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In this paper, we study existence of rotating periodic solutions for p-Laplacian
differential systems. We first build a new continuation theorem by topological
degree, and then obtain the existence of rotating periodic solutions for two kinds of
p-Laplacian differential systems via this continuation theorem, extend some existing
relevant results.
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1. Introduction

In this paper, we are concerned with the existence of rotating periodic solutions for
the following differential system with p-Laplacian operators:

− (φp(u′))′ = f(t, u(t), u′(t)), t ∈ R, (1.1)

where φp : R
N → R

N defined by φp(x) = |x|p−2
x if x �= 0, φp(0) = 0, p > 1, f : R ×

R
N × R

N → R
N is Carathéodory with f(t + T, x, y) = Qf(t, Q−1x, Q−1y), Q ∈

O(N). Here O(N) denotes the orthogonal group on R
N . Specially, Q may be an

N × N orthogonal matrix.
We say u(t) is a Q-rotating periodic solution of (1.1), if u(t) satisfies (1.1) and

u(t + T ) = Qu(t) for t ∈ R. To this end, we first study the existence of solutions
for the following p-Laplacian rotating periodic boundary value problem (RPBVP
for short): {−(φp(u′))′ = f(t, u(t), u′(t)), 0 � t � T,

u(T ) = Qu(0), u′(T ) = Qu′(0).
(H Q)

If u(t) is a solution of RPBVP (H Q), then we can extend u(t) from [0, T ] to R

such that u(t + T ) = Qu(t) for t ∈ R.
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Rotating periodic solutions for p-Laplacian differential systems 1605

Indeed, suppose that u(t) is a solution for RPBVP (H Q). Let u(t + T ) = Qu(t),
t ∈ [0, T ]. So we have that

−
(
|u′(t)|p−2

u′(t)
)′

=
(∣∣Q−1u′(t + T )

∣∣p−2
Q−1u′(t + T )

)′
= f(t,Q−1u(t + T ), Q−1u′(t + T )), t ∈ [0, T ].

By f(t + T, x, y) = Qf(t, Q−1x, Q−1y), we obtain

−
(∣∣Q−1u′(t + T )

∣∣p−2
Q−1u′(t + T )

)′
= Q−1f(t + T, u(t + T ), u′(t + T )), t ∈ [0, T ].

As Q ∈ O(N), then |Qu′(t)| = |u′(t)|, furthermore, the above equation deduces to

−
(
|u′(t)|p−2

u′(t)
)′

= f(t, u(t), u′(t)), t ∈ [T, 2T ].

In this way, it is easy to claim that u(t) satisfies (1.1) and u(t + T ) = Qu(t) for
t ∈ R.

Hence we may say that the solution u(t) of RPBVP (H Q) is Q-rotating peri-
odic solution which satisfies u(t + T ) = Qu(t) for t ∈ R. This kind of solutions may
be periodic, anti-periodic, subharmonic, or quasi-periodic, if Q is identity matrix
IN×N , negative identity matrix −IN×N , a power identity matrix, i.e., Qk = I
for some k ∈ N, k � 2, or an orthogonal matrix except for the previous cases,
i.e., Q ∈ O(N). So RPBVPs are more general than periodic boundary problems,
subharmonic problems and so on.

In recent years, many scholars began to study the rotating periodic solutions for
differential systems. In [1], Chang and Li proved the existence of rotating periodic
solutions for a class of second-order dissipative dynamical system by using the coin-
cidence degree theory. After that, they studied the existence of rotational periodic
solutions for singular second-order dissipative dynamical system (see [2]). In [3],
using the fountain theorem, Shen and Liu obtained infinitely many rotating periodic
solutions for sup-linear second-order impulsive Hamiltonian system. In [4], Xing,
Yang and Li built an averaging method for first-order perturbed affine-periodic
system and studied the existence of affine-periodic solutions. For more results on
rotating periodic solutions, please refer to [1–7] and references therein. However, it
should be pointed out that there is no work on discussing the existence of rotating
periodic solutions for p-Laplacian differential systems (1.1).

To our knowledge, p-Laplacian differential equations(systems) with Dirichelt or
periodic boundary value conditions have been researched by many scholars. It is well
known that Manásevich and Mawhin [8] studied the existence of periodic solutions
for p-Laplacian-Like systems via building continuation theorem. The nature ques-
tion is whether new continuation theorem can be established for studying RPBVPs
with p-Laplacian operator.

Inspired by [8] and above works, our paper aims to give a new continuation
theorem for p-Laplacian differential systems with rotating periodic boundary con-
ditions, which should give a criterion for proving the existence of rotating periodic
solutions to such problems. The new continuation theorem generalizes and enriches
the classical continuation theorem [1, 9]. And then we apply this theorem to obtain
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some existence results for two kinds of p-Laplacian rotating periodic differential
systems. Furthermore, if p and Q are special cases, problem (H Q) is existing clas-
sical problem, for example, when p > 1 and Q = I, (H Q) is same as [10]; when
p = 2 and Q ∈ O(N), (H Q) is same as [1]; when p = 2 and Q = I, (H Q) is general
periodic problem [9, 11]. So, our results extend some existing relevant results.

The paper is organized as follows: we present some preliminary concepts, a new
Sobolev inequality and an important proposition in § 2. In § 3, we give a completely
continuous operator. By the Leray-Schauder degree, a new continuation theorem
will be proved in § 4. In § 5, using the new continuation theorem, we show the
existence of rotating periodic solutions for two kinds of p-Laplacian differential
systems.

2. Preliminaries

In this section, we present some preliminary concepts, a new Sobolev inequality
and an important proposition.

For convenience, we first introduce some necessary basic knowledge and signs.
Throughout the paper, 〈a, b〉 denotes the inner product for any a, b ∈ R

N , while
|a| denotes the Euclidean norm for a ∈ R

N . Q ∈ O(N) and O(N) denotes the
orthogonal group on R

N .
Set C = C0([0, T ], R

N ) with the norm ‖u‖0 = max
0�t�1

|u(t)|, Cm = Cm([0, T ], R
N )

with the norm ‖u‖m = max{‖u‖0, ‖u′‖0, · · · ,
∥∥u(m)

∥∥
0
}, Lp = Lp(0, T ; RN ) with

the norm ‖u‖Lp = (
∫ T

0
|u(t)|p dt)1/p.

Let CQ = {u ∈ C : u(T ) = Qu(0)} , C1
Q = {u ∈ C1 : u(T ) = Qu(0), u′(T ) =

Qu′(0)},
X =

{
u ∈ C1

Q : φp(u′) is absolutely continuous
}

and Y = L1(0, T ; RN ).
The function f : [0, T ] × R

N × R
N → R

N is assumed to be Carathéodory, which
satisfies

(1) the function f(t, ·, ·) is continuous on R
N × R

N for a.e. t ∈ [0, T ];

(2) the function f(·, x, y) is measurable on [0, T ] for each (x, y) ∈ R
N × R

N ;

(3) for each r > 0 there exists ar ∈ L1((0, T ); R) such that, for a.e. t ∈ [0, T ] and
each (x, y) ∈ R

N × R
N with |x| � r, |y| � r, one has

|f(t, x, y)| � ar(t).

Let Q ∈ O(N) and I be the identity operator. By the orthogonal decomposition
theorem in linear algebra, we have

R
N = ker (I − Q) ⊕ Im(I − Q). (2.1)

Define the orthogonal projector

P : R
N → ker (I − Q). (2.2)

If ker (I-Q) �= {0} and Q �= I, define LP = (I - Q)|kerP . Then LP is a bijection from
kerP to Im(I - Q).
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If Q = I, then let P = I and LP = I.
Let H1

T,Q =
{
u ∈ H1 : u(T ) = Qu(0)

} ⊂ H1 with the inner product

〈u, v〉 =
∫ T

0

〈u(t), v(t)〉 + 〈u̇(t), v̇(t)〉 dt,

and corresponding norm ‖u‖2 = 〈u, u〉, where Q ∈ O(N). It is easy to show that
H1

T,Q is a Hilbert space and the embedding H1
T,Q ↪→ C is compact. Next we will

check Wirtinger inequality and Sobolev inequality still hold on H1
T,Q.

Theorem 2.1. If u ∈ H1
T,Q and

∫ T

0
u(t) dt ∈ Im(I − Q), then there exist constants

λ1 > 0, c1 > 0 such that ∫ T

0

|u(t)|2 dt � λ1

∫ T

0

|u̇(t)|2 dt,

(Wirtinger inequality) and

‖u‖0 � c1‖u̇‖L2 ,

(Sobolev inequality).

Remark 2.2. If I = Q, then the theorem 2.1 is the same as the classical result of
the periodic case (see [12]).

In order to prove theorem 2.1, we first prove the following lemma.

Lemma 2.3. Define the functional J : H1
T,Q → R by

J(u) =
∫ T

0

|u̇(t)|2 dt.

Then c2 = min
u∈E

J(u) > 0, where

E =

{
u ∈ H1

T,Q :
∫ T

0

|u|2 dt = 1,

∫ T

0

u(t) dt ∈ Im(I − Q)

}
.

Proof. Let c2 = inf
u∈E

J(u). Obviously, J is coercive on E. Then there exists bounded

sequence {un} ∈ E such that J(un) → c2. Because H1
T, Q is a Hilbert space,

there is a subsequence of {un}, which we rename the same, which satisfies
un ⇀ u(n → ∞). The set E is weakly sequentially closed, as follows easily from
the compact embedding of H1

T,Q in C. Then u ∈ E. Because J is continuous and
convex on E, then J is weakly lower semi-continuous on E. It follows that

c2 = limJ(un) � J(u) � 0.

Then we have that J gets the minimum value c2 at u, i.e., J(u) = c2. If c2 = 0,
then u = a ∈ R

N with (I − Q)a = 0. However
∫ T

0
u(t) dt = Ta ∈ Im(I − Q) from
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the definition of E. Then by (2.1), a = 0, which contradicts
∫ T

0
|u|2 dt = 1. Thus,

c2 > 0. �

Proof of theorem 2.1. Suppose that u ∈ H1
T,Q with

∫ T

0
u(t) dt ∈ Im(I − Q). If∫ T

0
|u(t)|2 dt = 0, then the result is obviously true. Assume

∫ T

0
|u(t)|2 dt �= 0. Let

v =
u(∫ T

0
|u(t)|2 dt

)1/2
.

Then v ∈ E. By lemma 2.3, we have∫ T

0

|v̇(t)|2 dt � c2,

and hence ∫ T

0

|u̇(t)|2 dt � c2

∫ T

0

|u(t)|2 dt.

Taking λ1 = 1
c2

, Wirtinger inequality holds. Because H1
T,Q ↪→ C, there exists c > 0

such that ‖u‖0 � c‖u‖. Then we obtain Sobolev inequality ‖u‖0 � c1‖u̇‖L2 . �

Lemma 2.4. Suppose Q ∈ O(N). Then

(a) φp(Qα) = Qφp(α), for any α ∈ R
N ;

(b) 〈φp(α) − φp(β), α − β〉 > 0, for any α, β ∈ R
N , α �= β.

Proof. (i) As Q ∈ O(N), for α ∈ R
N , one has |Qα| = |α|, and

φp(Qα) = |Qα|p−2(Qα) = |α|p−2(Qα) = Q|α|p−2
α = Qφp(α).

(ii) It can be checked by simple calculation. �

Lemma 2.5. Assume u(t) ∈ X. If u′(t) = α(α ∈ R
N ), then α = 0 and u(t) = β ∈

ker (I-Q).

Proof. If u′(t) = α, then u(t) = αt + β(β ∈ R
N ). By u(T ) = Qu(0), we have Tα +

β = Qβ which implies α ∈ Im(I-Q). From u′(T ) = Qu′(0) it follows that α ∈
ker (I-Q). Hence α = 0 and β ∈ ker (I-Q) via (2.1). �

Assume that ker (I-Q) �= {0}. Consider the simple rotating periodic boundary
value problem

−(φp(u′))′ = f(t), (2.3)

u(T ) = Qu(0), u′(T ) = Qu′(0), (2.4)

where f(t) ∈ Y satisfying f(t + T ) = Qf(t).
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Suppose that u(t) ∈ X is a solution to (2.3) (2.4). By integrating (2.3) over [0, T ],
we have that

φp(u′(0)) − φp(u′(T )) =
∫ T

0

(−(φp(u′))′) dt =
∫ T

0

f(t) dt.

Using (2.4) and lemma 2.4(i), we get

(I − Q)(φp(u′(0))) =
∫ T

0

f(t) dt. (2.5)

So

P((I − Q)(φp(u′(0)))) = P
(∫ T

0

f(t) dt

)
,

which yields

P
(∫ T

0

f(t) dt

)
= 0. (2.6)

On the other hand, since

φp(u′(0)) = P(φp(u′(0))) + (I − P)(φp(u′(0))),

and ∫ T

0

f(t) dt = P
(∫ T

0

f(t) dt

)
+ (I − P)

(∫ T

0

f(t) dt

)
,

then

(I − Q)(P(φp(u′(0))) + (I − P)(φp(u′(0))))

= P
(∫ T

0

f(t) dt

)
+ (I − P)

(∫ T

0

f(t) dt

)
. (2.7)

From (2.6),(2.7) and the definition of P, it follows that

(I − Q)P(φp(u′(0))) = 0 = P
(∫ T

0

f(t) dt

)
,

and

(I − Q)(I − P)(φp(u′(0))) = (I − P)

(∫ T

0

f(t) dt

)
.

Taking LP to act on above equation, one has

(I − P)(φp(u′(0))) = L−1
P (I − P)

(∫ T

0

f(t) dt

)
= L−1

P

(∫ T

0

f(t) dt

)
. (2.8)
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Integrating (2.3) and combining (2.8), we have

φp(u′(t)) = −
∫ t

0

f(s) ds + P(φp(u′(0))) + L−1
P

(∫ T

0

f(s) ds

)
,

i.e.,

u′(t) = φq

(
−
∫ t

0

f(s) ds + P(φp(u′(0))) + L−1
P

(∫ T

0

f(s) ds

))
Δ= a(t), (2.9)

where 1
p + 1

q = 1(p, q > 1). Integrating (2.9) over [0, T ], we obtain

u(0) − u(T ) =
∫ T

0

(−a(t)) dt.

Similar to the previous discussion, we have

P
(∫ T

0

(−a(t)) dt

)
= 0,

i.e.,

P
(∫ T

0

−φq

(
−
∫ t

0

f(s) ds + Pφp(u′(0)) + L−1
P

∫ T

0

f(s) ds

)
dt

)
= 0. (2.10)

Following (2.5)–(2.8), and

(I − Q)(I − P)(u(0)) = (I − P)

(∫ T

0

(−a(t)) dt

)
=
∫ T

0

(−a(t)) dt,

we get

(I − P)(u(0)) = L−1
P

(∫ T

0

(−a(t)) dt

)
. (2.11)

Integrating (2.9), we obtain

u(t) = P(u(0)) + L−1
P

(∫ T

0

(−a(s)) ds

)
+
∫ t

0

a(s) ds. (2.12)

On the basis of (2.10), we define mapping Gh : ker(I − Q) → ker(I − Q) by

Gh(γ) = P
∫ T

0

φq

(
−
∫ t

0

h(s) ds + γ + L−1
P

∫ T

0

h(s) ds

)
dt, γ ∈ ker(I − Q),

(2.13)
where h ∈ Y1 =

{
h ∈ Y

∣∣∣∫ T

0
h(s) ds ∈ Im(I - Q)

}
. Next we discuss the properties

of Gh.
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Proposition 2.6. The mapping Gh has the following properties:

(a) For any given h ∈ Y1, the equation

Gh(γ) = 0, (2.14)

has a unique solution γ̃(h) ∈ ker (I-Q).

(b) The functional

γ̃ : Y1 → ker (I − Q),

is continuous and sends bounded set into bounded set.

Proof. (i) Because P : R
N → ker (I - Q) is the orthogonal projector, then for any

γ1, γ2 ∈ ker (I-Q), we have〈
(I − P)

(∫ T

0

φq

(
−
∫ t

0

h(s) ds + γ1 + L−1
P

∫ T

0

h(s) ds

)
dt

)
, γ2

〉
= 0.

Let

Kh(γ) =
∫ T

0

φq

(
−
∫ t

0

h(s) ds + γ + L−1
P

∫ T

0

h(s) ds

)
dt

= (I − P)

(∫ T

0

φq

(
−
∫ t

0

h(s) ds + γ + L−1
P

∫ T

0

h(s) ds

)
dt

)

+ P
(∫ T

0

φq

(
−
∫ t

0

h(s) ds + γ + L−1
P

∫ T

0

h(s) ds

)
dt

)
.

From the definition of Gh and P, it follows that

〈Gh(γ1), γ2〉 = 〈Kh(γ1), γ2〉 . (2.15)

According to lemma 2.4 (ii), for γ1 �= γ2, we have

〈Kh(γ1) − Kh(γ2), γ1 − γ2〉

=
∫ T

0

〈φq (γ1 + lh(t)) − φq (γ2 + lh(t)) , γ1 − γ2〉 dt > 0,

where lh(t) = − ∫ t

0
h(s) ds + L−1

P

∫ T

0
h(s) ds ∈ C. Combining (2.15), we obtain

〈Gh(γ1) − Gh(γ2), γ1 − γ2〉 = 〈Kh(γ1) − Kh(γ2), γ1 − γ2〉 > 0. (2.16)

And hence, if (2.14) has a solution then it is unique. �
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To prove existence of solutions, we will show that 〈Gh(γ), γ〉 > 0 for |γ|
sufficiently large. Indeed, we have

〈Gh(γ), γ〉 = 〈Kh(γ), γ〉

=
∫ T

0

〈φq (γ + lh(t)) , γ〉 dt

=
∫ T

0

〈φq (γ + lh(t)) , γ + lh(t)〉 dt −
∫ T

0

〈φq (γ + lh(t)) , lh(t)〉 dt.

So

〈Gh(γ), γ〉 �
∫ T

0

〈φq (γ + lh(t)) , γ + lh(t)〉 dt − ‖lh‖0

∫ T

0

|φq (γ + lh(t))| dt.

(2.17)
Due to the definition of φq, we have

〈Gh(γ), γ〉 �
∫ T

0

(|(γ + lh(t))| − ‖lh‖0) |(γ + lh(t))|q−1 dt. (2.18)

Since q > 1 and |γ + lh(t)| → ∞ as |γ| → ∞, there exists r > 0 such that

〈Gh(γ), γ〉 > 0 for allγ ∈ ker (I − Q) with |γ| � r. (2.19)

It follows from the properties of topological degree that the equation Gh(γ) = 0 has
a solution for each h ∈ Y1, which is unique by our previous argument.

(ii) From (i), we can define a functional γ̃ : Y1 → ker (I-Q) which satisfies

Gh(γ̃) = P
(∫ T

0

φq

(
−
∫ t

0

h(s) ds + γ̃(h) + L−1
P

∫ T

0

h(s) ds

)
dt

)
= 0, (2.20)

for any h ∈ Y1. Hence,

0 = 〈Gh(γ̃), γ̃〉 = 〈Kh(γ̃), γ̃〉 .

Then ∫ T

0

〈φq (γ̃ + lh(t)) , γ̃ + lh(t)〉 dt =
∫ T

0

〈φq (γ̃ + lh(t)) , lh(t)〉 dt. (2.21)

Let Ω ⊂ Y1 be a bounded subset. Then there is M1 > 0 such that ‖h‖L1 � M1 and∣∣∣∫ t

0
h(s) ds

∣∣∣ � M1, for any h ∈ Ω. Due to the definition of L−1
P and lh(t), there exists

a constant M2 > 0 such that
∣∣∣L−1

P

∫ T

0
h(s) ds

∣∣∣ � M2, and

|lh(t)| �
∣∣∣∣∫ t

0

h(s) ds

∣∣∣∣+
∣∣∣∣∣L−1

P

∫ T

0

h(s) ds

∣∣∣∣∣ � M1 + M2,

that is, ‖lh‖0 �
√

N(M1 + M2), for any h ∈ Ω.
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Now we show |γ̃(h)| is bounded on Ω. Assume on contrary that {γ̃(h) : h ∈ Ω} is
not bounded. Then for any given M3 >

√
N(M1 + M2), there is h ∈ Ω such that

M3 � |γ̃(lh) + lh(t)| , t ∈ [0, T ].

Hence by (2.21), we find that

M3

∫ T

0

|γ̃(lh) + lh(t)|q−1 dt �
∫ T

0

|γ̃(lh) + lh(t)|q dt

=
∫ T

0

〈φq (γ̃ + lh(t)) , γ̃ + lh(t)〉 dt

=
∫ T

0

〈φq (γ̃ + lh(t)) , lh(t)〉 dt

� ‖lh‖0

∫ T

0

|γ̃(lh) + lh(t)|q−1 dt.

Thus M3 � ‖lh‖0, a contradiction. Therefore γ̃ sends bounded set in Y1 into
bounded set in ker (I-Q).

Finally we show the continuity of γ̃. Let {hn} be a convergent sequence in Y1,
i.e., hn → h, as n → ∞. It is easy to show that lhn

→ lh in C[0, T ] as n → ∞.
Since {γ̃(lhn

)} is bounded sequence, there exists a subsequence {γ̃(lhj
)} such that

γ̃(lhj
) → γ̂(j → ∞). Letting j → ∞ in

P
(∫ T

0

φq

(
γ̃(lhj

) + lhj
(t)
)

dt

)
= 0,

we find that

P
(∫ T

0

φq (γ̂ + lh(t)) dt

)
= 0,

and γ̃(lhj
) = γ̂ from the definition of γ̂, which show the continuity of γ̃.

Define the projectors P̂ : X → X and Q̂ : Y → Y respectively by

P̂(u) = P(u(0)),

Q̂(f) = P
(

1
T

∫ T

0

f(t) dt

)
.

For h ∈ Y , let γ : Y → ker (I-Q) be defined by

γ(h) = γ̃((I − Q̂)h). (2.22)

Then, it is clear that γ is a continuous function and sends bounded set into bounded
set. Noting that dim ker (I-Q) < ∞, so γ is a completely continuous mapping.
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3. An equivalent operator equation

In this section, we give an equivalent operator equation with RPBVP (H Q).
Firstly, set Nemytski operator Nf : X → Y by

Nfu = f(t, u(t), u′(t)), (3.1)

where f : R × R
N × R

N → R
N is Carathéodory with f(t + T, x, y) = Qf(t, Q−1x,

Q−1y).
Next, we define the operator H on X by

(Hu)(t) = P̂(u) + Q̂(Nfu) − L−1
P

(∫ T

0

c(s) ds

)
+
∫ t

0

c(s) ds, (3.2)

where

c(s) = φq

(
−
∫ s

0

(I − Q̂)(Nfu)(t) dt

+L−1
P

∫ T

0

(I − Q̂)(Nfu)(t) dt + γ̃
(
(I − Q̂)(Nfu)

))
,

γ̃((I -Q̂)(Nfu)) is defined in (2.22) and 1
p + 1

q = 1(p, q > 1).

By (2.20) and the definition of γ̃, we have P(
∫ T

0
c(s) ds) = G(I -Q̂)(Nf u)(γ̃) = 0.

So the definition of H is fine.

Lemma 3.1. The mapping H is a continuous operator from X to X.

Proof. Obviously, H is continuous in C from the continuity of P̂, Q̂, Nf and L−1
P .

Writing H(t) Δ= (H(u))(t) and γ̃ = γ̃((I -Q̂)(Nfu)), we have that

H ′(t) = φq

(
−
∫ t

0

(I − Q̂)(Nfu)(s) ds + L−1
p

∫ T

0

(I − Q̂)(Nfu)(t) dt + γ̃

)
,

and

φp (H ′(t)) = −
∫ t

0

(I − Q̂)(Nfu)(s) ds + L−1
p

∫ T

0

(I − Q̂)(Nfu)(t) dt + γ̃, (3.3)

which show H ∈ C1 and φp(H ′(t)) is absolutely continuous, where 1
p + 1

q =
1(p, q > 1). �

Next, we will prove H(T ) = QH(0) and H ′(T ) = QH ′(0).
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By (3.2), we have

H(T ) = P̂(u) + Q̂(Nfu) − L−1
P

(∫ T

0

c(s) ds

)
+
∫ T

0

c(s) ds, (3.4)

and

H(0) = P̂(u) + Q̂(Nfu) − L−1
P

(∫ T

0

c(s) ds

)
.

Then

QH(0) = Q

(
P̂(u) + Q̂(Nfu) − L−1

P

(∫ T

0

c(s) ds

))
. (3.5)

From the definition of γ̃, we find that

P
(∫ T

0

c(s) ds

)

= P
(∫ T

0

φq

(
−
∫ s

0

(I − Q̂)(Nfu)(t) dt + L−1
P

∫ T

0

(I − Q̂)(Nfu)(t) dt + γ̃

)
ds

)
= 0.

The definitions of P̂ and Q̂ yield that

(I − Q)P̂(u) = 0, (I − Q)Q̂(Nfu) = 0,

i.e.,

P̂(u) = Q(P̂(u)), Q̂(Nfu) = Q(Q̂(Nfu)). (3.6)

According to the definition of L−1
P , we get that

QL−1
P

(∫ T

0

c(s) ds

)
= −(I − Q)L−1

P

(∫ T

0

c(s) ds

)
+ L−1

P

(∫ T

0

c(s) ds

)

= −
∫ T

0

c(s) ds + L−1
P

(∫ T

0

c(s) ds

)
. (3.7)

Substituting (3.6)–(3.7) into (3.5), we obtain

QH(0) = H(T ).

On the other hand, we see from (3.3) that

φp (H ′(T )) = −
∫ T

0

(I − Q̂)(Nfu)(t) dt + L−1
P

∫ T

0

(I − Q̂)(Nfu)(t) dt + γ̃,

https://doi.org/10.1017/prm.2023.83 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.83


1616 T. Ye, W. Liu and T. Shen

and

φp (H ′(0)) = L−1
P

∫ T

0

(I − Q̂)(Nfu)(t) dt + γ̃.

Because γ̃ ∈ ker (I-Q), i.e., Qγ̃ = γ̃, then we have that

Qφp (H ′(0)) = QL−1
P

(∫ T

0

(I − Q̂)(Nfu)(t) dt

)
+ Qγ̃

= −(I − Q)L−1
P

(∫ T

0

(I − Q̂)(Nfu)(t) dt

)

+ L−1
P

(∫ T

0

(I − Q̂)(Nfu)(t) dt

)
+ γ̃

= −
∫ T

0

(I − Q̂)(Nfu)(t) dt + L−1
P

(∫ T

0

(I − Q̂)(Nfu)(t) dt

)
+ γ̃.

It follows from lemma 2.4 that

φp (H ′(T )) = Qφp (H ′(0)) = φp (QH ′(0)) ,

which yields that H ′(T ) = QH ′(0). Hence the H is a continuous operator from X
to X.

Lemma 3.2. The mapping H is a completely continuous operator on X.

Proof. We only need to prove that H is a compact operator. Let S ⊂ X be an
open bounded subset such that ‖u‖1 � M1 for any u ∈ S. It is easy to see that
Nf is continuous and sends bounded set into equi-integrable set. Then there exists
l(t) ∈ L1((0, T ); R) such that |Nf (u)| � l(t) for any u ∈ S. Taking {un} ⊂ S, we
have

(Hun)(t) = P̂(un) + Q̂(Nfun) − L−1
P

(∫ T

0

cn(s) ds

)
+
∫ t

0

cn(s) ds, (3.8)

where

cn(s) = φq

(
−
∫ s

0

(I − Q̂)(Nfun)(t) dt + L−1
p

∫ T

0

(I − Q̂)(Nfun)(t) dt + γ̃

)
,

and γ̃ = γ̃((I -Q̂)(Nfun)) is defined in (2.22). Obviously,
∣∣∣P̂(un)

∣∣∣ � M1 and

∣∣∣Q̂(Nfun)
∣∣∣ �

∣∣∣∣∣ 1T
∫ T

0

(Nfun)(τ) dτ

∣∣∣∣∣ � 1
T

∫ T

0

l(τ) dτ =
1
T

M2.
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Then ∣∣∣∣∫ s

0

(I − Q̂)(Nfun)(t) dt

∣∣∣∣
�
∫ T

0

|(Nfun)(t)| dt +
∫ T

0

∣∣∣Q̂(Nfun)(t)
∣∣∣ dt � 2

∫ T

0

l(τ) dτ = 2M2,

uniformly in s ∈ [0, T ]. By the continuity of the L−1
P and γ̃, there exists M3 > 0

such that ∣∣∣∣∣L−1
P

∫ T

0

(I − Q̂)(Nfun)(t) dt

∣∣∣∣∣ � M3,

and

|γ̃| � M3.

Hence we have that

|cn(s)| =

∣∣∣∣∣−
∫ s

0

(I − Q̂)(Nfun)(t) dt + L−1
P

∫ T

0

(I − Q̂)(Nfun)(t) dt + γ̃

∣∣∣∣∣
q−1

�
∣∣∣∣∣
∣∣∣∣∫ s

0

(I − Q̂)(Nfun)(t) dt

∣∣∣∣+
∣∣∣∣∣L−1

P

∫ T

0

(I − Q̂)(Nfun)(t) dt

∣∣∣∣∣+ |γ̃|
∣∣∣∣∣
q−1

� (2(M2 + M3))
q−1

,

uniformly in s ∈ [0, T ]. Therefore, we obtain that there is a constant M4 > 0 such
that

|(Hun)(t)| � M4, ∀ un ∈ S,

uniformly in t ∈ [0, T ], which shows that {H(un)} is uniformly bounded in C. Since
(Hun)′(t) = cn(t), then {H(un)′(t)} is uniformly bounded in C. Hence, {H(un)} is
equi-continuous. According to the Arzelà-Ascoli theorem, {H(un)} is sequentially
compact.

For any u ∈ S and s1, s2 ∈ [0, T ], we have

|w(s2) − w(s1)| �
∣∣∣∣∫ s2

s1

(Nfu)(t) dt

∣∣∣∣+ ∣∣∣Q̂(Nfu)
∣∣∣ |s2 − s1|

�
∫ s2

s1

l(τ) dτ + |s2 − s1|
∫ T

0

l(τ) dτ ,

where w(s) =
∫ s

0
(I - Q̂)(Nfu)(t) dt.

Taking sequence {un} ⊂ S, then
{
− ∫ s

0
(I -Q̂)(Nfun)(t) dt

}
is uniformly bounded

and equi-continuous. By Arzelà-Ascoli theorem there is a subsequence of
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− ∫ s

0
(I -Q̂)(Nfun)(t) dt

}
, which we rename the same, which is convergent in C.

Then, passing to a subsequence if necessary, we obtain that the sequence{
−
∫ s

0

(I − Q̂)(Nfun)(t) dt + L−1
p

∫ T

0

(I − Q̂)(Nfun)(t) dt + γ̃

}
,

is convergent in C. Using that φq : C → C is continuous it follows that {cn} is
convergent in C. Hence the mapping H is a completely continuous operator. �

Lemma 3.3. The fixed point of operator H is equivalent to the solution of RPBVP
(H Q).

Proof. Assume that u ∈ X is a fixed point of H: H(u) = u, i.e.,

u(t) = P̂(u) + Q̂(Nfu) − L−1
P

(∫ T

0

c(s) ds

)
+
∫ t

0

c(s) ds), (3.9)

where

c(s) = φq

(
−
∫ s

0

(I − Q̂)(Nfu)(t) dt

+L−1
P

∫ T

0

(I − Q̂)(Nfu)(t) dt + γ̃
(
(I − Q̂)(Nfu)

))
,

and γ̃((I -Q̂)(Nfu)) as (2.22). Hence

u(0) = P̂(u) + Q̂(Nfu) − L−1
P

(∫ T

0

c(s) ds

)
.

From the definitions of P̂, Q̂ and L−1
P , it follows that

P(u(0)) = P
(
Pu(0) +

1
T
P
∫ T

0

(Nfu)(τ) dτ − L−1
P

(∫ T

0

c(s) ds

))

= P(u(0)) +
1
T
P
(∫ T

0

(Nfu)(τ) dτ

)
,

which yields

1
T
P
(∫ T

0

(Nfu)(τ) dτ

)
= 0. (3.10)

By (3.9), (3.10) and the definition of Q̂, we have

(φp(u′(t)))′ = −(I − Q̂)(Nfu)(t) = −f(t, u(t), u′(t)) + Q̂(Nfu) = −f(t, u(t), u′(t)).

Noting the definition of X, we know that u is a solution of (H Q). �
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On the other hand, assume that u ∈ X is a solution of RPBVP (H Q), i.e.,{−(φp(u′))′ = f(t, u, u′),
u(T ) = Qu(0), u′(T ) = Qu′(0).

Similar to the previous discussion, we obtain that

P
∫ T

0

(Nf (u))(t) dt = 0, (3.11)

P
(∫ T

0

φq

(
−
∫ t

0

(Nf (u))(s) ds + Pφp(u′(0)) + L−1
P

∫ T

0

(Nf (u))(s) ds

)
dt

)
= 0,

(3.12)

and

u(t) = P̂(u) − L−1
P

(∫ T

0

a(s) ds

)
+
∫ t

0

a(s) ds, (3.13)

where

a(t) = φq

(
−
∫ t

0

(Nf (u))(s) ds + Pφp(u′(0)) + L−1
P

∫ T

0

(Nf (u))(s) ds

)
.

Due to (3.11), we have

(I − Q̂)(Nfu)(t) = (Nfu)(t).

According to the definition of γ̃ and (3.12), we get that

Pφp(u′(0)) = γ̃
(
(I − Q̂)(Nfu)(t)

)
.

From (3.13), it follows that

u(t) = P̂(u) + Q̂(Nfu) − L−1
P

(∫ T

0

c(s) ds

)
+
∫ t

0

c(s) ds,

where

c(s) = φq

(
−
∫ s

0

(I − Q̂)(Nfu)(t) dt

+L−1
P

∫ T

0

(I − Q̂)(Nfu)(t) dt + γ̃
(
(I − Q̂)(Nfu)(t)

))
.

Hence, we obtain

u = H(u),

i.e., u is a fixed point of operator H.
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4. A new continuation theorem

In this section, we build a new continuation theorem for studying the existence of
solutions of RPBVP (H Q).

Theorem 4.1. Suppose that Ω is an open bounded set in X such that the following
conditions hold.

(a) For ∀ λ ∈ (0, 1), the problem{−(φp(u′))′ = λf(t, u, u′),
u(T ) = Qu(0), u′(T ) = Qu′(0), (4.1)

has no solution on ∂Ω.

(b) Assume that ker (I - Q) �= {0}, the equation

F (a) :=
1
T
P
(∫ T

0

f(t, a, 0) dt

)
= 0, (4.2)

has no solution on ∂Ω ∩ ker (I - Q), and the Brouwer degree

degB(F,Ω ∩ ker (I − Q), 0) �= 0, (4.3)

where the orthogonal projector P : R
N → ker (I - Q).

Then RPBVP (H Q) has at least one solution in Ω̄.

Proof. Consider the following homotopy boundary value problem with (H Q)⎧⎨⎩−(φp(u′))′ = λ(Nfu)(t) + (1 − λ)
1
T
P ∫ T

0
(Nfu)(τ) dτ ,

u(T ) = Qu(0), u′(T ) = Qu′(0),
(4.4)

where (Nfu)(t) = f(t, u, u′), λ ∈ [0, 1]. For λ ∈ (0, 1], if u is a solution to problem
(4.4), then by integrating both sides of (4.4) over [0, T ], we have

φp(u′(0)) − φp(u′(T )) = (I − Q)(φp(u′(0)))

= λ

∫ T

0

(Nfu)(τ) dτ + (1 − λ)P
(∫ T

0

(Nfu)(τ) dτ

)
.

Taking P to act on above equation, one has

P
(∫ T

0

(Nfu)(τ) dτ

)
= 0. (4.5)

Similarly, if u is a solution to problem (4.1), then

P
(∫ T

0

(Nfu)(τ) dτ

)
= 0.
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Hence, for λ ∈ (0, 1], problems (4.1) and (4.4) have the same solutions. Define
homotopy operator N : X × [0, 1] → Y by

N(u, λ) = λ(Nfu)(t) + (1 − λ)
1
T
P
∫ T

0

(Nfu)(τ) dτ = λNfu + (1 − λ)Q̂(Nfu)(t).

From lemma 3.3, problem (4.4) can be written by the equivalent operator equation

u = Hλu, (4.6)

where

Hλu = P̂(u) + Q̂(Nfu) − L−1
P

(∫ T

0

cλ(s) ds

)
+
∫ t

0

cλ(s) ds),

and

cλ(s) = φq

(
−
∫ s

0

λ(I − Q̂)(Nfu)(t) dt + L−1
P

∫ T

0

λ(I − Q̂)(Nfu)(t) dt + γ̃

)
,

γ̃ = γ̃(λ(I -Q̂)(Nfu)) is defined in (2.22). �

Assume that for λ = 1, the problem (4.6) has no solution on ∂Ω otherwise the
proof is complete. Due to hypothesis (i) we know that (4.6) has no solutions for
(u, λ) ∈ ∂Ω × (0, 1]. For λ = 0, (4.4) is the form⎧⎨⎩−(φp(u′))′ =

1
T
P
(∫ T

0
(Nfu)(τ) dτ

)
,

u(T ) = Qu(0), u′(T ) = Qu′(0).
(4.7)

Now we claim the problem (4.7) has no solution on ∂Ω × 0. If u is a solution of
problem (4.7), then u satisfies (4.5), which shows u′(t) = φq(α), where α ∈ R

N . By
lemma 2.5, we have α = 0 and u(t) = β (β ∈ ker (I - Q)). It follows from (4.5) that

P
(∫ T

0

f(τ, β, 0) dτ

)
= 0,

which, together with hypothesis (ii), implies that u = β /∈ ∂Ω. Thus we have proved
that (4.6) has no solution (u, λ) ∈ ∂Ω × [0, 1].

By lemma 3.2, Hλ is a completely continuous operator. Then we have that for
each λ ∈ [0, 1], the Leray-Schauder degree degLS(I − Hλ, Ω, 0) is well defined, and

degLS(I − H1,Ω, 0) = degLS(I − H0,Ω, 0). (4.8)

It is clear that the operator equation

u = H1(u) (4.9)

is equivalent to the problem (H Q). Now, we only prove that degLS(I − H0,
Ω, 0) �= 0.
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Because

(I − H0)u = u − P̂(u) − 1
T
P
(∫ T

0

(Nfu)(τ) dτ

)
,

(I − H0)u = 0 deduces to u = P̂(u) − 1
T P(

∫ T

0
(Nfu)(τ) dτ), which from the def-

initions of P and P̂ yields u = c in Ω. On the basis of lemma 2.5, we have
c ∈ ker (I − Q). Hence by the properties of the Leray-Schauder degree and (4.3),
we get that

degLS(I − H0,Ω, 0) = degLS(I − H0,Ω ∩ ker (I − Q)), 0)

= degB(−F,Ω ∩ ker (I − Q)), 0) �= 0,

where the function F is defined in (4.2). Then degLS(I − H1, Ω, 0) �= 0, that is,
RPBVP (H Q) has at least one solution in Ω̄.

Remark 4.2. If Q = I, then ker (I - Q) = R
N and P = I. Theorem 4.1 is the same

as the continuation theorem [8] for periodic boundary value problems.

Theorem 4.3. Suppose that ker (I - Q) = {0}, and Ω is an open bounded set in X
such that 0 ∈ Ω and the problem{

−(φp(u′))′ = λf(t, u, u′),

u(T ) = Qu(0), u′(T ) = Qu′(0),
(4.10)

has no solution on ∂Ω, for ∀ λ ∈ (0, 1).
Then RPBVP (H Q) has at least one solution in Ω̄.

Proof. Since ker (I - Q) = {0}, there exists ( I - Q )−1. Define H̃ : X → X by

H̃u =
∫ t

0

φq

(
−
∫ s

0

(Nfu)(τ) dτ + (I − Q)−1
∫ T

0

(Nfu)(τ) dτ

)
ds

− (I − Q)−1
∫ T

0

φq

(
−
∫ s

0

(Nfu)(τ) dτ + (I − Q)−1
∫ T

0

(Nfu)(τ) dτ

)
ds.

(4.11)

Then the RPBVP (H Q) is equivalent to the operator equation

u = H̃u.

Similar to the lemmas 3.1–3.2, we can prove that H̃ is a completely continuous
operator from X to X. Furthermore, define H̃λ by

H̃λu =
∫ t

0

φq

(
−
∫ s

0

λ(Nfu)(τ) dτ + (I − Q)−1
∫ T

0

λ(Nfu)(τ) dτ

)
ds

− (I −Q)−1
∫ T

0

φq

(
−
∫ s

0

λ(Nfu)(τ) dτ + (I −Q)−1
∫ T

0

λ(Nfu)(τ) dτ

)
ds,

(4.12)
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for λ ∈ [0, 1]. We assume that for λ = 1, (4.10) has no solution on ∂Ω otherwise the
proof is complete. For λ = 0, the Eqn (4.10) only has zero solution via lemma 2.5
and ker (I - Q) = {0}. By hypothesis, for each λ ∈ [0, 1], the Leray-Schauder degree
degLS(I − H̃λ, Ω, 0) is well defined, and

degLS(I − H̃1,Ω, 0) = degLS(I − H̃0,Ω, 0) = degLS(I,Ω, 0) = 1.

Hence, the RPBVP (H Q) has at least one solution in Ω̄. �

5. Applications

In this section, we take useful of theorem 4.1 to further discuss the sufficient
conditions of existence of solutions for the two kinds of RPBVP (H Q).

5.1. Existence of solutions for a kind of the RPBVP (H Q)

Theorem 5.1. Assume that ker(I − Q) �= {0} and the following conditions hold.
(f1) There exist h ∈ L1([0, T ], R+) and n ∈ C1(RN , R

N ) satisfying n′(x) is
negative semi-definite and n(Qx) = Qn(x) for each x ∈ R

N , such that

|f(t, x, y)| � 〈f(t, x, y), n(x)〉 + h(t), (5.1)

for any x, y ∈ R
N , and a.e. t ∈ [0, T ].

(f2) f satisfies a generalized Villari-type condition, i.e. there exists a constant
M > 0 such that for all u ∈ X with min

t∈[0,T ]
|u(t)| > M ,

P
(∫ T

0

f(t, u, u′) dt

)
�= 0, (5.2)

where P : R
N → ker (I - Q).

Then the problem (H Q) has at least one solution.

Proof. First we take a priori estimate for solutions of (4.1). Let (u, λ) ∈ X × (0, 1)
be a solution to problem (4.1). Then we have

φp(u′(t)) = −
∫ t

0

λf(s, u, u′) ds + P(φp(u′(0))) + L−1
P

∫ T

0

λf(s, u, u′) ds, (5.3)

and

(I − Q)u(0) =
∫ T

0

φq

(
−
∫ t

0

λf(s, u, u′) ds + P(φp(u′(0)))

+L−1
P

∫ T

0

λf(s, u, u′) ds

)
dt ∈ Im(I − Q),
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where 1
p + 1

q = 1(p, q > 1). Hence,

P
(∫ T

0

φq

(
−
∫ t

0

λf(s, u, u′) ds + P(φp(u′(0))) + L−1
P

∫ T

0

λf(s, u, u′) ds

)
dt

)
= 0.

(5.4)
�

Because n′(u) is negative semi-definite, we obtain that

0 �
∫ T

0

〈φp(u′(t)), n′(u(t))u′(t)〉 dt

= 〈φp(u′(t)), n(u(t))〉 ∣∣T0 −
∫ T

0

〈
(φp(u′(t)))′, n(u(t))

〉
dt

= 〈φp(u′(T )), n(u(T ))〉 − 〈φp(u′(0)), n(u(0))〉 −
∫ T

0

〈
(φp(u′(t)))′, n(u(t))

〉
dt

= 〈Qφp(u′(0)), Qn(u(0))〉 − 〈φp(u′(0)), n(u(0))〉 +
∫ T

0

〈λf(t, u, u′), n(u(t))〉 dt

=
∫ T

0

〈λf(t, u, u′), n(u(t))〉 dt. (5.5)

Furthermore, we have that

P
(∫ T

0

λf(t, u, u′) dt

)
= 0. (5.6)

By (5.1) and (5.5), we have that

λ

∫ T

0

|f(t, u, u′)| dt �
∫ T

0

〈f(t, u, u′), n(u)〉 dt +
∫ T

0

h(t) dt �
∫ T

0

h(t) dt
Δ= M1.

(5.7)
According to the definition of LP , there exists M2 > 0 such that∣∣∣∣∣L−1

P

∫ T

0

λf(t, u, u′) dt

∣∣∣∣∣ � M2. (5.8)

From (5.6) and (5.7), it follows that λf(t, u, u′) ∈ Y1 is L1-bounded for any solution
of (4.1). According to the definition of Gh(γ) , proposition 2.6 , (5.4),(5.7) and (5.8),
we have that γ̃ = P(φp(u′(0))) is bounded, i.e., there exists M3 > 0 such that

|P(φp(u′(0)))| � M3.

Hence for any t ∈ [0, T ], we have

|φp(u′(t))| �
∣∣∣∣∫ t

0

λf(s, u, u′) ds

∣∣∣∣+ |P(φp(u′(0)))| +
∣∣∣∣∣L−1

P

∫ T

0

λf(s, u, u′) ds

∣∣∣∣∣
� M1 + M2 + M3.
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In the light of the definition of φq , there exists M4 > 0 such that

‖u′‖0 � M4.

Thanks to (5.6) and hypothesis (f2), there exists tj ∈ [0, T ] such that |u(tj)| < M ,
and

|u(t)| = |u(tj)| +
∣∣∣∣∣
∫ t

tj

u′(s) ds

∣∣∣∣∣ � M + TM4 = M5.

It follows that

‖u‖1 � M4 + M5
Δ= r.

Let Ω0 = {u ∈ X |‖u‖1 < r + 1}. Then condition (i) of theorem 4.1 is satisfied.
Take constant α ∈ X, then α ∈ ker (I-Q). By hypothesis (f2), one of the following

conditions holds: 〈
P
(∫ T

0

f(t, α, 0) dt

)
, α

〉
> 0, |α| > M, (5.9)

or 〈
P
(∫ T

0

f(t, α, 0) dt

)
, α

〉
< 0, |α| > M. (5.10)

In the case (5.9), define the following homotopy mapping:

Hμ(α) = μα + (1 − μ)P
(∫ T

0

f(t, α, 0) dt

)
;

in the case (5.10), define the following homotopy mapping:

Hμ(α) = −μα + (1 − μ)P
(∫ T

0

f(t, α, 0) dt

)
,

where μ ∈ [0, 1]. It is easy to check that the solution of Hμ(α) = 0 must be in
Ω1 ∩ ker(I − Q), where Ω1 = {u ∈ X |‖u‖1 < M + 1}. Then we have that

degB(Hμ(α),Ω1 ∩ ker(I − Q), 0) = degB(P
(∫ T

0

f(t, α, 0) dt

)
,Ω1 ∩ ker(I − Q), 0)

= degB(±I,Ω1 ∩ ker(I − Q), 0) �= 0.

Thus the condition (ii) of theorem 4.1 is satisfied with Ω1.
Finally, take

Ω = {u ∈ X |‖u‖1 < max{r + 1,M + 1}} .

Then conditions (i) and (ii) of theorem 4.1 are satisfied on Ω, which leads to the
problem (H Q) has at least one solution.
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Remark 5.2. The Villari condition was first introduced for the scalar case by
Villari in [13], i.e., there exists a k > 0 such that for all u ∈ C1([0, T ], R) with
min

t∈[0,T ]
|u(t)| � k,

sgn(u)
∫ T

0

f(t, u, u′) dt � 0.

Obviously, the above condition requires u and
∫ T

0
f(t, u, u′) dt to be the same sign.

But our conditions do not require that.
In [8], Manásevich and Mawhin gave the generalized Villari condition for periodic

problem, i.e., there exists a k > 0 such that for all u ∈ C1
T , u = (u1, · · · , uN ), with

min
t∈[0,T ]

|uj(t)| � k, for some j ∈ {1, · · · , N},

∫ T

0

fi(t, u, u′) dt �= 0,

for some i ∈ {1, · · · , N}. However, this does not lead to the condition (ii) of
theorem 4.1.

Corollary 5.3. Assume that ker(I − Q) �= {0} and the following conditions
hold.

(1) The condition (f1) of theorem 5.1 holds.

(2) There exist h1 ∈ L1([0, T ], R+) and α : [0, +∞) → [0, +∞) such that α(s) →
+∞ as s → +∞ and

α(|x|) − h1(t) � |Pf(t, x, y)| (5.11)

for almost all t ∈ [0, T ] and all x, y ∈ R
N .

(3) Condition (4.3) holds.

Then the problem (H Q) has at least one solution.

Proof. Let (u, λ), λ ∈ (0, 1) be a solution for problem (4.1). As in the proof of
theorem 5.1, it follows from 1) that there is M1 > 0 such that ‖u′‖0 � M1. We
claim that 1) and (5.11) imply that there exists M2 > 0 such that ‖u‖0 � M2.
In fact, by (5.1) and (5.5), we have

∫ T

0
|f(t, u, u′)| dt � ‖h‖L1 . From (5.11) and

|Px| � |x|, it follows that∫ T

0

α(|u|) dt �
∫ T

0

|Pf(t, u, u′)| dt + ‖h1‖L1 �
∫ T

0

|f(t, u, u′)| dt + ‖h1‖L1

� ‖h‖L1 + ‖h1‖L1 .

Since α(s) → +∞ as s → +∞, we find the required bound for ‖u‖0.
Now let a ∈ ker(I − Q) such that P ∫ T

0
f(t, a, 0) dt = 0. By (5.11), we get

that α(|a|) � M3, and hence |a| � M4. Here M3 and M4 are positive con-
stants. Thus there is r > 0 such that all solution to (4.2) belongs to
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Ω = {a ∈ ker(I − Q) : |a| < r}. The rest of the proof follows from the
theorem 5.1. �

Example 5.4. Now, we give a simple example for corollary 5.3. Consider the
following p-Laplacian differential systems⎧⎨⎩−

(
|u′|p−2

u′
1

)′
+ u1

(
1 + u2

1

)
+ u1

(
1 + u2

2

)
= e1(t), −

(
|u′|p−2

u′
2

)′
+ u2

(
1 + u2

2

)
= e2(t),

(5.12)

with rotating periodic boundary conditions

u(T ) = Qu(0), u′(T ) = Qu′(0).

where u(t) =
(

u1(t)
u2(t)

)
, e(t) =

(
e1(t)
e2(t)

)
∈ L1(0, T ; R2) and Q =

(
1 0
0 −1

)
.

Then we have (I − Q) =
(

0 0
0 2

)
, ker (I - Q) = a

(
1
0

)
and Im(I - Q) = a

(
0
1

)
,

a ∈ R.

Let P
(

x1

x2

)
=
(

x1

0

)
, n(x) =

(−2x1 − 2x2

)
and α(|x|) = |x|, for x ∈ R

2.

Set

f(t, x) =
(−x1(1 + x2

1) − x1(1 + x2
2) + e1(t) − x2(1 + x2

2) + e2(t)
)
.

Obviously, for a.e. t ∈ [0, T ] and x ∈ R
2, we have

− |e(t)| + |x| � |Pf(t, x)| � |f(t, x)| � 2|x|3 + |x| + |e(t)| ,
as |x1| � 1 and |x2| � 1. Hence for some l(t) ∈ L1([0, T ], R+), we have

|f(t, x)| � 2|x|3 + |x| + |l(t)| ,
for a.e. t ∈ [0, T ] and all x ∈ R

2. On the other hand,

〈f(t, x), n(x)〉 � |x|4 + 2|x|2 − 2 |x| |e| ,
for a.e. t ∈ [0, T ] and all x ∈ R

2. Thus for a.e. t ∈ [0, T ] and all x ∈ R
2, we can

choose h(t) ∈ L1([0, T ], R+) such that

|f(t, x)| � 〈f(t, x), n(x)〉 + h(t).

Next, for b ∈ ker (I - Q), we have

F (b) =

(
−b1(1 + b2

1) − b1 +
1
T

∫ T

0
e1(t) dt

0

)
.

By the properties of the Brouwer degree, we have for sufficiently large r > 0

degB (F (b),Ω(r), 0) = 1,

where Ω(r) = {b ∈ ker(I − Q) : |b| < r}. Hence, the RPBVP (5.12) has at least one
solution.
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5.2. Existence of solutions of RPBVP (H Q) for the p-Laplacian
Liénard-type system

Consider the following p-Laplacian Liénard-type system with the rotating
periodic boundary conditions:{

(φp(u′(t)))′ + (∇F (u))′ + Au(t) = e(t),
u(T ) = Qu(0), u′(T ) = Qu′(0),

(5.13)

where p � 2, Q is an N × N orthogonal matrix with ker (I-Q) �= {0}, A is an N × N
matrix with AQ = QA, F ∈ C2(RN , R) with F (u) = F (|u|), e ∈ L2 with e(t + T ) =
Qe(t).

In [10], Mawhin studied the T-periodic solutions of the following p-Laplacian
Liénard system: {

(φp(u′))′ + (∇F (u))′ + Au = e(t),
u(0) = u(T ), u′(0) = u′(T ).

And the author obtained some existence theorems for the above problem.
Next, we extend periodic boundary value conditions to rotating periodic bound-

ary conditions and give some existence results for (5.13).

Theorem 5.5. Assume that A is a negative definite matrix and satisfies PA(α) =
AP(α) for any α ∈ R

N , where P : R
N → ker (I - Q). Then for each e ∈ L2, problem

(5.13) has at least one solution.

Proof. To apply theorem 4.1, we consider the auxiliary RPBVP:{
(φp(u′(t)))′ + λ(∇F (u))′ + λAu(t) = λe(t),
u(T ) = Qu(0), u′(T ) = Qu′(0),

(5.14)

where λ ∈ (0, 1]. �

First, we make a prior estimate. Let (u, λ) ∈ X × (0, 1] be solution of (5.14).
Integrating (5.14) over [0, T ], we get that

(I − Q)φp(u′(0)) + (I − Q)λ
dF

du
(|u(0)|) u(0)

|u(0)| + λ

∫ T

0

e(t) dt = λA

∫ T

0

u(t) dt.

Taking P to act on the above equation, we have

P
(∫ T

0

e(t) dt

)
= AP

(∫ T

0

u(t) dt

)
.

Let ē = P( 1
T

∫ T

0
e(t) dt) and ū = P( 1

T

∫ T

0
u(t) dt), then

|ū| =
∣∣A−1ē

∣∣ �
∣∣A−1

∣∣ |ē| . (5.15)
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Now taking the inner product for the both side of (5.14) by u and integrating over
[0, T ], we obtain∫ T

0

〈
(φp(u′(t)))′, u(t)

〉
dt = 〈(φp(u′(t))) , u(t)〉 ∣∣T0 −

∫ T

0

〈(φp(u′(t))) , u′(t)〉 dt

= 〈Qφp(u′(0)), Qu(0)〉 − 〈φp(u′(0)), u(0)〉

−
∫ T

0

|u′(t)|p dt

= −
∫ T

0

|u′(t)|p dt,∫ T

0

〈
(∇F (u))′, u(t)

〉
dt = 〈∇F (u), u(t)〉 ∣∣T0 −

∫ T

0

∇F (u)du

=
〈

Q
dF

du
(|u(0)|) u(0)

|u(0)| , Qu(0)
〉

−
〈

dF

du
(|u(0)|) u(0)

|u(0)| , u(0)
〉

− F (u(T )) + F (u(0))

= F (u(0)) − F (|Qu(0)|) = 0,

and ∫ T

0

〈e(t), u(t)〉 dt = T 〈ē, ū〉 +
∫ T

0

〈ẽ(t), ũ(t)〉 dt.

Then we have∫ T

0

|u′(t)|p dt − λ

∫ T

0

〈Au(t), u(t)〉 dt = −λT 〈ē, ū〉 − λ

∫ T

0

〈ẽ(t), ũ(t)〉 dt, (5.16)

where ẽ(t) = e(t) − ē = e(t) − P( 1
T

∫ T

0
e(t) dt) and ũ(t) = u(t) − ū = u(t) − P

( 1
T

∫ T

0
u(t) dt), which yield

∫ T

0
ẽ(t) dt,

∫ T

0
ũ(t) dt ∈ Im(I - Q). According to the

assumption of A and (5.15), we get that∫ T

0

|u′(t)|p dt � T
∣∣A−1

∣∣ |ē|2 + N‖ẽ‖L1‖ũ‖0. (5.17)

For ũ, it follows from Sobolev inequality that

‖ũ‖0 � M‖ũ′‖L2 = M‖u′‖L2 . (5.18)

Next we claim there exists M2 > 0 such that

‖u′‖L2 � M2. (5.19)
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If this is false, there are λn ∈ (0, 1] (n = 1, 2, · · · ) such that corresponding solutions
un satisfy ‖u′

n‖L2 → ∞ (n → ∞). By (5.17), (5.18) and p � 2, we have

‖u′
n‖2

L2 � (T )(p−2)/p

(∫ T

0

|u′
n(t)|p dt

)2/p

� (T )(p−2)/p
(
T
∣∣A−1

∣∣ |ē|2 + NM‖ẽ‖L1‖u′
n‖L2

)2/p

,

which is a contradiction as n → ∞. From (5.15), (5.18) and (5.19), together with
u(t) = ũ(t) + ū, it follows that there exists M3 > 0 such that

‖u‖0 � M3. (5.20)

(5.14) implies that

∣∣∣(φp(u′(t)))′
∣∣∣ �

∣∣∣∣d2F (u(t))
duiduj

u′(t)
∣∣∣∣+ |A| |u(t)| +

N∑
i=1

|ei(t)|,

for a.e. t ∈ [0, T ]. And owing to (5.20) and the quality of F (u), we obtain

∣∣∣(φp(u′(t)))′
∣∣∣ � M4

N∑
i=1

|ui
′(t)| + |A|M3 +

N∑
i=1

|ei(t)|,

where
∣∣∣d2F (u(t))

duiduj

∣∣∣ � M4. By Hölder inequality, we have

∣∣∣(φp(u′(t)))′
∣∣∣2 � 3N(M4)2

N∑
i=1

|ui
′(t)|2 + 3|A|2(M3)2 + 3N

N∑
i=1

|ei(t)|2.

Furthermore,∫ T

0

∣∣∣(φp(u′(t)))′
∣∣∣2 dt � 3(M4)2N2‖u′‖2

L2 + 3T |A|2(M3)2 + 3N2‖e‖2
L2

� 3(M4)2N2(M2)2 + 3T |A|2(M3)2 + 3N2‖e‖2
L2

Δ= M5.
(5.21)

Write v(t) = φp(u′(t)) and decompose it as v(t) = ṽ(t) + v̄. We have
∫ T

0
ṽ(t) dt ∈

Im(I - Q) and

u′(t) = φq (ṽ(t) + v̄) ,

where 1
p + 1

q = 1(p, q > 1). Hence,

P
(∫ T

0

φq (ṽ(t) + v̄) dt

)
= 0.
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We deduce, from (5.21) and Sobolev inequality, that

‖ṽ‖2
0 � M2

∫ T

0

|ṽ′(t)|2 dt = M2

∫ T

0

∣∣∣(φp(u′(t)))′
∣∣∣2 dt � M2M5

Δ= M6.

From proposition 2.6, it follows that |v̄| = |γ̃(ṽ(t))| is bounded. Therefore

‖φp(u′)‖0 = ‖v‖0 � ‖ṽ‖0 + |v̄| � M7.

Then

‖u′‖0 � M8.

So there exists M0 > 0 independent of λ such that

‖u‖1 = max{‖u‖0, ‖u′‖0} � M0.

Secondly, to check the condition (ii) of theorem 4.1, we see that

F (α) := P
(

1
T

∫ T

0

(e(t) − Aα) dt

)
= ē − Aα,

where α ∈ ker(I − Q). Then F (α) = 0 has the unique solution α = A−1ē which triv-
ially yields that degB(F, B(r), 0) is well defined and equal to ±1 for all sufficiently
large r > 0, so that condition (ii) of theorem 4.1 is satisfied.

Corollary 5.6. If A is a negative definite matrix and satisfies PA(α) = AP(α)
for any α ∈ R

N , then for each e ∈ L2, the RPBVP{
(φp(u′(t)))′ + Au(t) = e(t),
u(T ) = Qu(0), u′(T ) = Qu′(0),

(5.22)

has an unique solution.

Proof. Only the uniqueness has to proved. Let u and v be solutions of (5.22). Then
we have

(φp(u′(t)))′ − (φp(v′(t)))′ + A(u − v) = 0,

u(T ) = Qu(0), u′(T ) = Qu′(0), v(T ) = Qv(0), v′(T ) = Qv′(0).

And hence, after multiplication by u − v, and integration by parts over [0, T ], we
get ∫ T

0

〈φp(u′(t)) − φp(v′(t)), u′(t) − v′(t)〉 dt

−
∫ T

0

〈A(u(t) − v(t)), (u(t) − v(t))〉 dt = 0.

The above formula and lemma 2.4 yield that u = v. �
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Corollary 5.7. If A is a negative semi-definite matrix with PA(α) = AP(α) for
any α ∈ R

N , then for each e ∈ L2 with ē = P( 1
T

∫ T

0
e(t) dt) = 0, the RPBVP (5.13)

has at least one solution u such that ū = P( 1
T

∫ T

0
u(t) dt) = 0.

Proof. Consider the auxiliary RPBVP:{
(φp(u′(t)))′ + (∇F (u))′ + Au(t) − 1

n
u(t) = e(t),

u(T ) = Qu(0), u′(T ) = Qu′(0),
(5.23)

where n > 0. By integrating the equation over [0, T ] and using P to act, then each
solution u of (5.23) satisfies

(A − 1
n

I)P
(

1
T

∫ T

0

u(t) dt

)
= P

(
1
T

∫ T

0

e(t) dt

)
= ē = 0.

Notice that (A − 1
nI) is negative definite for each n. So ū = 0. It follows from

theorem 5.5 and its proof that, RPBVP (5.23) has at least one solution un(t)
for each n. Further there is r0 > 0 independent of n such that ‖un‖1 � r0. From
lemma 3.3, it follows that those un are fixed points of the equivalent completely
continuous operator. So there exists a subsequence converging to a solution of (5.13)
with ū = 0. �

Corollary 5.8. If A
Δ= a < 0 is a constant, then for each e ∈ L2, the problem

(5.13) has at least one solution u.

Remark 5.9. If Q = I, then we immediately deduce Theorem 6.1 in [10] from
theorem 5.5.
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