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ON ISOMORPHISMS OF 
ABELIAN GROUP ALGEBRAS 

EUGENE SPIEGEL 

For F a field and G a group, let FG = F(G) be the group algebra of G over F. 
Ity is a. class of finite abelian groups, F induces an equivalence relation on S^ 
by G, H (z S* are equivalent if and only if FG ~ FH. We will call two fields 
F and K equivalent on 5f if they induce the same equivalence relation on Sf 
We will say F is equivalent to isomorphism on ^ if FG ~ FH if and only if 
G ~ H for any two elements G, H £ S^. 

It is well known, (e.g. [2]) that the field of rational numbers Q is equivalent 
to isomorphism on the class of all finite abelian groups. In this note, we investi­
gate when two fields F and K are equivalent on Sf, for various sets j ^ 7 . In 
particular, we identify which fields are equivalent to isomorphism on the class 
of all finite abelian groups. 

If n is a positive integer, let Cn denote the cyclic group of order n. 

LEMMA 1. Let F be afield. Suppose G and H are finite abelian groups of order 
n, n = pi6lp2e2 • • . pr6ri where the pt are distinct primes i = 1, . . . , r. Let 
Gpi (Hpi) denote the pt-Sylow subgroup of G(H) respectively. Then FG ~ FH <=> 
FGpic^FHpi,i = l , . . . , r . 

Proof. If the characteristic of F is relatively prime to n, the lemma is a 
result of Perlis-Walker [2]. If the characteristic of F is pi, FG ~ FH=$ 
F(G/Gpl) c^F(H/Hpl) and GP1 ~ HP1 by the results in [1]. As \G/GPl\ is 
relatively prime to the characteristic of F, the lemma follows by Perlis-
Walker's theorem. 

This lemma shows that to study the equivalence of two fields F and K on 
the class of all finite abelian groups, it is sufficient to restrict our study to the 
class of all finite abelian ^-groups. We will always suppose that p denotes a 
fixed prime. If F is a field of characteristic p, and S^ is the class of all finite 
abelian />-groups, then F is equivalent to isomorphism on £f. Hence in the 
following we will always assume that all fields are of characteristic other than 
the fixed prime p. 

If F is a field, define the ^-sequence {yF,P(n)} of F(n ^ 1) by 

yF,P(n) = deg (F(Çpn+i)/F(M) 

where fpn is a primitive p^th root of unity over F. 
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PROPOSITION 2. Let F be a field. The p-sequence of F has one of the following 

forms 

1 , 1 , 1 , . . . 

1 , 1 , . . . , l,p,p,... (podd) 

P,P,P> • • • 

while if p = 2, there is arbitrary choice of 1 or p in the first component. 

Proof. Suppose K is a field containing a primit ive pnt\i (n ^ 1) root of uni ty 
and not containing a pn+1st root of uni ty . Le t f̂ n+2 be a primit ive pn+2 root 
of un i ty îorK, and let GV+2)P = a i a n d a ^ = a2,a2 6 X . Then a i is a primit ive 
pn+i r o o t Qf u n i t y and a2 is a primit ive £w root of uni ty . Assume Çpn+i £ i£[«i]. 
Then xp — a2 = f(x) is irreducible in K[x], and g(x) = xp2 — a2 can be 
factored in K[x] into the product of p irreducible polynomials gi(x), . . . , gP(x) 
each of degree >̂. 

Suppose giGv+2) = 0 and let fpn+2 = Xi, X2, . . . X̂  be the roots of gi(x). 
If h(x) = TLp

i=i (x — X / ) , h(x) G K[x] since the coefficients of h(x) are 
symmetr ic functions of Xip, \2

P, . . . , X / and can be expressed as polynomials 
in the coefficients of gi(x). 

Let the cons tant term of gi(x) be ( — l)pc = XiX2 . . . Xp. Then the cons tan t 
term of h(x) is ( — l)pcp = X^X2

P . . . X/ . Bu t h(x) is a monic polynomial of 
degree p which is satisfied by \ip = a2, and so mus t coincide with the minimal 
polynomial for a2\ i.e., h{x) = xp — a2 = f(x). In part icular , — a2 = { — l)pcp. 

If p is odd, cp = a2, and c is a root o f / ( x ) . This contradic ts the irreducibili ty 
o f / ( x ) . 

If p = 2, and w > 1, then o:2 is a primit ive 2wth root of un i ty if and only if 
— a2 is a primit ive 2wth root of uni ty . T h u s xp + a2 = f(x) is also irreducible 
over K[x\. B u t — a2 — cp and c is a root of f(x), contradict ing our assumpt ion. 
We thus conclude t h a t if p is odd or if n > 1 and p = 2, whenever p appears in 
the ^-sequence of K all remaining terms mus t also be p. 

P R O POSITION 3. Let K/F be an extension of fields. Let M be the maximal 
abelian extension of F in K. Then the p-sequence of K equals the p-sequence of AI. 

Proof. Let fn be a primit ive wth root of uni ty over F. F(Çn) and M are abelian 
extensions of F, so the composite M(£n) is an abelian extension of F. 
M C {K C\ M(Sn)). B u t K C\ M(Sn) is an abelian extension of F contained 
in K. Hence K C\ M(£n) = M. M(Çn) is Galois over M, so t ha t K{£n) is 
Galois over K with Galois group isomorphic to the Galois group of M(fw)/ilf. 
In part icular , if n = p\ deg (M(Çpr)/M) = deg (K(Çpr)/K), so K and M 
have the same ^-sequences. 

Let K/F be an extension of fields. Call MP the maximal abelian p-extension 
of F in K if Mv is the composite of all finite abelian ^-extensions of F in K. 

PROPOSITION 4. Let K/L be an extension of fields. Let Mv be the maximal 
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abelian p-extension of L in K. Then the p-sequence for MP equals the p-sequence 
for K. 

Proof. Let M be the maximal abelian extension of L in K, and Mv the maxi­
mal abelian ^-extension of L in K. If a 6 M(ÇP), (deg (MP(ÇP) (a)/Mp(Çp)), p) 
= 1. Let n be a positive integer. The deg(MP(Çpn)/Mp(Çp)) is a power of p, 
so that i f (fp) H M „ G » = ^ ( f P ) . Hence deg (M(fp«)/M(fp)) = deg 
(ifp(fpn)/M"p(fp)). This means that the ^-sequence of Mv is equal to that of M. 
By Proposition 3, the result follows. 

COROLLARY 5. Let K/L be a finite extension of fields of degree n. Suppose 
(p, n) = 1. Then the p-sequences of K and of L coincide. 

We now investigate the relationship between the equivalence of two fields 
on the set of abelian ^-groups and their respective ^-sequences. 

THEOREM 6. Suppose K and F are fields. If K and F have the same p-sequences, 
then they are equivalent on the class of all finite abelian p-groups. If, however, the 
p-sequences differ first at the nth place, then there exist abelian groups of order 
pn+i (pn+2f if p = 2) which are equivalent over one field but not the other. 

Proof. If L is a field and G is an abelian group of order ps, then 

L{G)~ £ a,LGv), 
1 = 1 

where at = njvi, nt is the number of elements of G of order pl and 

Vi = deg(LG>)/£) . 
Define the sequence on, a2, . . . as follows, on = 1. If an is defined, define 

aTO+i to be the least integer r such that vr > van, if this is possible; otherwise, 
letû!w+i = an+2 = . . . = co. 

For the group G, we can define the sequence 
oti+i— 1 

where ar = 0 if r > n and bt = 0 if at = oo. Then 

If «i < ay < oo, L(Çpai) SkL(Çpaj) since the fields contain different col­
lections of pt\i roots of unity. Thus bt is characterized as the number of 
maximal ideals such that the quotient is isomorphic to L(fpt t i). If we 
similarly define a sequence of b's for L(H), say bi, 52, . . . , 5W, such that 
L f f l ^ E î - i 5, L($>.•), then L(G) ~ L(ff) if and only if 6< = bu 

i = 1, . . . , n. Recalling the definition of the b's, this says that the number of 
elements in G and H of order at most pai, i = 1, 2, . . . , n, are equal. 
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Let 

vF(s) =deg(F(Cps)/F), s = 1,2, . . . 
vk(s) =deg(K(Çp.)/K), s = 1,2, . . . 

For s = 2,3, . . . n, 

s-l 

vF(s) = vF(l) 11 7F,J,(*) 

vK(s) = ^ ( 1 ) IT 7ir,P(i). 

Let X = ^ ( 1 ) 7 ^ ( 1 ) , so that vK(s) = XvF(s), s = 1, 2, . . . , n. Let G and H 
be abelian groups of order at most pn and suppose FG ~ Fi?. 

FG~ è a.Fi^c^FH^ £ â,F(k<) 

X G - 2 X a ^ G v ) 

But the & sequence for XG is just X times the b sequence for FG, and similarly 
the b sequence for KH is just X times the b sequence for FH, while FG ~ FH 
implies their b sequences are equal. Therefore KG ~ KH. 

If yF,v{n) > yK,P(n), then yF,p(n) = p and yK,vM = 1- Let 

G ~ Cpn+l, i ï C^ Ĉ n © Cp. 

KG ~ -KiJ since G and i J have the same number of elements of order at most 
pn+1, but FG 5ê FH since G and H do not have the same number of elements 
of order at most pn. 

COROLLARY 7. Let K be a field. Then K is equivalent to isomorphism on the 
set of all finite abelian p-groups if and only if yK,P(n) = p, n = 1, 2, . . . . 

Proof. yQ,p(n) = p, n = 1, 2, . . . . Now apply Theorem 6. 

COROLLARY 8. Let F be a field and suppose p is odd. Then F is equivalent 
to isomorphism on the class of all finite abelian p-groups if and only if 
F(CPX CP)&F(CP*). 

Proof. If fp, 6 F(ÇP) and vp = deg(F(£p)/F), then 

F(CP XCP)^F® £ - - = - F(tP) ~ F(CP*). 
vp 

Thus yFtV{\) = p. By Proposition 2, yF,p(n) = p, n = 1, 2, . . . and by 
Corollary 7 the result follows. 

COROLLARY 9. Let Qp be the field of p-adic numbers. Let G and H be abelian 
groups of order pn. Then QPG o^ QPH <=> G ~ H. 
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Proof. Let 

xpn - 1 

xp — 1 

be the pnth cyclotomic polynomial. It is irreducible over Qp, by Eisenstein's 
criterion. Hence yQp,P(n) = p, n = 1, 2, . . . .By Corollary 7 the result follows. 

We now apply the theorem to algebraic number fields. Suppose p is odd. 
Then QGV) is a cyclic extension of Q of degree p(p — 1) and contains a 
unique field of degree p over Q. Call this field Fp; i.e., Q C FP C (?G>) and 
deg(/V<2) = £. 

THEOREM 10. Let p be an odd prime. Let Sf be the set of all finite abelian 
p-groups. Let K be an extension of Q. 

Then the following are equivalent. 
(i) K is equivalent to isomorphism on £f '. 

(ii) K(CPX Cp) ^K(CP2) 
(iii) FV(£K 
(iv) There does not exist a field L such that L properly contains Q and is 

contained in K, L is an abelian extension of Q of degree a power of p, and the 
discriminant of L is a power of p. 

Proof, (i) => (ii). This is obvious. 
(ii) => (iii). If Fp C K, then K{ÇP) = Kfo). Let a = deg(K({p)/K) = 

deg(K(Çp>)/K). Then 

a a a 

while 

K(CP X Cp) ~ XL^) K(Sv) © K. 

T h u s i £ ( C » ~K{CP X Cp). 
(iii) => (iv). Suppose such a field L exists and let deg(L/Q) = pT. As L is 

an abelian extension of Q of degree a power of £, by the Kronecker-Weber 
theorem, L is contained in a cyclotomic extension. In fact, since the discrimi­
nant of L is a power of p, L C (?GV+0- See, e.g., [3, p. 233]. But (?GV + 1) 
is a cyclic extension of <2 and contains a unique field L of degree £ r over Q. 
This field must also contain Fp, contradicting (iii). 

(iv) => (i). Let Mp be the maximal abelian ^-extension of Q in K. By 
Proposition 4, the ^-sequence of ikfp equals the ^-sequence of K. Let f„n be a 
primitive £wth root of unity in Q. <2G>) C\ Mp is an extension of Q of degree 
a power of £>, since Mp is, and has discriminant a power of £ since it is contained 
in Q(Çpn). By (iv), we conclude that (?(£>) ^ ^ = (?• From Galois theory 
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we have àeg(Mp(ÇPn)/Mp) = deg(<2G>)/<2) so that the ^-sequence of Mp and 
of Q coincide. By Theorem 6 the result follows. 

THEOREM 11. Suppose p = 2. Let £f be the set of all finite abelian 2-groups 
and let3T — {C8 © C2, C\ © C\, d © C2 © C2}. Let K be an extension of Q. 
Then the following are equivalent. 

(i) K is equivalent to isomorphism on Sf. 
(ii) K is equivalent to isomorphism on^T. 

(hi) {V2, W - 2 } n z = 0. 

Proof, (i) => (ii). This is obvious. 
(ii)=>(iii). If i£K, K(C*@ CA)~K(CA® C2 © C2). If \ / 2 or \ / - 2 G K, 

K(CS © C2) ^ ^ ( C 4 © C4). 
(iii) =» (i). Let M2 be the maximal abelian 2-extension of Q in i£. We must 

check that the 2-sequence of ikf2 coincide with the 2-sequence of Q. Suppose 
n ^ 3 and f2» is a primitive 2wth root of unity over Q. Q(f2n) is an abelian 
extension of Q and contains exactly three quadratic extensions; namelv, 
QW,Q(/2),Q(V-2).By (iv), 

{;, V2, V-2J n x = {i, V2, V-2} n M2 = 0, 

so that Q(f2») Pi Af2 = (X Then deg(Jkf2(f2»)/M2) = deg(Q(f2n)/Q) and the 
2-sequences of K and Q coincide. 

If q is a prime and n is a positive integer, let GF(qn) denote the finite field of 
order qn. 

THEOREM 12. Suppose p is odd and K is a field of characteristic q 
(q 9e 0, q 7* p). Let e be the exponent of q modulo p. Then K is equivalent to 
isomorphism on all finite abelian p-groups if and only if qe ^ 1 {modulo p2) 
and GF(qv) <£ K. 

Proof. Suppose K is equivalent to isomorphism on all finite abelian ^-groups. 
By Corollary 7, yK,P(n) = p, n = 1, 2, . . . . Let Çp be a primitive pth root 
of unity for K, and let deg[GF(q) (Çp)/GF(q)] = I. The order of the multi­
plicative group of GF(q)(Çp) is ql — 1, and it contains an element of order p. 
Thus ql = 1 (modulo p). But e is the smallest positive integer such that 
qe = 1 (mod£>), so that I = e. yK,p(l) = P implies fp2 (? K[ÇP], so that 
fp2 <? GF(q);i.e.,q* & 1 (rnod£2). 

fp2 d K[ÇP], so that fp2 is of degree p over GF(q)(£p) = GF(qe). Therefore, 
GF(g)(fp2) = GF(qve). Since 1 ^ e ^ £ - 1 and GF(qpe) is just the composite 
of GF(qe) and GF(gp), we conclude GF{q?) <£ K[ÇP]. Hence GF(qp) <£ K. 

Conversely, since pe ^ 1 (mod£2), Jy g GF(q)(Çp) = GF(qe). If ^2 £ 
i£[f j , then GF(^) C GF(qpe) C # [ f j . Let X be a generator for the multi­
plicative group of GF(qp). Then X satisfies an irreducible polynomial f(x) (; 
GF(q)[x] of degree £, which remains irreducible in K[x]. But (deg(K(Çp)/K), p) 
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= l , so/ (x) remains irreducible over K(£p)[x]m, i.e., fvi d K\£J. Thus yK,p(l) = 
p. Since p is odd, by Proposition 2 we must have yKfP(n) = £, w = 1, 2, . . . so 
that the result follows by Corollary 7. 

THEOREM 13. Let q be an odd prime. If q = 1 (mod 4), then K(CA) C^ 

K(C2 X d). Ifq = 3 (mod 4), then K(C8) ^ i£(C4 X C2). 

Proof. Iî q = 1 (mod 4), then the equation x2 + 1 = 0 splits in X, so that 
Y*,P(1) = 1. Hence K(C,) c~K(C2 X C2). If g = 3 (mod 4), then GF(q*) C 
i£(f2). As g2 s 1 (mod 8), f2 6 GF(<z2). Thus 7*,2(1) = 2 and 7^,2(2) = 1. 
By Theorem 6, 

K(Cs)^K(C,X C2). 
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