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ON ISOMORPHISMS OF
ABELIAN GROUP ALGEBRAS

EUGENE SPIEGEL

For F a field and G a group, let FG = F(G) be the group algebra of G over F.
If . is a class of finite abelian groups, F induces an equivalence relation on ¥
by G, H € ¥ are equivalent if and only if FG ~ FH. We will call two fields
F and K equivalent on.? if they induce the same equivalence relation on %’
We will say F is equivalent to isomorphism on .% if FG ~ FH if and only if
G ~ H for any two elements G, H € .¥.

It is well known, (e.g. [2]) that the field of rational numbers Q is equivalent
to isomorphism on the class of all finite abelian groups. In this note, we investi-
gate when two fields F and K are equivalent on ¥, for various sets .%. In
particular, we identify which fields are equivalent to isomorphism on the class
of all finite abelian groups.

If n is a positive integer, let C, denote the cyclic group of order =.

LemwMA 1. Let F be a field. Suppose G and H are finite abelian groups of order

n, m = p1°1ps®. .. p,°r, where the p, are distinct primes 1 = 1,...,r. Let
Gp; (H,;) denote the p-Sylow subgroup of G(H) respectively. Then FG ~ FH
FG,,~FH,,1=1,...,r.

Proof. If the characteristic of F is relatively prime to », the lemma is a
result of Perlis-Walker [2]. If the characteristic of F is p1, FG ~ FH =
F(G/G,) ~ F(H/H,,) and G, ~ H,, by the results in [1]. As |G/G,,| is
relatively prime to the characteristic of F, the lemma follows by Perlis-
Walker’s theorem.

This lemma shows that to study the equivalence of two fields F and K on
the class of all finite abelian groups, it is sufficient to restrict our study to the
class of all finite abelian p-groups. We will always suppose that p denotes a
fixed prime. If F is a field of characteristic p, and .% is the class of all finite
abelian p-groups, then F is equivalent to isomorphism on .%’. Hence in the
following we will always assume that all fields are of characteristic other than
the fixed prime p.

If F is a field, define the p-sequence {vr ,(n)} of F(n = 1) by

vrp(n) = deg (F(Spne1)/F(Spn))

where {,» is a primitive p"th root of unity over F.
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ProprosiTION 2. Let F be a field. The p-sequence of F has one of the following

forms
1,1,1,...
1,1,...,L,p,p,... (p odd)
2/ /SN

while if p = 2, there is arbitrary choice of 1 or p in the first component.

Proof. Suppose K is a field containing a primitive p"th (z = 1) root of unity
and not containing a p"*lst root of unity. Let {,n+2 be a primitive p"+? root
of unity for K, and let ({n+2)? = ayanda,? = as, a2 € K. Then; isa primitive
p™H root of unity and a, is a primitive p” root of unity. Assume {pn+2 € Klai].
Then x? — az = f(x) is irreducible in K[x], and g(x) = x*® — @» can be
factored in K[x] into the product of p irreducible polynomials g;(x), . . ., g,(x)
each of degree p.

Suppose gi1({pm+2) = 0 and let {pnez = A1, N2, ... N\, be the roots of gi(x).
If h(x) = 1152, (x — \?), h(x) € K[x] since the coefficients of /(x) are

symmetric functions of \?, N\s?, ..., \,” and can be expressed as polynomials
in the coefficients of g;(x).

Let the constant term of gi(x) be (—1)?¢ = M\s...\,. Then the constant
term of h(x) is (—1)?¢? = NMPNP ... NP But k(x) is a monic polynomial of

degree p which is satisfied by M? = as, and so must coincide with the minimal
polynomial for a»; i.e., A(x) = ¥ — as = f(x). In particular, —as = (—1)?¢".

If pisodd, ¢ = as, and ¢ is a root of f(x). This contradicts the irreducibility
of f(x).

If p = 2, and #n > 1, then as is a primitive 2"th root of unity if and only if
—as is a primitive 2"th root of unity. Thus x” + a» = f(x) is also irreducible
over K[x]. But —as = ¢” and c¢ is a root of f(x), contradicting our assumption.
We thus conclude thatif pisodd orif # > 1 and p = 2, whenever p appears in
the p-sequence of K all remaining terms must also be p.

ProrosiTION 3. Let K/F be an extension of fields. Let M be the maximal
abelian extension of F in K. Then the p-sequence of K equals the p-sequence of M.

Proof. Let ¢, be a primitive nth root of unity over F. F({,) and M are abelian
extensions of F, so the composite M ({,) is an abelian extension of F.
M C (KM M(t,)). But KM\ M(¢,) is an abelian extension of F contained
in K. Hence K N\ M(¢,) = M. M(¢,) is Galois over M, so that K(¢,) is
Galois over K with Galois group isomorphic to the Galois group of M ({,)/M.
In particular, if # = p7, deg (M ({pr)/M) = deg (K(¢pr)/K), so K and M
have the same p-sequences.

Let K/F be an extension of fields. Call M, the maximal abelian p-extension
of Fin K if M, is the composite of all finite abelian p-extensions of F in K.

ProrositTioN 4. Let K/L be an extension of fields. Let M, be the maximal
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abelian p-extension of L in K. Then the p-sequence for M, equals the p-sequence
for K.

Proof. Let M be the maximal abelian extension of L in K, and M, the maxi-
mal abelian p-extension of L in K. If & € M({,), (deg (M, (¢p) (@) /My (50)), P)
= 1. Let n be a positive integer. The deg(M,(¢m)/M,(¢p)) is a power of p,
so that M($) M My(Spm) = My($,). Hence deg  (M($pn)/M(5p)) = deg
(My(Epm)/M,(¢p)). This means that the p-sequence of M, is equal to that of M.
By Proposition 3, the result follows.

COROLLARY 5. Let K/L be a finite extension of fields of degree n. Suppose
(p, n) = 1. Then the p-sequences of K and of L coincide.

We now investigate the relationship between the equivalence of two fields
on the set of abelian p-groups and their respective p-sequences.

THEOREM 6. Suppose K and F are fields. If K and F have the same p-sequences,
then they are equivalent on the class of all finite abelian p-groups. If, however, the
p-sequences differ first at the nth place, then there exist abelian groups of order
pmtl (prt2, if p = 2) which are equivalent over one field but not the other.

Proof. If L is a field and G is an abelian group of order p¢, then

n

L(G) =~ Zl aiL(g‘pi)’

=

where a; = n;/v;, n; is the number of elements of G of order p* and

vy = deg(L(5p¢)/L).

Define the sequence ai, as, . .. as follows. oy = 1. If «, is defined, define
ay+1 to be the least integer » such that v, > u,,, if this is possible; otherwise,
letan+1 = Qpye = ... = 0.

For the group G, we can define the sequence

ai+1—1
b; = Z aj

J=ai

where a, = 0if »r > nand b; = 0 if o; = 0. Then

L(G)~ ; bL($pas)-

If a; <a; <00, L({,a;) ¥ L({,«,;) since the fields contain different col-
lections of pth roots of unity. Thus b; is characterized as the number of
maximal ideals such that the quotient is isomorphic to L({,.;). If we
similarly define a sequence of b’s for L(H), say b1, bs, ..., b, such that
L(H) ~ Y41 b, L({,e:), then L(G) ~ L(H) if and only if b; = b,
i =1,...,n Recalling the definition of the 0’s, this says that the number of
elements in G and H of order at most p*i, 7 = 1,2,..., n, are equal.
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Let

vr(s) = deg(F({ps)/F), s=1,
v, (s) = deg(K({ps)/K), s=1

Fors =2,3,...n,

0 () = v (1) TT 7r6)

o) = 1 0) TT 72,0).

Let N = vx(1)/vr(1), so that vx(s) = Mr(s), s =1,2,...,n. Let G and H
be abelian groups of order at most p" and suppose FG ~ FH.

n

FG~ Y, a; F({p) >~ FH~ Y. a@;F()

i=1
KG ~ Z )\(I/'L'K(g‘pi)
KH_N_. Z )\d‘LK(g‘p')'

But the b sequence for KG is just A times the b sequence for FG, and similarly
the b sequence for KH is just A times the b sequence for FH, while FG ~ FH
implies their b sequences are equal. Therefore KG ~ KH.

If yrpo(n) > v p(n), then vp,(n) = p and vx ,(n) = 1. Let

G =~ Cpyns1, H >~ Cp ® C,
KG ~ KH since G and H have the same number of elements of order at most

p*t1, but FG %2 FH since G and H do not have the same number of elements
of order at most p".

COROLLARY 7. Let K be a field. Then K is equivalent to isomorphism on the
set of all finite abelian p-groups if and only if yg,(n) = p,n =1,2,... .

Proof. vo,(n) = p,n =1,2,... . Now apply Theorem 6.

CoROLLARY 8. Let F be a field and suppose p is odd. Then F is equivalent

to wsomorphism on the class of all finite abelian p-groups if and only if
F(C, X Cp) o F(Cpe).

Proof. If {2 € F(¢,) and v, = deg(F({p)/F), then

2
—1
(G, X G) ~ F & B F(5;) =~ F(Gp).

P
Thus vr,(1) = p. By Proposition 2, vp,(n) = p, n =1, 2,... and by
Corollary 7 the result follows.

COROLLARY 9. Let Q, be the field of p-adic numbers. Let G and H be abelian
groups of order p*. Then Q,G ~ Q,H & G ~ H.
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Proof. Let

& =1
G (x) = e

be the p"th cyclotomic polynomial. It is irreducible over Q,, by Eisenstein’s
criterion. Hence vq,,(n) = p,n = 1,2, ... . By Corollary 7 the result follows.

We now apply the theorem to algebraic number fields. Suppose p is odd.
Then Q(¢,2) is a cyclic extension of Q of degree p(p — 1) and contains a
unique field of degree p over Q. Call this field F,; i.e., Q C F, C Q(¢p2) and
deg(F,/Q) = p.

THEOREM 10. Let p be an odd prime. Let F be the set of all finite abelian
p-groups. Let K be an extension of Q.
Then the following are equivalent.
(i) K is equivalent to isomorphism on L.
(ii) K(C, X G) o K(Cy2)
(iii) F, K
(iv) There does not exist a field L such that L properly contains Q and 1is
contained wn K, L is an abelian extension of Q of degree a power of p, and the
discriminant of L is a power of p.

Proof. (i) = (ii). This is obvious.
(i) = (iii). If F, C K, then K({,) = K({»2). Let a = deg(K({,)/K) =
deg (K (¢p2)/K). Then

2

K~ 2D gy~ =Dy o k= Lr) 0 K,

(o4
while

2

kG x &~ (E ) ke

Thus K(Cp2) >~ K(C, X Cp).

(iii) = (iv). Suppose such a field L exists and let deg(L/Q) = p". As L is
an abelian extension of Q of degree a power of p, by the Kronecker-Weber
theorem, L is contained in a cyclotomic extension. In fact, since the discrimi-
nant of L is a power of p, L C Q({pr+1). See, e.g., [3, p. 233]. But Q({pr+1)
is a cyclic extension of Q and contains a unique field L of degree p” over Q.
This field must also contain F,, contradicting (iii).

(iv) = (i). Let M, be the maximal abelian p-extension of Q in K. By
Proposition 4, the p-sequence of M, equals the p-sequence of K. Let {,» be a
primitive p"th root of unity in Q. Q(¢,») M M, is an extension of Q of degree
a power of p, since M, is, and has discriminant a power of p since it is contained
in Q({). By (iv), we conclude that Q({,») M M, = Q. From Galois theory
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we have deg (M, (¢n)/ M) = deg(Q(¢m)/Q) so that the p-sequence of M, and
of Q coincide. By Theorem 6 the result follows.

THEOREM 11. Suppose p = 2. Let F be the set of all finite abelian 2-groups
and let 7 = {Cs @ Cy, C4 @ Cy, C4 @ Cy @ Cs}. Let K be an extension of Q.
Then the following are equivalent.

(i) K is equivalent to isomorphism on .
(ii) K is equivalent to isomorphism on.J .

(i) W2, 1,/ —2} N K = 0.

Proof. (1) = (ii). This is obvious.

(i) = (iii). If i € K, K(C, ® Cy) ~K(C,® C; ® C»). Ifv/20r/—2¢K,
K(Cs ® Cy) >~ K(Cy @ Cy).

(iii) = (). Let M, be the maximal abelian 2-extension of Q in K. We must
check that the 2-sequence of M, coincide with the 2-sequence of Q. Suppose
n = 3 and (e is a primitive 2"th root of unity over Q. Q({2:) is an abelian
extension of Q and contains exactly three quadratic extensions; namely,

Q(), Q(/2), 0/ —2). By (iv),
1,2, =2 N K = {i,7/2,/ =2} N\ M, = 0,

so that Q(fa) M Ms = Q. Then deg(Ms(¢on)/Ms) = deg(Q(¢2n)/Q) and the
2-sequences of K and Q coincide.

If ¢ is a prime and # is a positive integer, let GF(¢") denote the finite field of
order g".

THEOREM 12. Suppose p is odd and K is a field of characteristic q
(g #0, g 5 p). Let e be the exponent of ¢ modulo p. Then K is equivalent to
isomorphism on all finite abelian p-groups if and only if q° # 1 (modulo p?)
and GF(¢") ¢ K.

Proof. Suppose K is equivalent to isomorphism on all finite abelian p-groups.
By Corollary 7, vk ,(n) = p, n =1, 2,... . Let {, be a primitive pth root
of unity for K, and let deg[GF(q)(¢,)/GF(q)] = I. The order of the multi-
plicative group of GF(q)({,) is ¢* — 1, and it contains an element of order p.
Thus ¢* =1 (modulo p). But e is the smallest positive integer such that
g° =1 (mod p), so that I = e vg,(1) = p implies {2 ¢ K[{,], so that
&2 € GF(q);ie., ¢¢ 2 1 (mod p?).

&2 ¢ K[&p], so that ¢,z is of degree p over GF(q) ({,) = GF(q%). Therefore,
GF(q)(tp2) = GF(¢*?).Sincel < ¢ < p — 1 and GF(¢?®) is just the composite
of GF(q¢) and GF(¢?), we conclude GF(¢?) ¢ K[¢,). Hence GF(¢*) K.

Conversely, since p¢ 2 1 (mod p?), {2 € GF(q) (&) = GF(g?). If ¢ €
K[¢,], then GF(¢?) C GF(¢?®) C K[¢,].- Let N be a generator for the multi-
plicative group of GF(g?). Then \ satisfies an irreducible polynomial f(x) €
GF(g)[x] of degree p, which remains irreducible in K[x]. But (deg (K ({,)/K), p)
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= 1, s0f(x) remains irreducible over K ({,)[x];i.e., {52 ¢ K[{,]. Thus v ,(1) =
p. Since p is odd, by Proposition 2 we must have yx ,(n) = p,n =1,2,...s0
that the result follows by Corollary 7.

THEOREM 13. Let ¢ be an odd prime. If ¢ =1 (mod 4), then K(Cs) =~
K(C: X C5). If ¢ = 3 (mod 4), then K(Cs) >~ K(Cs X C2).

Proof. If ¢ = 1 (mod 4), then the equation x* 4+ 1 = 0 splits in K, so that
vr (1) = 1. Hence K(Cy) >~ K(Cy X C3). If ¢ = 3 (mod 4), then GF(q?) C
K(¢2). As ¢2 =1 (mod 8), {2 € GF(q?). Thus yg (1) = 2 and vx,2(2) = 1.
By Theorem 6,

K(Cs) >~ K(Cy X Cy).
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