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We are interested in the two-dimensional four-constant Riemann problem to the
isentropic compressible Euler equations. In terms of the self-similar variables, the
governing system is of nonlinear mixed-type and the solution configuration typically
contains transonic and small-scale structures. We construct a supersonic-sonic patch
along a pseudo-streamline from the supersonic part to a sonic point. This kind of
patch appears frequently in the two-dimensional Riemann problem and is a building
block for constructing a global solution. To overcome the difficulty caused by the
sonic degeneracy, we apply the characteristic decomposition technique to handle the
problem in a partial hodograph plane. We establish a regular supersonic solution for
the original problem by showing the global one-to-one property of the partial
hodograph transformation. The uniform regularity of the solution and the regularity
of an associated sonic curve are also discussed.
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1. Introduction

The two-dimensional (2-D) isentropic compressible Euler equations read that [8]

⎧⎪⎪⎨⎪⎪⎩
ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0,

(ρv)t + (ρuv)x + (ρv2 + p)y = 0,

(1.1)
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where the variables ρ, (u, v) and p are, respectively, the density, the velocity and
the pressure. For a polytropic gas, the pressure p takes the form p(ρ) = Aργ , where
A > 0 is a constant and γ > 1 is the adiabatic gas constant.

For some special types of initial values, for example, the four-constant Riemann
initial data (that is, the initial data are constant in each of the four quadrants of
the initial plane), the solutions of (1.1) are expected to depend on the self-similar
variables (ξ, η) = (x/t, y/t) and the flow is called pseudo-steady. For smooth flows,
system (1.1) in the variables (ξ, η) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uρξ + V ρη + ρ(uξ + vη) = 0,

Uuξ + V uη +

(
c2

γ − 1

)
ξ

= 0,

Uvξ + V vη +

(
c2

γ − 1

)
η

= 0,

(1.2)

where (U, V ) = (u − ξ, v − η) is the pseudo-flow velocity and c =
√

p′(ρ) is the
sound speed. For irrotational flows, that is, uy = vx or equivalently uη = vξ, system
(1.2) reduces to {

(c2 − U2)uξ − UV (uη + vξ) + (c2 − V 2)vη = 0,
uη − vξ = 0,

(1.3)

supplemented by the pseudo-Bernoulli’s law

c2

γ − 1
+

U2 + V 2

2
= −φ, φξ = U, φη = V. (1.4)

The variable φ is called the pseudo-velocity potential. The two eigenvalues of (1.3)
are

Λ± =
UV ± c

√
U2 + V 2 − c2

U2 − c2
, (1.5)

which means that system (1.3) is of mixed-type: supersonic for M > 1, subsonic for
M < 1 and sonic for M = 1, where M =

√
U2 + V 2/c is the pseudo-Mach number.

We call the curve {(ξ, η)|M(ξ, η) = 1} a sonic curve. Moreover, a curve is defined
as a pseudo-streamline if the direction of each point on it is parallel to the pseudo-
velocity (U, V ).

Under the self-similar transformation, the 2-D Riemann problem in the physical
(x, y) plane is transformed into a boundary problem at infinity in the self-similar
(ξ, η) plane. Clearly, for bounded solutions, system (1.3) is supersonic at infinity
and may change type to subsonic near the origin. The study of the 2-D four-constant
Riemann problem of (1.1) was started by Zhang and Zheng [43], in which a set of
global configurations of solutions were conjectured. These solution configurations
were verified and completed afterward numerically [29, 46]. It is interesting that
the configurations of the 2-D Riemann problem include many important physical
structures, such as shock reflection and dam collapse, see the survey [27]. It is
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well-known that, except for the case which the solution is vacuum near the origin
[32], each global solution configuration typically contains transonic and small-scale
structures [29, 46], which make the rigorous theoretical analysis are extremely
difficult. In particular, the numerical simulations in [10] confirmed that shock waves
may also formate near sonic curves even for the rarefactive initial data, which
illustrates that the behaviour of supersonic solutions near sonic curves are indeed
more complicated than previously expected. In recent years, the expansion problem
of a semi-infinite wedge of gas into vacuum, often interpreted as the dam collapse
problem in hydraulics [25, 39], has been widely studied first in the hodograph
plane [26, 31] and subsequently in the self-similar plane [6, 19, 28] by using the
characteristic decomposition technique developed in [30]. For this kind of problem,
the discussion of properties of solutions near sonic curves are avoided due to the
existence of vacuum. A similar situation appears in the problem of a pseudo-steady
supersonic flow around a sharp corner [24, 36]. In addition, there are also a series
of results on the shock reflection and shock diffraction problems, see among others
[1–5, 9, 47].

In order to explore the properties of supersonic solutions near sonic curves the-
oretically, the authors [38] proposed the concept of semi-hyperbolic wave and
constructed a semi-hyperbolic patch solution from the hyperbolic region up to
but not including the sonic curve for the 2-D pressure gradient system. A semi-
hyperbolic wave is a local solution for which one family of characteristics starts on
the sonic curve and ends on either a sonic curve or a transonic shock wave. This kind
of solution plays a buffer role in connecting hyperbolic regions and sonic curves, and
appears in many transonic situations [7, 8, 18]. The existence of semi-hyperbolic
patch solutions for the 2-D pseudo-steady Euler equations and related models were
established in [17, 23, 33]. The uniform regularity of semi-hyperbolic patch solu-
tions up to sonic curves were discussed in [15, 37]. On the other hand, a class of
regular supersonic solutions around the given sonic curves were constructed in [12,
13, 44] for the steady isentropic and full Euler equations and in [16, 45] for the
pseudo-steady case. Furthermore, the existence of regular solutions in supersonic-
sonic regions extracting from the transonic aerofoil problem was studied in [11, 14]
for the steady Euler equations. For more results about the steady transonic flow
problems, we refer the reader to [20, 21, 35, 40–42] and references therein.

In the present paper, we are interested in constructing a supersonic-sonic patch
along a pseudo-streamline from the supersonic part to a sonic curve for the 2-D
pesudo-steady isentropic irrotational Euler equations (1.3). Specifically, we consider
the degenerate problem as follows.

Problem 1.1. Let ÂB be a piece of smooth bend curve in the self-similar plane.
We assign the supersonic boundary data on ÂB such that it is a pseudo-streamline
and B is a sonic point. we look for a smooth sonic curve starting from B and build
a regular supersonic-sonic solution in the region bounded by this sonic curve and
the pseudo-streamline ÂB near point B. See Figure 1 for the illustration.

The motivation to study problem 1.1 originates from the framework of the 2-D
four-constant Riemann problem by Zhang and Zheng [43], in which a global solution
configuration is designed to extend the supersonic flows coming from infinity to
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Figure 1. A supersonic-sonic patch in the self-similar plane.

the subsonic flows near the origin along the pseudo-streamlines. In fact, the type
of supersonic-sonic patch considered here appears frequently in the 2-D Riemann
problem. For example, we consider the following initial data

ρ1 = 0.5686, u1 = 0.3, v1 = 0.5, p1 = 0.3302,

ρ2 = 1.0, u2 = −0.2389, v2 = 0.5, p2 = 0.7279,

ρ3 = 0.5, u3 = 0.3, v3 = 0.5, p3 = 0.7279,

ρ4 = 1.0, u4 = 0.3, v4 = −0.0389, p4 = 0.7279,

where (ρi, ui, vi, pi)(i = 1, 2, 3, 4) are the initial states in the ith quadrant of (x, y)
plane, then the solution configuration corresponds to the case R−

12J
+
23J

−
34R

+
41, see

figure 2. The results of numerical simulation show that two rarefaction simple waves
exiting from the contact discontinuities J+

23 and J−
34 do not interact, while reach

sonic curves before they interact. There is no shock wave in the third quadrant.
Here the curve ÂB in figure 2 (right) is the contact discontinuity J−

34 which can be
seen as a pseudo-streamline, and the point B is a sonic point. The patch described
in figure 1 can be regarded as the region near the sonic point B. On the other hand,
if ρ3 becomes larger, such as ρ3 = 2, while the other initial data remain unchanged,
the two simple waves exiting from J+

23 and J−
34 will interact with each other and a

transonic shock appears in the third quadrant in this case. It is worthwhile to refer
that, if the supersonic-sonic patch described in figure 1 is a simple wave region, Lai
and Sheng [22] constructed a simple wave solution in this region via the geometric
interpretation.

We comment that the supersonic-sonic patch considered in the present paper is
different from the semi-hyperbolic patches constructed in previous papers [17, 33,
37, 38]. In previous works, the semi-hyperbolic patches were boiled down to a family
of degenerate hyperbolic Goursat-type boundary value problems by specifying the
boundary data on the characteristic curves, which made that one can take level
curves of M as the “Cauchy supports’ to establish a global solution up to the sonic
curve. For the supersonic-sonic patch considered here, the corresponding ‘Cauchy
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Figure 2. A configuration of R−
12J+

23J−
34R+

41. Shown are density contours (left) and char-
acteristics and pseudo-Mach contours with M = 1.0, 0.95 (right) by the positive scheme.
Here the parameters are taken as γ = 1.4, dx = dy = 1/1600, λx = λy = 0.25, T = 0.25
and α = 0.9, β = 0.1 in the positive scheme.

supports’ can not be directly taken, because we only have the boundary data on a
pseudo-streamline. In order to overcome this difficulty, we transform the problem
into a new degenerate hyperbolic problem in a partial hodograph plane, which is
different from the previous study of semi-hyperbolic patches handled in the self-
similar plane. To solve the new degenerate problem, we first construct carefully a
strong determinate domain and then derive a priori estimates of solutions by the
idea of characteristic decompositions in the partial hodograph coordinates. A set
of new dependent variables are introduced to establish the uniform regularity of
solutions by using the bootstrap technique. Finally, we convert the solution from
the partial hodograph variables to the self-similar variables to obtain the existence
and uniform regularity of solutions to the original problem.

The main result of the paper is stated as follows.

Theorem 1.2. Let ÂB : η = ϕ(ξ)(ξ ∈ [ξ1, ξ2]) be an strictly decreasing and con-
cave smooth pseudo-streamline. Suppose that the pseudo-Mach number M is strictly
decreasing along ÂB with M = 1 at point B(ξ2, ϕ(ξ2)). We further assume that ϕ′

and M are C2 functions and satisfy the corresponding condition derived from the
pseudo-Bernoulli’s law. Then there exists a small smooth sonic curve B̂C such
that the pseudo-steady Euler equations (1.2) admits a supersonic-sonic solution
(ρ, u, v)(ξ, η) near point B. Moreover, the sonic curve B̂C is C1,μ-continuous
and the solution (ρ, u, v)(ξ, η) is uniformly C1,μ up to the sonic curve B̂C for
μ ∈ (0, 1/3).

The rest of the paper is organized as follows. Section 2 is devoted to providing the
basic characteristic decompositions of the angle variables to formulate the problem
and state the main result of the paper. In § 3, we introduce a partial hodograph
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coordinate system to transform the problem into a new degenerate hyperbolic prob-
lem. Moreover, we establish the existence and uniform regularity of solutions up
to the degenerate line for the new problem. Based on the solution in the partial
hodograph plane, we construct a regular solution to the original problem by the
global one-to-one property of the coordinate transformation and show its uniform
regularity up to the sonic curve in the self-similar plane in § 4.

2. Reformulation of problem and main result

In order to describe clearly the nonlinear degenerate problem under consideration,
it is convenient to introduce the pseudo-flow angle and the pseudo-Mach angle
as the dependent variables. We derive the characteristic decompositions of angle
variables, formulate the degenerate problem and then state the main result of the
paper in this section.

2.1. Preliminary characteristic decompositions

The matrix form of system (1.3) is(
c2 − U2 −UV

0 −1

)(
u
v

)
ξ

+
( −UV c2 − V 2

1 0

)(
u
v

)
η

= 0. (2.1)

The two eigenvalues of (2.1) are given in (1.5) and the corresponding left eigen-
vectors are �± = (1, Λ∓). Performing a standard procedure gives the characteristic
forms of (2.1) {

∂+u + Λ−∂+v = 0,
∂−u + Λ+∂−v = 0,

∂± = ∂ξ + Λ±∂η. (2.2)

Following the work [31], we introduce the pseudo-flow angle θ and pseudo-Mach
angle ω as follows

tan θ =
V

U
, sinω =

c√
U2 + V 2

. (2.3)

Moreover, we denote

α := θ + ω, β := θ − ω, (2.4)

and use the expression of Λ± to get

tan α = Λ+, tan β = Λ−. (2.5)

In other words, the angles α and β are, respectively, the inclination angles of positive
and negative characteristic curves. In view of (2.3) and the pseudo-Bernoulli law
(1.4), the functions (c, u, v) can be expressed in terms of φ, θ, ω

c =

√
−2φκ�2

κ + �2
, u = ξ − c

cos θ

�
, v = η − c

sin θ

�
, κ =

γ − 1
2

. (2.6)

Here and below, the mixed variables ω and � := sin ω are used for convenience.
Obviously, the sonic curve {(ξ, η) : M(ξ, η) = 1} now is {(ξ, η) : �(ξ, η) = 1}.
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Further introduce the normalized directional derivatives along the characteristics

∂̄+ = cos α∂ξ + sin α∂η, ∂̄− = cos β∂ξ + sinβ∂η, ∂̄0 = cos θ∂ξ + sin θ∂η. (2.7)

Consequently

∂ξ = cos θ∂̄0 − sin θ

2�
(∂̄+ − ∂̄−), ∂η = sin θ∂̄0 +

cos θ

2�
(∂̄+ − ∂̄−), ∂̄0 =

∂̄++∂̄−

2 cos ω
.

(2.8)
In terms of the variables (θ, �), we thus obtain a new system by (2.2) and (2.7)⎧⎪⎪⎨⎪⎪⎩

∂̄+θ +
cos ω

κ + �2
∂̄+� =

�2

c
· κ − 1 + 2�2

κ + �2
,

∂̄−θ − cos ω

κ + �2
∂̄−� = −�2

c
· κ − 1 + 2�2

κ + �2
.

(2.9)

Furthermore, applying (1.4), (2.4), (2.6), and (2.7) leads to the equations of the
pseudo-velocity potential φ

∂̄0φ = − c

�
, ∂̄±φ = −c cos ω

�
. (2.10)

Denote

R =
∂̄+c

c
, S =

∂̄−c

c
, (2.11)

one employs the pseudo-Bernoulli’s law (1.4) again to get the relations between �
and (R, S)

∂̄+� =
�(κ + �2)

κ
R − cos ω�2

c
, ∂̄−� =

�(κ + �2)
κ

S − cos ω�2

c
. (2.12)

The variables c and � also satisfy

∂̄0c =
κ(c∂̄0� + �2)

�(κ + �2)
. (2.13)

With the aid of the commutator relation between ∂̄+ and ∂̄− [31]

∂̄−∂̄+ − ∂̄+∂̄− =
cos(2ω)∂̄−α − ∂̄+β

sin(2ω)
∂̄++

cos(2ω)∂̄+β − ∂̃−α

sin(2ω)
∂̄−, (2.14)

we have the characteristic decompositions for the variable c⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂̄−R = R

{
− 2 cos ω�

c
+

(κ + 1)(R + S)
2κ cos2 ω

− κ + 2�2

κ
S

}
,

∂̄+S = S

{
− 2 cos ω�

c
+

(κ + 1)(R + S)
2κ cos2 ω

− κ + 2�2

κ
R

}
,

(2.15)

Set

R = �
√

κ + �2R, S = −�
√

κ + �2S, (2.16)
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which together with (2.15) yields⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂̄−R = R

{
κ + 1

2κ�
√

κ + �2
· R − S

cos2 ω
− �(3κ + 4�2) cos ω

c(κ + �2)

}
,

∂̄+S = S

{
κ + 1

2κ�
√

κ + �2
· R − S

cos2 ω
− �(3κ + 4�2) cos ω

c(κ + �2)

}
.

(2.17)

For later use, we list some relations by (2.8), (2.9), (2.12), and (2.16) here⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂̄+θ = − cos ωR

κ
√

κ + �2
+

�2

c
,

∂̄−θ = − cos ωS

κ
√

κ + �2
− �2

c
,

(2.18)

⎧⎪⎪⎨⎪⎪⎩
�ξ = cos θ

√
κ + �2

κ
W − cos θ

�2

c
− sin θ

√
κ + �2

2κ�
(R + S),

�η = sin θ

√
κ + �2

κ
W − sin θ

�2

c
+ cos θ

√
κ + �2

2κ�
(R + S),

(2.19)

and

φξ�η − φη�ξ = −c
√

κ + �2

2κ�2
(R + S), (2.20)

where W = (R − S)/2 cos ω.

2.2. The problem and the main result in terms of angle variables

In this subsection, we formulate the problem in terms of the angle variables
(θ, �). Given a smooth curve ÂB : η = ϕ(ξ)(ξ ∈ [ξ1, ξ2]) in the (ξ, η) plane, we
assign the boundary data for (ρ, u, v) on ÂB, (ρ, u, v)(ξ, ϕ(ξ)) = (ρ̂, û, v̂)(ξ) such
that

ρ̂(ξ) > 0, v̂(ξ) − ϕ(ξ) = ϕ′(ξ)(û(ξ) − ξ), ∀ ξ ∈ [ξ1, ξ2],
(û(ξ) − ξ)2 + (v̂(ξ) − ϕ(ξ))2 > Aγρ̂γ−1(ξ), ∀ ξ ∈ [ξ1, ξ2),
(û(ξ2) − ξ2)2 + (v̂(ξ2) − ϕ(ξ2))2 = Aγρ̂γ−1(ξ2) .

(2.21)

It follows by (2.21) that the curve ÂB is a pseudo-streamline and the flow is super-
sonic on ÂB \ {B} and sonic at point B. From (2.3), one obtains the data of
(c, θ, �) on ÂB

c(ξ, ϕ(ξ)) =
√

Aγρ̂γ−1(ξ) =: ĉ(ξ),

θ(ξ, ϕ(ξ)) = arctan

(
v̂(ξ) − ϕ(ξ)

û(ξ) − ξ

)
=: θ̂(ξ),

�(ξ, ϕ(ξ)) =
ĉ(ξ)√

(û(ξ) − ξ)2 + (v̂(ξ) − ϕ(ξ))2
=: �̂(ξ),

∀ ξ ∈ [ξ1, ξ2]. (2.22)
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Combining with (2.21) and (2.22) gets

θ̂(ξ) = arctan ϕ′(ξ) (∀ ξ ∈ [ξ1, ξ2]), �̂(ξ) < 1 (∀ ξ ∈ [ξ1, ξ2)), �̂(ξ2) = 1. (2.23)

We suppose that the functions (ĉ, θ̂, �̂) satisfy the following compatibility condition
by (2.13)

cos θ̂ĉ′ =
κ(ĉ cos θ̂�̂′ + �̂2)

�̂(κ + �̂2)
, ∀ ξ ∈ [ξ1, ξ2]. (2.24)

Obviously, Problem 1.1 in terms of angle variables can be restated as

Problem 2.1. Let ÂB : η = ϕ(ξ)(ξ ∈ [ξ1, ξ2]) be a smooth curve and the conditions
of the boundary data (c, θ, �)|

ÂB
= (ĉ, θ̂, �̂)(ξ) in (2.23) and (2.24) be satisfied.

We find a smooth sonic curve B̂C and build a regular supersonic solution to system
(2.9) in the angular region of B bounded by B̂A and B̂C, see figure 1.

By extracting the features of the problem described in figure 1, we further assume
that the functions ϕ(ξ) and �̂(ξ) satisfy

ϕ′(ξ), �̂(ξ) ∈ C2([ξ1, ξ2]),
ϕ′(ξ2) < 0, ϕ′′(ξ2) < 0, �̂′(ξ2) > 0.

(2.25)

Since we are looking for a solution near point B, without loss of generality, we can
replace (2.25) with the following

ϕ′(ξ), �̂(ξ) ∈ C2([ξ1, ξ2]),
ϕ0 � −ϕ′(ξ),−ϕ′′(ξ), �̂′(ξ) � ϕ1, ∀ ξ ∈ [ξ1, ξ2],

(2.26)

for some positive constants ϕ0 and ϕ1. Otherwise, a suitable point A1 on ÂB can
be selected to replace A such that (2.26) is valid on ̂A1B.

Our main conclusion theorem 1.2 can be restated in the following theorem.

Theorem 2.2. Let the boundary conditions (2.23), (2.24), and (2.26) hold. Then
there exists a small smooth sonic curve B̂C and Problem 2.1 admits a supersonic
solution (c, θ, �)(ξ, η) ∈ C2 in the region BCD, where D is a point on ÂB and
ĈD is a positive characteristic. In addition, the sonic curve B̂C is C1,μ-continuous
and the solution (c, θ, �)(ξ, η) is uniformly C1,μ up to the sonic curve B̂C for
μ ∈ (0, 1/3).

Remark 2.3. The inequality conditions in (2.25) are just to match the fea-
tures of the pseudo-streamline described in Figure 1, which can be replaced by
the other corresponding conditions, such as ϕ′(ξ2) > 0, ϕ′′(ξ2) > 0, �̂′(ξ2) > 0 or
ϕ′(ξ2) > 0, ϕ′′(ξ2) < 0, �̂′(ξ2) < 0, etc. These conditions are mainly to ensure that
∂̄±c(B) �= 0 and ∂̄0c(B) �= 0, which play a key role in the construction of solutions.
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2.3. The boundary data for (R, S)

In this subsection, we derive the data of (R, S) on the pseudo-streamline ÂB,
which need to be used later.

Since ÂB is a pseudo-streamline, we have by (2.7), (2.23), and (2.26)

∂̄0θ|
ÂB

= cos θ̂θ̂′ =
cos θ̂ϕ′′

1 + (ϕ′)2
< 0, ∂̄0�|

ÂB
= cos θ̂�̂′ > 0. (2.27)

Making use of (2.8) and (2.9) yields

∂̄+� = −(κ + �2)∂̄0θ + cos ω∂̄0�,

∂̄−� = (κ + �2)∂̄0θ + cos ω∂̄0�,
(2.28)

which together with (2.12) and (2.16) arrives at

R =
κ√

κ + �2

(
− (κ + �2)∂̄0θ + cos ω∂̄0� +

cos ω�2

c

)
,

S =
κ√

κ + �2

(
− (κ + �2)∂̄0θ − cos ω∂̄0� − cos ω�2

c

)
.

(2.29)

Combining with (2.27) and (2.29), one gets the boundary data of (R, S)

R|
ÂB

=
κ√

κ+�̂2

(
− (κ+�̂2) cos θ̂ϕ′′

1 + (ϕ′)2
+
√

1 − �̂2
�̂2 + ĉ cos θ̂�̂′

ĉ

)
(ξ) =: â(ξ),

S|
ÂB

=
κ√

κ+�̂2

(
− (κ+�̂2) cos θ̂ϕ′′

1+(ϕ′)2
−
√

1 − �̂2
�̂2 + ĉ cos θ̂�̂′

ĉ

)
(ξ) =: b̂(ξ),

(2.30)
for ξ ∈ [ξ1, ξ2]. It easily seen by (2.26) and the fact �(ξ2) = 1 that there exists a
number ξ0 ∈ [ξ1, ξ2) such that â(ξ) > 0 and b̂(ξ) > 0 for all ξ ∈ [ξ0, ξ2]. Denote the
point (ξ0, ϕ(ξ0)) by Q.

In addition, for W = (R − S)/2 cos ω, we deduce by (2.11), (2.13), and (2.16)

W =
�
√

κ + �2

c
∂̄0c =

κ√
κ + �2

(
∂̄0� +

�2

c

)
. (2.31)

Hence by (2.27) and (2.31) one acquires the boundary data of W on ÂB

W |AB =
κ√

κ + �̂2

(
cos θ̂�̂′ +

�̂2

ĉ

)
(ξ) =: d̂(ξ). (2.32)

Obviously, one has d̂(ξ) > 0 for all ξ ∈ [ξ1, ξ2].
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Summing up (2.26), (2.30), and (2.32), we obtain the boundary conditions
(R, S, W ) on Q̂B

â(ξ), b̂(ξ) ∈ C0([ξ0, ξ2]) ∩ C1([ξ0, ξ2)), d̂(ξ) ∈ C1([ξ0, ξ2]),
0 < m̂0 � â(ξ), b̂(ξ), d̂(ξ) � M̂0, ∀ ξ ∈ [ξ0, ξ2],
â(ξ) − b̂(ξ) = 2

√
1 − �̂2d̂(ξ), ∀ ξ ∈ [ξ0, ξ2],

(2.33)

for some constants m̂0 and M̂0. Moreover, there hold by (2.30) and (2.32)

√
1 − �̂2â′(ξ) = −�̂�̂′d̂ + (1 − �̂2)d̂′ −

√
1 − �̂2

(
κ
√

κ + �̂2 cos θ̂ϕ′′

1 + (ϕ′)2

)′
,

√
1 − �̂2b̂′(ξ) = �̂�̂′d̂ + (1 − �̂2)d̂′ −

√
1 − �̂2

(
κ
√

κ + �̂2 cos θ̂ϕ′′

1 + (ϕ′)2

)′
,

(2.34)

for ξ ∈ [ξ0, ξ2).

3. Solutions in a partial hodograph plane

In this section, we introduce a partial hodograph transformation to transform
the singular system (2.17) into a new degenerate hyperbolic system with explic-
itly singularity-regularity structures. Then we solve the new system with the
corresponding boundary conditions of (2.33) near the corner point.

3.1. The problem in a partial hodograph plane

We first derive the boundary value of the pseudo-velocity potential φ defined in
(1.4) on ÂB. From (2.6) one obtains

φ = −c2(κ + �2)
2κ�2

, (3.1)

then

φ|
ÂB

= − ĉ2(κ + �̂2)
2κ�̂2

(ξ) =: φ̂(ξ), ξ ∈ [ξ1, ξ2]. (3.2)

Moreover, it follows by (2.10) that

φ̂′(ξ) =
∂̄0φ

cos θ

∣∣∣∣
ÂB

= − ĉ(ξ)

�̂(ξ) cos θ̂(ξ)
= − ĉ(ξ)

√
1 + (ϕ′(ξ))2

�̂(ξ)
< 0, (3.3)

for all ξ ∈ [ξ1, ξ2], which means that φ̂(ξ) a strictly decreasing function.
Now introduce the following transformation

t = cos ω(ξ, η), z = φ(ξ, η) − φ̂(ξ2). (3.4)

Recalling the facts �̂′(ξ) > 0 by (2.26) and φ̂′(ξ) < 0 by (3.3), we find that the
image of the arc B̂Q in the (z, t)-plane is a smooth increasing curve ̂B′Q′ :
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z = z̃(t)(t ∈ [0, t0]) defined through a parametric ξ

t =
√

1 − �̂2(ξ), z = φ̂(ξ) − φ̂(ξ2), (ξ ∈ [ξ0, ξ2]). (3.5)

Here the number t0 =
√

1 − �̂2(ξ0) ∈ (0, 1). Moreover, we denote the inverse
function of the function z = φ̂(ξ) − φ̂(ξ2) by ξ = ξ̂(z) (z ∈ [0, z0]), where z0 =
φ̂(ξ0) − φ̂(ξ2) > 0. Hence, combining with (2.30) and (2.32), one can achieve the
boundary data of (R, S, W ) on ̂B′Q′

R|
̂B′Q′ = â(ξ̂(z)) =: â(z), S|

̂B′Q′ = b̂(ξ̂(z)) =: b̂(z),

W |
̂B′Q′ = d̂(ξ̂(z)) =: d̂(z),

∀ z ∈ [0, z0]. (3.6)

Furthermore we also have by (2.33)

â(z), b̂(z), d̂(z) ∈ C1([0, z0]),
m̂0 � â(z), b̂(z), d̂(z) � M̂0, ∀ z ∈ [0, z0].

(3.7)

By (2.6), the sound speed c in terms of the coordinate variables (z, t) is

c = c(z, t) =

√
−2κ(1 − t2)(z + φ̂(ξ2))

κ + 1 − t2
, (3.8)

which is a known smooth bounded positive function. Subsequently, the operators
∂̄± are

∂̄+ =

{
−
√

(κ + 1 − t2)(1 − t2) · R
κt

+

√
(1 − t2)3

c

}
∂t − ct√

1 − t2
∂z,

∂̄− =

{√
(κ + 1 − t2)(1 − t2) · S

κt
+

√
(1 − t2)3

c

}
∂t − ct√

1 − t2
∂z.

(3.9)

Thus we can deduce the system of variables (R, S)(z, t) by (2.17)⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂−R =

(κ + 1)R
(1 − t2)

√
κ + 1 − t2T1

· R − S

2t
− κ(3κ + 4 − 4t2)

c(κ + 1 − t2)T1
· Rt2,

∂+S =
(κ + 1)S

(1 − t2)
√

κ + 1 − t2T2

· S − R

2t
+

κ(3κ + 4 − 4t2)
c(κ + 1 − t2)T2

· St2,

(3.10)

where

∂± = ∂t + λ±∂z, λ− = − κc

(1 − t2)T1
t2, λ+ =

κc

(1 − t2)T2
t2, (3.11)

and

T1 =
√

κ + 1 − t2S +
κ(1 − t2)

c
t, T2 =

√
κ + 1 − t2R − κ(1 − t2)

c
t. (3.12)

Obviously, system (3.10) is a closed system for (R, S)(z, t).
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For the degenerate boundary value problem (3.10), (3.6), we have the following
theorem.

Theorem 3.1. Suppose that (3.7) holds. Then there exists a small number δ̄ ∈
(0, t0] such that the degenerate boundary value problem (3.10), (3.6) admits a
smooth solution (R, S)(z, t) in the whole region B′C ′D′, where D′ is the point
(z̃(δ̄), δ̄) on ̂B′Q′ and C ′ is the intersection point of the positive characteristic
passing through D′ and the line t = 0. Moreover, the quantities (R, S)(z, t) are
uniformly C1−ν and W (z, t) are uniformly C2−ν/3 up to the degenerate line ̂B′C ′
for ν ∈ (0, 1).

3.2. A strong determinate domain and the C0-estimates

In order to prove theorem 3.1, we need to construct a strong determinate domain
for the nonlinear system (3.10) and then establish a prior estimates of solutions in
this domain.

Set δ0 = min{t0, 1/
√

2} and denote

ĉ0 =

√
−κ(z0 + φ̂(ξ2))

κ + 1
, ĉ1 =

√
−2κφ̂(ξ2)

κ + 1
2

.

Then for any (z, t) ∈ [0, z0] × [0, δ0] one has by (3.8)

ĉ0 � c(z, t) � ĉ1. (3.13)

Now denote

M̂ = 1 +
4
√

κ(3κ + 4)
ĉ0(κ + 1

2 )m̂0

, δ1 = min

{
δ0,

ĉ0m̂0

4
√

κ
,
ln 2

M̂

}
, (3.14)

such that

δ1 � ĉ0m̂0

4
√

κ
, eM̂δ1 � 2. (3.15)

The reasons for the selections of M̂ and δ1 are as follows. If (R, S) satisfy the
inequality

1
2
m̂0 � R,S � 2M̂0, (3.16)

then we obtain by (3.12) and (3.15)

|T1|, |T2| �
√

κ + 1 − t2 · 1
2
m̂0 − κ(1 − t2)t

ĉ0

�
√

κ

2
m̂0 − κδ1

ĉ0
�

√
km̂0

4
, (3.17)

for t ∈ [0, δ1]. Thus by (3.14) and (3.17), the coefficients of the last two terms in
(3.10) satisfy∣∣∣∣− κ(3κ + 4 − 4t2)

c(κ + 1 − t2)T1

∣∣∣∣, ∣∣∣∣κ(3κ + 4 − 4t2)
c(κ + 1 − t2)T2

∣∣∣∣ � κ(3κ + 4)

ĉ0(κ + 1
2 )

√
κm̂0
4

< M̂. (3.18)
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Moreover, thanks to the expressions of λ± in (3.11), one finds by (3.17) again
that

−λ−
t2

,
λ+

t2
� κĉ1

1
2 ·

√
κm̂0
4

=
8
√

κĉ1

m̂0
=: M̃. (3.19)

We now derive the slope of curve ̂B′Q′ ∩ {t � δ1} defined by (3.5). Performing a
direct calculation and using (3.3) leads to

z̃′(t) = φ̂′(ξ) ·
(

−
√

1 − �̂2(ξ)
�̂(ξ) · �̂′(ξ)

)

= − ĉ(ξ)
√

1 + (ϕ′(ξ))2

�̂(ξ)
·
(

−
√

1 − �̂2(ξ)
�̂(ξ) · �̂′(ξ)

)
=

ĉ
√

1 + (ϕ′)2

�̂2�̂′ t. (3.20)

Recalling (2.26), we denote

m̃ =
ĉ0

√
1 + ϕ2

0

ϕ1
,

then

ĉ
√

1 + (ϕ′)2

�̂2�̂′ (ξ) � m̃, ∀ ξ ∈ [ξ1, ξ2]. (3.21)

Let δ = min{δ1, m̃/M̃}, that is

δ = min

{
t0,

1√
2
,
ĉ0m̂0

4
√

κ
,
ln 2

M̂
,
m̃

M̃

}
. (3.22)

Now consider the curve z = z̄(t) defined by

z̄(t) = z̃(δ) − M̃

3
δ3 +

M̃

3
t3, ∀ t ∈ [0, δ]. (3.23)

By (3.20)–(3.22) one deduces

z̄(0) = z̃(δ) − M̃

3
δ3 =

∫ δ

0

ĉ
√

1 + (ϕ′)2

�̂2�̂′ t dt − M̃

3
δ3

�
∫ δ

0

m̃t dt − M̃

3
δ3 =

m̃

2
δ2 − M̃

3
δ3 >

m̃ − M̃δ

3
δ2 � 0,

which indicates that the intersection point of the curve z = z̄(t) and the line t = 0 is
to the right of point B′. Denote the point (z̄(0), 0) by C ′, the point (z̃(δ), δ) by E′

and the domain B′C ′E′ by Ω. According to the construction process, the domain Ω
is a strong determinate domain for system (3.10) if (3.16) holds. We shall construct
a solution for the degenerate boundary value problem (3.10), (3.6) in the whole
domain Ω. It is worthwhile to comment by (3.22) that the solution domain Ω is
dependent only on the given initial constants but independent of the construction
process of solutions.
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Since system (3.10) is strictly hyperbolic and its coefficients are smooth near
point E′, then by the classical local existence theory [34] we have the existence of
C1 solutions near E′ in Ω. In addition, this local solution satisfies the inequality in
(3.16) by the initial conditions in (3.7). We next establish the a prior estimate (3.16)
on Ω. Let ε ∈ (0, δ] be an arbitrary constant. Denote the domain Ω ∩ {(z, t)| t � ε}
by Ωε. We have the following lemma

Lemma 3.2. Let (3.7) hold and (R, S)(z, t) be a C1 solution of problem (3.10),
(3.6) in the domain Ωε. Then the solution (R, S)(z, t) satisfies

1
2
m̂0 � R(z, t), S(z, t) � 2M̂0, ∀ (z, t) ∈ Ωε. (3.24)

Proof. Introduce

R̂ = Re−M̂t, Ŝ = Se−M̂t, (3.25)

then by (3.7) and (3.15)

R̂|
̂E′B′ , Ŝ|̂E′B′ � m̂0e

−M̂δ >
m̂0

2
. (3.26)

From (3.10), the equations for (R̂, Ŝ) are⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂−R̂ =

(κ + 1)eM̂tR̂

(1 − t2)
√

κ + 1 − t2T1

· R̂ − Ŝ

2t
− I1R̂,

∂+Ŝ =
(κ + 1)eM̂tŜ

(1 − t2)
√

κ + 1 − t2T1

· Ŝ − R̂

2t
− I2Ŝ,

(3.27)

where

I1 = M̂ +
κ(3κ + 4 − 4t2)
c(κ + 1 − t2)T1

t2, I2 = M̂ − κ(3κ + 4 − 4t2)
c(κ + 1 − t2)T2

t2.

We now consider the level set of t = ε′(ε′ ∈ [ε, δ]) and move it down from t = δ
to t = ε. Suppose that a point P is the first time so that either R̂ = m̂0/2 or
Ŝ = m̂0/2 in the closed region bounded by ̂E′B′, ̂E′C ′ and t = tP . From the point
P , we draw the negative and positive characteristic curves up to the boundary ̂E′B′
at points P− and P+, respectively. Without the loss of generality, we assume that
Ŝ(P ) = m̂0/2 and then there has R̂ > m̂0/2 and Ŝ > m̂0/2 on ̂PP+ \ {P}. Due to
the above assumptions, one has

∂+Ŝ|P � 0. (3.28)

On the other hand, we note by (3.18) that I2 � 0 on ̂PP+, which together with
(3.27) yields

∂+Ŝ|P =

(
(κ + 1)eM̂tŜ

(1 − t2)
√

κ + 1 − t2T1

)∣∣∣∣
P

·
m̂0
2 − R̂|P

2tP
− (I2Ŝ)|P < 0,
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which leads to a contradiction with (3.28). Hence we have

R̂, Ŝ � m̂0

2
, ∀ (z, t) ∈ Ωε,

which along with (3.25) arrives at

R,S � m̂0

2
eM̂t � m̂0

2
, ∀ (z, t) ∈ Ωε. (3.29)

To derive the upper bounded of (R, S), we introduce

R̂ = ReM̂t, Ŝ = SeM̂t, (3.30)

and then ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂−R̂ =

(κ + 1)e−M̂tR̂

(1 − t2)
√

κ + 1 − t2T1

· R̂ − Ŝ

2t
+ I2R̂,

∂+Ŝ =
(κ + 1)e−M̂tŜ

(1 − t2)
√

κ + 1 − t2T1

· Ŝ − R̂

2t
+ I1Ŝ.

(3.31)

On the boundary ̂E′B′, one sees that

R̂|
̂E′B′ , Ŝ|̂E′B′ � M̂0e

M̂δ < 2M̂0. (3.32)

Following the previous symbols, if Ŝ(P ) = 2M̂0 and R̂ < 2M̂0 and Ŝ < 2M̂0 on
̂PP+ \ {P}, then

∂+Ŝ|P � 0. (3.33)

On the other hand, we apply the equation for Ŝ in (3.31) to achieve

∂+Ŝ|P =

(
(κ + 1)e−M̂tŜ

(1 − t2)
√

κ + 1 − t2T1

)∣∣∣∣
P

· 2M̂0 − R̂|P
2tP

+ (I1Ŝ)|P > 0,

which contradicts to the inequality in (3.33). Thus we obtain

R̂, Ŝ � 2M̂0, ∀ (z, t) ∈ Ωε,

and then

R,S � 2M̂0e
−M̂t � 2M̂0, ∀ (z, t) ∈ Ωε. (3.34)

Combining with (3.29) and (3.34) completes the proof of the lemma. �
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3.3. Existence of global solutions in Ω

In order to extend the local C1 solution near point E′ to the whole domain Ω,
we need derive the a priori C1 estimates for the degenerate problem (3.10), (3.6).

Owning to lemma 3.2, if the solution of problem (3.10), (3.6) exists, it is feasible
and convenient to introduce

R̃ =
1
R

, S̃ =
1
S

. (3.35)

In terms of variables (R̃, S̃), system (3.10) can be transformed into⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
R̃t − κcS̃t2

(1 − t2)T3
R̃z =

κ + 1
(1 − t2)

√
κ + 1 − t2T3

· R̃ − S̃

2t
+

κ(3κ + 4 − 4t2)
c(κ + 1 − t2)T3

R̃S̃t2,

S̃t +
κcR̃t2

(1 − t2)T4
S̃z =

κ + 1
(1 − t2)

√
κ + 1 − t2T4

· S̃ − R̃

2t
− κ(3κ + 4 − 4t2)

c(κ + 1 − t2)T4
R̃S̃t2,

(3.36)
or arranged to ⎧⎪⎪⎨⎪⎪⎩

∂̃−R̃ =
R̃ − S̃

2t
+ H11(R̃ − S̃) + H12t,

∂̃+S̃ =
S̃ − R̃

2t
+ H21(R̃ − S̃) + H22t,

(3.37)

where

T3 =
√

κ + 1 − t2 +
κ(1 − t2)

c(z, t)
S̃t, T4 =

√
κ + 1 − t2 − κ(1 − t2)

c(z, t)
R̃t,

H11 = −κ(1 − t2)S̃
2cT3

, H21 = −κ(1 − t2)R̃
2cT4

,

H12 =
(κ + 2 − t2)(R̃ − S̃)

2(1 − t2)
√

κ + 1 − t2T3

+
κ(3κ + 4 − 4t2)R̃S̃t

c(κ + 1 − t2)T3
,

H22 =
(κ + 2 − t2)(S̃ − R̃)

2(1 − t2)
√

κ + 1 − t2T4

− κ(3κ + 4 − 4t2)R̃S̃t

c(κ + 1 − t2)T4
,

(3.38)

and

∂̃± = ∂t + λ̃±∂z, λ̃− = − κcS̃

(1 − t2)T3
t2, λ̃+ =

κcR̃

(1 − t2)T4
t2. (3.39)

Now applying the commutator relation as follows

∂̃−∂̃+ − ∂̃+∂̃− =
∂̃−λ̃+ − ∂̃+λ̃−

λ̃+ − λ̃−
(∂̃+ − ∂̃−), (3.40)

we obtain the equations of ∂̃+R̃ and ∂̃−S̃

∂̃−∂̃+R̃ = ∂̃+∂̃−R̃ +
∂̃−λ̃+ − ∂̃+λ̃−

λ̃+ − λ̃−
(∂̃+R̃ − ∂̃−R̃), (3.41)
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and

∂̃+∂̃−S̃ = ∂̃−∂̃+S̃ +
∂̃−λ̃+ − ∂̃+λ̃−

λ̃+ − λ̃−
(∂̃−S̃ − ∂̃+S̃). (3.42)

Performing a tedious but straightforward calculation yields

∂̃−λ̃+ − ∂̃+λ̃−
λ̃+ − λ̃−

=
2
t

+ h, (3.43)

where

h =
(1 − t2)T3T4

κc(T3R̃ + T4S̃)

{
κ2(R̃2 − S̃2)

2T3T4
+

κ2(R̃ − S̃)(R̃T 2
3 + S̃T 2

4 )
2T 2

3 T 2
4

+ [H11(R̃ − S̃) + H12t] ·
(

κc

(1 − t2)T4
+

κ2tR̃

T 2
4

)

+ [H21(R̃ − S̃) + H22t] ·
(

κc

(1 − t2)T3
− κ2tS̃

T 2
3

)
+

κctR̃

(1 − t2)T4

+
κctS̃

(1 − t2)T3
+

κcR̃[2tT4 + (1 − t2)T4t]
(1 − t2)2T 2

4

+
κcS̃[2tT3 − (1 − t2)T3t]

(1 − t2)2T 2
3

}
.

Here

T3t = − t√
κ + 1 − t2

+
κ(1 − 3t2)S̃

c
− κ(1 − t2)S̃tct

c2
,

T4t = − t√
κ + 1 − t2

− κ(1 − 3t2)R̃
c

+
κ(1 − t2)R̃tct

c2
.

Furthermore, differentiating (3.37) give

∂̃+∂̃−R̃ = G11∂̃+R̃ + G12, (3.44)

where

G11 =
1
2t

+ H11 + tH12R̃,

G12 =

(
− 1

2t
− H11 + (R̃ − S̃)H11S̃ + tH12S̃

)
·
(

S̃ − R̃

2t
+ H21(R̃ − S̃) + H22t

)

− R̃ − S̃

2t2
+ (R̃ − S̃)(H11t + λ̃+H11z) + H12 + tH12t + tH12zλ̃+,

and

∂̃−∂̃+S̃ = G21∂̃−S̃ + G22, (3.45)
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where

G21 =
1
2t

− H21 + tH22S̃ ,

G12 =

(
− 1

2t
+ H21 + (R̃ − S̃)H21R̃ + tH22R̃

)
·
(

R̃ − S̃

2t
+ H11(R̃ − S̃) + H12t

)

− S̃ − R̃

2t2
+ (R̃ − S̃)(H21t + λ̃−H21z) + H22 + tH22t + tH22zλ̃−.

We now put (3.43), (3.44) and (3.43), (3.45) into (3.41) and (3.42), respectively, to
achieve {

∂̃−∂̃+R̃ = G̃11∂̃+R̃ + G̃12,

∂̃+∂̃−S̃ = G̃21∂̃−S̃ + G̃22,
(3.46)

where

G̃11 = G11 +
2
t

+ h, G̃21 = G21 +
2
t

+ h,

G̃12 = G12 −
(

2
t

+ h

)
·
(

R̃ − S̃

2t
+ H11(R̃ − S̃) + H12t

)
,

G̃22 = G22 −
(

2
t

+ h

)
·
(

S̃ − R̃

2t
+ H21(R̃ − S̃) + H22t

)
.

It is noted by lemma 3.2 and the exact expressions of T3, T4, Hij in (3.38) that
the terms h and HijI (I = R̃, S̃, z, t) are uniformly bounded. Thus there exists a
uniform positive constant K such that

|G̃11|, |G̃21| � K

t
, |G̃12|, |G̃22| � K

t2
. (3.47)

Therefore, for any point (z, t) ∈ Ωε, we draw the positive and negative characteristic
curves up to the boundary ̂E′B′ and integrate system (3.46) along the characteristic
curves to obtain by (3.47) ∣∣∂̃+R̃

∣∣, ∣∣∂̃−S̃
∣∣ � K

ε
, (3.48)

for some positive constant K, independent of ε. Combining with (3.37) and (3.48)
and employing lemma 3.2 concludes∣∣∂̃±R̃

∣∣, ∣∣∂̃±S̃
∣∣ � K

ε
, (3.49)

for some positive constant K, independent of ε. Moreover, one recalls (3.39) to
acquire

∂t =
R̃T3∂̃−+S̃T4∂̃+

R̃T3 + S̃T4

, ∂z =
(1 − t2)T3T4

κc(R̃T3 + S̃T4)
· ∂̃+ − ∂̃−

t2
,
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which together with (3.49) and (3.24) leads to

‖(R̃, S̃)‖C1(Ωε) � K

ε3
. (3.50)

Hence we have the C1 estimates of solutions by (3.35) and

Lemma 3.3. Let (3.7) hold and (R, S)(z, t) be a C1 solution of problem (3.10),
(3.6) in the domain Ωε. Then the solution (R, S)(z, t) satisfies

‖(R,S)‖C1(Ωε) � K

ε3
, (3.51)

where K is a suitable positive constant, independent of ε.

In view of lemmas 3.2 and 3.3, we can use the classical technique to extend the
local C1 solution near point E′ to the domain Ω. In fact, for any ε > 0, the level set
of t can be taken as the ‘Cauchy supports’ in the domain Ωε and the extension step
size is dependent only on the boundary data and the C0, C1 norms of (R, S) which
are uniformly bounded in Ωε. Due to the compactness of Ωε, one can complete the
extension process in a finite number of steps. By the arbitrariness of ε, we thus
obtain the C1 solution in Ω \ {t = 0}.

Theorem 3.4. Let (3.7) be satisfied. The boundary value problem (3.10), (3.6)
admits a C1 solution (R, S)(z, t) in the domain Ω \ {t = 0}.

3.4. The uniformity of solutions

In this subsection, we extend the solution constructed in theorem 3.4 to the
degenerate line t = 0. The key is to establish the uniform regularity of the terms
(Rz, Sz) or equivalently (R̃z, S̃z). For this purpose, we introduce new variables
(X, Y )

X = ∂̃+R̃ − ∂̃−R̃, Y = ∂̃+S̃ − ∂̃−S̃, (3.52)

so that by (3.39)

R̃z =
X

λ̃+ − λ̃−
=

(1 − t2)T3T4

κc(R̃T3 + S̃T4)
· X

t2
, S̃z =

Y

λ̃+ − λ̃−
=

(1 − t2)T3T4

κc(R̃T3 + S̃T4)
· Y

t2
.

(3.53)
Next we derive the equations for (X, Y ). Using the commutator relation (3.40), one
arrives at

∂̃−X = ∂̃−∂̃+R̃ − ∂̃−∂̃−R̃

=
(
∂̃+∂̃−R̃ − ∂̃−∂̃−R̃

)
+

∂̃−λ̃+ − ∂̃+λ̃−
λ̃+ − λ̃−

(∂̃+R̃ − ∂̃−R̃)

=
∂̃−λ̃+ − ∂̃+λ̃−

λ̃+ − λ̃−
X + (λ̃+ − λ̃−)(∂̃−R̃)z. (3.54)
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A similar argument gives

∂̃+Y =
∂̃−λ̃+ − ∂̃+λ̃−

λ̃+ − λ̃−
Y + (λ̃+ − λ̃−)(∂̃+S̃)z. (3.55)

By direct calculations, one applies (3.37) and (3.53) to achieve

(λ̃+ − λ̃−)(∂̃−R̃)z =
X − Y

2t
+ (H11 + tH12R̃)X + [−H11 + H11S̃(R̃ − S̃) + tH12S̃ ]Y

+ (λ̃+ − λ̃−)[H11z(R̃ − S̃) + tH12z], (3.56)

and

(λ̃+ − λ̃−)(∂̃+S̃)z =
Y − X

2t
+ (−H21 + tH22R̃)Y + [H21 + H21R̃(R̃ − S̃) + tH22R̃]X

+ (λ̃+ − λ̃−)[H21z(R̃ − S̃) + tH22z]. (3.57)

Combining with (3.43) and (3.54)–(3.57), we obtain the equations for (X, Y )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂̃−X =

(
5
2t

+ f1

)
X +

(
− 1

2t
+ f2

)
Y + f3t

2,

∂̃+Y =

(
5
2t

+ g1

)
Y +

(
− 1

2t
+ g2

)
X + g3t

2,

(3.58)

where

f1 = h + H11 + tH12R̃, g1 = h − H21 + tH22S̃ ,

f2 = −H11 + H11S̃(R̃ − S̃) + tH12S̃ , g2 = H21 + H21R̃(R̃ − S̃) + tH22R̃,

f3 =
κc(R̃T3 + S̃T4)
(1 − t2)T3T4

· [H11z(R̃ − S̃) + tH12z],

g3 =
κc(R̃T3 + S̃T4)
(1 − t2)T3T4

· [H21z(R̃ − S̃) + tH22z].

It is noted by lemma 3.2 that the functions fi, gi(i = 1, 2, 3) are uniform bounded
in Ω, that is

|h|, |fi|, |gi| � K̂, ∀ (z, t) ∈ Ω, (3.59)

for some uniform positive constant K̂.
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Next we discuss the properties of R̃z and S̃z on the curve ̂B′E′ near point B′.
We differentiate R̃ along ̂B′E′ and apply (3.20) to get

R̃t|̂B′E′ +
ĉ
√

1 + (ϕ′)2

�̂2�̂′ t · R̃z|̂B′E′ = − â′(ξ)ξ̂′(t)
â2

, (3.60)

which together with the fact ξ̂′(t) = −√
1 − �̂2/�̂�̂′(ξ) by (3.5), one has

R̃t|̂B′E′ +
ĉ
√

1 + (ϕ′)2

�̂2�̂′ t · R̃z|̂B′E′ =
√

1 − �̂2â′

�̂�̂′â2
. (3.61)

Inserting the first relationship in (2.34) into (3.61) leads to

R̃t|̂B′E′ +
ĉ
√

1+(ϕ′)2

�̂2�̂′ t · R̃z|̂B′E′ = − d̂

â2
+

t2d̂′

�̂�̂′â2
− t

�̂�̂′â2

(
κ
√

κ+�̂2 cos θ̂ϕ′′

1 + (ϕ′)2

)′
.

(3.62)

On the other hand, we use the equation of R̃ in (3.37), the relations in (3.35) and
the boundary data in (3.6) to acquire

R̃t|̂B′E′ − κĉt2

(1 − t2)T̂3b̂
R̃z|̂B′E′ =

R̃ − S̃

2t

∣∣∣∣
̂B′E′

+ Ĥ11(R̃ − S̃)|
̂B′E′ + Ĥ12t

= − d̂

âb̂
+ Ĥ11 · −2t

âb̂
d̂ + Ĥ12t, (3.63)

where T̂3, Ĥ11 and Ĥ12 are the boundary values of T3, H11 and H12 on ̂B′E′,
respectively. Combing (3.62) and (3.63) yields(

ĉ
√

1 + (ϕ′)2

�̂2�̂′ +
κĉt

(1 − t2)T̂3b̂

)
R̃z|̂B′E′

=
1
t

{
d̂(â − b̂)

â2b̂
+

d̂′

�̂�̂′â2
t2 − t

�̂�̂′â2

(
κ
√

κ + �̂2 cos θ̂ϕ′′

1 + (ϕ′)2

)′
+

2Ĥ11d̂

âb̂
t − Ĥ12t

}

=
2d̂2

â2b̂
+

d̂′t
�̂�̂′â2

− 1
�̂�̂′â2

(
κ
√

κ + �̂2 cos θ̂ϕ′′

1 + (ϕ′)2

)′
+

2Ĥ11d̂t

âb̂
− Ĥ12, (3.64)

which implies that the boundary value R̃z is uniformly bounded on the curve ̂B′E′.
Here we employed the facts that T̂3 is uniformly positive, Ĥ11 and Ĥ12 are uniformly
bounded, and the relationship â − b̂ = 2td̂. The uniform boundedness of the value
S̃z on ̂B′E′ can be similarly verified.

Based on the uniform boundedness of R̃z and S̃z on ̂B′E′, we have

Lemma 3.5. Let ν ∈ (0, 1) be an any fixed number. The two quantities tν |R̃z| and
tν |S̃z| are uniform bounded in the whole domain Ω up to the degenerate line t = 0.
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Proof. Set

X̃ =
X

t2−ν
, Ỹ =

Y

t2−ν
. (3.65)

According to lemma 3.2 and (3.53), we only need to show the uniform boundedness
of X̃ and Ỹ in the whole domain Ω. Thanks to (3.58), the governing equations for
X̃ and Ỹ are ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂̃−X̃ =

(
1 + 2ν

2t
+ f1

)
X̃ +

(
− 1

2t
+ f2

)
Ỹ + f3t

ν ,

∂̃+Ỹ =

(
1 + 2ν

2t
+ g1

)
Ỹ +

(
− 1

2t
+ g2

)
X̃ + g3t

ν ,

or equivalently⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂̃−

(
t−

1
2−νX̃

)
= t−

3
2−ν

(
tf1X̃ +

f2t − 1
2

Ỹ + f3t
1+ν

)
,

∂̃+

(
t−

1
2−ν Ỹ

)
= t−

3
2−ν

(
tg1Ỹ +

g2t − 1
2

X̃ + g3t
1+ν

)
.

(3.66)

Due to the uniform boundedness of R̃z and S̃z on ̂B′E′, it is easy to know by
(3.53) that X̃ and Ỹ are uniformly bounded on ̂B′E′. Set

Ĉ = max
̂B′E′

{|X̃|, |Ỹ |}, ε̄ = min

{
δ̄,

ν

4K̂

}
> 0. (3.67)

Then the region Ω is divided into two parts Ω1 := Ω ∩ {t � ε̄} and Ω2 := Ω ∩ {t �
ε̄}. It is obvious that (X̃, Ỹ ) are uniform bounded in the whole domain Ω2, where
Ω2 is the closure of Ω2. Denote

M = 1 + 2max{Ĉ, max
Ω2

{|X̃|, |Ỹ |}}. (3.68)

We shall show that

max
Ω1

{|X̃(z, t)|, |Ỹ (z, t)|} < M, (3.69)

which leads to the uniform boundedness of X̃ and Ỹ in the whole domain Ω. Clearly,
by the chosen of M in (3.68), one has

|X̃|, |Ỹ | <
1
2
M, ∀ (z, t) ∈ (̂B′E′ ∩ {t � ε̄}) ∪ (Ω ∩ {t = ε̄}). (3.70)

Now we use the contradiction argument to show (3.69). We move the level set
of t down from t = ε̄ to t = 0 and suppose a point P (z, t) ∈ Ω1 is the first time so
that, without the loss of generality, |X̃(P )| = M . From the point P , we draw the
negative characteristic curve up to the boundary curve ̂B′E′ ∩ {t � ε̄} or the line
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Figure 3. The region B′C′D′.

t = ε̄ at point P−(z−, t−). See figure 3 for the illustration. Then there has |X̃| � M

and |Ỹ | � M on the negative characteristic from P to P−. Integrating the equation
for X̃ in (3.66) from P to P− gives

t
− 1

2−ν
− X̃(P−) − t−

1
2−νX̃(P ) =

∫ t−

t

s−
3
2−ν

(
sf1X̃ +

sf2 − 1
2

Ỹ + f3s
1+ν

)
ds,

from which and the chosen of ε̄ in (3.67), we get

M = |X̃(P )| = t
1
2+ν

∣∣∣∣t− 1
2−ν

− X̃(P−)

−
∫ t−

t

s−
3
2−ν

(
sf1X̃ +

sf2 − 1
2

Ỹ + f3s
1+ν

)
ds

∣∣∣∣
�
(

t

t−

) 1
2+ν

|X̃(P−)| + t
1
2+ν

∫ t−

t

s−
3
2−ν

(
s|f1| · |X̃| + s|f2| + 1

2
|Ỹ | + |f3|s1+ν

)
ds

� 1
2
M

(
t

t−

) 1
2+ν

+ t
1
2+ν

∫ t−

t

s−
3
2−ν

(
ε̄K̂ · M +

ε̄K̂ + 1
2

M + K̂ε̄1+ν

)
ds

� 1
2
M

(
t

t−

) 1
2+ν

+ t
1
2+ν

∫ t−

t

s−
3
2−ν

(
ν

4
M + (

ν

8
+

1
2
)M +

ν

4
M

)
ds
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=
1
2
M

(
t

t−

) 1
2+ν

+ t
1
2+ν

(
1
2

+
5ν

8

)
M · 1

1
2 + ν

(
t−

1
2−ν − t

− 1
2−ν

−

)

= M

(
1
2
−

1
2 + 5ν

8
1
2 + ν

)(
t

t−

) 1
2+ν

+
1
2 + 5ν

8
1
2 + ν

M �
1
2 + 5ν

8
1
2 + ν

M < M, (3.71)

a contradiction. Here we have used the facts t− � ε̄ and |X̃(P−)| � 1
2M by (3.70).

If the point P (z, t) ∈ Ω1 is the first point so that |Ỹ (P )| = M , we can similarly
derive a contradiction. Therefore, one has |X̃(z, t)| < M and |Ỹ (z, t)| < M for any
point (z, t) ∈ Ω1, that is (3.69) holds. The proof of the lemma is completed. �

Based on lemma 3.5, we have the uniform boundedness of W = (R − S)/2t.

Lemma 3.6. The function W is uniformly bounded up to the degenerate line ̂B′C ′.

Proof. Set

W̃ =
R̃ − S̃

2t
= − W

R · S ,

from which and (3.24), we only need to establish the uniform boundedness of W̃ .
With the aid of (3.37) and (3.65), the equation for W̃ can be easily deduced

∂̃−W̃ = (H11 − H21)W̃ +
1
2
(H12 − H22) +

1
2
t1−ν Ỹ ,

∂̃+W̃ = (H11 − H21)W̃ +
1
2
(H12 − H22) +

1
2
t1−νX̃.

(3.72)

Note by (3.6) and (3.7) that the boundary data of W̃ on ̂B′E′ is

W̃ |
̂B′E′ = − d̂(z)

â(z)b̂(z)
,

which is uniformly bounded. Then the uniform boundedness of W̃ can be obtained
by integrating the equation for W̃ along the negative characteristic curve from a
point (z, t) in Ω to the boundary ̂B′E′ and employing the uniform boundedness of
Hij and (X̃, Ỹ ). The proof of the lemma is finished. �

Remark 3.7. lemma 3.6 means that R = S on the degenerate curve ̂B′C ′. More-
over, the two functions R and S approach a common value on ̂B′C ′ with at least a
rate of t.

Based on the properties of solutions in remark 3.7, we can establish the uniform
regularity of (R, S, W ).

Lemma 3.8. The functions (R, S, W ) are uniformly C
1
3 continuous in the whole

domain Ω, including the degenerate line ̂B′C ′.
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Proof. Let P1(z1, 0) and P2(z2, 0) (z1 < z2) be any two points on the degenerate
curve ̂B′C ′. We draw the positive characteristic from (z1, 0) and positive charac-
teristic from (z2, 0) and denote the intersection point of these two characteristics
by Pm(zm, tm). Recalling the expressions of λ̃± in (3.39), one obtains the relations
for tm and zm

zm = z1 +
∫ tm

0

κcR̃t2

(1 − t2)T4
dt = z2 −

∫ tm

0

κcS̃t2

(1 − t2)T3
dt,

which together with (3.24) yields

Ktm � |z2 − z1| 13 � Ktm, (3.73)

for some uniform positive constants K and K. Since W̃ is uniformly bounded, then
we use (3.37) and lemma 3.5 to acquire

|∂̃−R̃|, |∂̃+S̃|, |R̃t|, |S̃t|, t 1
2 |R̃z|, t 1

2 |S̃z| � M1, (3.74)

for some constant M1 > 0. Therefore one has by Remark 2 and (3.73)–(3.74)

|R̃(z1, 0) − R̃(z2, 0)| = |S̃(z1, 0) − R̃(z2, 0)|
� |S̃(z1, 0) − S̃(zm, tm)| + |S̃(zm, tm)

− R̃(zm, tm)| + |R̃(zm, tm) − R̃(z2, 0)|
� M1tm + 2 sup

Ω
|W̃ | · tm + M1tm

� 2M1 + 2 supΩ |W̃ |
K

|z2 − z1| 13 . (3.75)

Now for any two points P1(z1, t1) and P2(z2, t2) (z1 � z2, 0 � t1 � t2) in the
region Ω, if t1 � (z2 − z1), then by (3.74)

|R̃(z1, t1) − R̃(z2, t2)| � |R̃(z1, t1) − R̃(z2, t1)| + |R̃(z2, t1) − R̃(z2, t2)|
� sup

Ω
|R̃z| · |z1 − z2| + sup

Ω
|R̃t| · |t1 − t2|

� M1t
− 1

2
1 |z1 − z2| + M1|t1 − t2|�M1|z1−z2| 12 +M1|t1 − t2|

� 2M1|(z1, t1) − (z2, t2)| 13 , (3.76)
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and if t1 < (z2 − z1), then by (3.75) and (3.74) again

|R̃(z1, t1) − R̃(z2, t2)|
� |R̃(z1, t1) − R̃(z1, 0)| + |R̃(z1, 0) − R̃(z2, 0)|

+ |R̃(z2, 0) − R̃(z2, t1)| + |R̃(z2, t1) − R̃(z2, t2)|

� sup
Ω

|R̃t| · t1 +
2M1 + 2 supΩ |W̃ |

K
|z2 − z1| 13 + sup

Ω
|R̃t| · t1 + sup

Ω
|R̃t| · |t1 − t2|

�
(

3M1 +
2M1 + 2 supΩ |W̃ |

K

)
|(z1, t1) − (z2, t2)| 13 . (3.77)

We combine (3.76) and (3.77) to achieve the uniform C
1
3 continuity of R̃ in the whole

domain Ω. A similar argument yields the uniform regularity for S̃. The function W̃
can be handled in a similar way by (3.72). The proof of the lemma is ended by the
relationship between (R, S, W ) and (R̃, S̃, W̃ ) and Lemma 3.2. �

Thanks to lemma 3.8, we can improve the uniform regularity of (R, S, W ).

Lemma 3.9. The functions (R, S)(z, t) are uniformly C1−ν continuous and W (z, t)
is uniformly C

2−ν
3 continuous for ν ∈ (0, 1) in the whole domain Ω, including the

degenerate line ̂B′C ′.

Proof. It suffices to show that (R̃, S̃) are uniformly C1−ν continuous and W̃ is uni-
formly C

2−ν
3 continuous for any ν ∈ (0, 1). Let M∗ be a uniform positive constant

such that for i, j = 1, 2

∣∣∣∣ κcS̃

(1 − t2)T3

∣∣∣∣, ∣∣∣∣ κcR̃

(1 − t2)T4

∣∣∣∣, |2tHi1 + 1| � M∗,

|W̃ |, |HijR̃|, |HijS̃ |, |Hijccz| � M∗.
(3.78)

The above inequalities hold by lemma 3.2 and the exact expressions of T3, T4 and
Hij in (3.38). Moreover, in view of lemma 3.5, we see that there exists a uniform
positive constant M2 depending on the parameter ν such that

|X̃|, |Ỹ |, tν |R̃z|, tν |S̃z| � M2. (3.79)

We first improve the uniform regularity of W̃ . Recalling the first equation of W̃
in (3.72) leads to

W̃t =
κcS̃ · t

2(1 − t2)T3
(R̃z − S̃z) + (H11 − H21)W̃ +

1
2
(H12 − H22) +

1
2
t1−ν Ỹ . (3.80)
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Integrating (3.80) from (zi, 0) to (zi, tm) (i = 1, 2) yield

W̃ (zi, 0) = W̃ (zi, tm)

−
∫ tm

0

{
κcS̃(tνR̃z − tν S̃z)

2(1 − t2)T3
t1−ν + (H11 − H21)W̃

+
1
2
(H12 − H22) +

1
2
t1−ν Ỹ

}
dt, (3.81)

from which one gets

|W̃ (z1, 0) − W̃ (z2, 0)| � |W̃ (z1, tm) − W̃ (z2, tm)|

+
∫ tm

0

{∣∣∣∣κcS̃(tνR̃z − tν S̃z)
2(1 − t2)T3

(z1, t)
∣∣∣∣+ ∣∣∣∣κcS̃(tνR̃z − tν S̃z)

2(1 − t2)T3
(z2, t)

∣∣∣∣
}

t1−ν dt

+
∫ tm

0

|(H11 − H21)(z1, t)| · |W̃ (z1, t) − W̃ (z2, t)| dt

+
∫ tm

0

|W̃ (z2, t)| · |(H11 − H21)(z1, t) − (H11 − H21)(z2, t)| dt

+
∫ tm

0

1
2
|(H12 − H22)(z1, t) − (H12 − H22)(z2, t)| dt

+
∫ tm

0

1
2
(|Ỹ (z1, t)| + |Ỹ (z2, t)|

)
t1−ν dt. (3.82)

For the first term of the right-hand side of (3.82), we find by (3.79) and (3.73) that

|W̃ (z1, tm) − W̃ (z2, tm)| � |R̃(z1, tm) − R̃(z2, tm)| + |S̃(z1, tm) − S̃(z2, tm)|
tm

� |tνmR̃z(z′, tm)| · |z1 − z2| + |tνmS̃z(z′′, tm)| · |z1 − z2|
t1+ν
m

� 2M2
|z1 − z2|

t1+ν
m

� 2M2K
1+ν |z1 − z2|

2−ν
3 . (3.83)

Moreover, since the functions (R̃, S̃, W̃ )(z, t) are uniformly C
1
3 continuous by

lemma 3.8, then one obtains

|R̃(z1, t) − R̃(z2, t)|, |S̃(z1, t) − S̃(z2, t)|, |W̃ (z1, t) − W̃ (z2, t)| � M3|z1 − z2| 13 ,
(3.84)
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for some uniform positive constant M3. It follows by (3.78) and (3.84) that for
i = 1, 2

|(H1i − H2i)(z1, t) − (H1i − H2i)(z2, t)|
� |H1iR̃ − H2iR̃| · |R̃(z1, t) − R̃(z2, t)| + |H1iS̃ − H2iS̃ | · |S̃(z1, t) − S̃(z2, t)|

+ |H1ic − H2ic| · |cz| · |z1 − z2|
� 4M∗M3|z1 − z2| 13 + 2M∗|z1 − z2|. (3.85)

We now put (3.83)–(3.84) into (3.82) and make use of (3.78)–(3.79) and (3.73) to
acquire

|W̃ (z1, 0) − W̃ (z2, 0)| � 2M2K
1+ν |z1 − z2|

2−ν
3 +

∫ tm

0

(2M∗ + 1)M2t
1−ν dt

+
∫ tm

0

2M∗M3|z1 − z2| 13 dt

+
∫ tm

0

(
M∗ +

1
2

)(
4M∗M3|z1 − z2| 13 + 2M∗|z1 − z2|

)
dt

� 2M2K
1+ν |z1 − z2|

2−ν
3 +

(2M∗ + 1)M2

2 − ν
t2−ν
m + 2M∗M3|z1 − z2| 13 tm

+ (M∗ + 1)

(
4M∗M3|z1 − z2| 13 + 2M∗|z1 − z2|

)
tm � M4|z1 − z2|

2−ν
3 , (3.86)

for some uniform positive constant M4 depending on ν. Based on (3.86), one can
repeat the same process as in lemma 3.8 to get that the function W̃ is uniformly
C

2−ν
3 continuous in the whole domain Ω.

For the functions R̃ and S̃, we recall (3.37) to achieve

R̃t =
κcS̃t2

(1 − t2)T3
R̃z + (2tH11 + 1)W̃ + H12t,

S̃t = − κcR̃t2

(1 − t2)T4
S̃z + (2tH21 − 1)W̃ + H22t.

(3.87)

One integrates the equation of R̃ in (3.87) from (zi, 0) to (zi, tm) (i = 1, 2) to find
that

R̃(zi, 0) = R̃(zi, tm) −
∫ tm

0

{
κcS̃t2R̃z

(1 − t2)T3
+ (2tH11 + 1)W̃ + H12t

}
(zi, t) dt,

(3.88)
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from which we have

|R̃(z1, 0) − R̃(z2, 0)| � |R̃(z1, tm) − R̃(z2, tm)|

+
∫ tm

0

{∣∣∣∣ κcS̃

(1 − t2)T3
(z1, t)

∣∣∣∣ · |tνR̃z(z1, t)|

+
∣∣∣∣ κcS̃

(1 − t2)T3
(z2, t)

∣∣∣∣ · |tνR̃z(z2, t)|
}

t2−ν dt

+
∫ tm

0

{
|2tH11(z1, t) + 1| · |W̃ (z1, t) − W̃ (z2, t)|

+ 2t|W̃ | · |H11(z1, t) − H11(z2, t)|
}

dt

+
∫ tm

0

|H12(z1, t) − H12(z2, t)|t dt. (3.89)

Thanks to (3.78) and (3.79), we obtain

|R̃(z1, tm) − R̃(z2, tm)| = |R̃z(z′, tm)| · |z1 − z2| = |tνmR̃z(z′, tm)| · |z1 − z2|
tνm

� M2
|z1 − z2|

tνm
� M2K

ν |z1 − z2|
|z1 − z2|ν = M2K

ν |z1 − z2|1−ν , (3.90)

and

∣∣∣∣ κcS̃

(1 − t2)T3
(z1, t)

∣∣∣∣ · |tνR̃z(z1, t)| +
∣∣∣∣ κcS̃

(1 − t2)T3
(z2, t)

∣∣∣∣ · |tνR̃z(z2, t)| � 2M∗M2.

(3.91)
In addition, it suggests by (3.78) that for i = 1, 2

|H1i(z1, t) − H1i(z2, t)| � |H1iR̃| · |R̃(z1, t) − R̃(z2, t)|
+ |H1iS̃ | · |S̃(z1, t) − S̃(z2, t)| + |H1ic| · |c(z1, t) − c(z2, t)|

� 2M∗M2
|z1 − z2|

tν
+ M∗|z1 − z2|. (3.92)

Due to the uniform C
2−ν
3 -continuity of W̃ , one gets

|W̃ (z1, t) − W̃ (z2, t)| � M5|z1 − z2|
2−ν
3 , (3.93)

https://doi.org/10.1017/prm.2024.76 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.76


A supersonic-sonic patch of the compressible Euler equations 31

for some uniform positive constant M5 depending on ν. Inserting (3.90)–(3.93) into
(3.89) and employing (3.73) and (3.78) concludes

|R̃(z1, 0) − R̃(z2, 0)| � M2K
ν |z1 − z2|1−ν +

∫ tm

0

2M∗M2t
2−ν dt

+
∫ tm

0

{
M∗ · M5|z1 − z2|

2−ν
3

+ t · (2M∗ + 1)

(
2M∗M2

|z1 − z2|
tν

+ M∗|z1 − z2|
)}

dt

= M2K
ν |z1 − z2|1−ν +

2M∗M2

3 − ν
t3−ν
m + M∗M5|z1 − z2|

2−ν
3 tm

+ (2M∗ + 1)M∗(2M2 + 1)|z1 − z2|

� M2K
ν |z1 − z2|1−ν +

M∗M2

K3−ν |z1 − z2|1− ν
3 +

M∗M5

K
|z1 − z2|1− ν

3

+ (2M∗ + 1)M∗(2M2 + 1)|z1 − z2| � M6|z1 − z2|1−ν , (3.94)

for some uniform positive constant M6. From (3.94), we can use similar arguments
as in Lemma 3.8 to get that the function R̃ is uniformly C1−ν continuous in the
whole domain Ω. Analogously, the function S̃ is also uniformly C1−ν continuous.
The proof of the lemma is complete. �

Finally, we draw the positive characteristic from the point C ′(z̄(0), 0) up to the
boundary ̂B′E′ and denote the intersection point by D′(z̃(td), td). Taking δ̄ = td
finishes the proof of theorem 3.1.

4. Solutions in the self-similar plane

Based on the solution of the degenerate problem (3.10), (3.6) in the partial hodo-
graph (z, t) plane, we construct a regular supersonic solution for problem (2.9),
(2.22) in the self-similar (ξ, η) plane to complete the proof of theorem 2.2 in this
section.

4.1. Inversion

Thanks to theorem 3.1, we obtain the functions (R, S)(z, t) defined on the whole
region B′C ′D′. To acquire a solution in the self-similar (ξ, η) plane, it is necessary
to establish the coordinate functions ξ = ξ(z, t) and η = η(z, t) and discuss their
inversion. We first construct the function θ(z, t). Applying (2.18) and (3.9) gives

∂−θ = − κt√
1 − t2T1

(
tS

κ
√

κ + 1 − t2
+

�2

c

)
. (4.1)

For any point (z∗, t∗) in the region B′C ′D′, we draw the negative characteristic
z = z−(t; t∗, z∗) (t � t∗) up to the boundary ̂B′D′ at a unique point (z̃(t̂∗), t̂∗)
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satisfying⎧⎪⎨⎪⎩
dz−(t; t∗, z∗)

dt
= − κct2

(1 − t2)T1
(z−(t; t∗, z∗), t),

z−(t∗; t∗, z∗) = z∗,

z−(t̂∗; t∗, z∗) = z̃(t̂∗). (4.2)

We integrate (4.1) along the negative characteristic z = z−(t; t∗, z∗) from the point
(z∗, t∗) to the point (z̃(t̂∗), t̂∗) and use the boundary data of θ on ̂B′D′ to get

θ(z∗, t∗) = θ̂(ξ̂(z̃(t̂∗))) +
∫ t̂∗

t∗

κt√
1 − t2T1

(
tS

κ
√

κ + 1 − t2
+

�2

c

)
(z−(t; t∗, z∗), t) dt

(4.3)
Hence we have the function θ(z, t) defined on the whole region B′C ′D′.

Recalling the coordinate transformation (3.4) and employing (2.19)–(2.20), we
see that

ξt =
−c sin θt

(1 − t2)J
, ηt =

c cos θt

(1 − t2)J
, ξz =

�η

J
, ηz =

−�ξ

J
, (4.4)

where

J = φξ�η − φη�ξ = −c
√

κ + 1 − t2

2κ(1 − t2)
(R + S),

�ξ = cos θ

√
κ + 1 − t2

κ
W − cos θ

1 − t2

c
− sin θ

√
κ + 1 − t2

2κ
√

1 − t2
(R + S),

�η = sin θ

√
κ + 1 − t2

κ
W − sin θ

1 − t2

c
+ cos θ

√
κ + 1 − t2

2κ
√

1 − t2
(R + S).

(4.5)

Therefore it suggests that

∂−ξ =
κt(cos θt + sin θ

√
1 − t2)√

1 − t2T1

, ∂−η =
κt(sin θt − cos θ

√
1 − t2)√

1 − t2T1

. (4.6)

For any point (z∗, t∗) in the region B′C ′D′, one thus finds by integrating (4.6)
along the negative characteristic that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ξ(z∗, t∗) = ξ̂(z̃(t̂∗)) −
∫ t̂∗

t∗

κt(cos θt + sin θ
√

1 − t2)√
1 − t2T1

(z−(t; t∗, z∗), t) dt,

η(z∗, t∗) = ϕ(ξ̂(z̃(t̂∗))) −
∫ t̂∗

t∗

κt(sin θt − cos θ
√

1 − t2)√
1 − t2T1

(z−(t; t∗, z∗), t) dt,

(4.7)
The arbitrariness of (z∗, t∗) indicates that the expressions in (4.7) define two func-
tions ξ = ξ(z, t) and η = η(z, t) on the whole region B′C ′D′. Furthermore, the
mapping (z, t) 	→ (ξ, η) is a global one-to-one mapping, which comes from the
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following fact by (4.5)

(φξ, φη) · (�η,−�ξ) = J = −c
√

κ + 1 − t2

2κ(1 − t2)
(R + S) < 0.

The above inequality implies that φ is a strictly decreasing function along each level
curve of (1 − �) � 0.

4.2. Proof of theorem 2.2

Owning to the global one-to-one property of the mapping (z, t) 	→ (ξ, η), we then
obtain the functions t = ť(ξ, η) and z = ž(ξ, η). Moreover, one also has

ťξ =
ηz

j
, ťη =

−ξz

j
, žξ =

−ηt

j
, žη =

ξt

j
, (4.8)

where j = ξtηz − ηtξz and (ξt, ξz), (ηt, ηz) are given in (4.4). Now we define the
functions (c, θ, �) in terms of variables (ξ, η) as follows

c = c(ž(ξ, η), ť(ξ, η)), θ = θ(ž(ξ, η), ť(ξ, η)), � =
√

1 − ť2(ξ, η), ∀ (ξ, η) ∈ BCD,

(4.9)
where the region BCD is bounded by the curves B̂C, ĈD, and B̂D. Here the curve
B̂C is defined by

B̂C = {(ξ, η)| �(ξ, η) = 1, ξ ∈ [ξ∗, ξ2]}, (4.10)

where ξ∗ = ξ(z̄(0), 0), and ĈD is defined by

ĈD = {(ξ, η)| ž(ξ, η) = z+(ť(ξ, η); δ̄, z̃(δ̄)), ξ ∈ [ξ∗∗, ξ∗]}, (4.11)

where the function z+(t; δ̄, z̃(δ̄)) is the solution of the following ODE problem⎧⎪⎨⎪⎩
dz+(t; δ̄, z̃(δ̄))

dt
=

κct2

(1 − t2)T2
(z+(t; δ̄, z̃(δ̄)), t),

z+(δ̄; δ̄, z̃(δ̄)) = z̃(δ̄),

t ∈ [0, δ̄], (4.12)

and the number ξ∗∗ satisfies

ž(ξ∗∗, ϕ(ξ∗∗)) = z+(ť(ξ∗∗, ϕ(ξ∗∗)); δ̄, z̃(δ̄)).

The coordinates of points C and D in (ξ, η) plane are (ξ∗, η(z̄(0), 0)) and
(ξ∗∗, ϕ(ξ∗∗)), respectively. According to the construction of (ξ(z, t), η(z, t)), we can
see that the functions (c(ξ, η), θ(ξ, η), �(ξ, η)) defined in (4.9) satisfy the bound-
ary conditions in (2.22). From (4.9), we then define the functions (ω, α, β)(ξ, η) as
follows⎧⎨⎩ω(ξ, η) = arcsin�(ξ, η),

α(ξ, η) = θ(ξ, η) + ω(ξ, η), β(ξ, η) = θ(ξ, η) − ω(ξ, η),
∀ (ξ, η) ∈ BCD.

(4.13)
For the regularity of (c(ξ, η), θ(ξ, η), �(ξ, η)) defined in (4.9), we have
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Lemma 4.1. The functions (c(ξ, η), θ(ξ, η), �(ξ, η)) defined in (4.9) are uniformly
C1,μ-continuous for μ ∈ (0, 1/3) on the whole region BCD. Moreover, the sonic
curve B̂C is C1,μ-continuous.

Proof. For the function θ(ξ, η), we note by (2.8) and (2.18) that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
θξ = − cos θ(R + S)

2κ
√

κ + 1 − t2
+

sin θ√
1 − t2

(
t(R − S)

2κ
√

κ + 1 − t2
− 1 − t2

c

)
,

θη = − sin θ(R + S)
2κ

√
κ + 1 − t2

− cos θ√
1 − t2

(
t(R − S)

2κ
√

κ + 1 − t2
− 1 − t2

c

)
.

(4.14)

Due to (4.14) and (4.5), it suffices to show that (R, S, W )(ξ, η) are uniformly Cμ-
continuous for μ ∈ (0, 1/3) on the whole region BCD. These regularity results come
from lemma 3.9 and the following assertion that, if I(z, t) is a C2μ̃ function on the
whole region B′C ′D′, then the function Ĩ(ξ, η) := I(ž(ξ, η), ť(ξ, η)) is uniformly
Cμ̃-continuous on the whole region BCD.

To prove the above assertion, we assume that (ξ′, η′) and (ξ′′, η′′) are two points
in BCD and (z′, t′) and (z′′, t′′) are the corresponding two points in B′C ′D′, and
consider the differences

|z′ − z′′| = |φ(ξ′, η′) − φ(ξ′′, η′′)| � M1(|ξ′′ − ξ′| + |η′′ − η′|), (4.15)

and

|t′ − t′′|2 � |t′ − t′′| · |t′ + t′′| = |t′2 − t′′2| = |�2(ξ′, η′) − �2(ξ′′, η′′)|
� 2|�(ξ′, η′) − �(ξ′′, η′′)| � M2(|ξ′′ − ξ′| + |η′′ − η′|), (4.16)

where

M1 = max
(ξ,η)∈BCD

c

�
(ξ, η), M2 = 2max

{
max

(ξ,η)∈BCD
|�ξ|, max

(ξ,η)∈BCD
|�η|

}
.

Here M1 and M2 are two uniform positive constants by (4.5) and lemmas 3.2, 3.6.
Combining with (4.15) and (4.16) and using the C2μ̃-continuity gives

|Ĩ(ξ′, η′) − Ĩ(ξ′′, η′′)| = |I(z′, t′) − I(z′′, t′′)|

� M3|(z′, t′) − (z′′, t′′)|2μ̃ � M3

(
|z′ − z′′|2 + |t′ − t′′|2

)μ̃

� M3|(ξ′, η′) − (ξ′′, η′′)|μ̃,

for some uniformly constant M3 > 0, which means that the function Ĩ(ξ, η) is
uniformly Cμ̃-continuous on the whole region BCD. According to lemma 3.9,
we find that (R, S)(ξ, η) are uniformly C(1−ν)/2-continuous and W (ξ, η) is uni-
formly C(2−ν)/6-continuous on the whole region BCD for any ν ∈ (0, 1). Thus
(R, S, W )(ξ, η) are uniformly Cμ-continuous for μ ∈ (0, 1/3). Hence, by (4.5)
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and (4.14), the functions θ(ξ, η) and �(ξ, η) are uniformly C1,μ-continuous for
μ ∈ (0, 1/3) on the whole region BCD. The uniform regularity of c(ξ, η) follows
from the expression of c in (2.6).

Finally, for the sonic curve B̂C, we find by employing (4.5) again that

�2
ξ + �2

η =

(√
κ + 1 − t2 · W

κ
− 1 − t2

c

)2

+
(κ + 1 − t2)(R + S)2

4κ2(1 − t2)
,

which together with lemmas 3.2 and 3.6 yields

0 < C1 � �2
ξ + �2

η � C2,

for some uniformly positive constants C1 and C2. Hence the curve B̂C is C1,μ-
continuous for μ ∈ (0, 1/3) and the proof of the lemma is completed. �

Remark 4.2. Since the right-hand terms of (4.14) do not contain the function
W (ξ, η), then actually we can obtain that the function θ(ξ, η) is uniformly C1,μ̄-
continuous for μ̄ ∈ (0, 1/2) on the whole region BCD.

For the curve ĈD, there has

Lemma 4.3. The curve ĈD defined in (4.11) is a positive characteristic curve of
system (2.9).

Proof. We differentiate the equality ž(ξ, η) = z+(ť(ξ, η); δ̄, z̃(δ̄)) with respect to ξ
and use (4.12) to see that

žξ + žη
dη

dξ
=

κcť2

(1 − ť2)T2

(
ťξ + ťη

dη

dξ

)
.

Putting (4.8) into above arrives at

(
ξt +

κcť2

(1 − ť2)T2
ξz

)
dη

dξ
= ηt +

κcť2

(1 − ť2)T2
ηz,

which combined with (4.4) leads to

dη

dξ
=

ηt +
κcť2

(1 − ť2)T2
ηz

ξt +
κcť2

(1 − ť2)T2
ξz

= −T2 cos θ − κť�ξ

T2 sin θ − κť�η
. (4.17)
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Furthermore, it suggests by (4.5), (4.13) and the expression of T2 in (3.12) that

T2 cos θ − κť�ξ =

{√
κ + 1 − ť2R − κ(1 − ť2)ť

c

}
cos θ

− κť

{
cos θ

√
κ + 1 − ť2

κ
· R − S

2ť
− cos θ

1 − ť2

c
− sin θ

√
κ + 1 − ť2

2κ
√

1 − ť2
(R + S)

}

=

√
κ + 1 − ť2

2κ
√

1 − ť2

(√
1 − ť2 cos θ + ť sin θ

)
=

√
κ + 1 − ť2

2κ
√

1 − ť2
sin(θ + ω)

=

√
κ + 1 − ť2

2κ
√

1 − ť2
sin α,

and

T2 sin θ − κť�η =

{√
κ + 1 − ť2R − κ(1 − ť2)ť

c

}
sin θ

− κť

{
sin θ

√
κ + 1 − ť2

κ
· R − S

2ť
− sin θ

1 − ť2

c
+ cos θ

√
κ + 1 − ť2

2κ
√

1 − ť2
(R + S)

}

=

√
κ + 1 − ť2

2κ
√

1 − ť2

(√
1 − ť2 sin θ − ť cos θ

)
= −

√
κ + 1 − ť2

2κ
√

1 − ť2
cos(θ + ω)

= −
√

κ + 1 − ť2

2κ
√

1 − ť2
cos α.

We insert the above into (4.17) to achieve

dη

dξ
=

sin α

cos α
= Λ+,

which implies that ĈD is a positive characteristic curve of system (2.9). The proof
of the lemma is finished. �

Finally, we have

Lemma 4.4. The functions (c(ξ, η), θ(ξ, η), �(ξ, η)) defined in (4.9) satisfy system
(2.9).

Proof. We here just check the first equation of (2.9), the second one can be handled
similarly. It follows directly by (2.7), (4.5), (4.13), and (4.14) that

∂̄+θ = cos αθξ + sin αθη

= cos(θ + ω)

{
− cos θ(R + S)

2κ
√

κ + 1 − t2
+

sin θ√
1 − t2

(
t(R − S)

2κ
√

κ + 1 − t2
− 1 − t2

c

)}
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+ sin(θ + ω)

{
− sin θ(R + S)

2κ
√

κ + 1 − t2
− cos θ√

1 − t2

(
t(R − S)

2κ
√

κ + 1 − t2
− 1 − t2

c

)}

=
t(R − S)[cos(θ + ω) sin θ − sin(θ + ω) cos θ]

2κ
√

1 − t2
√

κ + 1 − t2

− (R + S)[cos(θ + ω) cos θ + sin(θ + ω) sin θ]
2κ

√
κ + 1 − t2

+
√

1 − t2[sin(θ + ω) cos θ − cos(θ + ω) sin θ]
c

= − tR

κ
√

κ + 1 − t2
+

1 − t2

c
= − cos ωR

κ
√

κ + �2
+

�2

c
, (4.18)

and

∂̄+� = cos α�ξ + sin α�η

= cos(θ + ω)

{
cos θ

√
κ + 1 − t2

κ
W − cos θ

1 − t2

c
− sin θ

√
κ + 1 − t2

2κ
√

1 − t2
(R + S)

}

+ sin(θ + ω)

{
sin θ

√
κ + 1 − t2

κ
W − sin θ

1 − t2

c
+ cos θ

√
κ + 1 − t2

2κ
√

1 − t2
(R + S)

}

=

(√
κ + 1 − t2

κ
· R − S

2t
− 1 − t2

c

)
[cos(θ + ω) cos θ + sin(θ + ω) sin θ]

+
√

κ + 1 − t2(R + S)
2κ

√
1 − t2

[sin(θ + ω) cos θ − cos(θ + ω) sin θ]

=
√

κ + 1 − t2R

κ
− t(1 − t2)

c
=

√
κ + �2 · R

κ
− �2 cos ω

c
. (4.19)

We apply (4.18) and (4.19) to calculate

∂̄+θ +
cos ω

κ + �2
∂̄+� =

(
− cos ωR

κ
√

κ + �2
+

�2

c

)

+
cos ω

κ + �2
·
(√

κ + �2 · R
κ

− �2 cos ω

c

)

=
�2

c
− �2 cos2 ω

c(κ + �2)
=

�2

c
· κ − 1 + 2�2

κ + �2
.

This is the desired first equation of (2.9), which ends the proof of the lemma. �
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We sum up lemmas 4.1–4.4 to complete the proof of theorem 2.2. Based on (4.9)
and (2.6), we define the functions (ρ, u, v)(ξ, η) as follows

ρ =

(
c2(ξ, η)

Aγ

)1/γ−1

, u = ξ − c(ξ, η)
cos θ(ξ, η)
�(ξ, η)

, v = η − c(ξ, η)
sin θ(ξ, η)
�(ξ, η)

.

It is obvious by lemma 4.1 that (ρ, u, v)(ξ, η) are uniformly C1,μ-continuous for
μ ∈ (0, 1/3) on the whole region BCD. Furthermore, one can check that the func-
tions (ρ, u, v)(ξ, η) defined above satisfy the 2-D isentropic pseudo-steady Euler
equations (1.2). The proof of theorem 1.2 is completed.
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