1 with multiplicity m− 2 in bb−1. Without loss
of generality letg = a1 a2

−1. ThenS(g) = {a1ak : 3 6 k 6 m}. Sincea is multiplicity-free
(by Lemma3.1), it follows thatS(g) is multiplicity-free.

By searching through elements of the multisetb which do not lie inS(g) or in g−1S(g)

an exterior square root ofb may be constructed. This is a consequence of the following
result.

Lemma 3.3. Let a ∈ A{m} be a recognisable multiset, and letb = a∧2. Letg = a1 a2
−1

and suppose thatg has multiplicitym− 2 in bb−1. LetS(g) be as defined in equation(6).
For at least one elementz of b \ (S(g)∪ g−1S(g)) the productgz has a square rootw such
thatw = τa1 for someτ ∈ A, τ2 = 1. Furthermore, the multiset

{w, g−1w} ∪ w−1S(g)

is an exterior square root ofb.

Proof. The multisetb \ (S(g) ∪ g−1S(g)) is given by

b \ (S(g) ∪ g−1S(g)) = {a1a2} ∪ {akal : 3 6 k < l 6 m}.
Whenz = a1a2 the productgz equalsa1

2, which certainly has a square root inA. Letw
be any square root ofgz. Thenw = τa1 for someτ ∈ A such thatτ2 = 1. The multiset

{w, g−1w} ∪ w−1S(g)

equalsτa, which is an exterior square root ofb by equation (2).

Lemmas3.2 and 3.3 give rise to a procedure for finding recognisable exterior square
roots of multisets, as shown in Figure1. LetL1(b) be the set defined by

L1(b) = {g ∈ bb−1 : mult(g; bb−1) = m− 2}.
The input to the procedure is a multisetb ∈ A{n}, together with an elementg ∈ L1(b). We
try to form a recognisable exterior square roota of b, using the quotientg. An analysis of
the complexity of this procedure is presented in Section5.1.

Lemma 3.4. ProcedureREC is correct.

Proof. Let b ∈ A{n} be input to Procedure REC, together with the quotientg ∈ L1(b).
Theng is an element ofbb−1 with multiplicity m−2. Suppose first thatb has a recognisable
exterior square roota such thatg ∈ aa−1. Then Lemmas3.2 and 3.3 guarantee that an
exterior square root ofb will be output. Ifb has no exterior square root then the procedure
will certainly return the message‘false’. Suppose that the output of Procedure REC, with
input (b, g), is a multiseta ∈ A{m}. Then b = a∧2, so it remains to prove thata is
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PROCEDURE REC.Given an elementb ofA{n} and a quotientg ∈ L1(b), this
procedure outputs a recognisable exterior square roota of b such thata ∈ A{m} and
g ∈ aa−1, if one exists, and outputs the message ‘false’ otherwise.
Begin

let S(g) be the multiset defined in equation (6);
if S(g) is multiplicity-free then

for z in b \ (S(g) ∪ g−1S(g)) do
if gz has a square rootw in A then
a := {w, g−1w} ∪ w−1S(g);
if a∧2 = b then

returna;
endif;

endif;
endfor;

endif;
return the message‘false’;

End.

Figure 1: Procedure REC

recognisable and thatg ∈ aa−1. Now mult(g; bb−1) = m − 2 andg ∈ a∗. Let z be the
element ofb \ (S(g) ∪ g−1S(g)) which was involved in the construction of the multiseta.
Then, without loss of generality,gz = a1

2 andg−1a1 = a2. Henceg = a1 a2
−1 ∈ aa−1,

as required. Moreover, using Lemma2.1, the multiplicity ofg in a∗ is 1. Thereforea is
recognisable.

4. Involution-recognisable multisets

A multiseta ∈ A{m} is said to beinvolution-recognisableif there exists an elementg of
aa−1 such thatg2 = 1 and mult(g; a∗) = 2.

Suppose thatA is an elementary abelian 2-group. Then no element ofA{m} is recognis-
able. This is one reason for defining the involution-recognisability property. Another reason
is that without this property, the calculations of Section6would be much more complicated.
The proof of the next result is easy, and is omitted here.

Lemma 4.1. Let a be an element ofA{m} which is involution-recognisable. Letg be an
element ofaa−1 such thatg = g−1 andmult(g; a∗) = 2. Thena contains at leastm− 1
distinct entries, anda is multiplicity-free unlessg = 1.

The following series of lemmas demonstrates how one can construct an exterior square
root of b from the multisetbb−1 if b has an involution-recognisable exterior square root.
The proof of the next result is similar to that of Lemma3.2.

Lemma 4.2. Suppose thata ∈ A{m} is involution-recognisable, and letb = a∧2. There
existsg ∈ aa−1 such thatg2 = 1 andmult(g; bb−1) = 2(m− 2). LetT (g) be the multiset
of size2(m− 2) defined by

T (g) = {u ∈ b : there existsv ∈ b such thatuv−1 = g}. (7)
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If g 6= 1 thenT (g) is multiplicity-free. Ifg = 1 thenT (g) = 2S(g) whereS(g) is a
multiplicity-free multiset of sizem− 2.

The next two results are proved by modifying the argument of Lemma3.3. The first can
be used to construct an exterior square root ofb wheng = 1.

Lemma 4.3. Suppose thata ∈ A{m} is involution-recognisable, and letb = a∧2. Let
g = a1 a2

−1 and suppose thatg = 1 and thatmult(g; bb−1) = 2(m− 2). LetT (g) be the
multiset defined in equation(7), and letS(g) be the set of sizem−2such thatT (g) = 2S(g).
For at least onez ∈ b \T (g) the productgz has a square rootw in A such that the multiset

{w, w} ∪ w−1S(g)

is an exterior square root ofb.

Wheng 6= 1 the situation is slightly more complicated. The next result can be used to
find an elementw of A such thatw = τa1 for someτ ∈ A, whereτ2 = 1.

Lemma 4.4. Let a ∈ A{m} be an involution-recognisable multiset, and letb = a∧2. Let
g = a1 a2

−1, and suppose thatg2 = 1, g 6= 1 andg has multiplicity2(m − 2) in bb−1.
LetT (g) be the multiset defined in equation(7). For at least one elementz of b \ T (g) the
productgz has a square rootw in A such thatw = τa1 for someτ ∈ A, τ2 = 1.

In the proof of Lemma3.3an exterior square root ofbwas constructed using the element
w and the setS(g) of sizem − 2. In the involution-recognisable case, no such set exists
unlessg = 1. Wheng 6= 1 letS′(g) be the set of unordered pairs{bi, bj } of elements ofb
such thatbi bj−1 = bj bi

−1 = g. If g = a1 a2
−1 then the setS′(g) is given by

S′(g) = {{a1ak, a2ak} : 3 6 k 6 m}.
The next result shows how the setS′(g) can be used to construct an exterior square root of
b.

Lemma 4.5. Suppose thata ∈ A{m}, and thata is involution-recognisable. Letb = a∧2.
Let g = a1 a2

−1, and suppose thatg2 = 1, g 6= 1, mult(g; bb−1) = 2(m − 2). LetS′(g)
be the set of unordered pairs{bi, bj } of elements ofb such thatbi bj−1 = bj bi

−1 = g.
Suppose that we have an elementw ∈ A such thatw = τa1 for someτ ∈ A, whereτ2 = 1.
Then an exterior square rootã of b can be constructed.

Proof. The elements̃ak of a multisetã will be defined inductively, in such a way that
ã∧2 = b. Let ã1 = w and letã2 = gw. Thenã1 = τa1 andã2 = τa2. Let us fix a labelling
on the elements ofS′(g) so thatS′(g) = {s1, . . . , sm−2} where, without loss of generality,
sk−2 = {a1ak, a2ak} for 3 6 k 6 m. Let ã3 be assigned the valuew−1x3 wherex3 is
chosen at random froms1. Thenã3 is one ofτa3, τga3. In either case, the multiset equality

{ã1, ã2, ã3}∧2 = {a1, a2, a3}∧2

holds. For the inductive step, assume that 46 k 6 m and that the values of̃a1, . . . , ãk−1
have been assigned in such a way that

{ã1, . . . , ãk−1}∧2 = {a1, . . . , ak−1}∧2 .

Let ãk be assigned the valuew−1xk wherexk is either element ofsk−2, chosen at random.
Thenãk is one ofτak, τgak. Suppose that the chosen values areã3 = τa3 andãk = τgak.
Thenã3ãk = ga3ak. We claim that

ga3ak 6∈ b \ {ã1, . . . , ãk−1}∧2 . (8)
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Sinceg 6= 1 it follows thatga3ak 6= a3ak. Suppose for a contradiction thatga3ak = aiaj
for somei, j satisfying 16 i < j 6 m, j > k, (i, j) 6= (3, k). Theng = ai aj (a3 ak)

−1

and mult(g; a∗) > 2, contradicting the choice ofg. The situation described by equation
(8) also arises wheña3 = τga3 andãk = τak. In either case, replacẽak by gãk. Then

{ã1, . . . , ãk}∧2 = {a1, . . . , ak}∧2 .

This inductive process stops when all the values of the multisetã have been assigned. Then
ã is an exterior square root ofb, by construction.

In fact, the multiset̃a constructed above is one ofτa or τga, both of which are exterior
square roots ofb, by equation (2). Let us assume that CONSTRUCT is a function which
implements the method of Lemma4.5. LetL2(b) be the set defined by

L2(b) = {g ∈ bb−1 : mult(g; bb−1) = 2(m− 2) andg2 = 1}.
Then CONSTRUCT takes as input a multisetb, an elementg of L2(b), the setS′(g) of
m−2 unordered pairs of elements ofb whose quotient equalsg and an elementw ofA. Let
the function return the message‘failed’ if the method of Lemma4.5fails; otherwise, let it
return an exterior square root ofb. Lemmas4.2– 4.5 lead directly to Procedure INV (see
Figure2), which calls the function CONSTRUCT. The input is a multisetb and an element
g ∈ L2(b). We try to construct an exterior square root ofb using the quotientg. An analysis
of the complexity of this procedure is presented in Section5.1.

The following lemma can be proved in much the same way as Lemma3.4.

Lemma 4.6. ProcedureINV is correct.

5. An exterior square root algorithm for multisets

Procedure REC and Procedure INV can be combined to give an algorithm for finding
exterior square roots which are recognisable or involution-recognisable (see Figure3). The
output of the algorithm is either an exterior square root of the input, or one of the following
messages:‘no exterior square root’, or ‘no recognisable or involution-recognisable exterior
square root’.

The following theorem proves that Algorithm MULT is correct, using Lemmas3.4and
4.6.

Theorem 5.1. AlgorithmMULT is correct.

Proof. Clearly, the output of Algorithm MULT is correct whenb has no exterior square
root. On the other hand, ifb does have an exterior square root, thenbb−1 contains at most
m(m − 1)(m2 − 5m+ 10)/4 distinct elements, by Lemma2.1. Now suppose thatb has a
recognisable exterior square roota. Then there existsg ∈ aa−1 such that mult(g, a∗) = 1.
Henceg ∈ L1(b) and the output of Procedure REC upon input of(b, g) is an exterior square
root ofb, by Lemma3.4. This exterior square root ofb will be output by Algorithm MULT,
and this output is correct. A similar argument shows that the output of Algorithm MULT
is correct ifb has an involution-recognisable exterior square root. Finally, suppose thatb

has an exterior square root, but not one which is recognisable or involution-recognisable.
Now any multiset output by Procedure REC (INV) is recognisable by Lemma3.4, and
involution-recognisable by Lemma4.6. Therefore the output of Algorithm MULT upon
input ofb is the message‘no recognisable or involution-recognisable exterior square root’,
and this output is correct.
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PROCEDURE INV.Given an elementb ofA{n} and a quotientg ∈ L2(b), this
procedure outputs an involution-recognisable exterior square roota of b such that
a ∈ A{m} andg ∈ aa−1, if one exists, and outputs the message ‘false’ otherwise.
Begin

let T (g) be the multiset defined in equation (7);
if g 6= 1 then

if T (g) is multiplicity-free then
let S′(g) be the list of pairs of elements ofb whose quotient isg;
for z in b \ T (g) do

if gz has a square rootw in A then
a := CONSTRUCT(b, g, S′(g), w);
if a is a multiset then

returna;
endif;

endif;
endfor;

endif;
else (∗ g = 1 ∗)

if T (g) = 2S(g) for some multiplicity-free multisetS(g) then
for z in b \ T (g) do

if gz has a square rootw then
a := {w, w} ∪ w−1S(g);
if a∧2 = b then

returna;
endif;

endif;
endfor;

endif;
endif;
return the message‘false’;

End.

Figure 2: Procedure INV
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ALGORITHM MULT. Given an elementb ofA{n}, the algorithm outputs either
an exterior square roota ∈ A{m} of b or one of the following messages: ‘no exterior
square root’ or ‘no recognisable or involution-recognisable exterior square root’.

Begin
form bb−1;
if bb−1 contains more thanm(m− 1)(m2 − 5m+ 10)/4 distinct elements then

return the message‘no exterior square root’;
endif;
letL1(b) be the list of all elements inbb−1 with multiplicity m− 2;
for g ∈ L1(b) do

perform Procedure REC with input(b, g);
if the result is a multiseta then

returna;
endif;

endfor;
letL2(b) be the list of all elements inbb−1 with order dividing 2 and

multiplicity 2(m− 2);
for g ∈ L2(b) do

perform Procedure INV with input(b, g);
if the result is a multiseta then

returna;
endif;

endfor;
return the message

‘no recognisable or involution-recognisable exterior square root’;
End.

Figure 3: Algorithm MULT

Despite the fact that the output of Algorithm MULT is always correct, there is a sense
in which it fails on certain inputs. Suppose thatb ∈ A{n} has an exterior square root, but
not one which is recognisable or involution-recognisable. Then Algorithm MULT cannot
differentiate this multiset from one which has no exterior square root (unlessbb−1 contains
too many distinct elements in the latter case). The likelihood of this ‘failure’ is related to the
proportion of elements inA{m} which are neither recognisable nor involution-recognisable.
An upper bound for this proportion is developed in Section6.

5.1. Complexity analysis

We will now analyse the complexity of Algorithm MULT. As the basic operation we take
the cost of multiplying two elements of the abelian groupA, which we assume is equal to
the cost of comparing or inverting elements ofA. LetC(2) denote the cost of finding square
roots of elements ofA, or of determining that a given element ofA has no square root. The
value ofC(2) depends upon algorithms which exist for the abelian groupA. We assume that
there exists a linear ordering on the elements ofA. This speeds up the multiset calculations,
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as a multiseta in A{r} may be represented as some kind of ordered structure. We assume
(see, for example, [4]) that it costsO(r log(r)) operations to form an ordered structure
representing an element ofA{r}. While doing so we can simultaneously check whether
the multiset is multiplicity-free. The cost of comparing two elements ofA{r}, where one
is represented by an ordered structure, is also assumed to equalO(r log(r)). The cost of
forming the multiset differencea \ a′ is assumed to beO(s log(r)), wherea ∈ A{r} is
represented by an ordered structure,a′ ∈ A{s} ands 6 r. Finally, it costsO(r) to scan the
ordered structure representing an element ofA{r}; for example, to list all elements with a
given multiplicity. In this paper all logarithms are to base two.

We begin by estimating the complexity of Procedure REC. Recall the setS(g) defined
in equation (6).

Lemma 5.1. LetC(REC, n,A)denote the cost of performing ProcedureRECwith input
(b, g), whereb ∈ A{n} andg ∈ L1(b). Assume that an ordered structure representing the
multisetb is available. Then

C(REC, n,A)= O
(
nC(2) + n2 log(n)

)
. (9)

Proof. Consider the complexity of the steps performed by Procedure REC. Before entering
the inner loop we check thatS(g) is multiplicity-free, and form the multiset differenceb \
(S(g)∪g−1S(g)). This costsO(m log(m))operations. Then we loop over the(n−2(m−2))
elementsz of b \ (S(g)∪ g−1S(g)), performing the following calculations. The productgz
is computed, and a square rootw of gz is sought. This costsO(C(2)). It costsO(n log(n))
operations to form the multiseta and test whethera∧2 = b. These costs dominate the costs
performed outside the inner loop, and the inner loop is performedO(n) times. Thus the
complexity is eitherO(nC(2)) orO(n2 log(n)), whichever is the larger.

LetC(INV , n,A) denote the complexity of performing Procedure INV with input(b, g),
whereb ∈ A{n} andg ∈ L2(b). Then it is not difficult to show that

C(INV , n,A) = O
(
nC(2) + n2 log(n)

)
, (10)

since the calculations performed by Procedures REC and INV are very similar. We now use
these results to analyse the complexity of Algorithm MULT.

Theorem 5.2. LetC(MULT , n,A) denote the cost of performing AlgorithmMULT with
input an element ofA{n}. Then

C(MULT , n,A) = O
(
n2mC(2) + n3m log(n)

)
. (11)

Proof. Algorithm MULT has three components. The first component involves formingbb−1

and the listsL1(b) andL2(b), the second component consists of performing Procedure REC
with input (b, g) for (possibly) all elementsg ∈ L1(b), and the third component consists
of performing Procedure INV with input(b, g) for (possibly) all elementsg ∈ L2(b). The
most expensive part of the first component involves forming an ordered structure to hold
the multisetbb−1. Hence the complexity of the first component isO(n2 log(n)). We now
consider the cost of the remaining components. For any elementb of A{n} the equation

(m− 2)|L1(b)| + 2(m− 2)|L2(b)| 6 n(n− 1)
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holds. Therefore the cost of the last two components of Algorithm MULT is at most

n(m+ 1)

4
max (2C(REC, n,A), C(INV , n,A))

operations. Using equations (9) and (10), it follows that the complexity of the last two com-
ponents of Algorithm MULT isO(n2mC(2)) orO(n3m log(n)), whichever is the greater.
This dominates the complexity of the first component, proving the theorem.

We believe that, in most cases, this complexity estimate is much too high. In the next
subsection, heuristic arguments will be outlined which suggest that, for most multisets
b ∈ A{n}, at most one element ofL1(b) ∪ L2(b) is processed by Algorithm MULT upon
input ofb.

5.2. Heuristic arguments

First, consider the number of elements ofL1(b) processed by Algorithm MULT upon
input ofb ∈ A{n}. If b = a∧2 for somea ∈ A{m}, but bhas no recognisable exterior square
root, theng 6∈ aa−1 for all g ∈ L1(b). On the other hand, ifa is recognisable, then the
number of elements ofL1(b) processed is at most

|L1(b) \ aa−1| + 1,

where here, the operation ‘\’ denotessetdifference, not multiset difference. Using Lemma2.1,
it follows thatg ∈ L1(b) \ aa−1 if and only if g ∈ a∧2a−∧2 butg 6∈ aa−1, and the multi-
plicity of g in a∧2a−∧2 ism− 2. If A is a large, finite abelian group then the proportion of
elements inA{6(m4)} which contain an element of multiplicitym− 2 is small. Assume that
the events

{c ∈ A{6(m4)} : mult(g; c) = m− 2 for someg ∈ A}
and

{c ∈ A{6(m4)} : c = a∧2a−∧2 for somea ∈ A{m}}
are independent. It follows thatL1(a

∧2) \ aa−1 = ∅ for most multisetsa ∈ A{m}.
A recognisable multiseta is said to beclearly recognisableif

mult(g; a∧2a−∧2) 6= m− 2 for all g ∈ a∧2a−∧2.

The above result, if true, would imply that most recognisable multisets are clearly recognis-
able. Suppose thatb = a∧2 wherea is a clearly recognisable multiset inA{m}. Then every
element ofL1(b) is a member ofaa−1. Therefore, by Lemma3.4, an exterior square root
of b will be constructed when Procedure REC is performed with input(b, g), whereg is
anyelement ofL1(b).

Similarly, suppose thatb ∈ A{n} and b has no exterior square root inA{m}. If A is
finite but large then the proportion of elements ofA{n(n−1)} which contain an element with
multiplicity m− 2 is small. Assume that the events

{c ∈ A{n(n−1)} : mult(g; c) = m− 2 for someg ∈ A}
and

{c ∈ A{n(n−1)} : c = bb−1 for someb ∈ A{n} \ {a∧2 : a ∈ A{m}}}
are independent. It follows thatL1(b) = ∅ for most multisetsb ∈ A{n} with no exterior
square root. These heuristic arguments can be made more precise, and can be adapted to
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the case of involution-recognisable multisets. In particular, the arguments imply that most
involution-recognisable multisets are clearly involution-recognisable, where an involution-
recognisable multiseta is said to beclearly involution-recognisableif

mult(g; a∧2a−∧2) 6= 2(m− 2) for all g ∈ a∧2a−∧2.

Combining these heuristic arguments suggests that, for most elementsb ∈ A{n}, at most
one element ofL1(b) ∪ L2(b) will be processed by Algorithm MULT. Recall that the
complexity of the first component of Algorithm MULT isO(n2 log(n)). Therefore, when
at most one element ofL1(b)∪L2(b) is processed by Algorithm MULT, the complexity of
the algorithm is

O(nC(2) + n2 log(n)).

These heuristic arguments suggest that this complexity estimate is more realistic than equa-
tion (11) in most cases.

6. Counting multisets which are neither recognisable nor involution-recognisable

We have seen that Algorithm MULT cannot detect that a multiset has an exterior square
root unless the exterior square root is recognisable or involution-recognisable. In this section
we obtain an upper bound for the proportion of multisets which are neither recognisable
nor involution-recognisable, whenA is a finite abelian group. LetZ[nnor, m,A] denote the
set of all elements ofA{m} which are neither recognisable nor involution-recognisable.

It is convenient to consider multiplicity-free multisets separately. LetA
{m}
free denote the

set of all multiplicity-free multisets inA{m} and let

A
{m}
mult = A{m} \ A{m}

free.

This allows us to write

Z[nnor, m,A] = Z[mult&nnor, m,A] ∪ Z[free&nnor, m,A]
where

Z[mult&nnor, m,A] = Z[nnor, m,A] ∩ A{m}
mult,

Z[free&nnor, m,A] = Z[nnor, m,A] ∩ A{m}
free.

By Lemma3.1, a multiset with multiplicities is not recognisable. Similarly, using Lemma4.1
we know that almost all involution-recognisable multisets are multiplicity-free. Hence
|A{m}

mult||A{m}|−1 is a good upper bound for|Z[mult&nnor]||A{m}|−1. An upper bound for
the former quantity is stated below (the proof is easy, and is omitted here).

Theorem 6.1. Let2 be any finite set. Ifm > 2 then

|2{m}
mult|

|2{m}| <
m(m− 1)

|2| .

It remains to calculate an upper bound for|Z[free&nnor, m,A]||A{m}|−1. Some further
notation is required. Fix a linear ordering on the elements ofA. Assume throughout the
remainder of this section that elements of multisets inA

{m}
free are labelled in ascending order
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with respect to this ordering. Recall the multiseta∗ defined in Section2, equation (5). Given
a ∈ A{m}

free, define the multisets0i,j (a) for 1 6 i < j 6 m as follows:

0i,j (a) = {ai ak−1, ak aj
−1 : 1 6 k 6 m, k 6∈ {i, j}} ∪

{aiak(aj al)−1 : 1 6 k 6= l 6 m, k, l 6∈ {i, j}}.
Define the multisets�i,j (a) for 1 6 i < j 6 m by

�i,j (a) = a∗ \
(
0i,j (a) ∪ {ai aj−1, aj ai

−1}
)
.

The multisets�i,j (a) are used to produce equations which are satisfied by the elements of
a, as shown in the next lemma.

Lemma 6.1. Leta be an element ofZ[free&nnor, m,A] with the elements ofa labelled in
ascending order. Let�i,j (a) be the submultiset ofa∗ defined above for1 6 i < j 6 m.
Then there exists an elementei,j of�i,j (a) such that the elements ofa satisfy the equation

ai aj
−1 = ei,j

for 1 6 i < j 6 m.

Proof. Sincea is not recognisable, it follows that mult(ai aj−1; a∗) > 1 for 1 6 i < j 6
m. Suppose thatai aj−1 = aj ai

−1. Then, sincea is not involution-recognisable, it follows
that mult(ai aj−1; a∗) > 2 for this value of(i, j). Therefore there exists an element of
a∗ \ {ai aj−1, aj ai

−1} which equalsai aj−1, for 1 6 i < j 6 m. If ei,j is an element of
0i,j (a) then the equationai aj−1 = ei,j contradicts the fact thata is multiplicity-free, and
so cannot be satisfied by the elements ofa.

Suppose thatei,j is an element of�i,j (a) which satisfiesaiaj−1 = ei,j , where 16
i < j 6 m. Let Ei,j denote the equation obtained from the equationaiaj

−1 = ei,j by
multiplying this equation byaj and by any element ofa whose inverse appears inei,j .
Call Ei,j theequation extensionof ei,j . The elements ofa can be considered as variables
in the equationsEi,j . Note that any variable which appears inEi,j appears to the first or
second power. An action of the symmetric group Sym(m) can be defined upon expressions
or equations involving the variablesa1, . . . , am, as follows. An elementσ of Sym(m) acts
on an expression or equation involving the variablesa1, . . . , am by replacingak by akσ for
1 6 k 6 m. It is easy to prove the following lemma.

Lemma 6.2. Let a be an element ofZ[free&nnor, m,A], and letei,j be an element of
�i,j (a)such that the elements ofa satisfy the equationaiaj−1 = ei,j , where1 6 i < j 6 m.
LetEi,j be the equation extension ofei,j . Denote byE1, . . . , E5 the following equations:

E1 : a1 a2 = a3 a4,

E2 : a1
2 = a2 a3,

E3 : a1
2 a2 = a3

2 a4,

E4 : a1
2 a2 = a3 a4 a5,

E5 : a1 a2 a3 = a4 a5 a6.

ThenEi,j is equivalent under the action ofSym(m) to exactly one ofE1, . . . , E5.
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We can now prove the following theorem.

Theorem 6.2. Suppose thatm > 4 and that2(m− 1) < |A|. Then

|Z[free&nnor, m,A]||A{m}|−1 <




54|A|−1 if m = 4,
250|A|−1 if m = 5,
830|A|−1 if m = 6,
m6 (9|A|)−1 if m > 7.

Proof. Let a be a given element ofZ[free&nnor, m,A], and lete1,2 be an element of
�1,2(a) such that the elementsa1, a2 of a satisfy the equationa1 a2

−1 = e1,2. Let E1,2
be the equation extension ofe1,2. Then, by Lemma6.2, the equationE1,2 is equivalent to
exactly one of equationsE1, . . . , E5 under the action of Sym(m). Letψ : Am → A{m} be
the natural map which sends them-tuple(a1, . . . , am) to the multiset{a1, . . . , am}. Let us
say that anm-tuple is multiplicity-free if it contains no repeated entries. Denote byWr the
set of all multiplicity-freem-tuples(a1, . . . , am) inAm such that the entries ofa satisfy the
equationEr , for 1 6 r 6 5. If E1,2 is equivalent toEr thena is an element ofψ(Wr).
Therefore

Z[free&nnor, m,A] ⊆ ψ(W1) ∪ · · · ∪ ψ(W5).

NowW4 is empty ifm = 4 andW5 is empty ifm < 6. Otherwise

|Wr | 6 |A|(|A| − 1) · · · (|A| −m+ 2) (12)

for 1 6 r 6 5, as the equationEr allows the value of one element of anm-tuple inWr

to be expressed uniquely in terms of the values of the remainingm − 1 elements. Letνr
denote the order of the stabiliser of the equationEr under the action of Sym(m). Then every
element ofψ(Wr) has at leastνr preimages inWr . Therefore

|ψ(Wr)| 6 |Wr |
νr

for 1 6 r 6 5. Nowν1 = 8(m− 4)!, ν2 = 2(m− 3)!, ν3 = 2(m− 4)!, ν4 = 6(m− 5)! if
m > 5 andν5 = 72(m− 6)! if m > 6. Suppose thatm > 7. Then

|Z[free&nnor, m,A]| 6 |ψ(W1)| + · · · + |ψ(W5)|
6 |A| · · · (|A| −m+ 2)

(
ν1

−1 + · · · + ν5
−1

)

= m!(ν1
−1 + · · · + ν5

−1)

(|A| −m+ 1)

(|A|
m

)
.

Therefore, using the values ofν1, . . . , ν5 calculated above,

|Z[free&nnor, m,A]||A{m}|−1 <
m!(ν1

−1 + · · · + ν5
−1)

(|A| −m+ 1)

<
2m!(ν1

−1 + · · · + ν5
−1)

|A|
<
m6 + 12m5 + 45m4 + 36m3

36|A|
<

m6

9|A|,
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since 2(m − 1) < |A| andm > 7. The estimates for the small values ofm can be proved
similarly.

Suppose that we had wanted to calculate the proportion of multisets inA{m} which are
not recognisable, using this method. Leta be an element ofA{m} which is not recognisable.
It is possible thate1,2 has the valuea2a1

−1. In this case the equation extensionE1,2 of e1,2
has the forma1

2 = a2
2, which does not allow us to solve for one element ofa uniquely in

terms of the otherm−1 elements. This is why the definition of the involution-recognisable
property makes the calculations of this section much easier. Note that only the equation
E1,2 was considered in the proof of Theorem6.2. It is possible to extend these methods to
obtain a bound which is inversely proportional to|A|2 by considering both equationsE1,2
andE3,4. In fact one can prove that

|Z[free&nnor, m,A]||A{m}|−1 6 m12

64|A|2
whenm > 12.

Suppose thatb is an element ofA{n} which has an exterior square root which is neither
recognisable nor involution-recognisable. If|A| is larger thanm6 then Theorems6.1 and
6.2 imply that such multisets are rare. Therefore, on most inputs, Algorithm MULT will
find an exterior square root if one exists.

7. Testing

The author has implemented Algorithm MULT in the programming language GAP,
version 3.4 (see [7]). The test runs were performed on an Silicon Graphics R4000 Indigo. As
GAP version 3.4 is not compilable, it does not run particularly fast. For this reason, we have
restricted our testing to multisets of sizen 6 120 (in fact, we have usedn ∈ {10, 45,105}).
However, for compilable programming languages on faster machines,n 6 1000 should be
achievable.

Tests were performed to illustrate two sections of this paper. The heuristic arguments
of Section5.2are illustrated by the tests presented in Section7.1and Table1. These tests
focus on how many times Procedures REC and INV are called by Algorithm MULT; the
heuristic arguments suggest that there is at most one call per input multiset. Then the results
of Section6 are illustrated by the tests described in Section7.2 and Table2. These tests
are designed to show that a high proportion of multisets are recognisable or involution-
recognisable.

7.1. Testing the number of times ProceduresRECandINV are performed

We tested the number of times that Procedures REC and INV are called upon input of
multisets chosen in two different ways. This gives two types of test. The first chooses 100
multisets fromA{n} uniformly at random, and inputs them to Algorithm MULT. For the
second type of test, 100 multisets are chosen fromA{m} uniformly at random. In either
case, we note thetotal number of times Procedures REC and INV are performed over the
100 runs, and theaverageCPU time, in seconds, used by Algorithm MULT over these 100
tests (as recorded using the GAP functionProfile). The tests were performed using two
different abelian groups. The first abelian group, denoted by CY, is the cyclic group of
orderN , whereN = 116 − 1 = 1771560 (specifically, CY is theadditiveabelian group of
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Table 1: Results of test runs for multisets of various size over two abelian groups

m n A type Procedure REC Procedure INV av. time
5 10 CY I 0 0 0.079
5 10 CY II 100 0 0.140

10 45 CY I 0 0 3.652
10 45 CY II 100 0 6.627
15 105 CY I 0 0 26.769
15 105 CY II 100 0 63.957
5 10 EA I 0 0 0.236
5 10 EA II 0 146 0.305

10 45 EA I 0 0 7.142
10 45 EA II 0 100 8.016
15 105 EA I 0 0 48.441
15 105 EA II 0 100 55.815

integers moduloN ). The second abelian group, denoted by EA, is the elementary abelian
2-group of order 220 = 1048576. The results of these tests are presented in Table1.

We see that Procedures REC and INV were not called in any Type I test. In all but
one of the tests of Type II, exactly one call to Procedure REC was made per multiset over
the abelian group CY, and one call per multiset to Procedure INV over the abelian group
EA. This illustrates the heuristic arguments of Section5.2. The exception was the test
where 100 multisets were chosen from EA{5}, and their exterior square was presented to
Algorithm MULT. Here Procedure INV was performed 146 times, over the 100 tests. This
is many more times than the heuristic arguments would suggest. However,ω = ω−1 for
every elementω ∈ EA. Suppose thata ∈ EA{5}. If the five elementsaiaj akal are distinct,
1 6 i < j < k < l 6 5, thena∧2a−∧2 consists of these five distinct elements, each with
multiplicity six. Nowm = 5 and so 2(m − 2) = 6. If the ten elementsaiaj are distinct,
1 6 i < j 6 5, thenL2(b) consists of the 10 distinct elements ofaa−1 and the five distinct
elements ofa∧2a−∧2. The expected number of elements ofL2(b) to be processed up to and
including the first element ofaa−1 is

10
6∑

j=1

(
5

j − 1

)(
15

j

)−1

= 16

11
.

Hence over 100 trials the expected number of times that Procedure INV is performed is
1600/11, which is very close to our value of 146. This gives an illustration of a situation
where the heuristic arguments of Section5.2are not applicable. However, such situations are
very rare: even when working with elementary abelian 2-groups, the phenomenon described
above only occurs whenm = 5.

7.2. Testing the proportion of recognisable or involution-recognisable multisets

The tests performed in this section are designed to illustrate that most multisets are either
recognisable or involution-recognisable. Each test consisted of choosing 100 multisets in
A{m} at random, and noting how many were recognisable, clearly recognisable, involution-
recognisable or clearly involution-recognisable. These quantities are listed in the columns
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Table 2: Numbers of recognisable or involution-recognisable multisets found in test runs
for various groups

m A # RI # R # CR # I # CI

5 CY(52) 63 35 12 28 25

5 CY(54) 100 99 99 1 1

5 CY(56) 100 99 99 1 1

10 CY(102) 0 0 0 0 0

10 CY(104) 100 100 100 0 0

10 CY(106) 100 100 100 0 0

15 CY(152) 0 0 0 0 0

15 CY(154) 100 100 100 0 0

15 CY(156) 100 100 100 0 0

5 EA(25) 80 0 0 80 0

5 EA(210) 100 0 0 100 0

5 EA(214) 100 0 0 100 0

10 EA(27) 55 0 0 55 55

10 EA(214) 100 0 0 100 100

10 EA(220) 100 0 0 100 100

15 EA(28) 8 0 0 8 8

15 EA(216) 100 0 0 100 100

15 EA(224) 100 0 0 100 100

of Table2 headed # R, # CR, # I, # CI respectively. The total number of multisets which
were either recognisable or involution-recognisable is also presented in the column headed
# RI. The first column holds the value ofm, while the second column holds a description of
the group from which the test set was taken. Two kinds of abelian group are considered. IfA

is the additive group of the integers moduloN , then we write CY(N) to describe the group.
The other kind of group considered is an elementary abelian group of order 2t , which we
describe as EA(2t ). For each value ofm we consider six abelian groups. The first three are
the groups CY(m2j ) for 1 6 j 6 3, while the final three are the groups EA(2dlog(m2j )e) for
1 6 j 6 3.

When |A| is of the order ofm2, we do not find a large proportion of multisets to be
recognisable or involution-recognisable. However, the situation improves enormously when
|A| > m4. Hereall the multisets chosen in our tests were either recognisable or involution-
recognisable. This suggests that Algorithm MULT might work quite well even in situa-
tions where the analysis of Section6 is not reassuring. Also notice that, whenm = 5, no
involution-recognisable multiset consisting of elements from an elementary abelian 2-group
was found to be clearly involution-recognisable. This illustrates the analysis presented at
the end of Section7.1. In all other tests with|A| > m4, every recognisable multiset was
also clearly recognisable; likewise, every involution-recognisable multiset was also clearly
involution-recognisable. This lends further support to the heuristic arguments of Section5.2.
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8. The special case of multisets of eigenvalues

The definition of the exterior square of a multiset was motivated by the relationship
between the eigenvalues of a matrixX and the eigenvalues of the matrix which represents
the action ofX on the exterior square of the underlying vector space (with respect to some
fixed choice of basis). Denote the latter matrix byX∧2, and call it theexterior squareofX.
An algorithm which can determine whether a given matrix isequal to the exterior square
of another is described in [2].

Another question is to determine whether a given matrix isconjugateto the exterior
square of another matrix. We now describe how solve this problem when the given matrix
is conjugate to the exterior square of an irreducible matrix.

A matrix is said to beseparableif it has no repeated eigenvalues. Suppose thatY is
a separable matrix inM(n, F ) with set of eigenvaluesβ. Let X ∈ M(m,F). ThenY is
conjugate toX∧2 if and only if the setα of eigenvalues ofX satisfiesα∧2 = β (for proof,
see [1]). Suppose that we could find an exterior square rootα of β. Let

f (x) =
m∏
i=1

(x − αi),

and letXf be the companion matrix off . Any matrix with characteristic polynomialf
is conjugate toXf . Finally,Xf ∧2 andY are conjugate. In fact, we can easily construct a
matrixw such that

(
Xf

∧2
)w = Y (see [1] for details).

The difficulty lies in finding an exterior square root of the setβ of eigenvalues ofY . If
β = α∧2 whereα is recognisable or involution-recognisable, then Algorithm MULT will
succeed in finding an exterior square root ofβ. What is the likelihood thatα is recognisable
or involution-recognisable? For the remainder of the paper, assume thatF is finite. The
analysis of Section6 is not applicable, becauseα has a very complicted distribution even
if X is chosen uniformly at random from, say, GL(m, F ) (orM(m,F)).

Instead, we can show thatα is recognisable (or involution-recognisable) wheneverX

satisfies certain conditions. For example, suppose thatX ∈ GL(m, F ) is irreducible. Let
K be the splitting field of the characteristic polynomial ofX. ThenK = F [θ ] for some
eigenvalueθ of X. Moreover,

α = {θqi : 0 6 i < m}
whereq = |F |. It is not difficult to show thatα is recognisable (for example, takeg = θq−1

in the definition of recognisability). Suppose thatY ∈ GL(n, F ) is conjugate toX∧2,
and thatβ is the (multi)set of eigenvalues ofY . Then Algorithm MULT will certainly
succeed in finding an exterior square root ofβ. Therefore we can construct(X,w) such
that

(
X∧2

)w = Y , as above.
Thus we know how to determine whether a given matrixY is conjugate to the exterior

square of a another matrixX, at least in the case whereX is irreducible. The mapX 7→ X∧2,
when restricted to GL(m, F ), is a group homomorphism. Therefore we can define the
exterior square of a matrix group. The problem of recognising the exterior square of a matrix,
up to conjugation, was motivated by the following problem: to construct an algorithm to
recognise the exterior square of the special linear group, up to conjugation. This is the
same thing as recognising the special linear group in its action on the exterior square of
the underlying vector space. A polynomial-time Monte Carlo algorithm for recognising the
special linear group in its natural action was given by Neumann and Praeger [5].
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I am very grateful to the referee of this paper for bringing the recent work of Kantor and
Seress [3] to my attention. They describe a Monte Carlo algorithm which takes as input a
list of generators of a black box group. (Ablack box groupis one in which elements are
represented as bit strings of uniform lengthN , and the group operations can be performed
on these elements. Matrix groups are examples of black box groups. For subgroups of
GL(n, F )we haveN = O(n2 log(|F|)).) The algorithm determines whether the input group
is isomorphic (modulo scalars) to some classical group over a field of given characteristic,
and if so returns an explicit representation. The running time is polynomial inN andq,
whereq is the size of the field over which the output representation is given. This algorithm
could be used to determine whether a given subgroupH 6 GL(n, F ) is isomorphic to
SL(m, F ) modulo scalars, and to construct an explicit representation if so. Then standard
meataxe methods could be used to determine whether the representation is the exterior
square representation. This would give an algorithm for recognising the exterior square
of the special linear group with running time polynomial inn and |F |. (The referee also
alerted me to the recent work of Bratus, Cooperman, Finkelstein and Linton. They have
announced a similar algorithm, which determines whether the input group is isomorphic
modulo scalars to the special linear group over a field of given characteristic, and returns
an explicit representation if so. Their algorithm is said to be simpler and more efficient than
that of Kantor and Seress (when the classical group is a special linear group), but still has
running time which is polynomial inN andq, with notation as above.)

We now outline an approach which uses the multiset algorithm described in this paper,
which could lead to an algorithm with running time polynomial inn and log(|F|). LetH be
the input group; that is,H 6 GL(n, F ) is given as a finite listLH of generators. SayY ∈ H
is helpful if Y is conjugate to the exterior square of an irreducible matrix. Letr be a small
positive integer constant, sayr = 2 orr = 3. Choose elementsY ∈ H uniformly at random
until one of the following happens: (i) we have foundr helpful elementsY1, . . . , Yr , or (ii)
some maximum number of choices is exceeded. If SL(m, F ) 6 G 6 GL(m, F ) then the
proportion of irreducible matrices inG is at least 1/(m+ 1) [5, Lemma 2.3]. Therefore, if
H is conjugate to the exterior square of a subgroupG containing SL(m, F ) thenH should
contain a fair proportion of helpful matrices. By making sufficiently many random choices
fromH , we can ensure that the probability that we do not find at leastr helpful matricesY
is at mostε/2, for any given toleranceε. The number of choices required is polynomial in
m and log(ε−1).

If (ii) happens, we return the message‘false’, meaning thatH is not conjugate to the
exterior square of a matrix group containing SL(m, F ). The probability that this output is
incorrect is at mostε/2. Otherwise we haver matricesY1, . . . , Yr ∈ H such that

Yi =
(
Xi

∧2
)wi

,

where(Xi, wi) ∈ GL(m, F ) × GL(n, F ) andXi is irreducible for 16 i 6 r. If H is
conjugate to the exterior square of some groupG such that SL(m, F ) 6 G 6 GL(m, F )
then the conjugating elementw is unique up to scalar multiplication. This follows sinceV ∧
V is an absolutely irreducibleFSL(m, F )-module. The challenge is to use the information
we have to find a candidate conjugating matrixw ∈ GL(n, F ): in particular, to find it in
time polynomial inn and log(|F|).

If we could find a candidatew, up to scalar multiplication, then we proceed as follows.
LetLH = [Z1, . . . , Zk] be the list of generators of the input groupH . Apply the algorithm
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given in [2] to Ziw
−1

to determine whether there existsQi ∈ GL(m, F ) such that

Qi
∧2 = Zi

w−1
,

for 1 6 i 6 k. If such a matrix cannot be found, for somei, thenH is not conjugate
to the exterior square of any subgroup of GL(m, F ). Otherwise, letL = [Q1, . . . ,Qk]
and letG be the group generated by these matrices. We know thatH = (

G∧2
)w

. Use the
Neumann–Praeger algorithm [5] to determine whether SL(m, F ) 6 G. There is a small
probability of an incorrect negative response, which we can ensure is at mostε/2. Thus
the overall probability of an incorrect negative response is at mostε. Note that all known
elements of the algorithm outlined above have running time which is polynomial inn and
log(|F|) (see [1,5]).
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