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ADAPTATION OF A POPULATION TO A CHANGING ENVIRONMENT IN
THE LIGHT OF QUASI-STATIONARITY
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Abstract

We analyze the long-term stability of a stochastic model designed to illustrate the adap-
tation of a population to variation in its environment. A piecewise deterministic process
modeling adaptation is coupled to a Feller logistic diffusion modeling population size.
As the individual features in the population become further away from the optimal ones,
the growth rate declines, making population extinction more likely. Assuming that the
environment changes deterministically and steadily in a constant direction, we obtain
the existence and uniqueness of the quasi-stationary distribution, the associated survival
capacity, and the Q-process. Our approach also provides several exponential conver-
gence results (in total variation for the measures). From this synthetic information,
we can characterize the efficiency of internal adaptation (i.e. population turnover from
mutant invasions). When the latter is lacking, there is still stability, but because of the
high level of population extinction. Therefore, any characterization of internal adapta-
tion should be based on specific features of this quasi-ergodic regime rather than the
mere existence of the regime itself.
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1. Introduction

1.1. Eco-evolutionary motivations

In line with [20], we are interested in the relative contribution of mutations with various
strong effects to the adaptation of a population. Our first goal in the present paper is to analyze
a stochastic model as simple as possible in which these mutations are filtered according to the
advantage they provide, and to identify the key conditions of stability. In fact, this advantage
may either be immediately significant (providing a better growth rate for the mutant subpop-
ulation) or play a role in future adaptation (the population is doomed without many of these
mutations). The stochastic model considered takes both aspects into account in order to provide
a mathematical framework for relating these two contributions to the biological interpretation
of adaptation. Before presenting its exact definition in Subsection 1.2, let us first explain the
eco-evolutionary interpretations that it is intended to illuminate.
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236 A. VELLERET

The process extends the one introduced by [20] and described more formally in [24] and
[21]. Similarly, we assume that the population is described by a certain value x̂ ∈Rd, hereafter
referred to as its trait. For the sake of obtaining a simple theoretical model, spatial dispersion
and phenotypic heterogeneity (at least for the individual features of interest) are neglected.
We therefore assume that the population is monomorphic at all times and that x̂ represents the
phenotype of all individuals in the population. Nonetheless, we allow for variations of this trait
x̂ due to stochastic events, namely when a subpopulation issuing from a mutant with trait x̂ + w
manages to persist and invade the ‘resident’ population. In the model, such events are assumed
to occur instantaneously.

The main novelty of our approach is that we couple this ‘adaptive’ process with a Feller
diffusion process N with a logistic drift. This diffusion describes the dynamics of the popula-
tion size in a limit where it is large. Here we mean that individual birth and death events have
negligible impact, but that the accumulation of these events has a visible and stochastic effect.
In particular, the introduction of the ‘size’ in the model allows us to easily translate the notion
of maladaptation, in the form of a poor growth rate.

For the long-time dynamics, we are mainly interested in considering only surviving popula-
tions, that is, conditioning the process upon the fact that the population size has not decreased
to 0. The implication of taking size into account is twofold. On the one hand, extinction occurs
much more rapidly when adaptation is poor. Indeed, the population size then declines very
rapidly. So a natural selection effect can be observed at the population level. On the other
hand, the better the adaptation, the larger the population size can be, and the more frequent is
the birth of new mutants in the population. Also, in our simple model, a mutant trait that is bet-
ter suited for the survival of the population as a whole is characterized by a greater probability
that the resident population gets invaded, once a single mutant is introduced.

Compared to the case of a fixed size as in [24] and [21], this second implication leads to a
stabilizing effect for the phenotype when the population size is large enough, but also a desta-
bilizing effect when the population size decreases. This is in contrast to natural selection at the
individual level (which is the main effect detailed in [20]). Indeed, when adaptation is already
nearly optimal, among the mutants that appear in the population, very few can successfully
maintain themselves and eventually invade the resident trait.

Let us assume here that mutations can allow individuals to survive in these new environ-
ments. In this context, how resilient is the population to environmental changes? Is there a
clear threshold to the rate of change that such a population can handle? How can we describe
the interplay between the above properties?

To begin to answer these questions, and like [20], we assume for simplicity that the environ-
mental change is given by a constant-speed translation of the profile of fitness. This speed is
denoted by v, and e1 provides the direction of the change. In practice, this means that the growth
rate of the population at time t is expressed as a function of x := x̂ − v t e1, for a monomorphic
population with trait x̂ at time t. Naturally, the phenotypic lag x becomes the main quantity of
interest for varying t.

Likewise, we can express as a function of x and w the probability that a mutant individual,
with mutation w, will lead to the invasion of a resident population with trait x̂ at time t. This
probability should be stated solely in terms of x and x + w. Furthermore, we assume that the
distribution of the additive effect for the new mutations is constant over time and independent
of the trait x̂ of the population before the mutation (and thus independent of x in the moving
frame of reference).

In this context, we can exploit the notion of a quasi-stationary distribution (QSD) to charac-
terize what would be an equilibrium for these dynamics prior to extinction (see Remark 2.2.3).
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Quasi-stationary mode of adaptation to a changing environment 237

The main contribution of the current paper is to ensure that this notion is unambiguously
defined for the process under consideration. To the best of our knowledge, this is the first time
that the existence and uniqueness of the QSD has been proved for a piecewise deterministic
process coupled to a diffusion.

By our proof, we also provide a justification of the notion of typical relaxation time and
extinction time. The quasi-stationary description is well suited provided the latter is much
longer than the former. As can be verified by simulations, typical convergence to the QSD is
exponential in such cases. However, the marginal starting from specific initial conditions may
take a long time before it approximates the QSD, mainly in cases where extinction is initially
very likely.

In the following subsections of the introduction, we give the precise definition of the
stochastic process. In Section 2, after specifying some elementary notation, we describe the
main results, starting with our main hypotheses ([H], [D], and [A]) in Subsection 2.1 and
giving the key Theorem 2.1 in Subsection 2.2. In Subsection 2.3, we discuss the interpreta-
tion of the theorem in terms of ecology and evolution. Its connection to related adaptation
models is given in Subsection 2.4, and its connection to the classical techniques of quasi-
stationarity in Subsection 2.5. The rest of the paper is devoted to proofs. In Section 3 we prove
Proposition 2.1, namely the existence and uniqueness of the process. In Section 4 we introduce
the main theorems on which our key result, Theorem 2.1, is based. Two alternative hypotheses
([D] and [A]) are considered, which entail some variations in the proofs. To facilitate compari-
son between these variations, we have chosen to group these six theorems in the three following
sections. In the appendix, we include some pieces of proofs that are only slightly adjusted from
similar arguments in [31]. We also provide the definition of a specific sigma-field and present
a property related to jump events that we exploit in our proofs. We conclude with some illus-
trations of the asymptotic profiles obtained by simulating the stochastic process, which shed
new light on the biological question.

1.2. The stochastic model

As explained in the introduction, we follow [20] for the definition of the adaptive com-
ponent. The system that describes the combined evolution of the population size and its
phenotypic lag is then given by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Xt = x − v t e1 +
∫

[0,t]×R
d×(R+)2

w ϕ0
(
Xs− , Ns, w, uf , ug

)
M
(
ds, dw, duf , dug

)
,

Nt = n +
∫ t

0

(
r(Xs) · Ns − γ0 · (Ns)

2
)

ds + σ

∫ t

0

√
Ns dBs,

(S0)

where Nt describes the size of the population and Xt the phenotypic lag of this population.
Here, v> 0 is the speed of environmental change (in direction e1), (Bt) is a standard (Ft)

Brownian motion, and M is a Poisson random measure on R+ ×Rd ×R+, also adapted to
(Ft), with intensity

π
(
ds, dw, duf , dug

)= ds ν(dw) duf dug,

where ν(dw) is a measure describing the distribution of new mutations, and

ϕ0(x, n, w, uf , ug) = 1{uf ≤f0(n)} · 1{ug≤g(x,w)}.
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238 A. VELLERET

Thanks to the following proposition, the independence between M and B is automatically
deduced by choosing (Ft) such that their increments after time t are independent from Ft. The
filtration naturally generated from M and B is the most natural such choice.

Proposition 1.1. Any Brownian motion and any Poisson random measure that are adapted to
the same filtration (Ft) and such that their increments after time t are independent from Ft are
necessarily independent.

Proof of Proposition 1.1. Thanks to [16, Theorem 2.1.8], if X1, X2 are additive functionals
and semimartingales with respect to a common filtration, both starting from zero, such that
their quadratic covariation [X1, X2] is almost surely (a.s.) zero, then the random vector (X1(t) −
X1(s), X2(t) − X2(s)) is independent of Fs, for every 0 ≤ s ≤ t. Moreover, the vector (X1, X2)
of additive processes is independent.

Note B the Brownian motion and M the Poisson random measure on R+ ×X . For any test
function F:X �→R, define Z(t) := ∫[0,t]×X F(x) M(ds, dx). Both Z and B are additive function-
als and semimartingales with respect to the filtration Ft, both starting from zero. Since Z is a
jump process and B is continuous, their quadratic covariation a.s. equals 0. Since it applies to
any F, exploiting [16, Theorem 2.1.8] implies that B and M are independent. �

In the model of the moving optimum originally considered in [20], X = 0 corresponds to
the optimal state in terms of some reproductive value function R(x), for x ∈R. This function
R is also assumed to be symmetric and decreasing with |X|. Here we consider a possibly mul-
tidimensional state space for X and will usually not require any assumption on the related
function g.

The quantity X is described as the phenotypic lag because Xt + v t e1 is the character of
the individuals at time t in the population, while in the model of [20], the mobile optimum
is located at trait v t e1. These assumptions on the fitness landscape are natural, and we abide
by them in our simulations. Nonetheless, they are mainly assumed for simplicity, and we have
chosen here to be as general as possible in the definition of r. Thus, Xt is a lag as compared to
the trait v t e1, which is merely a reference value.

The function g(Xt,w) is the mutation kernel, which describes the rate of fixation at which a
mutant subpopulation of trait Xt + v t e1 + w invades a resident population of trait Xt + v t e1.
Although the rate at which the mutations occur in one individual can reasonably be assumed
to be symmetric in w, this is clearly not the case for g. In a large population, the filtering
of considering only fixing mutations greatly restricts the occurrence of strongly deleterious
mutations, while greatly favoring strongly advantageous mutations. For mutations with little
effect, there is only a slight bias. To cover both of these situations, we consider in our analysis
both the case where any mutation effect is permitted and the case where only advantageous
ones are. Although the latter case will raise more difficulty in terms of accessibility of the
domain, the core of the argument is essentially the same, and the simulations seem to provide
similar results in both cases.

The term f (Nt) is introduced to model the fact that given a constant mutation rate per indi-
vidual, the larger the population size, the larger the mutation rate for the population. The first
reasonable choice is f (Nt) := Nt, but we may also be interested in introducing an effect of the
population size on the fixation rate.

The quantity N follows the equation for a Feller logistic diffusion where the growth rate
r at time t depends only on Xt, while the strength of competition c and the coefficient of
diffusion σ are kept constant. Such a process is the most classical one for the dynamics of
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a large population size in a continuous-space setting such that explosion is prevented. It is
described in [22] (with fixed growth rate), notably as a limit of some individual-based models.
The coefficient σ is related to the proximity between two uniformly sampled individuals in
terms of their filiation links: 1/σ 2 scales as the population size and is sometimes described as
the ‘effective population size’.

From a biological perspective, X has no reason to explode. Under our assumption [H11]
below, such explosion is clearly prevented. However, we will not focus on conditions ensuring
non-explosion for X. Indeed, this would mean (by Assumption [H8] below) that the growth
rate becomes extremely negative. It appears very natural to suppose that this would lead to the
extinction of the population. We therefore define the extinction time as

τ∂ := inf{t ≥ 0; Nt = 0} ∧ sup{k≥1} Tk
X, where Tk

X := inf{t ≥ 0; ‖Xt‖ ≥ k}. (1.1)

Because it simplifies many of our calculations, in the following we will consider Yt :=
2
σ

√
Nt rather than Nt. An elementary application of the Itô formula proves the following

lemma.

Lemma 1.1. With the previous notation, (X, Y) satisfies the following stochastic differential
equation:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
Xt = x − v t e1 +

∫
[0,t]×R

d×(R+)2

w ϕ
(
Xs− , Ys, w, uf , ug

)
M
(
ds, dw, duf , dug

)
,

Yt = y +
∫ t

0
ψ(Xs, Ys) ds + Bt,

(S)

where we define, for any (x, y) ∈Rd×R+,⎧⎪⎪⎨
⎪⎪⎩
ψ(x, y) := − 1

2 y
+ r(x) y

2
− γ y3, with γ := γ0 σ

2

8
,

ϕ(x, y, w, uf , ug) := ϕ0

(
x, σ 2y2/4, w, uf , ug

)
.

By considering f (y) := f0[σ 2y2/4], note that we recover

ϕ(x, y, w, uf , ug) = 1{uf ≤f (y)} · 1{ug≤g(x,w)}.

The aim of the following theorems is to describe the law of the marginal of the process
(X, Y) at large time t, conditionally upon the fact that the extinction has not occurred—in short,
for the marginal condition on non-extinction (MCNE) at time t. Considering the conditioning
at the current time leads to properties of quasi-stationarity, while conditioning much farther in
the future leads to a Markov process usually referred to as the Q-process, which in some sense
is the process conditioned on never going extinct. The two aspects are clearly complementary,
and our approach will treat both in the same framework, in the spirit initiated by [10].

1.3. Elementary notation

In the following, the notation k ≥ 1 is to be understood as k ∈N, while t ≥ 0 (resp. c> 0)
should be understood as t ∈R+ := [0,∞) (resp. c ∈R∗+ := (0,∞)). In this context (with m ≤
n), we denote the classical sets of integers by Z+ := {0, 1, 2...}, N := {1, 2, 3...}, [[m, n]] :=
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240 A. VELLERET

{m, m + 1, ..., n − 1, n}, where the symbol := makes explicit that we are defining notation via
this equality. For maxima and minima, we usually write s ∨ t := max{s, t}, s ∧ t := min{s, t}.
Accordingly, for a function ϕ, ϕ∧ (resp. ϕ∨) will be the notation for a lower (resp. upper) bound
of ϕ. By C0(X, Y) we denote the set of continuous functions from any X to any Y . By B(X) we
denote the set of bounded functions from any X to R. By M(X) and M1(X) we denote the sets
of positive measures and probability measures, respectively, on any state space X. Numerical
indices are generally indicated in superscript, while specifying notation is often in subscript.
By definition, {y ∈Y; A(y) , B(y)} denotes the set of values y of Y such that both A(y) and B(y)
hold true. Likewise, for two probabilistic conditions A and B on ω ∈�, and a random variable
X, we may use E(X; A , B) instead of E(X1�), where � := {ω ∈�; A(ω) , B(ω)}.

2. Exponential convergence to the QSD

2.1. Hypothesis

We will consider two different sets of assumptions, including or rejecting the possibility for
deleterious mutations to invade the population.

First, the assumptions [H] below are generally in force throughout the paper, although
sometimes some of them may not be involved (we will mention when this is the case):

[H1] The function f ∈ C0
(
R∗+, R+

)
is positive.

[H2] The function g ∈ C0
(
Rd ×Rd, R+

)
is bounded on any K ×Rd, where K is a compact

set of Rd.

[H3] The function r is locally Lipschitz continuous on Rd, and r(x) tends to −∞ as ‖x‖ tends
to ∞.

[H4] We have ν
(
Rd
)
<∞. Moreover, there exist θ, ν∧ > 0 and η ∈ (0, θ ) such that

ν(dw) ≥ ν∧ 1B(θ+η)\B(θ−η) dw,

where B(R), for R> 0, denotes the open ball of radius R centered at the origin.

[H5] Provided d ≥ 2, ν(dw)<< dw, and the density g(x,w) ν(w) (for a jump from x to x + w)
of the jump size law with respect to the Lebesgue measure satisfies

∀ x∨ > 0, sup

{
g(x,w) ν(w)∫

Rd g(x,w′) ν(w′) dw′ ; ‖x‖ ≤ x∨, w ∈Rd
}
<∞.

When we allow deleterious mutations to invade the population, we actually mean that the
rate of invasion is always positive, leading to the following assumption:

[D] The function g is positive.

Otherwise, we consider the case where deleterious mutations are forbidden, in the sense
that the rate is zero for mutations that would induce an increase in ‖X‖. The invasion rate of
advantageous mutations, however, is still assumed to be positive. This is stated in Assumption
[A], below, as the alternative to Assumption [D]:

[A] For any x,w ∈Rd, ‖x + w‖< ‖x‖ implies g(x,w)> 0, while ‖x + w‖ ≥ ‖x‖ implies
g(x,w) = 0.
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Remarks.

� For d = 1, no condition on the density of g · ν as in [H5] is required.

� It is quite natural to assume that f (0) = 0 and that f (y) tends to ∞ as y tends to ∞, but
we will not need these assumptions.

� 1 is the natural bound with the above-mentioned biological interpretation of [H2].
However, an extension can be introduced where g is not exactly the fixation probability;
cf. Corollary 2.1.

� Under [H2] and [H4] (since ν
(
Rd
)
<∞), over any finite time-interval, only a finite

number of mutations can occur. We also need lower bounds on the probability of specific
events which roughly prescribe the dynamics of X. This is where the lower bound on the
density of ν is exploited, as well as the positivity of g, deduced from either Assumption
[D] or Assumption [A].

� The strong assumption [H3], that r(x) tends to −∞ as x tends to ∞, makes it easy to
prove that the process is mostly kept confined, say within the time-interval [0, t] under
the conditioning that {t< τ∂}. However, the proof could be directly adapted to specific
situations where the lim sup of r(x) is only upper-bounded by −r∧ when ‖x‖ tends to
infinity. The requirement on the large-enough value of r∧ could then be stated in terms
of the process dynamics in a well-chosen compact subset of (x, y) ∈Rd×R∗+.

2.2. Statement of the main theorems

First we need to ensure that the model specified by Equation (S) properly defines a unique
solution. This is stated in the next proposition.

Proposition 2.1. Suppose that the assumptions [H] hold. Then, for any initial condition
(x, y) ∈Rd ×R∗+, there is a unique strong solution

(
Xt, Yt
)

t≥0 in the Skorokhod space satis-
fying (S) for any t< τ∂ , and Xt = Yt = 0 for t ≥ τ∂ , where the extinction time is expressed as
τ∂ := sup{n≥1} Tn

Y ∧ sup{n≥1} Tn
X, where

Tn
Y := inf{t ≥ 0, Yt ≤ 1/n} and Tn

X := inf{t ≥ 0, ‖Xt‖ ≥ n}.
Remark. This proposition makes it possible to express τ∂ as inf{t ≥ 0, Yt = 0}.

We exploit the notion of uniform exponential quasi-stationary convergence as previously
introduced in [32, Section 2.3].

Definition 1. For any linear, positive, and bounded semigroup (Pt)t≥0 acting on a Polish state
space Z , we say that P displays a uniform exponential quasi-stationary convergence with char-
acteristics (α, h, λ) ∈M1(Z)×B(Z)×R if 〈α ∣∣ h〉 = 1 and there exist C, γ > 0 such that for
any t> 0 and for any measure μ ∈M(Z) with ‖μ‖TV ≤ 1,∥∥eλtμPt(ds) − 〈μ ∣∣ h〉α(ds)

∥∥
TV ≤ Ce−γ t. (2.1)

Remarks.

� As shown in [32, Fact 2.3.2], this implies that for any t> 0, αPt(ds) = e−λtα(ds). Any
measure satisfying this property is called a quasi-stationary distribution (QSD).
It is elementary that ht:x �→ eλt〈δsPt

∣∣ 1〉 converges to h, in the uniform norm, as t tends
to infinity. We call h the survival capacity, because the value eλt〈δxPt

∣∣ 1〉 = Px(t<
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242 A. VELLERET

τ∂ )/Pα(t< τ∂ ) enables us to compare the likelihood of survival with respect to the initial
condition.
Since ht+t′ = eλtPtht′ , one can then easily deduce that eλtPth = h. It is also obvious that
h is necessarily non-negative.

� By using the term ‘characteristics’, we express that they are uniquely defined.

Our main theorem is stated as follows, with Z := Rd×R∗+.

Theorem 2.1. Suppose that the assumptions [H] hold. Suppose that either Assumption [D]
or Assumption [A] holds. Then the semigroup P associated to the process Z := (X, Y) and
extinction at time τ∂ displays a uniform exponential quasi-stationary convergence with some
characteristics (α, h, λ) ∈M1(Z)×B(Z)×R+. Moreover, h is positive.

Remark. We refer to [32, Corollary 2.3.4] for the implied result on the convergence of the
renormalized semigroup to α. The fact that h is positive implies that there is no other QSD in
M1(Z).

In [3a, Section 2.3.2] there is also an analysis of the so-called Q-process, whose properties
are as follows.

Theorem 2.2. Under the same assumptions as in Theorem 2.1, with (α, h, λ) the characteris-
tics of exponential convergence of P, the following properties hold:

(i) Existence of the Q-process:
There exists a family

(
Q(x,y)
)

(x,y)∈Z of probability measures on � defined by

lim
t→∞P(x,y)(�s

∣∣ t< τ∂ ) =Q(x,y)(�s), (2.2)

for all Fs-measurable set �s. The process
(
�; (Ft)t≥0;

(
Xt, Yt
)

t≥0;
(
Q(x,y)
)

(x,y)∈Z
)

is a

Z-valued homogeneous strong Markov process.

(ii) Weighted exponential ergodicity of the Q-process:
The measure β(dx, dy) := h(x, y) α(dx, dy) is the unique invariant probability measure
under Q. Moreover, for any μ ∈M1(Z) satisfying 〈μ ∣∣ 1/h〉<∞ and t ≥ 0,∥∥Qμ [ (Xt, Yt) ∈ (dx, dy)

]− β(dx, dy)
∥∥

TV ≤ C ‖μ− 〈μ ∣∣ 1/h〉 β‖1/h e−γ t, (2.3)

where

Qμ(dw) := ∫Zμ(dx, dy) Q(x,y)(dw), ‖μ‖1/h :=
∥∥∥∥μ(dx, dy)

h(x, y)

∥∥∥∥
TV

.

Remarks.

� For the total variation norm, it is equivalent to consider either (X, Y) or (X, N).

� The constant 〈μ ∣∣ 1/h〉 in (2.3) is optimal up to a factor of 2, in the sense that for any
u> 0, we have ‖μ− u α‖1/h ≥ ‖μ− 〈μ ∣∣ 1/h〉β‖1/h/2 (cf. [32, Fact 2.3.8]).

� Since r tends to −∞ as ‖x‖ tends to ∞, it is natural to assume that mutations leading X
to be large have a very small probability of fixation. Notably, it means that we strongly
expect the upper bound of g in [H2], uniform over w.
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� Under Assumption [A], one may expect the real probability of fixation g(x, w) to be at
most of order O(‖w‖) for small values of w (and locally in x). In such a case, we can
allow ν to satisfy a smaller integrability condition than [H4] while forbidding observable
accumulation of mutations.

Corollary 2.1. Suppose that the assumptions [H] and [A] hold, except that ν
(
Rd
)=

∞. Suppose instead that
∫
Rd (‖w‖ ∧ 1) ν(dw)<∞, while g̃:(x,w) �→ g(x,w)/(‖w‖ ∧ 1) is

bounded on any K×Rd for K a compact set of Rd. Then the conclusions of Theorem 2.1 and
Theorem 2.2 hold true.

Proof of Corollary 2.1. (X, Y) is a solution of (S) if and only if it is a solution of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Xt = x − v t e1 +
∫

[0,t]×R
d×R+

w ϕ̃
(
Xs− , Ys, w, uf , ũg

)
M̃
(
ds, dw, duf , dug

)
,

Yt = y +
∫ t

0
ψ(Xs, Ys) ds + Bt,

(S̃)

where M̃ is a Poisson random measure of intensity ds ν̃(dw) duf dũg, with

ν̃(dw) := ν(dw)/(‖w‖ ∧ 1), ϕ̃(x, y, w, uf , ũg) = ϕ(x, y, w, uf , ũg · (‖w‖ ∧ 1)),

and with ϕ̃ defined as ϕ with g replaced by g̃.
Thanks to the condition on ν, [H4] holds with ν̃ instead of ν. Thanks to the condition on g,

[H2] still holds with g̃ instead of g. Assumptions [A] and [H5] are equivalent for the systems
(g, ν) and (̃g, ν̃). Consequently, if we prove Theorem 2.1 and Theorem 2.2 with [H2] and [H4],
the results follow under the assumptions of Corollary 2.1. �

2.3. Eco-evolutionary implications of these results

One of the major motivations for the present analysis is to make a distinction, as rigorously
as possible, between an environmental change to which the population can spontaneously adapt
and a change that imposes too much pressure. We recall that in [24], the authors obtain a
clear and explicit threshold for the speed of this environmental change. Namely, above this
threshold, the Markov process that they consider is transient, whereas below the threshold it
is recurrent. Thus, it might seem a bit frustrating that such a distinction (depending on the
speed value v) cannot be observed in the previous theorems. At least, these results prove that
the distinction is not based on the existence or the uniqueness of the QSD, nor even on the
exponential convergence per se.

In fact, the reason why this threshold is so distinct in [24] is that the model of [24] is
based on the following underlying assumption: the poorer the current adaptation is, the more
efficiently mutations are able to fix, provided that they are then beneficial. In our case, a pop-
ulation that is too poorly adapted is almost certainly doomed to rapid extinction, because the
population size cannot be maintained at large values. Instead, long-term survival is triggered
by dynamics that maintain the population as adapted. Looking back at the history of surviving
populations, it is likely that the process was mostly kept confined outside of deadly areas.

In order to establish this distinction between environmental changes that are sustainable
and those that endanger the population, we need a criterion that quantifies the stability of such
core regions. Our results provide two exponential rates whose comparison is enlightening: if
the extinction rate is of the same order as the convergence rate, or larger, this means that the

https://doi.org/10.1017/apr.2023.28 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.28


244 A. VELLERET

dynamics is strongly dependent upon the initial condition. If the convergence is much faster,
the dynamics will rapidly become similar, regardless of the initial condition. At least, this is
the case for initial conditions that are not too risky (i.e. where h is not too small). This criterion
takes into account the intrinsic sustainability of the mechanisms involved in the adaptation to
the current environmental change, but does not involve the specific initial state of adaptation.

Looking at the simulation results, the convergence in total variation indeed appears to hap-
pen at some exponential rate, provided that extinction does not abruptly wipe out a large part
of the distribution at a given time. However, it appears computationally expensive and not very
meaningful to use the decay in total variation to obtain a generic estimate of the exponential
rate at which the effect of the initial condition is lost. Although they are not as clearly justified,
it seems more practical to exploit the decay in time of the correlations of X and/or N starting
from the QSD profile. On the other hand, it does not seem very difficult to compare the extinc-
tion rate from this estimate. This is especially true in the case where X is of dimension one, as
one can directly estimate the dynamics of the density and thus the extinction rate. Furthermore,
it is quite reassuring to see that the choice between including and forbidding deleterious muta-
tions (for which the invasion probability is expected be positive but very small) is not crucial
in the present proof. We do not see much difference when looking at the simulations.

Much more can be said if we look at the simulation estimates of the QSD, the quasi-ergodic
distribution (QED), and the survival capacity. We plan to detail these simulation results in a
later article, but let us already give some insights into the comparison between the QSDs and
the QEDs provided in Appendix B.

We see that although the QSDs look very different at the three different values of mutation
rates, the QEDs are in fact very similar. When extinction plays a notable role, a tail appears
on the QSD from the area of concentration of the QED to an area where the population size
is close to zero. From the shape of the tail and the fact that it does not appear on the QED
or for larger mutation rate, we infer that it corresponds in some sense to a path towards rapid
extinction.

These regions are clearly more unstable than the core areas where the Q-process is kept
confined. This is probably due to this decline in population size when the level of maladapta-
tion becomes more pronounced. This confinement caused by conditioning upon survival only
weakens in the recent past. It is noticeable that the QSD may give mass to conditions (x, n) most
likely leading to extinction, provided the delay is sufficiently large before extinction actually
occurs.

2.4. Quasi-ergodicity of related models

The current paper completes the illustrations given in Subsection 4.2 of [31] and Sections
4–5 of [32]. Supposing the model of the current paper was in fact the original motivation for the
techniques presented in those two papers, we can focus more closely on each of the difficulties
identified thanks to these illustrations. In each of them, the adaptation of the population to its
environment is described by some process X which is a solution of some stochastic differential
equation of the form

Xt = x −
∫ t

0
Vs ds +

∫ t

0
�s · dBs +

∫
[0,t]×Rd×R+

w 1{u≤Us(w)} M(ds, dw, du),

where B is an Ft-adapted Brownian motion and M an Ft-adapted Poisson random measure. A
priori, Vs and�s depend on Xs, while Us depends on Xs− and possibly on a coupled process Nt

describing the population size. Like the product f (Ys) g(Xs−,w) in Equation (S), one specifies
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in Us(w) the rate at which a mutation of effect w invades the population at time s. The quan-
tity Vs relates both to the speed of the environmental change and to the mean effects of the
mutations invading the population at time s in a limit of very frequent mutations of very small
effects. The quantity �s then relates to the undirected fluctuations both in the environment and
in the effects of this large number of small fixing mutations.

We can relate the current coupling of X and N to an approximation given by the autonomous
dynamics of a process Y similar to X. For the approximation to be as valid as possible, the law
of Y should be biased by some extinction rate (depending at time t on the value Yt), and its
jump rate should be adjusted. By these means, we implicitly account for what would be the
fluctuations of N if X were around the value of Yt. This approximation is particularly reasonable
when the characteristic fluctuations of N around its quasi-equilibrium are much quicker than
the effect of the growth rate changing over time with the adaptation. Its validity is less clear
when the extinction has a strong effect on the establishment of the quasi-equilibrium.

The exponential quasi-stationary convergence is treated in Subsection 4.2 of [31] for a cou-
pling (X, N) that behaves as an elliptic diffusion, while Sections 4–5 of [32] deal with some
cases of a biased autonomous process Y that behaves as a piecewise deterministic process.
For such a process with jumps, it is manageable yet technical to deal with restrictions on the
allowed directions or sizes of jumps, while requiring Vt to stay at zero actually makes the proof
harder than choosing Vt := v · t.

In the current article, we treat the following two technical difficulties. Firstly, we handle
the combination of techniques specific to diffusion with those specific to piecewise deter-
ministic processes. Secondly, we treat more general restrictions on the jump effects, possibly
multidimensional, even in a case where a region of the state space is transitory.

While the proofs of (A1) and (A3) strongly depend on such local properties of the dynamics,
those of (A2) for these semigroups rely on a common intuition. Although we allow X to live in
an unbounded domain, the maladaptation of the process when it is far from the optimal position
constrains X to be kept confined conditionally upon survival. This effect of the maladaptation
has been modeled either directly on the growth rate of the coupled process Nt or using some
averaged description in terms of extinction rate. Such a confinement property for the coupled
process is in fact the main novelty of [31] and is notably illustrated in [31, Subsection 4.2.4].

For simplicity, we dealt there with a locally elliptic process, for which the Harnack inequal-
ity is known to greatly simplify the proof, as observed previously for instance in [13]. The
proof of this confinement is actually simpler with Y behaving as an autonomous process under
the pressure of a death rate, provided this rate goes to infinity outside of compact sets (by
adapting the proof of (A2) from [31, Subsection 4.1.2]).

Assume for now that the fluctuations of N are much quicker than the change of the growth
rate in the domain where the population is well adapted. Then we conjecture that considering
the autonomous process Y (including the bias by the extinction rate) instead of the coupled
process (X, N) would produce very similar results: the extinction rates and the rates of stabi-
lization to equilibrium in the two models should be close, while the QSD profile of X should
be similar to that of Y .

The drop in the quality of the approximation when extinction has a crucial contribution can
have only a limited effect for our purpose, which is to compare the extinction rate to the rate
of stabilization to equilibrium; see Subsection 2.3. Indeed, as long as the extinction rate is not
considerably larger than the rate of stabilization to equilibrium, such domains of maladaptation
are strongly avoided when looking at the past of surviving populations. On the other hand, the
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population is almost certainly doomed when it enters these domains, so that we should be able
to neglect the contribution to the extinction rate of the dynamics of the process there.

2.5. The mathematical perspective on quasi-stationarity

The subject of quasi-stationarity is now quite vast, and a considerable literature is dedi-
cated to it, as suggested by the bibliography collected by Pollett [28]. Some insights into the
subject can be found in general surveys like [9] or [29], or more specifically for population
dynamics in [23]. However, it appears that much remains to be done for the study of strong
Markov processes both on a continuous space and in continuous time, without any property of
reversibility. For general recent results, apart from [31] and [32], which we exploit, we refer
the reader to [14], [2], [8], [18], or [19]. The difficulty is increased when the process is discon-
tinuous (because of the jumps in X) and multidimensional, since the property of reversibility
becomes all the more stringent and new difficulties arise (cf. e.g. [6, Appendix A]).

Thus, ensuring the existence and uniqueness of the QSD is already a breakthrough, and we
are even able to ensure an exponential rate of convergence in total variation to the QSD, as well
as similar results on the Q-process. This model is in fact a very interesting illustration of the
new technique which we exploit. Notably, we see how conveniently our conditions are suited
for exploiting the Girsanov transform as a way to disentangle couplings (here between X and
N, which are respectively the evolutionary component and the demographic one).

Our approach relies on the general result presented in [32], which, as a continuation of [31],
was originally motivated by this problem. In [31], the generalization of the Harris recurrence
property at the core of the results of [10] is extended to deal with exponential convergence
which is not uniform with respect to the initial condition. The fine control thus obtained over
the MCNE opens the way for the approach developed in [32] to deal with continuous-time and
continuous-space strong Markov processes with discontinuous trajectories.

After their seminal article [10], Champagnat and Villemonais obtained quite a number of
extensions, for instance with multidimensional diffusions [7], processes that are inhomoge-
neous in time [11], and various examples of processes in a countable space, notably with the
use of Lyapunov functions; cf. [13] or [14]. Exploiting the result of [14], it may be possible to
ensure the properties of exponential quasi-ergodicity for a discontinuous process such as that
of this article, keeping a certain dependence on the initial condition. At least, the conditions
they provide as well as the ones from [2] are necessarily implied by our convergence result (cf.
[12, Theorem 2.3] or [2, Theorem 1.1]). Yet, in the approach of [14] for continuous-time and
continuous-space Markov process, the rather abstract assumption (F3) appears tightly bound
to the Harnack inequality. The similar Assumption (A4) in [2] is also left without further guid-
ance, while the assumption of a strong Feller property in [18] and [19] appears too restrictive.
For discontinuous processes, these two properties generally do not hold true, which is what
motivated us to look for an alternative statement in [32]. This technique is very efficient here.

This dependence on the initial condition is biologically expected, although its crucial impor-
tance becomes apparent when the population is already highly susceptible to extinction. For a
broader comparison of this approach with the general literature, we refer to the introduction of
[14] and the comparison with the literature provided in [31] and [32].

3. Proof of Proposition 2.1

Uniqueness. Step 1: a priori upper bound on the jump rate. Assume that we have a solution(
Xt, Yt
)

t≤T to (S) until some (stopping) time T (i.e. for any t< T) satisfying T ≤ t∨ ∧ Tm
Y ∧ Tn

X
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for some t∨ > 0, m, n ≥ 1 (see Equation (1.1)). We know from [H3] that the growth rate of
the population necessarily remains upper-bounded by some r∨ > 0 until T . Thus, we deduce a
stochastic upper bound

(
Y∨

t

)
t≥0 on Y , namely

Y∨
t = y +

∫ t

0
ψ∨(Y∨

s

)
ds + Bt, where ψ∨(y) = − 1

2 y
+ r∨ y

2
− γ y3, (3.1)

which is thus independent of M. Since ψ∨(y) ≤ r∨ y/2, it is classical that Y∨—and a fortiori
Y—cannot explode before T; see for instance [4, Lemma 3.3] or [22], where such a process is
described in detail.

Under [H2], the jump rate of X is uniformly bounded until T by

ν
(
Rd
) · sup
{
g(x′,w); x′ ∈ B̄(0, n),w ∈Rd

} · sup
{
f (y′); y′ ≤ sups≤t∨Y∨

s

}
<∞ a.s.

Step 2: identification until T. In any case, this means that the behavior of X until T is determined
by the value of M on a (random) domain associated to an a.s. finite intensity. Thus, we need
a priori to consider only a finite number K of ‘potential’ jumps, which we can describe as the
points
(
Ti

J,Wi,Ui
f ,Ui

g

)
i≤K in increasing order of times Ti

J .

From the a priori estimates, we know that for any t< T1
J ∧ T , Xt = x − v t. By the improper

notation t< T1
J ∧ T , we mean t< T1

J if K ≥ 1 (since T1
J < T by construction) and t< T if K =

0, i.e. when there is no potential jump before T . We then consider the solution Ŷ of

Ŷt = y + ∫ t
0ψ
(
x − v s, Ŷs

)
ds + Bt.

It is not difficult to adjust the proof of [33] to this time-inhomogeneous setting, with [H3],
so as to prove the existence and uniqueness of such a solution until any stopping time T ≤ τ̂∂ ,
where τ̂∂ := inf

{
t ≥ 0, Ŷt = 0

}
. Furthermore, Ŷ is independent of M and must coincide with

Y until T1
J ∧ T . Since T ≤ Tm

Y , the event
{
τ̂∂ < T1

J ∧ T
}

is necessarily empty. If there is no
potential jump before T , i.e. K = 0, we have identified

(
Xt, Yt
)

for t ≤ T as Xt = x − v t, Yt = Ŷt.
Otherwise, at time T1

J , we check whether U1
f ≤ f
(
Ŷ
(
T1

J

))
and U1

g ≤ g
(
x − v T1

J ,W1
)
. If this

holds, then necessarily X
(
T1

J

)= x − v T1
J + W1; otherwise X

(
T1

J

)= x − v T1
J . Doing the same

inductively for the following time-intervals
[
Tk

J , Tk+1
J

]
, we identify the solution (X, Y) until T .

Step 3: uniqueness of the global solution. Now consider two solutions (X, Y) and (X′, Y ′) of
(S), respectively defined up to τ∂ and τ ′

∂ as in Proposition 2.1, with, in addition, Xt = Yt = 0 for
t ≥ τ∂ , and X′

t = Y ′
t = 0 for t ≥ τ ′

∂ .
On the event

{
supm Tm

y = τ∂ ∧ τ ′
∂

}
, we deduce by continuity of Y ′ that Tm

y = T ′m
y , so that

τ∂ = τ ′
∂ . On the event

{
supn Tn

X = τ∂ ≤ τ ′
∂ <∞}, for any n and t∨ > 0 there exist m ≥ 1 and

n′ ≥ n such that

Tn
X ∧ t∨ < Tm

Y ∧ T ′m
Y and

∥∥X(Tn
X ∧ t∨
)∥∥ ∨ ∥∥X′(Tn

X ∧ t∨
)∥∥ < n′ <∞.

Thanks to Step 2, (X, Y) and (X′, Y ′) must coincide until T = (t∨ + 1) ∧ Tm
Y ∧ T ′m

Y ∧ Tn′
X ∧

T ′n′
X , where the previous definitions ensure that Tn

X ∧ t∨ < T (with the fact that X and X′ are
right-continuous). This proves that Tn

X ∧ t∨ = T ′n
X ∧ t∨, and with t∨, n → ∞ that τ ′

∂ = τ∂ .
By symmetry between the two solutions, we have that a.s. τ∂ = τ ′

∂ , Xt = X′
t for all t< τ∂ ,

and Xt = X′
t = 0 for all t ≥ τ∂ . This concludes the proof of the uniqueness.

Existence. We see that the identification obtained for the uniqueness clearly defines the solu-
tion (X, Y) until some T = T(t∨, n) such that either T = t∨ or YT = 0 or ‖XT‖ ≥ n. Thanks to
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the uniqueness property and the a priori estimates, this solution coincides with the ones for
larger values of t∨ and n. Thus, it does indeed produce a solution up to time τ∂ . �

4. Main properties leading to the proof of Theorem 2.1

4.1. General criteria for the proof of exponential quasi-stationary convergence

The proof of Theorem 2.1 relies on the set of assumptions (AF) presented in [32], which
we recall next. The assumptions (AF) are stated in the general context of a process Z that is
right-continuous with left limits (càdlàg) on a Polish state space Z , with extinction at a time
still denoted by τ∂ . The notation is changed from that of [32] to prevent confusion with the
current notation, Z corresponding now to the couple (X, Y).

We introduce the following notation for the exit and first entry times for any set D:

TD := inf {t ≥ 0; Zt /∈D} , τD := inf {t ≥ 0; Zt ∈D} . (4.1)

The assumptions involved in (AF) are the following:

(A0) There exists a sequence (D�)�≥1 of closed subsets of Z such that for any �≥ 1,
D� ⊂ int(D�+1) (with int(D) denoting the interior of D).

(A1) There exists a probability measure ζ ∈M1(Z) such that, for any �≥ 1, there exist L> �
and c, t> 0 such that

∀ z ∈D�, Pz
[
Zt ∈ dx; t< τ∂ ∧ TDL

]≥ c ζ (dz).

(A2) We have sup{z∈Z} Ez (exp [ρ (τ∂ ∧ τE)]) <∞.

(A3F) For any ε ∈ (0, 1), there exist t�, c> 0 such that for any z ∈ E there exist two stopping
times UH and V with the property

Pz
(
Z(UH) ∈ dz′; UH < τ∂

)≤ c Pζ
(
Z(V) ∈ dz′; V < τ∂

)
, (4.2)

as well as the following conditions on UH :
{
τ∂ ∧ t� ≤ UH

}= {UH = ∞}, and

Pz
(
UH = ∞, t� < τ∂

)≤ ε exp
(−ρ t�

)
. (4.3)

We further require that there exist a stopping time U∞
H extending UH in the following

sense:

� We have U∞
H := UH on the event

{
τ∂ ∧ UH < τ

1
E

}
, where τ 1

E := inf{s ≥ t�:Zs ∈ E}.
� On the event

{
τ 1

E ≤ τ∂ ∧ UH
}

and conditionally on Fτ 1
E
, the law of U∞

H − τ 1
E coin-

cides with that of Ũ∞
H for a realization Z̃ of the Markov process (Zt, t ≥ 0) with

initial condition Z̃0 := Z
(
τ 1

E

)
and independent of Z conditionally on Z

(
τ 1

E

)
.

The quantity ρ as stated in Assumptions (A2) and (A3F) is required to be strictly larger than
the following survival estimate:

ρS := sup

{
γ ≥ 0; sup

L≥1
inf
t>0

eγ t Pζ
(
t< τ∂ ∧ TDL

)= 0

}
∨ 0.
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We are now in a position to state (AF):

• (A1) holds for some ζ ∈M1(Z) and a sequence (D�)� satisfying (A0). Moreover, there
exist ρ > ρS and a closed set E such that E ⊂D� for some �≥ 1 and such that (A2) and
(A3F) hold.

As stated next by gathering the results of Theorems 2.2–2.3 and Corollary 2.2.7 of [32],
(AF) implies the convergence results that we aim for, noting that the sequence (D�)� will cover
the whole space. Some additional properties of approximations are also obtained, where the
process is localized to large DL by extinction.

Theorem 4.1. Provided that (AF) holds, the semigroup Pt associated to the process Z with
extinction at time τ∂ displays a uniform exponential quasi-stationary convergence with some
characteristics (α, h, λ) ∈M1(Z)×B(Z)×R.

Moreover, consider for any L ≥ 1 the semigroup PL for which the definition of τ∂ is replaced
by τL

∂ := τ∂ ∧ TDL . Then, for any L ≥ 1 sufficiently large, PL displays a uniform exponential
quasi-stationary convergence with some characteristics

(
αL, hL, λL

) ∈M1(DL)×B(DL)×R+.
The associated versions of (2.1) hold true with constants that can be chosen uniformly in L.
As L tends to infinity, λL converges to λ and αL, hL converge to α, h in total variation and
pointwise, respectively.

If in addition ∪�≥1D� =Z , then h is positive and the results of Theorem 2.2 on the Q-
process also hold true.

Remark. Under (AF), the Q-process can generally be defined on the set H := {z ∈Z; h(z)>
0}, and the fact that h is positive is not required or may be proved as a second step. The proof
of Theorem 4.1, however, provides a lower bound of h on any D�, so that Z = ∪�≥1D� is a
practical assumption for the proof that h is positive.

Remark. The assumption (A3F) appears quite technical, and its usage is the main focus of [32].
It is referred to as the ‘almost perfect harvest’ property; it makes it possible to upper-bound
the asymptotic survival probability from initial condition z as compared to the one from initial
condition ζ . To this end, a coupling is introduced between the process with initial condition z
and the one with initial condition ζ . A time shift is allowed in this coupling, which is initiated
at the ‘harvesting time’ UH for the first process and at the related stopping time V for the other
process. Thanks to (4.2) and to the Markov property, the densities of the marginals can then be
compared (up to a constant factor and this time shift), in a way that is sufficient for the required
comparison of survival. We simply need an upper bound on the time shift of the form of the
constant t�. Since failures where UH = ∞ while t� < τ∂ are allowed, this step is to be iterated,
and the probability of such failures is to be controlled through (4.3), in relation to the available
estimate for the decay in the survival probability.

For the proof of Theorem 2.1, the sequence (D�)�≥1 is defined as follows:

D� := B̄(0, �) × [1/�, �], (4.4)

where B̄(0, �) denotes the closed ball of radius � for the Euclidean norm.
Forbidding deleterious mutations in the case of unidimensional X will make our proof a bit

more complicated. This case is thus treated later on. The expression ‘with deleterious muta-
tions’ will be used a bit abusively to discuss the model under Assumption [D]. On the other
hand, the expression ‘with advantageous mutations’ will refer to the case where Assumption
[A] holds.
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These criteria are proved to hold true under the assumptions of Theorem 2.1 in
Theorems 4.2–4.6 below. We see in Subsection 4.2.1 how these theorems together with
Theorem 4.1 imply Theorem 2.1. In the next subsections, we then prove Theorems 4.2–4.6.
By first mentioning the mixing estimate, we wish to highlight the constraint on the reachable
domain under Assumption [A]. The order of the proofs is different and chosen for clarity of
presentation. The mixing estimates are handled similarly under the different sets of assump-
tions and are directly exploited in the proofs of the harvest properties. The escape estimates
are very close to those of previously considered models, so more easily dealt with.

4.2. The whole space is accessible: with deleterious mutations or d ≥ 2

4.2.1. Mixing property and accessibility. With deleterious mutations, the whole space becomes
accessible. In fact, this is also the case with only advantageous mutations, provided d ≥ 2.

Theorem 4.2. Suppose that the assumptions [H] hold. For d = 1, suppose Assumption [D]
holds. For d ≥ 2, suppose either Assumption [D] or Assumption [A]. Then, for any �I, �M ≥ 1,
there exist L> �I ∨ �M and c, t> 0 such that

∀ (xI, yI) ∈D�I , P(xI , yI )
[
(X, Y)t ∈ (dx, dy); t< τ∂ ∧ TDL

]≥ c 1D�M
(x, y) dx dy.

Remarks.

� Equation (4.1) is exploited when defining TDL := inf {t ≥ 0; (X, Y)t /∈DL}.
� Theorem 4.2 implies in particular that the density with respect to the Lebesgue measure

of any QSD is uniformly lower-bounded on any D�.
� In the case where Assumption [D] holds, L := �I ∨ �M + θ can be chosen. The choice

of t cannot generally be made arbitrary, at least for d = 1, since the lower bound on the
density of jump sizes is only valid for jumps of size close to θ . Under Assumption [A]
with d ≥ 2, the constraint that jumps must be advantageous makes the convenient choice
of L less clear.

4.2.2. Escape from the transitory domain.

Theorem 4.3. Suppose that the assumptions [H] hold. Then, for any ρ > 0, there exists �E ≥ 1
such that (A2) holds with E := D�E .

Remark. Heuristically, this means that the killing rate can be made arbitrarily large by adding
a killing effect when hitting some compact D� that sufficiently covers Z =R×R∗+.

4.2.3. Almost perfect harvest. We need some reference set on which our reference measure has
positive density. With the constants θ and η involved in [H4], let

Δ := B̄(−θ e1, η) × [1/2, 2]. (4.5)

This choice (which is rather arbitrary) is made in such a way that the uniform distribution on
Δ can be taken as the lower bound in the conclusions of Theorems 4.5 and 4.2.

Including deleterious mutations or with d ≥ 2, we will exploit the following theorem for
sets E of the form E := D�E , where �E is determined thanks to Theorem 4.3. But the theorem
holds generally for any closed subsets E of Rd ×R∗+ for which there exists �≥ 1 such that
E ⊂D�, a property that, for brevity, we denote by E ∈ D.

Theorem 4.4. Suppose that the assumptions [H] hold. For d = 1, suppose Assumption [D].
For d ≥ 2, suppose either Assumption [D] or Assumption [A]. Then, for any ρ > 0, ε ∈ (0, 1),
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and E ∈ D, there exist t�, c> 0 which satisfy the following property for any (x, y) ∈ E and
(xζ , yζ ) ∈Δ. There exist a stopping time UH such that{

τ∂ ∧ t� ≤ UH
}= {UH = ∞} and P(x,y)(UH = ∞, t� < τ∂ ) ≤ ε exp (−ρ t�),

and an additional stopping time V such that

P(x,y)
[
(X(UH), Y(UH)) ∈ (dx′, dy′); UH < τ∂

]
≤ c P(

xζ ,yζ
)[(X(V), Y(V)) ∈ (dx′, dy′); V < τ∂

]
. (4.6)

Moreover, there exists a stopping time U∞
H satisfying the following properties:

• U∞
H := UH on the event

{
τ∂ ∧ UH < τ

1
E

}
, where τ 1

E := inf
{
s ≥ t� : (Xs, Ys) ∈ E

}
.

• On the event
{
τ 1

E < τ∂
}∩ {UH = ∞}, and conditionally on Fτ 1

E
, the law of U∞

H − τ 1
E

coincides with that of Ũ∞
H for the solution

(
X̃, Ỹ
)

of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X̃r = X(τ 1
E) − v r e1 +

∫
[0,r]×R

d×(R+)2

w ϕ
(
X̃s− , Ỹs, w, uf , ug

)
M̃
(
ds, dw, duf , dug

)
,

Ỹr = Y(τ 1
E) +
∫ r

0
ψ
(
X̃s, Ỹs
)

ds + B̃r,

(4.7)
where r ≥ 0, and M̃ and B̃ are independent copies of M and B, respectively.

4.2.4. Proof of Theorem 2.1 as a consequence of Theorems 4.2–4.3.

• First, it is clear that the sequence (D�)� satisfies both (A0) and ∪�≥1D� =Z .

• (A1) holds true thanks to Theorem 4.2, where ζ is the uniform distribution over Δ—cf.
(4.5).

• Theorem 4.3 implies (A2) for any ρ, and we also require that ρ be chosen so that

ρ > ρS := sup

{
γ ≥ 0; sup

L≥1
inf
t>0

eγ t Pζ
(
t< τ∂ ∧ TDL

)= 0

}
∨ 0.

Thanks to [30, Lemma 3.0.2] and (A1), we know that ρS is upper-bounded by some
value ρ̃S. In order to satisfy ρ > ρS, we set ρ := 2ρ̃S. Thanks to Theorem 4.3, we deduce
E =D�E such that Assumption (A2) holds for this value of ρ.

• Finally, Theorem 4.4 implies that Assumption (A3F) holds true, for E and ρ. In the
adaptation of (4.6) where (xζ , yζ ) is replaced by ζ , V is specified by the initial condition
(xζ , yζ ) ∈Δ chosen uniformly according to ζ .

This concludes the proof of the assumptions (AF) with ∪�≥1D� =Z . Exploiting
Theorem 4.1, this implies Theorems 2.1 and 2.2 in the case where, besides the assumptions
[H], either Assumption [D] holds or d ≥ 2 and Assumption [A] holds. �

4.3. No deleterious mutations in the unidimensional case

4.3.1. Mixing property and accessibility. When only advantageous mutations are allowed and
d = 1, as soon as the size of jumps is bounded, the process can no longer access some portion
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of the space (there is a limit in the X direction). We could prove that the limit is related to the
quantity LA := sup {M; ν[2 M,+∞)> 0} ∈ (θ/2, ∞].

The accessible domains with maximal extension would then be of the form [−�, LA −
1/�] × [1/�, �], for some �≥ 1. To simplify the proof, however, the limit LA will not appear
in the statements below. We simply want to point out this potential constraint on the visited
domain. In fact, the X component is assumed to be negative in the following definition of the
accessibility domains:

�E := {[−L, 0] × [1/�, �]; L, �≥ 1}. (4.8)

Theorem 4.5. Suppose d = 1, and that the assumptions [H] and [A] hold. Then, for any �I ≥ 1
and E ∈�E, there exists L> �I and c, t> 0 such that the following lower bound holds for any
(xI, yI) ∈D�I :

P(xI , yI )
[
(Xt, Yt) ∈ (dx, dy); t< τ∂ ∧ TDL

]≥ c 1E(x, y) dx dy. (4.9)

Remark. Theorem 4.5 implies that the density with respect to the Lebesgue measure of any
QSD is uniformly lower-bounded on any E of the form given by (4.8).

Proof. Let α be a QSD, and E ∈�E. Since X = ∪�D� and α(X ) = 1, there exists �I such
that α(D�I )> 0. Let λ be the extinction rate of α. Let L, c, t be such that (4.9) holds for this
choice of E and �I . Then

α(dx, dy) = eλtαPt(dx, dy) ≥ (eλt · α(D�I

) · c
) · 1E(x, y) dx dy.

This concludes the proof of the above remark. �
4.3.2. Escape from the transitory domain.

Theorem 4.6. Suppose that d = 1, and the assumptions [H] and [A] hold. Then, for any ρ > 0,
there exists E ∈�E such that (A2) holds.

Remark. Heuristically, this means that the asymptotic killing rate can be made arbitrarily large
by adding killing when hitting some compact E that sufficiently covers R−×R∗+.

4.3.3. Almost perfect harvest.

Theorem 4.7. Suppose that the assumptions [H] and [A] hold. Then, for any ρ > 0, ε ∈ (0, 1),
and E ∈�E, there exist t�, c> 0 which satisfy the same property as in Theorem 4.4.

Remark. The definition of �E is chosen to apply for Theorems 4.5, 4.6, and 4.7 all together.

4.3.4. Proof of Theorem 2.1 as a consequence of Theorems 4.5–4.6. The argument being very
similar to the one for the case d ≥ 2 or with Assumption [D], we go through it only briefly:

• (A1) holds thanks to Theorem 4.5, again with the choice of ζ uniform on �.

• Thanks to Theorem 4.6, and similarly as in the proof exploiting Theorem 4.3 in
Subsection 4.2.4, we deduce that there exists E ∈�E such that (A2) holds with some
value ρ > ρS.

• Finally, (A3F) holds for these choices of ρ and E, thanks to Theorem 4.4.

This concludes the proof of the assumptions (AF) with ∪�≥1D� =Z . Exploiting
Theorem 4.1, it implies Theorems 2.1 and 2.2 in the case where d = 1 and the assumptions
[H] and [A] hold. �
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4.4. Structure of the proof

To allow for fruitful comparison, the proofs are gathered according to the properties
they ensure—(A1), (A2), and (A3F), respectively. We first prove Theorems 4.3 and 4.4 in
Subsections 5.1 and 5.2 respectively. Their proofs are directly adapted from the proof of [30,
Proposition 4.2.2]. We then prove Theorems 4.2 and 4.5 in Section 6, and finally Theorems 4.4
and 4.7 in Section 7.

5. Escape from the transitory domain

The most straightforward way to prove exponential integrability of first hitting times is
certainly via Lyapunov methods. However, we highly doubt that this can be achieved as easily
as we present next, given the interplay between the different domains on which the escape is
to be justified.

5.1. With deleterious mutations or d ≥ 2

Theorem 4.3 is a direct consequence of the following proposition, which is given as [30,
Proposition 4.2.2].

Proposition 5.1. Assume that (X, N) is a càdlàg process on Rd ×R+ such that N is a solution
to

dNt = (r(Xt) − c Nt) Nt dt + σ
√

Nt dBt,

where B is a Brownian motion. Assume that τ∂ is upper-bounded by inf{t ≥ 0;Nt = 0}. Provided
that lim sup‖x‖→∞ r(x) = −∞, it holds that for any ρ > 0, there exists n> 0 such that

sup{x∈X } Ex
(
exp
[
ρ (τ∂ ∧ τDn )

])
<∞.

The proof developed in the next subsection extends that of this result and is sufficient to
illustrate the technique.

5.2. Without deleterious mutations, d = 1

In this section, we prove Theorem 4.6, i.e., the following statement:

• Suppose that d = 1, and that the assumptions [H] and [A] hold. Then, for any ρ > 0, there
exists some set E ∈�E such that the exponential moment of τE ∧ τ∂ with parameter ρ is
uniformly upper-bounded as follows:

sup
(x,y)∈R×R+

E(x, y) (exp [ρ (τE ∧ τ∂ )]) <∞.

5.2.1. Decomposition of the transitory domain. The proof is very similar to that of [30,
Subsection 4.2.4] except that, by Theorem 4.7, the domain E cannot be chosen as large. We
thus need to consider another subdomain of T , which will be treated specifically thanks to
Assumption [A].

The complementary T of E is then made up of four subdomains: ‘y ≈ ∞’, ‘y ≈ 0’, ‘x> 0’,
and ‘‖x‖ ≈ ∞’, as shown in Figure 1. Thus, we make the following definitions:

• T Y∞ := {(−∞, −L) ∪ (0,∞)} × (y∞,∞)
⋃

[−�, 0] × [�,∞) (‘y ≈ ∞’),

• T0 := (−L, L) × [0, 1/�] (‘y ≈ 0’),
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FIGURE 1. Subdomains for (A2).
Until the process reaches E or extinction, it is likely to escape any region either from below or from the
side into T+, the reverse transitions being unlikely. As long as Xt > 0, ‖Xt‖ must decrease (see Fact 5.2.5
in Subsection 5.2.4). Once the process has escaped {x ≥ LA}, there is no way (via allowed jumps and v)
for it to reach it afterwards.

• T+ := (0, L) × (1/�, y∞] (‘x> 0’),

• T X∞ := {R \ (−L, L)} × (1/�, y∞] (‘|x| ≈ ∞’).

With some threshold t∨ (meant to ensure finiteness, but the effect will vanish as it tends to
∞), let us first introduce the exponential moments of each area (remember that τE is the hitting
time of E):

• EY∞ := sup(x, y)∈T Y∞ E(x,y)[ exp (ρ VE)],

• E0 := sup(x, y)∈T0
E(x,y)[ exp (ρ VE)],

• EX∞ := sup(x, y)∈T X∞ E(x,y)[ exp (ρ VE)],

• EX := sup(x, y)∈T+ E(x,y)[ exp (ρ VE)],

where VE := τE ∧ τ∂ ∧ t∨. Implicitly, EY∞, EX∞, EX , and E0 are functions of ρ, L, �, y∞ that
need to be specified.

5.2.2. A set of inequalities. The main ingredients for the following propositions are simple
comparison properties that are specific to each of the transitory domain. By focusing on each
of the domains separately (with the transitions between them), we can greatly simplify our
control on the dependency of the processes.

As in [30, Subsection 4.2.4], we first state some inequalities between these quantities,
summarized in Propositions 5.2, 5.3, 5.4, and 5.5 below. Using these inequalities, we prove
in Subsection 5.2.3 that those quantities are bounded. This will complete the proof of
Theorem 4.6.
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Proposition 5.2. Suppose that the assumptions [H] hold. Then, given any ρ > 0, there exist
y∞ > 0 and CY∞ ≥ 1 such that for any � > y∞ and any L> 0,

EY∞ ≤ CY∞ · (1 + EX∞ + EX
)

. (5.1)

Proposition 5.3. Suppose that the assumptions [H] hold. Then, given any ρ > 0, there exists
CX∞ ≥ 1 which satisfies the following property for any εX, y∞ > 0: there exist L> 0 and �X >

y∞ such that for any �≥ �X,

EX∞ ≤ CX∞ · (1 + E0 + EX)+ εX · EY∞. (5.2)

Proposition 5.4. Suppose that the assumptions [H] and [A] hold. Then, given any ρ, L>
0, there exists CX ≥ 1 which satisfies the following property for any ε+, y∞ > 0: for any �
sufficiently large (�≥ �+ > y∞),

EX ≤ CX · (1 + E0)+ ε+ · EY∞. (5.3)

Proposition 5.5. Suppose that the assumptions [H] hold. Then, given any ρ, ε0, y∞ > 0, there
exists C0 ≥ 1 which satisfies the following property for any L and for any � sufficiently large
(�≥ �0 > y∞):

E0 ≤ C0 + ε0 · (EY∞ + EX∞ + EX
)

. (5.4)

Propositions 5.2 and 5.3 are deduced from the estimates given in the following two lemmas,
which are stated as Lemmas 4.2.6 and 4.2.7 in [31], on autonomous processes of the form

ND
t := n +

∫ t

0

(
r − c · ND

s

) · ND
s ds +

∫ t

0
σ

√
ND

s dBs. (5.5)

Proposition 5.2 relies on the following property of descent from infinity, which is valid for any
value of r.

Lemma 5.1. Let ND be the solution of (5.5), for some r ∈R and c> 0, with n the initial
condition. Then, for any t, ε > 0, there exists n∞ > 0 such that

supn>0 Pn
(
t< τD↓
)≤ ε withτD↓ := inf

{
s ≥ 0, ND

s ≤ n∞
}

.

Proposition 5.4 relies on the strong negativity on the drift term, stated below.

Lemma 5.2. For any c, t> 0, with τD
∂ := inf

{
t ≥ 0, ND

t = 0
}
,

supn>0 Pn
(
t< τD

∂

) −→
r→−∞ 0.

Moreover, for any n, ε > 0, there exists nc such that, for any r sufficiently low, with TD∞ :=
inf
{
t ≥ 0, ND

t ≥ nc
}
, we have Pn

(
TD∞ ≤ t
)+ Pn
(
ND

t ≥ n
)≤ ε.

On the other hand, Proposition 5.5 relies on an upper bound given as a continuous-
state branching process, for which the extinction rate is much more explicit. The transition
probability can clearly be made arbitrarily small by choosing a sufficiently small initial
condition.

The only difference between the proofs in the current paper and those of [30, Appendices
A–D] is that here we distinguish transitions into T+, which makes the term EX appear with
factors CY∞, CX∞, and ε0, respectively. These proofs are provided in Appendix A for the sake
of completeness.

We prove next how to deduce Theorem 4.6 from the above set of four propositions. Then we
will prove Proposition 5.4. This proof should convey both the main novelty and the common
approach behind the proofs of these four propositions.
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5.2.3. Proof that Propositions 5.2–5.4 imply Theorem 4.6. We first prove that the inequalities
(5.2), (5.3), and (5.4) given by Propositions 5.2–5.4 imply an upper bound on EY∞ ∨ EX∞ ∨ EX ∨
E0 for sufficiently small εX , ε+ and ε0.

Assuming first that εX ≤ (2 CY∞
)−1, we have

EX∞ ≤ CX∞ (3 + 3 EX + 2 E0) , EY∞ ≤ CY∞ CX∞ (4 + 4 EX + 2 E0) .

Assuming additionally that ε+ ≤ (8 CY∞ CX∞
)−1, we have

EX ≤ CX (2 + 3 E0) , EX∞ ≤ CX∞ CX (9 + 11 E0) , EY∞ ≤ CY∞ CX∞ (12 + 14 E0) .

Assuming also that ε0 ≤ (60 CY∞ CX∞ CX
)−1 (and exploiting the fact that 2 × [14 + 11 + 3] ≤

60), we have

E0 ≤ 50 C0, EX ≤ 152 CX C0, EX∞ ≤ 559 CX∞ CX C0, EY∞ ≤ 712 CY∞ CX∞ C0.

In particular,

sup
(x,y)∈R×R+

E(x, y) (exp [ρ (τE ∧ τ∂ )])= EY∞ ∨ EX∞ ∨ EX ∨ E0 <∞.

Let us now specify the choice of the various parameters involved. For any given ρ, we
obtain from Proposition 5.2 the constant y∞, and CY∞, which gives us a value εX := (2 CY∞

)−1.
We then deduce, thanks to Proposition 5.3, some value for CX∞, �X , and L. We can then fix

ε+ := (8 CY∞ CX∞
)−1, and deduce, according to Proposition 5.4, some value CX and �+ > 0.

Now we fix ε0 := (60 CY∞ CX∞ CX
)−1 and choose, according to Proposition 5.4, some value

C0 and �0 > 0. To make the inequalities (5.2), (5.3), and (5.4) hold, we can just take � :=
�X ∨ �+ ∨ �0. With the calculations above, we then conclude Theorem 4.6 with E := [−L, 0] ×
[1/�, �]. �
5.2.4. Proof of Proposition 5.4: phenotypic lag pushed towards the negatives. Since the norm
of X decreases at rate at least v as long as the process stays in T̃+ := [0, L] ×R∗+, we know
that the process cannot stay in this area during a time-interval larger than t∨ := L/v. This effect
will give us the bound CX := exp (ρ L/v).

Moreover, we need to ensure that the transitions from EX to EY∞ are exceptional enough.
This is done exactly as for [30, Proposition 4.2.2], by taking �+ sufficiently larger than y∞.
The event of having the process reach �+ in the time-interval [0, t∨] is then exceptional enough.

More precisely, given L and � > y∞ ≥ 1 and initial condition (x, y) ∈ T+, let

CX := exp

(
ρ L

v

)
, T := inf {t ≥ 0; Xt ≤ 0} ∧ VE. (5.6)

Lemma 5.3. Suppose that the assumptions [H] and [A] hold. Then, for any initial condition
(x, y) ∈ T+, we have (X, Y)T /∈ T X∞ a.s., and

∀ t< T, Xt ≤ x − v t ≤ L − v t, so that T ≤ t∨ := L/v.

Thanks to Assumption [H4], an immediate induction on the number of jumps previous to
T ∧ t proves that the jumps of X can only make its value decrease (because it is positive, while
the absolute value must necessarily decrease). This proves Lemma 5.3. Consequently,

E(x,y)[ exp (ρVE)] = E(x,y)

[
exp (T); T = VE

]
+ E0 E(x,y)

[
exp (T); (X, Y)T ∈ T0

]
+ EY∞ E(x,y)

[
exp (T); (X, Y)T ∈ T Y∞

]
≤ CX (1 + E0)+ CX EY∞ Py∞

(
T↑ ≤ t∨

)
,
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where T↑ := inf
{

t ≥ 0; Y↑
t ≥ �
}
, and Y↑ is the solution of

Y↑
t := y∞ +

∫ t

0
ψ∨
(

Y↑
s

)
ds + Bt

(
again ψ∨(y) := − 1

2 y
+ r∨ y

2
− γ y3
)

.

We conclude the proof of Proposition 5.4 by noticing that Py∞
(
T↑ ≤ t∨

) −→
�→∞ 0. �

Given the proofs of Propositions 5.2, 5.3, and 5.5 provided in Appendix A and
Subsection 5.2.3, the proof of Theorem 4.6 is now completed. The proof of Theorem 4.3 is
sufficiently similar to be deduced without the need to refer to [30, Subsection 4.2.4].

6. Mixing properties and accessibility

In the following three subsections, before we turn to the proofs of Theorems 4.2 and 4.5,
we describe the common elementary properties upon which they rely. The first one gives the
trick for disentangling the behavior of the processes X and N up to a factor on the densities.
Subsection 6.2 deals with the mixing property for the Y process. These results are exploited
in Subsection 6.3 to obtain the elementary mixing properties that allow us to deduce (A2).
The next three subsections, starting from 6.4, deal respectively with the proof of Theorem 4.2
under Assumption [D], then with the proof of Theorem 4.2 under Assumption [A] and d ≥ 2,
and finally with the proof of Theorem 4.5.

General mixing properties

6.1. Construction of the change of probability under [H4]

The idea of this subsection is to prove that we can think of Y as a Brownian motion up to
some stopping time which will bound UH . If we get a lower bound for the probability of events
in this simpler setup, this will prove that we also get a lower bound in the general setup.

The limits of our control. Let tG, x∨ > 0, 0< y∧ < y∨, NJ ≥ 1. Our aim is to simplify the
law of (Yt)t∈[0,tG] as long as Y stays in [y∧, y∨], ‖X‖ stays in B̄(0, x∨), and at most NJ jumps
have occurred. Thus, let

TX := inf {t ≥ 0; ‖Xt‖ ≥ x∨} , TY := inf {t ≥ 0; Yt /∈ [y∧, y∨]} ,
g∨ := sup

{
g(x,w); ‖x‖ ≤ x∨,w ∈Rd

}
, f∨ := sup {f (y); y ∈ [y∧, y∨]} , (6.1)

J :=
{

(w, ug, uf ) ∈Rd × [0, f∨] × [0, g∨]
}
,

so that ν ⊗ dug ⊗ duf (J ) = ν
(
Rd
)

g∨ f∨ <∞.
Our Girsanov transform alters the law of Y until the stopping time

TG := tG ∧ TX ∧ TY ∧ UNJ , (6.2)

where
UNJ := inf { t; M([0, t] ×J ) ≥ NJ + 1 } . (6.3)

Note that the (NJ + 1)th jump of X will then necessarily occur after TG.

The change of probability. We define

Lt := −
∫ t∧TG

0
ψ(Xs, Ys)dBs, and Dt := exp

[
Lt − 〈L〉t/2

]
, (6.4)

the exponential local martingale associated with (Lt).
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Theorem 6.1. Suppose that the assumptions [H] hold. Then, for any tG, x∨ > 0 and y∨ >
y∧ > 0, there exists CG > cG > 0 such that, a.s. and for any t> 0, cG ≤ Dt ≤ CG. In particular,
Dt is a uniformly integrable martingale and βt = Bt − 〈B, L〉t is a Brownian motion under
PG

(x,y) defined as PG
(x,y) := D∞ · P(x,y). We deduce the following bounds, valid for any (x, y) ∈

Rd ×R+:
cG · PG

(x, y) ≤ P(x, y) ≤ CG · PG
(x, y).

On the event {t ≤ TG}, Yt = y + βt; i.e. Y has the law of a Brownian motion under PG
(x,y)

up to time TG. This means that we can obtain bounds on the probability of events involving
Y as in our model by considering Y as a simple Brownian motion. Meanwhile, the indepen-
dence between its variations as a Brownian motion and the Poisson process still holds by
Proposition 1.1.

6.1.1. Proof of Theorem 6.1. The proof is achieved by ensuring uniform upper bounds of Lt

and 〈L〉t, which correspond to L∞ and 〈L〉∞ for tG replaced by t ∧ tG.

Proof in the case where r is C1. Let

‖r‖G∞ := sup
{ |r(x)|; x ∈ B̄(0, x∨)

}
, (6.5)

‖r′‖G∞ := sup
{ |r′(x)|; x ∈ B̄(0, x∨)

}
. (6.6)

With ψ∨
G an upper bound of ψ on B̄(0, x∨) × [y∧, y∨] (deduced from [H3]), and recalling that

(X, Y) belongs to this subset until TG (see (6.2)), we have

〈L〉∞ =
∫ TG

0
ψ(Xs, Ys)

2ds ≤ tG · (ψ∨
G

)2. (6.7)

In the following, we look for bounds on
∫ TG

0 ψ(Xs, Ys)dYs, noting that

LTG +
∫ TG

0
ψ(Xs, Ys)dYs =

∫ TG

0
ψ(Xs, Ys)

2ds ∈ [0, tG · (ψ∨
G

)2]
,∫ TG

0
ψ(Xs, Ys)dYs =

∫ TG

0

(
− 1

2Ys
+ r(Xs) Ys

2
− γ · (Ys)

3
)

dYs.

Now, thanks to Itô’s formula,

ln
(
YTG

)= ln (y) +
∫ TG

0

1

Ys
dYs − 1

2

∫ TG

0

1

(Ys)2
ds.

Thus, ∣∣∣∣
∫ TG

0

1

Ys
dYs

∣∣∣∣≤ 2 (| ln (y∧)| ∨ | ln (y∨)|) + tG
2 (y∧)2

<∞. (6.8)

Secondly, (
YTG

)4 = y4 + 4
∫ TG

0
(Ys)

3dYs + 6
∫ TG

0
(Ys)

2ds.

Thus, ∣∣∣∣
∫ TG

0
(Ys)

3dYs

∣∣∣∣≤ (y∨)4/4 + 3 tG (y∨)2/2<∞. (6.9)
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Thirdly,

r
(
XTG−
) · (YTG

)2 = r(x) y2 + 2
∫ TG

0
r(Xs) Ys dYs

+
∫ TG

0
r(Xs) ds − v

∫ TG

0
r′(Xs) · (Ys)

2 ds

+
∫

[0,TG)×Rd×R+

(
r(Xs− + w) − r(Xs−)

) · (Ys)
2

× 1{uf ≤f (Ys)} 1{ug≤g(Xs− ,w)}M
(
ds, dw, duf , dug

)
. (6.10)

Since ∀s ≤ TG, Ys ∈ [y∧, y∨], from [H2] and (6.1) we get

∀ s ≤ TG, ∀ w ∈Rd, g(Xs−,w) ≤ g∨, f (Ys) ≤ f∨, and TG ≤ UNJ .

Since moreover TG ≤ TX ,

∫
[0,TG)×Rd×R+

(
r(Xs− + w) − r(Xs−)

) · (Ys)
2

× 1{uf ≤f (Ys)} 1{ug≤g(Xs− ,w)}M
(
ds, dw, duf , dug

)≤ 2 NJ ‖r‖G∞ (y∨)2,

so that (6.10) leads to

2

∣∣∣∣
∫ TG

0
r(Xs) Ys dYs

∣∣∣∣≤ (2 (NJ + 1) ‖r‖G∞ + ‖r′‖G∞ v tG
) · (y∨)2 + ‖r‖G∞ tG <∞. (6.11)

The inequalities (6.8), (6.9), and (6.11) combined with (6.7) allow us to conclude that L∞
and 〈L〉∞ are uniformly bounded. This proves the existence of 0< cG <CG such that a.s.
cG ≤ D∞ ≤ CG.

This statement is a priori adapted for tG replaced by t ∧ tG, yet these bounds are actually the
largest for t = tG. So this implies that cG ≤ Dt ≤ CG holds uniformly in t. The rest of the proof
is simply a classical application of Girsanov’s transform theory.

Extension to the case where r is only Lipschitz continuous. The inequalities (6.8) and (6.9) are

still true, so we show that we can find the same bound on
∣∣∣∫ TG

0 r(Xs) Ys dYs

∣∣∣ where we replace

‖r′‖G∞ by the Lipschitz constant ‖r‖G
Lip of r on B̄(0, x∨), by approximating r by C1 functions

that are ‖r‖G
Lip-Lipschitz continuous.

Lemma 6.1. Suppose r is Lipschitz continuous on B̄(0, x∨) for some x∨ > 0. Then there exists
rn ∈ C1

(
B̄(0, x∨),R

)
, n ≥ 1, such that

‖rn − r‖G∞ −→
n→∞ 0 and ∀ n ≥ 1, ‖r′

n‖G∞ ≤ ‖r‖G
Lip.

Proof of Lemma 6.1. We begin by extending r on Rd with rG(x) := r ◦�G(x), where �G is
the projection on B̄(0, x∨) (it is well known that r can be extended on B̄(0, x∨) with the same
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Lipschitz constant). Note that this extension rG is still ‖r‖G
Lip-Lipschitz continuous. If we now

define rn := rG ∗ φn ∈ C1, where (φn) is an approximation of the identity of class C1, then

∀ x, y, |rn(x) − rn(y)| =
∣∣∣∣
∫
Rd

(rG(x − z) − rG(y − z))φn(z)dz

∣∣∣∣
≤ ‖r‖G

Lip ‖x − y‖
∫
Rd
φn(z)dz = ‖r‖G

Lip ‖x − y‖.

It follows that
∀ n ≥ 1, ‖r′

n‖G∞ ≤ ‖r‖G
Lip, ‖rn − rG‖G∞ −→

n→∞ 0. (6.12)

�
Proof that Lemma 6.1 combined with the case r ∈ C1 proves Theorem 6.1. We just have

to prove (6.11) with ‖r‖G
Lip instead of ‖r′‖G∞. If we apply this formula for rn and exploit

Lemma 6.1, we see that there will be some C = C(tG, y∨,NJ)> 0 such that

2

∣∣∣∣
∫ TG

0
rn(Xs) Ys dYs

∣∣∣∣≤ (2 (NJ + 1) ‖r‖G∞ + ‖r‖G
Lip v tG
)

(y∨)2 + r∞ tG + C ‖r − rn‖G∞.

Thus, it remains to bound∣∣∣∣
∫ TG

0
(rn(Xs) − r(Xs)) · Ys dYs

∣∣∣∣≤ tG y∨ ψ∨
G ‖r − rn‖G∞ + |Mn| ,

where Mn := ∫ TG
0 (rn(Xs) − r(Xs)) Ys dBs has mean 0 and variance

E
(
(Mn)2)= E

(∫ TG

0
(rn(Xs) − r(Xs))

2 Ys
2 ds

)
≤ tG (y∨)2 (‖r − rn‖G∞

)2 −→
n→∞ 0.

Thus, we can extract some subsequence Mφ(n) which converges a.s. towards 0, so that a.s.,∣∣∣∣
∫ TG

0
r(Xs) Ys dYs

∣∣∣∣≤ lim inf
n→∞

{∣∣∣∣
∫ TG

0
rφ(n)(Xs) Ys dYs

∣∣∣∣+ tG y∨ ψ∨
G ‖r − rφ(n)‖G∞ + ∣∣Mφ(n)

∣∣}

≤ 1

2

(
2 (NJ + 1) ‖r‖G∞ + ‖r‖G

Lip v tG
)

· (y∨)2 + 1

2
‖r‖G∞ tG <∞.

The proof in the case r ∈ C1 can then be exploited without difficulty. �

6.2. Mixing for Y

The proof will rely on Theorem and on the following classical property of Brownian motion.

Lemma 6.2. Consider any constants b∨ > 0, ε > 0, and 0< t0 ≤ t1. Then there exists cB > 0
such that for any bI ∈ [0, b∨] and t ∈ [t0, t1],

PbI

(
Bt ∈ db; min

s≤t1
Bs ≥ −ε , max

s≤t1
Bs ≤ b∨ + ε

)
≥ cB · 1[0, b∨](b) db,

where B under PbI has by definition the law of a Brownian motion with initial condition bI.
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Thanks to this lemma and Theorem 6.1, we will be able to control Y to prove that it indeed
diffuses and that it stays in some closed interval IY away from 0. We can then control the
behavior of X independently of the trajectory of Y by appropriate conditioning of M—the
Poisson random measure—so as to ensure the jumps we need (conditionally on its remaining
in IY ).

Proof. Consider the collection of marginal laws of Bt, with initial condition b ∈ (−ε, b∨ +
ε), killed when it reaches −ε or b∨ + ε. It is classical that these laws have a density u(t;b, b′),
t> 0, b′ ∈ [−ε, b∨ + ε], with respect to the Lebesgue measure (cf. e.g. Bass [1, Section 2.4]
for more details). We have that u is a solution to the Cauchy problem with Dirichlet boundary
conditions

∂tu(t;bI, b) =�bu(t;bI, b) for t> 0, bI, b ∈ (−ε, b∨ + ε),

u(t;bI,−ε) = u(t;bI, b∨ + ε) = 0 for t> 0.

Thanks to the maximum principle (cf. e.g. Evans [17, Theorem 4, Subsection 2.3.3]), u> 0 on
R∗+×[0, b∨]×(−ε, b∨ + ε), and since u is continuous in its three variables, it is lower-bounded
by some cB on the compact subset [t0, t1]×[0, b∨]×[0, b∨]. �

6.3. Mixing for X

For clarity, we decompose the ‘migration’ along X into different kinds of elementary steps,
as already done in [32, Subsection 4.3.2]. Let

A := B̄(−θ e1, η/2), τA := inf {t ≥ 0; Xt ∈A , Yt ∈ [2, 3]} , (6.13)

where we assume without loss of generality that η≤ θ/8 (the interval [2, 3] is chosen
arbitrarily).

Under any of the three sets of assumptions considered in the following, the proof is achieved
in three steps. The first step is to prove that, with a lower-bounded probability for any initial
condition in D�, τA is upper-bounded by some constant tA. In the second step, we prove that
the process is sufficiently diffuse and that time shifts are not a problem. In the third step, we
specify which sets we can reach from A.

Recall that for any �≥ 1, TD�
:= inf {t ≥ 0; (X, Y)t /∈D�}< τ∂ . For n ≥ 3, let us define

T(n) := TD2n . For n ≥ 3 and t, c> 0, let

R(n)(t, c) :=
{

xF ∈Rd; ∀ (x0, y0) ∈A× [1/n, n],

P(x0,y0)
[
(X, Y)t ∈ (dx, dy); t< T(n)

]≥ c 1B(xF,η/2)(x) 1[1/n, n](y) dx dy
}

. (6.14)

We will prove the mixing on a global scale by translating local mixing properties into certain
induction properties of the sets (R(n)(t, c)){t,c>0}.

Several local mixing properties require local lower and upper bounds on g, so that they can
only be exploited in specific areas of Rd. In order to provide a general framework for these
through Proposition 6.1, let us consider the following increasing sequence of sets, indexed by
n ≥ 1:

Gn := {x ∈ B̄(0, n); ∀ z ∈ [0, η/4], ∀ δ ∈ B̄(0, η/2), ∀ w ∈ B̄(θ e1, η),

g(x − (θ − z)e1 + δ,w) ≥ 1/n,

and ∀ z ∈ [−θ, η/4], ∀ δ ∈ B̄(0, η/2), ∀ w ∈Rd,

g(x + ze1 + δ,w) ≤ n}.
These steps are deduced from the following elementary properties.
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Lemma 6.3. Suppose that the assumptions [H] hold. Then for any n ≥ 1 there exists cD > 0
such that the following lower bound holds for any (xI, yI) ∈Dn and

u ∈ [0, u∨(xI)], where u∨(x) := sup{u ≥ 0; (x − v u e1) ∈ B̄(0, n)}:
P(xI ,yI )
[
(Xu, Yu) ∈ (dx, dy); u< T(n)

]≥ cD δ{xI−v u e1}(dx) · 1[1/n,n](y) dy.

In particular, for any t, c> 0, n ≥ 3, the fact that x belongs to R(n)(t, c) implies the following
inclusion:

∀ u ∈ [0, u∨(x)], x − v u e1 ∈R(n)(t + u, c · cD).

The proof of Lemma 6.3 being easily adapted from that of the next proposition, it is deferred
until after the proof of the latter.

Proposition 6.1. For any n ≥ 3, there exist tP, cP > 0 such that for any xI ∈ Gn, for any x0 ∈
B(xI, η/4) and y0 ∈ [1/n, n],

P(x0,y0)
[
(X, Y)tP ∈ (dx, dy); tP < T(n)

]≥ cP 1B(xI , 3η/4)(x) 1[1/n, n](y) dx dy.

A direct application of the Markov property implies the following two results.

Corollary 6.1. For any n ≥ 3, there exist tP, cP > 0 such that for any t, c> 0, the following
inclusion holds: {

x ∈Rd; d(x,R(n)(t, c) ∩ Gn) ≤ η/4}⊂R(n)(t + tP, c · cP).

Lemma 6.4. There exists cB > 0 such that the following inclusion holds for any t, t′, c, c′ > 0
and any n ≥ 1, provided that −θ e1 ∈R(n)(t, c):

R(n)(t′, c′) ⊂R(n)(t + t′, cB · c · c′).
In the previous lemma, we may choose cB = Leb(B(xI, η/2))> 0.

Corollary 6.3. as a consequence of Proposition 6.1. For n ≥ 3, let tP, cP > 0 be prescribed
by Proposition 6.1. We consider xI ∈R(n)(t, c) ∩ Gn, xF such that ‖xF − xI‖ ≤ η/4. Combining
through the Markov property the fact that xI ∈R(n)(t, c) and Proposition 6.1, we deduce that
for any (x0, y0) ∈A× [1/n, n],

P(x0,y0)
[
(X, Y)t+tP ∈ (dx, dy); t + tP < T(n)

]
≥ c
∫

B(xI ,η/2)
dx′

0

∫ n

1/n
dy′

0 P(x′
0,y

′
0)
[
(X, Y)tP ∈ (dx, dy); tP < T(n)

]
≥ c · Leb(B(xI, η/4)) · (n − 1/n) · cP1B(xI , 3η/4)(x) 1[1/n, n](y) dx dy

≥ c · c′
P · 1B(xF, η/2)(x) 1[1/n, n](y) dx dy,

where c′
P := Leb(B(0, η/4)) · (n − 1/n) · cP > 0. This means that xF ∈R(n)

(
t + tP, c · c′

P

)
. The

proof of Corollary 6.1 is thus concluded with these choices of tP and c′
P, which are indeed

independent from xI , xF . �
Proof of Proposition 6.1.

Step 1: description of the random event. For n ≥ 3, we set tP := θ/v, tJ := η/(4v), y∧ :=
1/(2 n), y∨ := 2 n. Also, let

TY := inf {t ≥ 0; Yt /∈ [y∧, y∨]} , (6.15)

f∧ := inf {f (y); y ∈ [y∧, y∨]} , f∨ := sup {f (y); y ∈ [y∧, y∨]} . (6.16)
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We have that f∨ is finite by [H1]. Thanks to [H1, we also know that f∧ is positive.
On the event

{
tP < TY

}
, we shall prove that the values of X on [0, tP] are prescribed as

functions of M restricted to the subset

XM := [0, tP] ×Rd × [0, f∨] × [0, n]. (6.17)

Let x0 := xI + δ0, with xI ∈ Gn and δ0 ∈ B(0, η/4), and y0 ∈ [1/n, n], which we consider as
the initial conditions for the process (X, Y).

To ensure one jump of size around θ , at time nearly tP, while ‘deleting’ the contribution of
δ0, let

J := [tP − tJ, tP] × B(θ e1 − δ0, η/2) × [0, f∧] × [0, 1/n]. (6.18)

We partition XM =J ∪N , where N := XM \J . The main event under consideration is the
following:

W =W (x0,y0) := {tP < TY}∩ {M(J ) = 1} ∩ {M(N ) = 0} . (6.19)

Thanks to Theorem 6.1 (with x∨ := n + 2θ , tG = tP, and the same values for y∧ and y∨),
there exists cG > 0 such that

P(x0,y0)
(
(X, Y)tP ∈ (dx, dy); W

)≥ cG PG
(x0,y0)

(
(X, Y)tP ∈ (dx, dy); W

)
. (6.20)

Under the law PG
(x0,y0), the condition {M(J ) = 1} is independent of {M(N ) = 0}, of{

tP < TY
}
, and of YtP ; cf. Proposition 1.1. Thus, on the event W , the only ‘jump’ coded in

the restriction of M on J is given as (TJ, θ e1 − δ0 + W,Uf ,Ug), where TJ , Uf , and Ug are
chosen uniformly and independently on [tP − tJ, tP], [0, f∧], and [0, 1/n], respectively, while
θ e1 − δ0 + W are chosen independently according to the restriction of ν on B(θ e1 − δ0, 3η/4)
(see notably [15, Chapter 2.4]). Thanks to [H4], W has a lower-bounded density dW on
B(0, 3η/4).

The following lemma motivates this description.

Lemma 6.5. Under PG
(x0,y0), consider on the event W the random variable W = WJ − θe1 + δ0,

where
(
TJ,WJ,Uf ,Ug

)
is the only point encoded by M on J . Then a.s. XtP = xI + W and W

is included in
{
tP < T(n)

}
.

Step 2: proof of Lemma 6.5.

Step 2.1. We prove that on the event W defined by (6.19),

∀ t< TJ, Xt := x0 − v t e1. (6.21)

Indeed, tP < TY implies that for any t ≤ TJ , Yt ∈ [y∧, y∨]. Thanks to (6.16), any ‘potential
jump’
(
T ′

J,W ′,U′
f ,U′

g

)
such that T ′

J ≤ TJ and either U′
f > f∨ or U′

g > n will be rejected. Thanks
to the definition of TJ , with (6.17), (6.18), and (6.19), no other jump can occur; thus (6.21)
holds.

Note that, in order to prove this rejection very rigorously, we would like to consider the
first one of such jumps. This cannot be done for (X, Y) directly, but it is easy to prove for any
approximation of M where uf and ug are bounded. Since the result does not depend on these
bounds and the approximations converge to (X, Y) (and are even equal to it, before TJ , for
bounds larger than (f∨, n)), (6.21) indeed holds.
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Step 2.2. We then prove that the jump at time TJ is surely accepted.
Since xI ∈ Gn, by (6.15) and the definition of (TJ,W,Uf ,Ug),

Uf ≤ f∧ ≤ f (YTJ ), Ug ≤ 1/n ≤ g(x0 − v TJ e1, θ e1 − δ0 + W)

= g(XTJ−, θ e1 − δ0 + W).

Thus,

XTJ = xI + δ0 − v TJ e1 + θ e1 − δ0 + W

= xI + (θ − v TJ) e1 + W.

Step 2.3. We say that no jump can be accepted after TJ , which is proved as in Step 2.1. This
means that the following equalities hold for any t ∈ [TJ, tP]:

Xt = XTJ − v · (t − TJ) e1 = xI + W.

This concludes in particular the proof of Lemma 6.5 with t = tP = θ/v. �

Step 3. concluding the proof of Proposition 6.1.
Note that under PG, {M(N ) = 0} is also independent of

{
tP < TY

}
and of YtP , so that

PG
(x0,y0)

[
(X, Y)tP ∈ (dx, dy); W

]
= P(M(N ) = 0) · P(M(J ) = 1) · PG

y0

(
YtP ∈ dy; tP < TY)

× dW · 1B(xI , 3η/4)(x) dx. (6.22)

Thanks to (6.17) and (6.18),

P(M(N ) = 0) · P(M(J ) = 1)

= (tJ · f∧/n) · ν{B(θ e1 − δ0, 3η/4)} · exp
[−tP · f∨ · n · ν(Rd)]≥ cX, (6.23)

where the lower bound cX is chosen independently of x0 and y0 as follows:

cX := (tJ · f∧ · dW/n) · Leb{B(0, 3η/4)} · exp
[−tP · f∨ · n · ν(Rd)]> 0.

Thanks to Lemma 6.2 (recall the definitions of y∧ and y∨ at the beginning of this
subsection),

PG
y0

(
YtP ∈ dy; tP < TY)≥ cB 1[1/n, n](y) dy. (6.24)

Again, cB is independent of x0 and y0.
Thanks to (6.20), (6.22), (6.23), (6.24) and Lemma 6.5, the following lower bound is valid

for any x0 ∈ B(xI, η/4) and any y0 ∈ [1/n, n] with the constant value cP := cG cX cB dW > 0:

P(x0,y0)
[
(X, Y)tP ∈ (dx, dy); tP < T(n)

]≥ cP 1B(xI , 3η/4)(x) 1[1/n, n](y) dx dy.

This completes the proof of Proposition 6.1. �

Proof of Lemma 6.3. The proof of Lemma 6.3 relies on principles similar to those of
Proposition 6.1. In this case, tP is to be replaced by u ∈ [0, u∨(xI)], and the event under
consideration is simply the following:

W ′ := {u< TY}∩ {M([0, u] ×Rd × [0, f∨] × [0, n]) = 0
}

.
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The reasoning given for Step 2.1 can be applied to prove that for any t ≤ u, Xt := x0 − v t e1.
We also exploit Theorem 6.1 for the independence property between X and Y under PG

(xI ,yI ),
and we use Lemma 6.2 to control the diffusion along the Y coordinate. Note that cB can be
taken independently of xI , yI , and t (noting that t is uniformly upper-bounded by 2n). These
arguments conclude the proof of the lower bound on the marginal of (X, Y) on the event {t<
T(n)}.

The implication in terms of the sets R(n)(t, c) is obtained simply by exploiting the Markov
property, similarly to the way in which Corollary 6.1 is deduced as a consequence of
Proposition 6.1.

Application to the various sets of assumptions

6.4. Proof of Theorem 4.2 under Assumption [D]

We treat in this subsection the mixing of X when both advantageous and deleterious
mutations are occurring. More precisely, each step corresponds to each of the following
lemmas.

Lemma 6.6. Suppose that the assumptions [H] and [D] hold. Then, for any m ≥ 3, we can find
n ≥ m and c, t> 0 such that B̄(0,m) is included in R(n)(t, c).

Lemma 6.7. Suppose that the assumptions [H] and [D] hold. Then there exists n ≥ 3 which
satisfies the following property for any t1, t2 > 0: there exist tR > t1 and cR > 0 such that for
any t ∈ [tR, tR + t2] and (x0, y0) ∈A× [2, 3],

P(x0,y0)
[
(X, Y)t ∈ (dx, dy); t< T(n)

]≥ cR 1A(x) 1[2,3](y) dx dy.

Lemma 6.8. Suppose that the assumptions [H] and [D] hold. Then, for any �I > 0, there exist
cI, tI > 0 and n ≥ �I such that

∀ (x, y) ∈D�I , P(x,y)
(
τA ≤ tI ∧ T(n)

)≥ cI .

In the following subsections, we prove these three lemmas, then explain how Theorem 4.2
is deduced as a consequence of them.

6.4.1. Step 1: proof of Lemma 6.6. Let xI = −θ e1. Since g is positive and continuous under
Assumption [D], there exists n0 such that B̄(xI, η/2) is included in Gn0 . With t0, c0 being the
values associated to n0 through Proposition 6.1, we deduce that xI ∈R(n0)(t0, c0).

For m ≥ 3, let K := �4 ‖m + θ‖/η� + 1. Similarly, we can choose n1 such that B(0, m)
is a subset of Gn1 . Consider any xF ∈ B̄(0,m), and for 0 ≤ k ≤ K let xk := −θ e1 + (k/K) ·
(xF + θ e1). This choice is made to ensure that d(xk, xk+1) ≤ η/4 and that for all k ≤ K,
xk ∈ Gn1 . Thanks to Corollary 6.1, we deduce by immediate induction over k ≤ K that there
exist n2, tk, ck > 0 independent of xF such that xk ∈R(n2)(tk, ck). Furthermore, tk and ck are of
the form tk := t0 + k tP and ck:c0 · (cP)k. In particular, with k = K and n := n2, Lemma 6.6 is
proved. �
6.4.2. Step 2: proof of Lemma 6.7. We keep xI := −θ e1 and x1 := (−θ + η/2) e1. Thanks to
Lemma 6.6, there exist n, t1, c1 > 0 such that

{ xI + u e1; u ∈ [η/6, 5 η/6]} ⊂R(n)(t1, c1).

There exist t2, c2 > 0, thanks to Lemma 6.3, such that for all t ∈ [t2, t2 + 2 η/(3 v)], we have
xI ∈R(n)(t, c2). Applying Corollary 6.1 twice, with the knowledge that B(xI, η/2) is a subset

https://doi.org/10.1017/apr.2023.28 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.28


266 A. VELLERET

of Gn, we deduce that there exist t3, c3 > 0 such that

∀ t ∈ [t3, t3 + 2 η/(3 v)], A⊂R(n)(t, c3).

Inductively applying Lemma 6.4, we deduce the following for any k ≥ 1:

∀ t ∈ [k t3, k t3 + 2 k η/(3 v)], A⊂R(n)(t, c3 · [c3 · cB]k−1).
Let t1, t2 > 0 and consider k ≥ 1 sufficiently large for k t3 > t1 and 2 k η/(3 v)> t2 to hold.
Then Lemma 6.7 is proved with this value of n, tR := k t3, and cR := c3 · [c3 · cB]k−1. �
6.4.3. Step 3: proof of Lemma 6.8. As before, we can find n ≥ �I such that D�I ⊂ Gn. We go
backwards in time from A by defining, for t ≥ 0, c> 0,

R′(t, c) := {(x, y) ∈ Gn; P(x,y)
[
τA ≤ t ∧ T(n)

]≥ c
}

.

It is clear that A⊂R′(0, 1). Thanks to Proposition 6.1 and the Markov property, there exist
tP, cP > 0 such that, for any t, c> 0,{

x ∈ Gn; d(x,R′(t, c)) ≤ η/4}⊂R′(t + tP, c · cP).

Since D�I ⊂ Gn is bounded, an immediate induction ensures that there exist tI, cI > 0 such that
D�I ⊂R′(tI, cI). This concludes the proof of Lemma 6.8. �
6.4.4. Theorem 4.2 as a consequence of Lemmas 6.6–6.8. The proof is quite naturally adapted
from that of Lemma 3.2.1 in [32]. Note that for any n1 ≤ n2, T(n1) ≤ T(n2) ≤ τ∂ holds a.s.

Let �I, �M ≥ 0. According to Lemma 6.8, we can find cI, tI > 0 and n1 ≥ �I ∧ �M such that
for any (xI, yI) ∈D�I ,

P(xI ,yI )
(
τA ≤ tI ∧ T(n1)

)≥ cI . (6.25)

Also, let n2 ≥ n1, cR, tR > 0 be chosen, according to Lemma 6.7, to satisfy that for any t ∈
[tR, tR + tI] and (x0, y0) ∈A× [2, 3],

P(x0,y0)
[
(X, Y)t ∈ (dx, dy); t< T(n2)

]≥ cR 1A(x) 1[2,3](y) dx dy. (6.26)

Thanks to Lemma 6.6, since D�M is a bounded set, we know that there exist n ≥ n2, cF , and
tF > 0 such that for any (x0, y0) ∈A× [2, 3],

P(x0,y0)
[
(X, Y)tk ∈ (dx, dy); tk < T(n)

]≥ cF 1D�M
(x) 1[1/n, n](y) dx dy. (6.27)

The fact that n is larger than n1 and n2 implies without difficulty that (6.25) and (6.26) hold
with n1 and n2 replaced by n, which is how these statements are exploited in the following
reasoning.

Let tM := tI + tR + tF and cM := cI · cR · Leb(A) · cF . For any (xI, yI) ∈D�I , by combining
(6.26), (6.27), and the Markov property, we deduce that a.s. on the event

{
τA ≤ tI ∧ T(n)

}
,

P(X,Y)[τA]
[(

X̃, Ỹ
)
[tM − τA] ∈ (dx, dy); tM − τA < T̃(n)

]
≥ cF · P(X,Y)[τA]

[(
X̃, Ỹ
)
[tM − tF − τA] ∈A× [2, 3]; tM − tF − τA < T̃(n)

]
× 1D�M

(x) 1[1/n, n](y) dx dy

≥ cR · Leb(A) · cF · 1D�M
(x) 1[1/n, n](y) dx dy,
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where we have exploited the knowledge that τA ≤ tI to deduce that tM − tF − τA ∈ [tR, tR + tI].
By combining this estimate with (6.25) and again the Markov property, we conclude that

P(xI ,yI )
[(

XtM , YtM

) ∈ (dx, dy); tM < T(n)
]

≥ P(xI ,yI )(τA ≤ tI ∧ T(n)) · cR · Leb(A) · cF · 1D�M
(x) 1[1/n, n](y) dx dy

≥ cM 1D�M
(x) 1[1/n, n](y) dx dy.

This completes the proof of Theorem 4.2 with L = 2n, c := cM , and t := tM under Assumption
[D]. �

6.5. Proof of Theorem 4.2 under Assumption [A] and d ≥ 2

The proof of Theorem 4.2 under Assumption [A] and d ≥ 2 is handled in the same way as
the proof in Subsection 6.4.4. Notably, the lemmas that replace Lemmas 6.7–6.8 have identical
implications, as shown below.

Lemma 6.9. Suppose that d ≥ 2, and that the assumptions [H] and [A] hold. Then, for any
m ≥ 3, we can find n ≥ m, t, c> 0 such that B̄(0,m) is included in R(L)(t, c).

Lemma 6.10. Suppose that d ≥ 2, and that the assumptions [H] and [A] hold. Then there
exists n ≥ 3 which satisfies the following property for any t1, t2 > 0: there exist tR > t1 and
cR > 0 such that, for any t ∈ [tR, tR + t2] and (x0, y0) ∈A× [2, 3],

P(x0,y0)
[
(X, Y)t ∈ (dx, dy); t< T(n)

]≥ cR 1A(x) 1[2,3](y) dx dy.

Lemma 6.11. Suppose that d ≥ 2, and that the assumptions [H] and [A] hold. Then, for any
�I > 0, there exist cI, tI > 0 and n ≥ �I such that

∀ (x0, y0) ∈D�I , P(x0,)(τA ≤ tA ∧ T(n)) ≥ cA. (6.28)

Since the implications are the same, the proof of Theorem 4.2 under Assumption [A] with
d ≥ 2 as a consequence of Lemmas 6.9–6.11 is mutatis mutandis the same as the proof given
in Subsection 6.4.4. However, since deleterious mutations are now forbidden, the proof of
Lemma 6.9 is much trickier than that of Lemma 6.6. The first step is given by the following
two lemmas. To this end, given any direction u on the sphere Sd of radius 1, we denote its
orthogonal component by

x(⊥u) := x − 〈x, u〉u, and specifically for e1, x(⊥1) := x − 〈x, e1〉e1. (6.29)

Lemma 6.12. Suppose that d ≥ 2, and that the assumptions [H] and [A] hold. Then, for any
x∨ > 0, there exists ε ≤ η/8 which satisfies the following property for any n ≥ 3 ∨ (2 θ ), x ∈
B(0, n), and u ∈ Sd such that both 〈x, u〉 ≥ θ and ‖x(⊥u)‖ ≤ x∨: there exist tP, cP > 0 such that
for any t, c> 0,

x ∈R(n)(t, c) ⇒ B̄(x − θ u, ε) ⊂R(n)(t + tP, c · cP).

Lemma 6.13. Suppose that d ≥ 2, and that the assumptions [H] and [A] hold. Then, for any
m ≥ 3 ∨ (2 θ ), there exists ε ≤ η/8 which satisfies the following property for any x ∈ B(0,m)
with 〈x, e1〉 ≤ 0: there exist tP, cP > 0 such that

∀ t, c> 0, x ∈R(L)(t, c) ⇒ B̄(x, ε) ⊂R(L)(t + tP, c · cP).

Lemma 6.13 is actually directly implied by Lemma 6.3 (first applied for a time-
interval [0, θ/v]), then Lemma 6.12 with u := e1, combined with the Markov property.
Subsection 6.5.1 is dedicated to the proof of Lemma 6.12.
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6.5.1. Step 1: proof of Lemma 6.12. Fix x∨ > 0. Consider ε > 0; this will be fixed later, but
assume already that ε ≤ θ/8. We recall that η≤ θ/8 is assumed without loss of generality. Let
n ≥ 3 ∨ (2θ ), x0 ∈ B(0, n), and u ∈ Sd be such that both 〈x0, u〉 ≥ θ and ‖x(⊥u)

0 ‖ ≤ x∨ hold.
Compared to Proposition 6.3, the first main difference is that the jump is now almost instan-

taneous. The second is that, in order to have g∧ > 0, we have much less choice in the value of w
when ‖x(⊥u)‖ is large. In particular, the variability of any particular jump will not be sufficient
to wipe out the initial diffusion around x deduced from x ∈R(n)(t, c), but rather will make it
even more diffuse.

To fix ε > 0, let us first compute, for δ ∈ B(0, η) and w ∈ B(−θ u, ε),

‖x0 + δ‖2 − ‖x0 + δ + w‖2 = 2 〈x0 + δ,w〉 − ‖w‖2

≥
(

7

4
− 9

8
×
(

1

4
+ 9

8

))
θ2 − 2 ε x∨,

where we have exploited that 〈u,w〉 ≥ 7 θ/8. We note that

c := 7

4
− 9

8
×
(

1

4
+ 9

8

)
= 13

64
> 0.

By taking ε := {c θ2/(4 x∨)} ∧ η (recall that η≤ θ/8), we thus ensure that ‖x0 + δ‖2 > ‖x0 +
δ + w‖2. Note that ε does not depend on the specific choice of x0.

Let tP := ε/(2 v). The initial condition for X, Y is taken as xI ∈ B(x, η/2) and yI ∈ [1/n, n].
Let

g∧ := inf
{

g(x,w); x ∈ B̄(x0, η) , w ∈ B̄(−θ u, ε)
}
> 0,

XM := [0, tP] ×Rd × [0, f∨] × [0, n],

J := [0, tP] × B(−θ u + (ε/2) e1, ε/2) × [0, f∧] × [0, g∧].

With the same reasoning as in the proof of Proposition 6.1, we obtain a change of probability
PG

(xI ,yI ) and an event W on which the random variable W is uniquely defined from M under

PG
(xI ,yI ), and such that it satisfies, a.s.,

XtP = xI − (ε/2) e1 − θ u + (ε/2) e1 + W = xI − θ u + W,

where the density of W is lower-bounded by dW on B(0, ε/2), uniformly over xI (given x) and
yI . We thus similarly obtain some constants cP, c′

P > 0 independent of x0 such that for any such
x0, ∫

B(x0,η/2)
dxI

∫
[1/n, n]

dyI P(xI ,yI )
[
(X, Y)tP ∈ (dx, dy); tP < T(n)

]
≥ cP

∫
B(x0,η/2)

dxI1B(xI−θ u, ε/2)(x) · 1[1/n, n](y) dx dy

≥ c′
P 1B(x0−θ u, η/2+ε/3)(x)1[1/n, n](y) dx dy.

We then reason similarly as in the proof of Corollary 6.1 as a consequence of Proposition 6.1.
Assuming further that x0 ∈R(n)(t, c) for some t, c> 0, we can deduce that

B(x − θ u, ε/3) ⊂R(n)(t + tP, c · cP).

This is exactly the implication of Lemma 6.12, stated in terms of ε/3 instead of ε. �

https://doi.org/10.1017/apr.2023.28 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.28


Quasi-stationary mode of adaptation to a changing environment 269

6.5.2. Step 2: Lemma 6.9 as a consequence of Lemmas 6.13 and 6.12.

Step 2.1: xI ∈R(n0)(t0, c0). Let xI := −θe1. We check that there exists n1 ≥ 1 such that
B(xI, η/2) is a subset of Gn1 . Since g is continuous, and thanks to Assumption [A], it is sufficient
to prove that ‖xI − ze1 + δ‖> ‖xI − ze1 + δ+ w‖ holds for any z ∈ [0, θ ], δ ∈ B̄(0, η), and w ∈
B̄(θ e1, η):

‖xI − ze1 + δ‖2 − ‖xI − ze1 + δ + w‖2 = 2〈(θ + z)e1 − δ,w〉 − ‖w‖2

≥ 2 [θ · (θ − η) − η · (θ + η)] − (θ + η)2

= θ2 − 6 θ η− 3 η2 ≥ 13θ2

64
> 0,

since η≤ θ/8, as assumed above, just after (6.13). Applying Proposition 6.1 twice, we
conclude that there exist n0 ≥ 1, t0, c0 > 0 such that xI ∈R(n0)(t0, c0).

Step 2.2: under the condition that 〈xF, e1〉 := −θ . The purpose of this step is to prove the
following lemma, in which we employ the notation π1:x �→ 〈x, e1〉.
Lemma 6.14. For any n ≥ 1 sufficiently large, there exist t, c> 0 such that π−1

1 (−θ ) ∩ B(0, n)
is a subset of R(n)(t, c).

Let xF ∈ π−1
1 (−θ ) ∩ B(0, n), where we assume that n is larger than n0, 3, and 2θ . First,

we define u as e1 if x(⊥1)
F = 0 and as u := x(⊥1)

F /
∥∥x(⊥1)

F

∥∥ otherwise. Note that
∥∥x(⊥1)

F

∥∥≤ n.
We consider the value of ε given by Lemma 6.13 for x∨ := n and make the following
definitions:

K := �nε� + 1, and for 0 ≤ k ≤ K, xk := −θ e1 + k
∥∥x(⊥1)

F

∥∥
K

u.

This choice ensures that for any k ∈ [[0,K − 1]], xk+1 ∈ B(xk, ε), while xk ∈ B(0, n), 〈xk
∣∣ e1〉 ≤

0, and xK = xF . Thanks to Step 2.1, x0 ∈R(n)(t0, c0). Thus, by induction over k ≤ K with
Lemma 6.13, xk ∈R(n)

(
t0 + k tP, c0 [cP]k

)
. In particular, there exist t, c> 0 such that x ∈

R(n)(t, c), which concludes Step 2.2.

Step 2.3: the general case. Assume solely that x ∈B(0,m). We consider the value of ε given
by Lemma 6.12 for x∨ := m. The choice of u is as in Step 2.2.

Let

K :=
⌊

m + θ

ε

⌋
+ 1, so that

〈x, e1〉 + θ

K
≤ ε, (6.30)

and for 0 ≤ k ≤ K, let

xk := (−θ + (k/K) · (〈x, e1〉 + θ )) e1 + (K − k) θ u + x(⊥1).

In particular 〈x0, e1〉 = −θ , and xK = xF , while for any k ≤ K − 1, xk+1 ∈ B(xk, ε), xk ∈
B(0,m + K θ ), and 〈xk, u〉 ≤ θ ∨ 〈x, e1〉 ≤ m = x∨.

Since 〈x0, e1〉 = −θ , we can exploit Lemma 6.14 to prove that there exist n ≥ 1 and t0, c0 >

0 independent of xF such that x0 ∈R(n)(t0, c0). Thanks to Lemma 6.12 and induction on k, we
deduce that there exist tP, cP > 0 such that xk ∈R(n)(t0 + k tP, c0 [cP]k). In particular, there
exist t, c> 0 such that xF ∈R(n)(t, c). �
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6.5.3. Step 3: proof of Lemma 6.10. The proof can be taken mutatis mutandis from the one
given in Subsection 6.4.2. The fact that B(xI, η/2) is a subset of Gn1 is already proved
in Step 2.1 (cf. Subsection 6.5.2), while Lemma 6.9 replaces Lemma 6.6, with identical
implications. �
6.5.4. Step 4: proof of Lemma 6.11. Remark. The proof presented here efficiently exploits the
lemmas we have already established but is probably very far from optimal in its estimates.

Step 4.1: study of Gn. We look for conditions on x ∈Rd that ensure that it belongs to Gn

for some n. Let xθ := x − (θ − η/2)e1. By definition of Gn, it is necessary that g(xθ − ze1 +
δ,w)> 0 for any z ∈ [0, η/4], δ ∈ B̄(0, η/2), and w ∈ B̄(θ e1, η). The latter is equivalent, under
Assumption [A], to ‖xθ − ze1 + δ‖> ‖xθ + ze1 + δ + w‖. We first restrict ourselves to the
values of x such that π1(x) ≤ 0, and we compute

‖xθ − ze1 + δ‖2 − ‖xθ + ze1 + δ + w‖2 = −2〈xθ + ze1 + δ,w〉 − ‖w‖2

≥ 2 (−π1(xθ ) − η/2) · (θ − η) − 2
(∥∥x(⊥1)

∥∥+ η/2
) · η− (θ + η)2

≥ (−(7/32) · π1(xθ ) − ∥∥x(⊥1)
∥∥/4) · θ + (7/4) · (θ − η/2) · (θ − η)

− η · (θ − η) − η2 − (θ + η)2.

≥ (−(7/32) · π1(xθ ) − ∥∥x(⊥1)
∥∥/4) · θ + (7 × 15 × 7 − 8 × 7 − 8 − 8 × 81) · θ2/29

≥ (−(7/32) · π1(xθ ) − ∥∥x(⊥1)
∥∥/4) · θ + 23 · θ2/29.

From these computations, we see that g(xθ − ze1 + δ,w)> 0 holds true provided π1(x) ≤ 0 and
|π1(xθ )| ≥ (8/7) · ∥∥x(⊥1)

∥∥, and thus, a fortiori, if |π1(x)| ≥ (8/7) · ∥∥x(⊥1)
∥∥. Since g is continu-

ous, we deduce that for any m ≥ 1, there exists n ≥ 1 such that Gn contains the following set:

{x ∈ B(0,m); − π1(x) ≥ (8/7) · ∥∥x(⊥1)
∥∥}.

Step 4.2: Let �I ≥ 1. Thanks to Step 4.1, we can find n ≥ �I ∨ 3 such that Gn contains the
following set:

A1 := {x ∈ B(0, 2�I); − π1(x) ≥ (8/7) · ∥∥x(⊥1)
∥∥}.

We go backwards in time from A by defining, for t ≥ 0, c> 0,

R′(t, c) := {(xI, yI) ∈ Gn; P(xI ,yI )
[
τA ≤ t ∧ T(n)

]≥ c
}

.

Similarly as for the proof of Lemma 6.8, by inductively applying Proposition 6.1, we deduce
that A1 is a subset of R′(t1, c1) for some t1, c1 > 0.

Consider now any xI ∈ B̄(0, �I). If xI /∈A1, let u∗ := 8
∥∥x(⊥1)
∥∥/(7v) + π1(x)/v and x1 :=

x − v u∗e1 ∈A1. If xI ∈A1, we simply define x1 := xI and u∗ := 0. Since
∥∥x(⊥1)
∥∥≤ �I , this

choice necessarily satisfies 0 ≤ −π1(x1) = 8
∥∥x(⊥1)
∥∥/7 ≤ 8n/7. In any case, x1 ∈ B(0, 2�I), and

thus x1 ∈A1. Since A1 ⊂R′(t1, c1), and thanks to Lemma 6.3, there exists a value cD > 0,
uniform over x, such that xI ∈R′(t1 + u∗, c1 · cD). Since u∗ is upper-bounded by 2�I and the
sets R′(t, c) are increasing with t, we conclude that B̄(0, �I) is a subset of R′(t2, c2) with
t2 := t1 + 2�I and c2 := c1 · cD. This completes the proof of Lemma 6.11. �

As mentioned at the beginning of Subsection 6.5, the last step of the proof of Theorem 4.2
can be taken mutatis mutandis from Subsection 6.4.4. With this, the proof of the theorem is
complete.
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6.6. Proof of Theorem 4.5

We treat in this subsection the mixing for X when only advantageous mutations are
occurring and the phenotype is unidimensional. The proof of Theorem 4.2 is handled under
Assumption [A] and d ≥ 2 in the same way as in Subsection 6.4.4, except that Lemmas 6.7–6.8
are replaced by the following ones, in the respective order. Note that only the first lemma has
a different implication.

Lemma 6.15. Suppose that d = 1, and that the assumptions [H] and [A] hold. Then, for any
m ≥ 3, there exist n ≥ m, t, c> 0 such that [−m, 0] is included in R(n)(t, c).

Lemma 6.16. Suppose that d = 1, and that the assumptions [H] and [A] hold. Then there
exists n ≥ 3 which satisfies the following property for any t1, t2 > 0: there exist tR > t1 and
cR > 0 such that, for any t ∈ [tR, tR + t2] and (x0, y0) ∈A× [2, 3],

P(x0,y0)
[
(X, Y)t ∈ (dx, dy); t< T(n)

]≥ cR 1A(x) 1[2,3](y) dx dy.

Lemma 6.17. Suppose that d = 1, and that the assumptions [H] and [A] hold. Then, for any
�I > 0, there exist c, t> 0 and n ≥ �I such that

∀ (xI, yI) ∈D�I , P(xI ,yI )
(
τA ≤ t ∧ T(n)

)≥ c. (6.31)

Step 1: proof of Lemmas 6.15 and 6.16. Considering the calculations given in Step 4.1 (in
Subsection 6.5.4), in this case where there is no contribution from x(⊥1), we can conclude that
for any m, there is n ≥ m such that [−m, 0] is included in Gn. Adapting the reasoning given in
Subsections 6.4.1 and 6.4.2, respectively, we can directly conclude the proofs of Lemmas 6.15
and 6.16.

Note that the set first introduced in the proof of Lemma 6.7 here takes the form [−θ +
η/6,−θ + 5η/6]. It is included in [−m, 0] for any choice of m ≥ θ , so that Lemma 6.15 can
indeed replace Lemma 6.6. �

Step 2: proof of Lemma 6.17. Let (xI, yI) ∈D�I .

Case 1: xI ≥ −θ . Thanks to Lemma 6.3 with u := xI + θ , there exist t+, c+ > 0 which
satisfy the following property for any (xI, yI) ∈D�I such that xI ≥ −θ :

P(xI ,yI )
(
τA ≤ t+ ∧ T(n)

)≥ c+.

Case 2: xI <−θ . We recall from the proof of Lemma 6.15 that there exists n ≥ 1 such that
[−�I, 0] is included in Gn. In this set, the proof of Lemma 6.8 (given in Subsection 6.4.3) can
be directly exploited to prove that there exist t−, c− > 0 which satisfy the following property
for any (xI, yI) ∈D�I such that xI ≤ 0:

P(xI ,yI )
(
τA ≤ t− ∧ T(n)

)≥ c−.

The combination of these two cases with t := t+ ∨ t− and c := c+ ∧ c− concludes the proof
of Lemma 6.17. �

Step 3: concluding the proof of Theorem 4.5. If we replace Lemmas 6.6, 6.7, and 6.8
by Lemmas 6.15, 6.16, and 6.17 in the proof given in Subsection 6.4.4, it is clear that the
conclusion of Theorem 4.5 is reached. �
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7. Almost perfect harvest

7.1. Proof of Theorem 4.4 in the case d = 1

7.1.1. Definition of the stopping time and its elementary properties. We consider a first process
(X, Y) with some initial condition (xE, yE) ∈ E.

We will prove that considering UH = t� is sufficient, except for exceptional behavior of the
process. Given ε, ρ > 0, t� shall be chosen sufficiently small to ensure that, with probability
close to 1 (the thresholds depending on ε and ρ), no jump has occurred before time t�, and that
the population size has not changed too much. We define

δy := (3 �E(�E + 1)
)−1

, y∧ := 1/(�E + 1) = 1/�E − 3 δy, y∨ := �E + 1> �E + 3 δy,

Tδy := inf {t ≥ 0; |Yt − yE| ≥ 2 δy}< τ∂ . (7.1)

We recall that we can upper-bound the first jump time of X by

TJ := inf {t ≥ 0; M([0, t] ×J ) ≥ 1} , (7.2)

where J is defined as in Subsection 6.1.

• On the event
{
t� < Tδy ∧ TJ ∧ τ∂

}
, we set UH := t�.

• On the event
{
Tδy ∧ TJ ∧ τ∂ ≤ t�

}
, we set UH := ∞.

Before we turn to the details of the proof of Theorem 4.4, we first give the main scheme
for proving the following lemma, noting that we will not go too deeply into the details of this
proof.

Lemma 7.1. We can define a stopping time U∞
H extending the above definition of UH as

described in Theorem 4.4.

7.1.2. Step 1: main argument for the proof of Lemma 7.1. Recall (with simplified notation) that
considering the process (X, Y) with initial condition (x, y), we define, for some t> 0, UH := t
on the event {t< Tδy ∧ TJ}, and UH := ∞ otherwise, where

Tδy := inf {s ≥ 0; |Ys − y| ≥ 2 δy}< τ∂ for some δy> 0,

TJ := inf {s ≥ 0; M([0, s] ×J ) ≥ 1} ,
J := Rd × [0, f∨] × [0, g∨] for some f∨, g∨ > 0.

Recursively, we also define

τ i+1
E := inf

{
s ≥ τ i

E + t:Xs ∈ E
}∧ τ∂ , and τ 0

E = 0,

and on the event
{
τ i

E < τ∂
}
, for any i, we set

Ti
δy := inf

{
s ≥ τ i

E;
∣∣Ys − Y

(
τ i

E

)∣∣≥ 2 δy
}
,

Ui
j := inf

{
s ≥ 0; M

([
τ i

E, τ
i
E + s
]×J
)≥ 1
}
,

U∞
H := inf

{
τ i

E + t; t ≥ 0 , τ i
E <∞ , τ i

E + t< Ti
δy ∧ Ui

j

}
,

where, in this notation, the infimum equals ∞ if the set is empty, Ti
δy := ∞, and Ui

j = ∞ on

the event
{
τ∂ ≤ τ i

E

}
.
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The proof that all these random times define stopping times is classical, although very tech-
nical, and the reader is spared the details. The main point is that there is a.s. a positive gap
between any of these iterated stopping times. We can thus ensure recursively in I that there
exists a sequence of stopping times with discrete values (τ i,(n)

E , Ti,(n)
δy ,Ui,(n)

j ){i≤I,n≥1}, such that
a.s., for n sufficiently large and 1 ≤ i ≤ I,

τ i
E ≤ τ i,(n)

E ≤ τ i
E + 1/n< τ i

E + t,

Ti
δy ≤ Ti,(n)

δy ≤ Ti
δy + 1/n, Ui

j ≤ Ui,(n)
j ≤ Ui

j + 1/n.

It is obvious that U∞
H coincides with UH on the event

{
UH ∧ τ∂ ≤ τ 1

E

}
, while the Markov

property at time τ 1
E and the way U∞

H is defined implies that on the event
{
τ 1

E <UH ∧ τ∂
}
,

U∞
H − τ 1

E indeed has the same law as the Ũ∞
H associated to the process

(
X̃, Ỹ
)

solving the
system (4.7) with initial condition

(
X
(
τ 1

E

)
, Y
(
τ 1

E

))
. �

7.1.3. Step 2: end of the proof of Theorem 4.4 when d = 1. Let �E ≥ 1, ε, ρ > 0 be prescribed.
We first require t� ≤ 1 to be sufficiently small.

Note that our definitions ensure that for any t< t� ∧ Tδy ∧ TJ , we have a.s.(
Xt, Yt
) ∈ [−�E − 1, �E] × [y∧, y∨].

Thanks to Theorem 6.1, with some constant CG uniform over any (xE, yE) ∈ E, we have

P(xE, yE)
(
Tδy < t� ∧ TJ

)≤ CG PG
(xE, yE)

(
Tδy < t� ∧ TJ

)
≤ CG PG

0

(
Tδy < t�

)→ 0 as t� → 0,

where Tδy under PG
0 denotes the first time the process |B| reaches δy, with B a standard

Brownian motion. Moreover,

P(xE, yE)
(
TJ < t� ∧ Tδy

)≤ P
(
M([0, t�] ×J ) ≥ 1

)≤ ν(R) · f∨ · t� → 0 as t� → 0.

By choosing t� sufficiently small, we can thus ensure the following property for any (xE, yE) ∈
E:

P(xE, yE)(UH = ∞, t� < τ∂ ) ≤ P(xE, yE)
(
Tδy < t� ∧ TJ

)+ P(xE, yE)
(
TJ < t� ∧ Tδy

)
≤ ε e−ρ ≤ ε exp (−ρ t�). (7.3)

On the event
{
t� < Tδy ∧ TJ

}
, the following two properties hold: XUH = xE − v t� and

YUH ∈ [yE − 2δy, yE + 2δy]. Indeed, as in the proof of Lemma 6.3, we have chosen our stop-
ping times to ensure that no jump for X can occur before time TJ ∧ t� ∧ Tδy. We also rely on
the Girsanov transform and Theorem 6.1 to prove that, during the time-interval [0, t�], Y is
indeed sufficiently diffused (since we are now interested in an upper bound, we can neglect the
effect of assuming t� < Tδy). This leads us to conclude that there exists DX > 0 such that for
any xE ∈ [−�E, �E] and yE ∈ [1/�E, �E],

P(xE, yE)
[
(X, Y)(UH) ∈ (dx, dy); UH < τ∂

]
≤ DX 1[yE−2 δy, yE+2 δy](y) δxE−v t� (dx) dy. (7.4)

With ζ the uniform distribution over D1, thanks to Theorem 4.2, there exist cM, tM > 0 such
that

Pζ
[
(X, Y)tM ∈ (dx′, dy′)

]≥ cM 1{(
x′,y′
)
∈DLE

} dx′ dy′.
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The idea is then to let X decrease until it reaches xE − v t�, by ensuring that no jump occurs.
We then identify u as the time needed for this to happen. Then, thanks to Theorem 6.1 and
Lemma 6.2, we deduce a lower bound on the density of Y on [yE − 2 δy, yE + 2 δy]. We have
already proved a stronger result for Lemma 6.3, which we leave it to the reader adapt to obtain
the following property: for any t� > 0, there exists dX

2 such that, for any xE ∈ [−�E, �E] and
yE ∈ [1/�E, �E], there exists a stopping time V such that

Pζ
[
(X, Y)(V) ∈ (dx, dy)

]≥ dX
2 cM 1[yE−2 δy, yE+2 δy](y) δxE−v t� (dx) dy. (7.5)

The proper definition of V is given by V := tM + t� + (XtM − xE
)
/v ≥ tM on the event

{
XtM ∈[

xE, xE + v t�
]}∩ {YtM ∈ [yE − δy/2, yE + 2 δy/2]} (it can be set arbitrarily to tM otherwise).

Thanks to Lemma 7.1, (7.3), (7.4), and (7.5), we conclude the proof of Theorem 4.4, with
c := DX/

(
dX

2 cM
)
. �

7.2. Proof of Theorem 4.7

Except that we exploit Theorem 4.5 instead of 4.2, which constrains the shape of E, the
proof is immediately adapted from Subsection 7.1. �

7.3. Proof of Theorem 4.4 in the case d ≥ 2

The difficulty in this case is that, as long as no jump has occurred, Xt stays confined to the
line x +R · e1. The ‘harvest’ thus cannot occur before a jump. Thus, we first wait for a jump
to diffuse on Rd and then let Y diffuse independently in the same way as in Subsection 7.1.
These two steps are summarized in the following.

Proposition 7.1. Given any ρ > 0, E ∈ D, and εX ∈ (0, 1), there exist tX, cX, xX∨ > 0 and 0<
yX∧ < yX∨ which satisfy the following property for any (xE, yE) ∈ E: there exists a stopping time
UX such that

{
τ∂ ∧ tX ≤ UX}= {UX = ∞} , P(xE,yE)

(
UX = ∞ , tX < τ∂

)
≤ εX exp

(−ρ tX
)
,

and P(xE,yE)

(
X
(
UX) ∈ dx; Y

(
UX) ∈ [yX∧, yX∨

]
, UX < τ∂

)
≤ cX 1B(0,xX∨)(x) dx.

We defer the proof to Subsection 7.3.2.

Proposition 7.2. Given any ρ, xX∨ > 0, 0< yX∧ < yX∨, and εY ∈ (0, 1), for any tY sufficiently
small, there exist cY > 0 and 0< yY∧ < yY∨ which satisfy the following property for any (x, y) ∈
B
(
0, xX∨
)× [yX∧, yX∨

]
: there exists a stopping time TY such that

P(x,y)
(
TY ≤ tY ∧ τ∂

)≤ εY exp
(−ρ tY
)
,

and P(x,y)

(
(X, Y)
(
tY
) ∈ (dx, dy); tY < TY ∧ τ∂

)
≤ cY δ{x−v tY e1}(dx) 1[

yY∧,yY∨
](y) dy.

The proof of Lemma 7.2 is taken mutatis mutandis from the one in Subsection 7.1.3. It leads
one to define UH as below:

• UH := UX + tY on the event
{
UX < tX ∧ τ∂

}∩ {tY < τ̃∂ ∧ T̃Y
}
, where τ̃∂ and T̃Y are

defined respectively as τ∂ and TY for the solution
(
X̃t, Ỹt
)
, defined on the event{

UX < tX ∧ τ∂
}
, of
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̃t = X
(
UX)− v t e1

+
∫

[UX ,UX+t]×R
d×(R+)2

w ϕ
(
X̃(s − UX − ), Ỹ(s − UX), w, uf , ug

)
M
(
ds, dw, duf , dug

)
,

Ỹt = Y
(
UX)+ ∫ t

0
ψ
(
X̃(s − UX), Ỹ(s − UX)

)
ds +
∫ UX+t

UX
dBr.

• Otherwise, UH := ∞.

Lemma 7.2. There exists a stopping time U∞
H extending the above definition of UH as

described in Theorem 4.4 (with t = tX + tY here).

The proof of Lemma 7.2 is technical but classical from the way we define UX and TY ; it is
similar to the proof of Lemma 7.1. The reader is spared this proof.

7.3.1. Proof of Theorem 4.4 as a consequence of Propositions 7.1–7.2 and Lemma 7.2. Given
ρ > 0, ε ∈ (0, 1), and some E ∈ D, we define εX := ε/4 and deduce from Proposition 7.3 the
values tX , cX , xX∨, yX∧, yX∨ and the definition for the stopping times UX with the associated
properties.

With εY := ε exp
(−ρ tX
)
/2, we then deduce from Proposition 7.2 the values tY , cY , yY∧, yY∨

and the stopping time TY with the associated properties, with the additional requirement that
tY ≤ ln (2)/ρ. With UH defined, for some (x, y) ∈ E, as in Lemma 7.2, the following bound on
UH is clearly satisfied: {

τ∂ ∧ (tX + tY
)≤ UH

}= {UH = ∞} . (7.6)

In addition, the probability of failure in the harvesting step is upper-bounded as follows:

P(x,y)
(
UH = ∞, tX + tY < τ∂

)≤ εX exp
(−ρ tX
)+ εY exp

(−ρ tY
)

≤ ε exp
(−ρ [tX + tY

])
, (7.7)

where in the last inequality we have exploited the definitions of εX , εY and the fact that tY ≤
ln (2)/ρ

(
i.e. 1/2 ≤ exp

(−ρ tY
))

. The upper bound on the density of the process at harvesting
time UH is deduced as follows:

P(x,y)
[
(X, Y) (UH) ∈ (dx, dy); UH < τ∂

]
≤ cX cY 1

B
(

0,xX∨+v tY
)(x) 1[

yY∧,yY∨
](y) dx dy. (7.8)

For the opposite upper bound, we recall first that ζ is chosen to be uniform over the compact
space�, which is included in some D�. Exploiting Theorem 4.5 on this set D�, we deduce that
there exist t, c> 0 such that

Pζ
[
(X, Y) (t) ∈ (dx, dy); t< τ∂

]≥ c 1
B
(

0,xX∨+v tY
)(x) 1[

yY∧,yY∨
](y) dx dy. (7.9)

Combining (7.6)–(7.9) completes the proof of Theorem 4.4 in the case d ≥ 2. �
7.3.2. Proof of Proposition 7.1. For readability, note that most of the subscripts ‘X′ (except for
tX) from Proposition 7.1 are removed in this proof.

First, observe that without any jump, ‖X‖ tends to infinity, which makes the population
almost certainly doomed to extinction. We can thus find some time-limit t∨ such that, even
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with an amplification of order exp (ρ t∨), the event that the population survives without any
mutation occurring in the time-interval [0, t∨] is sufficiently exceptional. With this time-scale,
we can find an upper bound y∨ on Y: that the population reaches such size before t∨ is a
sufficiently exceptional event. For the lower bound, we exploit the fact that extinction is very
strong when the population size is too small. Thus, the survival of the population—at least for
a bit—after it declines below this lower bound y∧ is also a sufficiently exceptional event.

The last part is needed to ensure that this first jump is indeed diffuse in X (which is why we
need ν(dw) to have a density with respect to Lebesgue measure with the bound of [H5]).

For y∨ > �E > 1/�E > y∧ > 0, t∨,w∨ > 0, and initial condition (x, y) ∈ E, let

TJ := inf {t ≥ 0;�Xt �= 0} , (7.10)

T∨
Y := inf {t ≥ 0; Yt = y∨} , T∧

Y := inf {t ≥ 0; Yt = y∧}< τ∂ . (7.11)

On the event
{
TJ < t∨ ∧ T∨

Y ∧ T∧
Y

}∩ {‖�XTJ ‖<w∨}, we define U := TJ . Otherwise we set
U := ∞.

To choose y∧, y∨, t∨, and w∨, we refer to the following lemmas, which are treated as the
five first steps of the proof of Proposition 7.1, which is completed in the sixth step.

Lemma 7.3. For any ρ, ε1 > 0, there exists t∨ > 0 such that

∀ (x, y) ∈ E, P(x,y)(t∨ < TJ ∧ τ∂ ) ≤ ε1 exp (−ρ t∨).

Lemma 7.4. For any t∨, ε2 > 0, there exists y∨ > 0 such that

∀ (x, y) ∈ E, P(x,y)
(
T∨

Y < t∨ ∧ τ∂
)≤ ε2.

Lemma 7.5. For any tS, ε3 > 0, there exists y∧ > 0 such that

∀ x ∈Rd, P(x,y∧)(tS < τ∂ ) ≤ ε3.

Lemma 7.6. For any t∨, ε4 > 0, there exists w∨ > 0 such that

∀ (x, y) ∈ E, P(x,y)(‖�XTJ ‖ ≥ w∨ , TJ < t∨ ∧ τ∂ ) ≤ ε4.

Lemma 7.7. For any t∨ > 0, and any y∨ > �E > 1/�E > y∧ > 0, there exist c, x∨ > 0 such that

∀ (x, y) ∈ E, P(x,y)
(
X(U) ∈ dx; U < τ∂

)≤ c 1B(0,x∨)(x) dx.

Step 1: proof of Lemma 7.3. Exploiting Assumption [H3], as long as ‖X‖ is sufficiently large,
we can ensure that the growth rate of Y is largely negative, leading to quick extinction. The
proof is similar to that of Lemma 3.2.2 in [31], where more details can be found. We consider
the autonomous process YD as an upper bound of Y where the growth rate is replaced by
rD. For any tD and ρ, there exists rD (a priori negative) such that whatever yD is the initial
condition of YD, survival of YD until tD (i.e. tD < τD

∂ ) happens with a probability smaller than
exp (−2 ρ tD). Thanks to Assumption [H3], we define x∨ such that for any x, ‖x‖ ≥ x∨ implies
r(x) ≤ rD. We then deduce that

∀ (x, y), P(x,y)(∀ t ≤ tD, ‖Xt‖ ≥ x∨; tD < τ∂ ) ≤ sup
yD>0

PyD

(
tD < τ

D
∂

)≤ exp (−2 ρ tD).

Let tE := (x∨ + �E)/v and assume t∨ ≥ tE. A.s. on {t∨ < TJ ∧ τ∂}, for any (x, y) ∈ E,

∀ tE ≤ t ≤ t∨, ‖X(t)‖ = ‖x − v t e1‖ ≥ x∨.
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Inductively applying the Markov property at times t∨ := tE + k tD for k ≥ 1, we obtain

∀ (x, y), exp [ρ t∨] P(x,y)(t∨ < TJ ∧ τ∂ ) ≤ exp (ρ [tE − k tD]) −→
k→∞ 0.

Step 2: proof of Lemma 7.4. This is an immediate consequence of the fact that Y is upper-
bounded by the process Y∨ given in (3.1) with initial condition �M . This bound is uniform in the
dynamics of Xt and M and uniform for any (x, y) ∈ E. It is classical that a.s. supt≤t∨ Y∨

t <∞,
which proves the lemma; see e.g. [4, Lemma 3.3].

Step 3: proof of Lemma 7.5. As in the proof of Proposition 4.2.3 in [31] (cf. Appendix D), we
exploit r∨ as the upper bound of the growth rate of the individuals to relate to the formulas for
continuous-state branching processes. Referring for instance to [27, Subsection 4.2], notably
Lemma 5, it is classical that 0 is an absorbing boundary for these processes (we even have
explicit formulas for the probability of extinction). This directly implies the result of the present
lemma, that the probability of extinction tends uniformly to zero as the initial population size
tends to zero.

Step 4: proof of Lemma 7.6. On the event {TJ < t∨ ∧ τ∂}, for any initial condition (x, y) ∈ E,
there exists a compact subset K of Rd that contains Xt = x − v t for any t ∈ [0, TJ). Thanks to
Assumption [H2], there exists an upper bound g∨ of g that is valid on K×Rd.

Let ε4 > 0 and ρW := (−1/t∨). log (1 − ε4). We define w∨ such that ν(B(0,w∨)c) ≤ ρW/g∨.
Then we can couple the process X to an exponential random variable TW of mean 1/ρW such
that on the event {TJ < t∨ ∧ τ∂} ∩ {‖�XTJ ‖ ≥ w∨}, TJ ≤ TW holds a.s. We can conclude with
the following upper bound, valid for any (x, y) ∈ E:

P(x,y)(‖�XTJ ‖ ≥ w∨ , TJ < t∨ ∧ τ∂ ) ≤ P(TW < t∨) = 1 − exp (−ρW t∨)

≤ ε4.

Note that under Assumption [A], the jump at time TJ cannot make the process escape K.
This provides a deterministic upper bound w∨ such that ‖�XTJ ‖ ≥ w∨ a.s. on {TJ < t∨ ∧ τ∂}.
Step 5: proof of Lemma 7.7. For x∨ := �E + v t∨, let

c := sup

{
g(x,w) ν(w)∫

Rd g(x,w′) ν(w′) dw′ ; ‖x‖ ≤ x∨ , w ∈Rd
}
<∞. (7.12)

We exploit a sigma-field F∗
TJ

that includes the whole knowledge of the process until time TJ ,
except for the size of the jump at this time. (It is rigorously defined and studied in Appendix
B.) Conditionally on F∗

TJ
on the event {U < τ∂} ∈F∗

TJ
, the law of X(TJ) is given by

g(X[TJ − ], x − X[TJ − ]) · ν(x − X[TJ − ])∫
Rd g(X[TJ − ],w′) · ν(w′) dw′ dx.

Note also that a.s. ‖X[TJ − ]‖ ≤ �E + v t∨ = x∨ (since no jump has occurred yet).
Since ‖�XTJ ‖ ≤ w∨ on the event {U < τ∂}, with x̄∨ := x∨ + w∨, we get the following upper

bound of the law of X(TJ):

P(x,y) (X(U) ∈ dx; U < τ∂)= P(x,y)
(
E
[
X(U) ∈ dx

∣∣F∗
TJ

]
; U < τ∂

)
≤ c 1B(0,x̄∨)(x) dx.
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Step 6: concluding the proof of Proposition 7.1. Let �E, ρ, ε > 0. We first deduce the
existence of t∨, thanks to Lemma 7.3, such that

∀ (x, y) ∈ E, P(x,y)(t∨ < TJ ∧ τ∂ ) ≤ ε exp (−ρ t∨)/8. (7.13)

Thanks to Lemma 7.4, we deduce the existence of some y∨ > 0 such that

∀ (x, y) ∈ E, P(x,y)(T
∨
Y < t∨ ∧ τ∂ ) ≤ ε exp (−ρ t∨)/8. (7.14)

We could take any value for tS (so possibly 1), but tS = log (2)/ρ seems somewhat more
practical. We then deduce the existence of y∧, thanks to Lemma 7.5, such that

sup{x∈Rd} P(x,y∧)(tS < τ∂ ) ≤ ε exp (−ρ t∨)/8.

This implies that for any (x, y) ∈ E,

P(x,y)
(
t∨ + tS < τ∂ , T∧

Y < t∨ ∧ τ∂ ∧ T∨
Y ∧ TJ
)

≤ E(x,y)

(
P(XT∧

Y
,y∧)(tS < τ∂ ); T∧

Y < t∨ ∧ τ∂ ∧ T∨
Y ∧ TJ

)
≤ ε exp (−ρ t∨)/8. (7.15)

We choose w∨, thanks to Lemma 7.6, such that

∀ (x, y) ∈ E, P(x,y)
(‖�XTJ ‖ ≥ w∨ , TJ < t∨ ∧ τ∂

)≤ ε exp (−ρ t∨)/8. (7.16)

Thanks to Lemma 7.7, there exist c, x∨ > 0 such that

∀ (x, y) ∈ E, P(x,y)
(
X(U) ∈ dx; U < τ∂

)≤ c 1B(0,x∨)(x) dx.

Thanks to the construction of U, and noting that tX := t∨ + tS, it is clear that U ≥ τ∂ ∧ tX is
equivalent to U = ∞. Combining (7.13), (7.14), (7.15), and (7.16), we have

P(x,y)(U = ∞ , t∨ + tS < τ∂ )

≤ P(x,y)(t∨ < TJ ∧ τ∂ ) + P(x,y)
(‖�XTJ ‖ ≥ w∨ , TJ < t∨ ∧ τ∂

)
+ P(x,y)(T

∨
Y < t∨ ∧ τ∂ ) + P(x,y)

(
t∨ + tS < τ∂ , T∧

Y < t∨ ∧ τ∂ ∧ T∨
Y ∧ TJ
)

≤ ε exp (−ρ t∨)/2 = ε exp
(−ρ tX
)
.

This completes the proof of Proposition 7.1. �

The proof of Theorem 4.4 in the case d ≥ 2 is now completed. All the theorems have been
proved at this point. There are three sections in the appendix. Appendix A is devoted to the ele-
mentary properties exploited to deduce (A2). In Appendix B, we precisely define the filtration
F∗

TJ
that carries the information up to the jumping time. We conclude with Appendix C, which

gives the first results of some simulations to help illustrate the discussion in Subsection 2.3.

Appendix A. The inequalities exploited for the escape

Recall that VE := τE ∧ τ∂ ∧ t∨, where t∨ > 0 is a technical value whose only purpose is to
guarantee the finiteness of the exponential moments.
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A.1. Lemma 5.1 implies Proposition 5.2

Thanks to Lemma 5.1, for n∞ sufficiently large, we obtain by induction and the Markov
property that

∀ n> 0, Pn(k t< τD↓ ) ≤ εk.

Thus, by choosing ε sufficiently small (for a given value of t> 0), we ensure that

CN∞ := sup{n>0}
{

En[ exp (ρτD↓ )]
}
<+∞.

A fortiori, with T↓ := inf {t,Nt ≤ n∞} ∧ τE ≤ τD↓ ,

sup
(x,n)

{
E(x,n)[ exp (ρ T↓)]

}≤ CN∞ <∞.

At time T↓, the process is either in E, in T+, or in T X∞. Thus,

E(x,n)[ exp (ρ VE)] ≤ E(x,n)[ exp (ρ T↓) ; (X,N)T↓ ∈ E]

+ E(x,n)

[
exp (ρ T↓)E(X,N)T↓ [ exp (ρ ṼE)] ; (X,N)T↓ ∈ T+ ∪ T X∞

]
,

with the Markov property on the event {(X,N)T↓ ∈ T+ ∪ T X∞} (and the fact that (VE − T↓)+ ≤
t∨). Therefore, EN∞ ≤ CN∞ (1 + EX + EX∞), which concludes the proof of Proposition 5.2. �

A.2. Lemma 5.2 implies Proposition 5.3

Let ρ, ε, n∞ > 0 (c> 0 is the same as for the definition of Z). For simplicity, we choose
t := log (2)/ρ > 0 (i.e. exp [ρ t] = 2), and assume without loss of generality t< th. We choose
r∨ ∈R, according to Lemma 5.2, such that

∀ n> 0, ∀ r ≤ r∨, Pn
(
t< τD

∂

)≤ e−ρ t/2 = 1/4,

∀ r ≤ r∨, Pn∞
(
TD∞ ≤ t
)+ Pn∞

(
ND

t ≥ n∞
)≤ ε/4.

Since lim sup‖x‖→∞ r(x) = −∞, with nE chosen sufficiently large, we have that

∀ x /∈ B(0, nE), r(x) ≤ r∨.

Let (X, N) with initial condition (x, n) ∈ T X∞. In the following, we define

TN∞: = inf {t ≥ 0, Nt ≥ nc} , τ0 := inf {t> 0, (X, N)t ∈ T0} ,
T := t ∧ TN∞ ∧ τ0 ∧ τE ∧ τ∂ . (A.1)

Since, on the event {T = t}, either Nt ≥ n∞ or (X, Y)t ∈ T+ ∪ T X∞, we have

E(x,n)[ exp (ρ VE)] = E(x,n)[ exp (ρ T) ; T = VE] + E(x,n)[ exp (ρ VE) ; T = τ0]

+ E(x,n)[ exp (ρ VE) ; T = t] + E(x,n)
[

exp (ρ VE) ; T = TN∞
]

≤ exp (ρ t) (1 + E0)+ exp (ρ t) · P(x,n)[T = t] · (EX + EX∞
)

+ exp (ρ t) · (P(x,n)
[
T = TN∞

]+ P(x,n)[Nt ≥ n∞, T = t]
) · EN∞,

thanks to the Markov property. Now, by (A.1), ND is an upper bound of N before T . Thus, by
our definitions of t, nE, r∨,

E(x,n)[ exp (ρ VE)] ≤ 2 · (1 + E0)+ (1/2) · (EX + EX∞) + (ε/2) · EN∞.

Taking the supremum over (x, n) ∈ T X∞ in the last inequality concludes the proof of
Proposition 5.3, in that it yields EX∞ ≤ 4 (1 + E0 + EX)+ ε EN∞. �
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A.3. Proof of Proposition 5.5

The equation NU
t = n0 + ∫ t

0 r+NU
s ds + σ

∫ t
0

√
NU

s dBN
s defines an upper bound of N on

[0, tD] provided n ≤ n0, while NU is a classical branching process. The survival of (X, N)
beyond tD clearly implies the survival of NU beyond tD. Let us define ρ0 by the relation
Pn0

(
tD < τU

∂

)= : exp (−ρ0 tD). For a branching process like NU , it is classical that ρ0 → ∞ as
n0 → 0. Indeed, with u(t, λ) the Laplace exponent of NU (cf. e.g. [27, Subsection 4.2], notably
Lemma 5), we have Pn0

(
τU
∂ ≤ tD
)= exp [−n0 limλ→∞ u(tD, λ)] → 1 as n0 → 0.

So we can impose that ρ0 >ρ, and even that ε′ := 2 exp (−(ρ0 − ρ) tD) is sufficiently small
to make transitions from T0 to T0, T+, T N∞ , or T X∞ of little incidence. We require notably that
ε′ ≤ 1. We have

E(x,n)[ exp (ρVE)] ≤ E(x,n)

[
exp (ρVE); VE < tD

]
+ E(x,n)

[
exp (ρVE);(x, n)tD ∈ T0 ∪ T+ ∪ T N∞ ∪ T X∞

]
≤ exp [ρ tD] + exp (ρ tD) · (E0 + EX + EN∞ + EX∞

) · P(x,n)(tD < τ∂ ).

Thus, taking the supremum over (x, n) ∈ T0 yields

E0 ≤ eρtD + (ε′/2) · (E0 + EX + EN∞ + EX∞
)
.

Since ε′ ≤ 1, this provides the following upper bound on E0:

E0 ≤ 2eρtD + ε′ · (EX + EN∞ + EX∞
)
.

Since ε′ tends to 0 as n0 tends to 0, this concludes the proof of Proposition 5.5. �

Appendix B. A specific filtration for jumps

This appendix extends to our case the intuition already present in [32, Subsection 5.4.2]:
there exists a sigma-field F∗

TJ
which informally ‘includes the information carried by M and B′

up to the jump time TJ , except the realization of the jump itself. We define

F∗
TJ

:= σ (As ∩ {s< TJ} ; s> 0, As ∈Fs) .

Properties of F∗
TJ

: If Zs is Fs-measurable and s< t ∈ (0,∞], then Zs 1{s<TJ≤t} is F∗
TJ

-
measurable.

Lemma B.1. For any left-continuous and adapted process Z, ZTJ is F∗
TJ

-measurable.
Reciprocally, F∗

TJ
is in fact the smallest σ -algebra generated by these random variables. In

particular, for any stopping time T, {TJ ≤ T} ∈F∗
TJ

.

Denote by W the additive effect on X of the first jump of X, occurring at time TJ .

Lemma B.2. For any h:R→R+ measurable and (x, y) ∈ (−L, L) ×R+, we have

E(x,y)

[
h(W)
∣∣∣F∗

TJ

]
=
∫
R

h(w) f (YTJ )g(XTJ−,w) ν(dw)∫
R

f (YTJ )g(XTJ−,w′) ν(dw′)
.

Proof of Lemma B.1

For any left-continuous and adapted process Z,

ZTJ = lim
n→∞
∑
k≤n2

Z k−1
n

1{ k−1
n <TJ≤ k

n

},

https://doi.org/10.1017/apr.2023.28 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.28


Quasi-stationary mode of adaptation to a changing environment 281

where, by the previous property and the fact that Z is adapted, we know that

Z k−1
n

1{ k−1
n <TJ≤ k

n

}

is F∗
TJ

-measurable for any k, n. Reciprocally, for any s> 0 and As ∈Fs,

1As∪{s<TJ} = lim
n≥1

Zn
TJ
, where Zn

t := {1 ∧ [n (t − s)+]} · 1As .

Now, for any stopping time T and any t ≥ 0, we have {t ≤ T} ∈Ft and {t ≤ T} = ∩
s<t

{s ≤ T};
thus {TJ ≤ T} ∩ {TJ <∞} ∈F∗

TJ
. Similarly,

{TJ = T = ∞} = ∩
s>0

{s< T} ∩ {s< TJ ≤ ∞} ∈F∗
TJ

.

Proof of Lemma B.2

Let

Zt :=
∫
R

h(w′) f (Yt)g(Xt−,w′) ν(dw′)∫
R

f (Yt)g(Xt−,w′′) ν(dw′′)
,

which is a left-continuous and adapted process. Thanks to Lemma B.1, ZTJ is F∗
TJ

-measurable.
We note the following two identities:

h(W) =
∫

[0,t]×Rd×(R+)2
h(w) 1{t=TJ} M(dt, dw, duf , dug),

∫
R

h(w) f (YTJ )g(XTJ−,w) ν(dw)∫
R

f (YTJ )g(XTJ−,w′) ν(dw′)

=
∫

[0,t]×Rd×(R+)2

∫
R

h(w′) f (Yt)g(Xt−,w′) ν(dw′)∫
R

f (Yt)g(Xt−,w′′) ν(dw′′)
1{t=TJ} M(dt, dw, duf , dug).

Then we exploit the Palm formula to prove that their product with any Zs 1{s<TJ≤r} has the
same average for any s< r and Zs any Fs-measurable random variable:

E(x,y) [ h(W) Zs; s< TJ ≤ r ]

= E(x,y)

[
Zs

∫
[0,t]×Rd×(R+)2

h(w) 1{t=TJ} M(dt, dw, duf , dug); s< TJ ≤ r

]

= E(x,y)

[∫
[0,t]×Rd×(R+)2

Zs h(w) 1(s, r](t) 1{t=TJ} M(dt, dw, duf , dug)

]

= E(x,y)

[∫
[0,t]×Rd×(R+)2

1(s, r](t) Zs h(w) 1{t=T̂J} dt ν(dw) duf dug

]
,

where, according to the Palm formula, T̂J is the first jump of the process (X̂, Ŷ) encoded by
M + δ(t,w,uf ,ug) and B (cf. e.g. [15, Proposition 13.1.VII]). Since (X̂, Ŷ) coincides with (X, Y)
at least up to time t> s, Zs is not affected by this change. Moreover,{

t = T̂J
}= {t ≤ TJ} ∩ {uf ≤ f (Yt)

}∩ {ug ≤ g(Xt−,w)
}

.
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Thus,

E(x,y) [ h(W) Zs; s< TJ ≤ r ]

= E(x,y)

[ ∫
[0,t]×Rd×(R+)2

1(s, r](t) h(w) Zs 1{uf ≤f (Yt)}
× 1{ug≤g(Xt−,w)} 1{t≤TJ} dt ν(dw) duf dug

]
,

= E(x,y)

[
Zs

∫ r

s

∫
R

1{t≤TJ} h(w) f (Yt) g(Xt−,w) ν(dw) dt

]
.

On the other hand, and in the same spirit, we have

E(x,y)

[∫
R

h(w′) f (YTJ )g(XTJ−,w′) ν(dw′)∫
R

f (YTJ )g(XTJ−,w′′) ν(dw′′)
· Zs; s< TJ ≤ r

]

= E(x,y)

[
Zs

∫
[0,t]×Rd×(R+)2

∫
R

h(w′) f (Yt)g(Xt−,w′) ν(dw′)∫
R

f (Yt)g(Xt−,w′′) ν(dw′′)

× 1{t=TJ} M(dt, dw, duf , dug); s< TJ ≤ r
]

= E(x,y)

[ ∫
[0,t]×Rd×(R+)2

Zs 1(s,r](t)

∫
R

h(w′) f (Yt)g(Xt−,w′) ν(dw′)∫
R

f (Yt)g(Xt−,w′′) ν(dw′′)

× 1{t≤TJ} 1{uf ≤f (Yt)} 1{ug≤g(Xt−,w)} dt ν(dw) duf dug

]
= E(x,y)

[
Zs

∫ r

s

∫
R

1{t≤TJ} h(w′) f (Yt) g(Xt−,w′) ν(dw′) dt

]
,

which is indeed the same integral as for h(W). �

Appendix C. Brief overview of characteristic profiles of the quasi-stationary regime
obtained by simulations

We provide in this appendix some results from a particular choice of three parameter
regimes, whose comparison sheds light on the discussion given in Subsection 2.3. We present
the profiles of the characteristic distributions and functions of the quasi-stationary regime,
namely the QSD, the quasi-ergodic distribution (QED), and the survival capacity (the limiting
properties are recalled just beside the figures).

The details of the parameters used are as follows. For population size dynamics, the growth
rate as a function of x is here chosen to be of the form r(x) = 4 − 30 · |x|. A parabolic profile
would give very similar results. The competition rate is c = 0.1, which leads to population sizes
at quasi-equilibrium (carrying capacity) close to 40 (in arbitrary units). The values for the the
diffusion coefficient σ and the speed of the environment v are respectively 2 and 6. Thus, there
are rapid fluctuations in population size in the time-scale where adaptation changes.

The profile of additive effects of mutations is given by ν(dw) = 1
2w0

exp (−|w|/w0). It is
therefore symmetric exponential, with w0 = 0.03, so with many small mutations. The effect of
population size on the fixation rate is simply proportional: fN(n) = m · n. The mutation rate m is
the only parameter modified here across the three simulation sets: it takes the values m = 0.85,
m = 0.55, and m = 0.25. These values are chosen so that the adaptation is critical at m = 0.55:
for larger m, like m = 0.85, extinction is kept almost negligible, so that we say that adaptation is
spontaneous, whereas for smaller values of m, extinction plays a consequent role and produces
differences in shape between the QSD and the QED.
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FIGURE 2. Left: NH(x), the harmonic means of the population size fluctuations of the process (Ñx
t )t≥0

with fixed traits x (given by the associated QSD). Right: the extinction rate of the QSD.

We exploit the following expression for the probability of invasion:

g(x,w) := NH(x) ·�r/σ

1 − exp [−NH(x) ·�r/σ ]
,

where �r := r(x + w) − r(x) is the variation of the growth rate between the mutant and the
resident, and NH(x) is the harmonic mean of a resident population with fixed trait x (averaged
against its associated QSD). Deleterious mutations are allowed, but their probability of fixation
is greatly reduced if they are strong in relation to population fluctuations. The values of NH are
estimated numerically, with the profile shown in Figure 2.

The formula relies on the Kimura diffusion approximation that has been derived in the case
of fixed population size. Assuming rapid size fluctuations, we choose the harmonic mean as
the reference by referring to classical approximations obtained in the case of periodically fluc-
tuating population sizes (cf. notably [26]). More details are given (in French) in the author’s
doctoral thesis [30], and a subsequent paper is planned to discuss these results and the rel-
evance of this estimation. The comparison of such a two-component stochastic model to the
individual-based model through the QSD and QED will be a good test for the relevance of such
a formula. The kind of dependence in the difference in growth rate seems to play a crucial role
for having a QED so conserved.

These simulations were obtained by calculating the evolution of the densities themselves.
This method is related to the method of finite volumes, with an explicit numerical scheme
and a renormalization of density estimates at each time step. The transitions to X and N are
performed successively to reduce the calculation time.
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