This is a ``preproof'' accepted article for *Canadian Mathematical Bulletin* This version may be subject to change during the production process. DOI: 10.4153/S0008439524000675

Canad. Math. Bull. Vol. **00** (0), 2020 pp. 1–7 http://dx.doi.org/10.4153/xxxx © Canadian Mathematical Society 2020

Compact composition operators on model spaces*

Evgueni Doubtsov

Abstract. Let $\varphi : B_d \to \mathbb{D}, d \ge 1$, be a holomorphic function, where B_d denotes the open unit ball of \mathbb{C}^d and $\mathbb{D} = B_1$. Let $\Theta : \mathbb{D} \to \mathbb{D}$ be an inner function and let K^p_{Θ} denote the corresponding model space. For p > 1, we characterize the compact composition operators $C_{\varphi} : K^p_{\Theta} \to H^p(B_d)$, where $H^p(B_d)$ denotes the Hardy space.

1 Introduction

Let B_d denote the open unit ball of \mathbb{C}^d , $d \ge 1$, and let ∂B_d denote the unit sphere. Let $\sigma = \sigma_d$ denote the normalized Lebesgue measure on the sphere ∂B_d . We also use symbols \mathbb{D} and \mathbb{T} for the unit disc B_1 and the unit circle ∂B_1 , respectively.

For $d \ge 1$, let $\mathcal{H}ol(B_d)$ denote the space of holomorphic functions in B_d . For $0 , the classical Hardy space <math>H^p = H^p(B_d)$ consists of those $f \in \mathcal{H}ol(B_d)$ for which

$$\|f\|_{H^p}^p = \sup_{0 < r < 1} \int_{\partial B_d} |f(r\zeta)|^p \, d\sigma_d(\zeta) < \infty.$$

As usual, we identify the Hardy space $H^p(B_d)$, p > 0, and the space $H^p(\partial B_d)$ of the corresponding boundary values.

It is well known that the composition operator $C_{\varphi} : f \mapsto f \circ \varphi$ sends $H^p(\mathbb{D})$ into $H^p(B_d), p > 0$. Indeed, let $f \in H^p(\mathbb{D})$. Then $|f|^p \leq h$ for an appropriate harmonic function h on \mathbb{D} . So, $|f \circ \varphi|^p \leq h \circ \varphi$, hence $f \circ \varphi \in H^p(B_d)$, as required.

Since C_{φ} maps $H^2(\mathbb{D})$ into $H^2(B_d)$, it is natural to ask for a characterization of those φ for which $C_{\varphi} : H^2(\mathbb{D}) \to H^2(B_d)$ is a compact operator. Two-sided estimates for the essential norm of the operator $C_{\varphi} : H^2(\mathbb{D}) \to H^2(B_d)$, $d \ge 1$, were obtained by B.R. Choe [4] in terms of the corresponding pull-back measure. A more explicit approach based on the Nevanlinna counting function was proposed in [10] for d = 1; see also [1] for an extension to the case $d \ge 1$.

Definition 1.1 A holomorphic function $\Theta : \mathbb{D} \to \mathbb{D}$ is called *inner* if $|\Theta(\zeta)| = 1$ for σ_1 -a.e. $\zeta \in \mathbb{T}$.

2024/09/19 19:14

²⁰²⁰ Mathematics Subject Classification: 47B33, 32A35, 46B70.

Keywords: model spaces, composition operator, Nevanlinna counting function, real interpolation of Banach spaces.

^{*}This research was supported by the Russian Science Foundation (grant No. 23-11-00171), https://rscf.ru/project/23-11-00171/.

In the above definition, $\Theta(\zeta)$ stands, as usual, for $\lim_{r\to 1^-} \Theta(r\zeta)$. Recall that the corresponding limit is known to exist σ_1 -a.e. Also, by the above definition, unimodular constants are not inner functions.

Given an inner function Θ on \mathbb{D} , the classical model space K_{Θ} is defined as

$$K_{\Theta} = H^2(\mathbb{D}) \ominus \Theta H^2(\mathbb{D}).$$

In this paper, firstly, we characterize those φ for which $C_{\varphi} : K_{\Theta} \to H^2(B_d)$ is a compact operator. For d = 1, such characterizations were earlier obtained in [9]. Secondly, in Theorem 4.3, we solve the analogous problem for $C_{\varphi} : K_{\Theta}^p \to H^p(B_d), p > 1$, where $K_{\Theta}^p := H^p \cap \Theta \overline{H^p}$. Note that $K_{\Theta}^2 = K_{\Theta}$.

Organization of the paper

Auxiliary results, including Cohn's inequality and Stanton's formula, are presented in Section 2. Compact composition operators $C_{\varphi} : K_{\Theta} \to H^2(B_d)$ are characterized in Section 3. Real interpolation of Banach spaces is used in Section 4 to prove that the compactness of $C_{\varphi} : K_{\Theta}^p \to H^p(B_d)$ does not depend on p for 1 .

2 Auxiliary results

2.1 Littlewood-Paley identity and related results

Given an $f \in H^2(\mathbb{D})$, the Littlewood–Paley identity states that

$$||f||_{H^2(\mathbb{D})}^2 = |f(0)|^2 + 2\int_{\mathbb{D}} |f'(w)|^2 \log \frac{1}{|w|} \, dA(w), \tag{2.1}$$

where A denotes the normalized area measure on \mathbb{D} .

2.1.1 Cohn's inequality

Let $\Theta : \mathbb{D} \to \mathbb{D}$ be an inner function. If $f \in K_{\Theta}$, then the lower estimate in (2.1) is improvable in the sense of the following theorem.

Theorem 2.1 ([5]) Let Θ be an inner function. There exists $p \in (0, 1)$ such that

$$\|f\|_{H^2(\mathbb{D})}^2 \ge |f(0)|^2 + C_p \int_{\mathbb{D}} \frac{|f'(w)|^2}{(1 - |\Theta(w)|)^p} \log \frac{1}{|w|} \, dA(w) \tag{2.2}$$

for all $f \in K_{\Theta}$.

2.1.2 Stanton's formula

To study the composition operator generated by a holomorphic self-map ϕ of the unit disk, J. H. Shapiro [10] used for $f \circ \phi$ an analog of (2.1). This analog is based on the Nevanlinna counting function N_{ϕ} defined as

$$N_{\phi}(w) = \sum_{z \in \mathbb{D}: \ \phi(z) = w} \log \frac{1}{|z|}, \quad w \in \mathbb{D} \setminus \{\phi(0)\},$$

where each pre-image is counted according to its multiplicity. The key technical result in Shapiro's argument is the following Stanton formula.

Theorem 2.2 ([10]) Let $\phi : \mathbb{D} \to \mathbb{D}$ be a holomorphic function. Then

$$\|f \circ \phi\|_{H^2(\mathbb{D})}^2 = |f(\phi(0))|^2 + 2\int_{\mathbb{D}} |f'(w)|^2 N_{\phi}(w) \, dA(w).$$
(2.3)

Given an $f \in Hol(B_d)$ and a point $\zeta \in \partial B_d$, the slice-function $f_{\zeta} \in Hol(\mathbb{D})$ is defined by $f_{\zeta}(\lambda) = f(\lambda\zeta), \lambda \in \mathbb{D}$.

Corollary 2.3 Let $\varphi : B_d \to \mathbb{D}$, $d \ge 1$, be a holomorphic function. Then

$$\|f \circ \varphi\|_{H^{2}(B_{d})}^{2} = |f(\varphi(0))|^{2} + 2 \int_{\mathbb{D}} |f'(w)|^{2} \left(\int_{\partial B_{d}} N_{\varphi_{\zeta}}(w) \, d\sigma_{d}(\zeta) \right) \, dA(w).$$
(2.4)

Proof Let $\zeta \in \partial B_d$. Applying Theorem 2.2 with $\phi = \varphi_{\zeta}$, and integrating with respect to the normalized Lebesgue measure σ_d on ∂B_d , we obtain (2.4).

2.2 Subharmonicity inequality for the Nevanlinna counting function

Proposition 2.4 ([10, Section 4.6]) Let $w \in \mathbb{D}$ and $\phi : \mathbb{D} \to \mathbb{D}$ be a holomorphic function. Suppose that Δ is a disk centered at w and such that $\phi(0) \notin \Delta$. Then

$$N_{\phi}(w) \le \frac{1}{A(\Delta)} \int_{\Delta} N_{\phi}(z) \, dA(z).$$
(2.5)

Corollary 2.5 Let $w \in \mathbb{D}$ and $\varphi : B_d \to \mathbb{D}$ be a holomorphic function. Suppose that Δ is a disk centered at w and such that $\varphi(0) \notin \Delta$. Then

$$\int_{\partial B_d} N_{\varphi_{\zeta}}(w) \, d\sigma_d(\zeta) \leq \frac{1}{A(\Delta)} \int_{\Delta} \left(\int_{\partial B_d} N_{\varphi_{\zeta}}(z) \, d\sigma_d(\zeta) \right) \, dA(z). \tag{2.6}$$

Proof Let $\zeta \in \partial B_d$. To obtain (2.6), we apply Proposition 2.4 with $\phi = \varphi_{\zeta}$, integrate with respect σ_d , and use Fubini's Theorem.

2.3 Reproducing kernels for K_{Θ}

Recall that the reproducing kernel $k_w(z)$ for K_{Θ} is given by

$$k_w(z) = \frac{1 - \Theta(z)\overline{\Theta}(w)}{1 - z\overline{w}}, \quad ||k_w||^2 = \frac{1 - |\Theta(w)|^2}{1 - |w|^2}.$$

Let $D_{\varepsilon}(w) = \{z \in \mathbb{D} : |z - w| < \varepsilon |1 - z\overline{w}|\}$, that is, let $D_{\varepsilon}(w)$ denote the pseudohyperbolic ε -disk centered at $w \in \mathbb{D}$.

Lemma 2.6 ([9, Lemma 1]) Let $\{w_n\} \subset \mathbb{D}$ be such that $|w_n| \to 1$ and

$$|\Theta(w_n)| < a \tag{2.7}$$

for some $a \in (0, 1)$. Then

(i) $k_{w_n}/||k_{w_n}|| \xrightarrow{w^*} 0 \text{ as } n \to \infty;$ (ii) there exist $\varepsilon > 0$, C > 0, and $n_0 \in \mathbb{N}$ such that

$$|k'_{w_n}(z)| \ge \frac{C}{(1-|w_n|^2)^2}, \quad z \in D_{\varepsilon}(w_n),$$

for all $n \geq n_0$.

3 Compact composition operators on K_{Θ}

Theorem 3.1 Let $\varphi : B_d \to \mathbb{D}$, $d \ge 1$, be a holomorphic function, and let $\Theta : \mathbb{D} \to \mathbb{D}$ be an inner function. Then the following properties are equivalent.

(i) One has

$$\int_{\partial B_d} N_{\varphi_{\zeta}}(w) \frac{1 - |\Theta(w)|}{1 - |w|} \, d\sigma_d(\zeta) \to 0 \quad \text{as } |w| \to 1 - . \tag{3.1}$$

(ii) $C_{\varphi}: K_{\Theta} \to H^2(B_d)$ is a compact operator.

Proof The principal arguments below are modelled after [10]. (i) \Rightarrow (ii) For $n \in \mathbb{N}$, let

 $K_{\Theta,n}(\mathbb{D}) = \{ f \in K_{\Theta}(\mathbb{D}) : f \text{ has zero of order } n \text{ at the origin} \}.$

Let $P_n : K_{\Theta}(\mathbb{D}) \to K_{\Theta,n}(\mathbb{D})$ denote the orthogonal projector. We claim that

$$\|C_{\varphi}P_n\|_{K_{\Theta}(\mathbb{D})\to H^2(B_d)}\to 0 \tag{3.2}$$

as $n \to \infty$. Then C_{φ} is compact, since it is approximable by the finite-rank operators $C_{\varphi}(I-P_n).$

To verify (3.2), fix $\varepsilon > 0$ and $f \in K_{\Theta}(\mathbb{D})$, $||f|| \le 1$. Let $g_n = P_n f$, then $||g_n|| \le 1$. Firstly, let $p \in (0, 1)$ be that provided by Theorem 2.1. By (3.1),

$$\int_{\partial B_d} N^p_{\varphi_{\zeta}}(w) \frac{(1 - |\Theta(w)|)^p}{(1 - |w|)^p} \, d\sigma_d(\zeta) \to 0 \quad \text{as } |w| \to 1 - . \tag{3.3}$$

For $r \in (0, 1)$, put

$$\mathfrak{N}_{p,r} = \sup_{r < |w| < 1} \int_{\partial B_d} N_{\varphi_{\zeta}}(w) \frac{(1 - |\Theta(w)|)^p}{1 - |w|} \, d\sigma_d(\zeta).$$

By Littlewood's inequality [8],

$$N_{\varphi_{\zeta}}(w) \leq \log \left| \frac{1 - \overline{w}\varphi(0)}{\varphi(0) - w} \right|, \quad w \in \mathbb{D} \setminus \{\varphi(0)\}.$$

Thus, for $\frac{1+|\varphi(0)|}{2} < |w| < 1$, we obtain $N_{\varphi_{\mathcal{E}}}(w) \le C(1-|w|)$, hence,

$$N_{\varphi_{\zeta}}^{1-p}(w) \le C(1-|w|)^{1-p}, \quad \frac{1+|\varphi(0)|}{2} < |w| < 1.$$

4

Composition operators on model spaces

Therefore,

$$\mathfrak{N}_{p,r} \to 0 \quad \text{as } r \to 1-$$
 (3.4)

by (3.3). Now, using (3.4) and applying (2.2) to $g_n \in K_{\Theta}$, $||g_n|| \le 1$, choose R so close to 1 that

$$\int_{\mathbb{D}\backslash R\mathbb{D}} \frac{|g'_n(w)|^2}{(1-|\Theta(w)|)^p} \mathfrak{N}_{p,R}(1-|w|) \, dA(w) < C \|g_n\|\mathfrak{N}_{p,R} < \varepsilon \tag{3.5}$$

for all $n \in \mathbb{N}$.

Secondly,

$$\max_{|w| < R} |g'_n(w)| \to 0$$

as $n \to \infty$. Thus,

$$\int_{R\mathbb{D}} |g'_n(w)|^2 \int_{\partial B_d} N_{\varphi_{\zeta}}(w) \, d\sigma_d(\zeta) \, dA(w) < \varepsilon \tag{3.6}$$

for all sufficiently large *n*.

By (2.4),

$$\begin{split} \frac{1}{2} \|C_{\varphi}g_n\|_{H^2(B_d)}^2 &= \int_{\mathbb{D}} |g_n'(w)|^2 \int_{\partial B_d} N_{\varphi_{\zeta}}(w) \, d\sigma_d(\zeta) \, dA(w) + |g_n(\varphi(0))|^2 \\ &= \int_{\mathbb{D} \setminus R\mathbb{D}} + \int_{R\mathbb{D}} + |g_n(\varphi(0))|^2. \end{split}$$

Observe that $|g_n(\varphi(0))|^2 \to 0$ as $n \to \infty$. Hence, combining (3.5) and (3.6), we conclude that

$$\|C_{\varphi}g_n\|_{H^2(B_d)}\to 0,$$

as required.

(ii) \Rightarrow (i) Assume that (i) does not hold. Then there exists a sequence $\{w_n\}_{n=1}^{\infty} \subset \mathbb{D}$ such that $|w_n| \to 1$ and

$$\int_{\partial B_d} N_{\varphi_{\zeta}}(w_n) \frac{1 - |\Theta(w_n)|}{1 - |w_n|} \, d\sigma_d(\zeta) \ge c > 0. \tag{3.7}$$

Sequentially applying (2.4), Lemma 2.6(ii) and Corollary 2.5, we obtain

$$\begin{split} \|C_{\varphi}k_{w_{n}}(z)\|^{2}/\|k_{w_{n}}\|^{2} &\geq \frac{1}{\|k_{w_{n}}\|^{2}} \int_{\mathbb{D}} |k_{w_{n}}'(z)|^{2} \left(\int_{\partial B_{d}} N_{\varphi_{\zeta}}(z) \, d\sigma_{d}(\zeta) \right) \, dA(z) \\ &\geq \int_{D(w_{n},\varepsilon)} \frac{C}{(1-|w_{n}|^{2})^{3}} \left(\int_{\partial B_{d}} N_{\varphi_{\zeta}}(z) \, d\sigma_{d}(\zeta) \right) \, dA(z) \\ &\geq \frac{C_{\varepsilon}}{1-|w_{n}|^{2}} \int_{\partial B_{d}} N_{\varphi_{\zeta}}(w_{n}) \, d\sigma_{d}(\zeta). \end{split}$$

$$(3.8)$$

Now, recall that C_{φ} is a compact operator by (ii), thus, $\|C_{\varphi}k_{w_n}(z)\|/\|k_{w_n}\| \to 0$ by Lemma 2.6(i). Therefore, (3.8) contradicts (3.7). The proof of the theorem is finished.

4 Compact composition operators on K^p_{Θ}

For $0 and an inner function <math>\Theta$, let

$$K^p_{\Theta} = K^p_{\Theta}(\mathbb{D}) \stackrel{\text{def}}{=} H^p(\mathbb{D}) \cap \Theta \overline{H^p}(\mathbb{D}).$$

It is well known and easy to see that $K_{\Theta}^2 = K_{\Theta}$.

By definition, an inner function $\Theta : \mathbb{D} \to \mathbb{D}$ is called one-component if the set $\{z \in \mathbb{D} : |\Theta(z)| < r\}$ is connected for some $r \in (0, 1)$. The present section is motivated by the following assertion.

Proposition 4.1 ([2, 9]) Let $\phi : \mathbb{D} \to \mathbb{D}$ be a holomorphic function, p > 1 and let Θ be a one-component inner function. Then $C_{\phi} : K^p_{\Theta} \to H^p(\mathbb{D})$ is a compact operator if and only if

$$N_{\phi}(w) \frac{1 - |\Theta(w)|}{1 - |w|} \to 0 \quad \text{as } |w| \to 1 - .$$

Proof As indicated in [9, Section 4], the results of Baranov [2] on compact Carleson embeddings of the model spaces K_{Θ}^{p} guarantee that for a *one-component* inner function Θ , the compactness of the composition operator $C_{\varphi} : K_{\Theta}^{p}(\mathbb{D}) \to H^{p}(\mathbb{D})$ does not depend on $p \in (1, \infty)$. Finally, for p = 2, it suffices to apply Theorem 1 from [9] or Theorem 3.1.

In Theorem 4.3 below, we show that the direct analog of Proposition 4.1 holds for an arbitrary inner function Θ . The arguments are based on the real interpolation method for Banach spaces, so we first recall related basic facts.

Let (A_0, A_1) be a compatible couple of Banach spaces. Given $0 < \theta < 1$ and $1 \le q \le \infty$, the real interpolation method provides $(A_0, A_1)_{\theta,q}$, an interpolation space between A_0 and A_1 (see, e.g., [3, Chapter 3] for details).

We need the following one-sided compactness theorem for the real interpolation method.

Theorem 4.2 ([6]) Let (A_0, A_1) and (B_0, B_1) be compatible couples of Banach spaces. Assume that $T : A_j \to B_j$, j = 0, 1, is a bounded linear operator such that $T : A_0 \to B_0$ is compact. Then $T : (A_0, A_1)_{\theta,q} \to (B_0, B_1)_{\theta,q}$ is a compact operator for all admissible θ and q.

Theorem 4.3 Let p > 1 and let Θ be an inner function. Then $C_{\varphi} : K_{\Theta}^{p} \to H^{p}(B_{d})$ is a compact operator if and only if property (3.1) holds.

Proof By Theorem 3.1, it suffices to show that the compactness of $C_{\varphi} : K_{\Theta}^{p}(\mathbb{D}) \to H^{p}(B_{d})$ does not depend on $p \in (1, \infty)$. To prove this property, assume that $p_{0} \in (1, \infty)$ and $C_{\varphi} : K_{\Theta}^{p_{0}}(\mathbb{D}) \to H^{p_{0}}(B_{d})$ is a compact operator. We are planning to prove that $C_{\varphi} : K_{\Theta}^{p_{0}}(\mathbb{D}) \to H^{p}(B_{d})$ is also compact for all $p \in (1, \infty) \setminus \{p_{0}\}$. In fact, for definiteness and without loss of generality, we may assume that $p > p_{0}$.

Composition operators on model spaces

Fix *p* and p_1 such that $p_1 > p > p_0$. Define $\theta \in (0, 1)$ by the following identity:

$$\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}.$$
 (4.1)

On the one hand, (4.1) guarantees that $(K_{\Theta}^{p_0}, K_{\Theta}^{p_1})_{\theta,p} = K_{\Theta}^p$ (see, e.g., [7] for more general results even in the bidisk \mathbb{D}^2). On the other hand, it is known that $(H^{p_0}(B_d), H^{p_1}(B_d))_{\theta,p} = H^p(B_d)$, since $p_1 > p_0 > 1$. Indeed, application of the classical Riesz projection reduces interpolation between $H^{p_0}(B_d)$ and $H^{p_1}(B_d)$ to that between L^{p_0} and L^{p_1} .

Now, observe that $C_{\varphi}: K_{\Theta}^{p_1}(\mathbb{D}) \to H^{p_1}(B_d)$ is a bounded operator. Indeed, as indicated in the introduction, $C_{\varphi}: H^q(\mathbb{D}) \to H^q(B_d)$ is bounded for all $0 < q < \infty$. Thus, applying Theorem 4.2 for q = p and the pairs $(K_{\Theta}^{p_0}, K_{\Theta}^{p_1})$ and $(H^{p_0}(B_d), H^{p_1}(B_d))$, we conclude that $C_{\varphi}: K_{\Theta}^{p}(\mathbb{D}) \to H^p(B_d)$ is compact, as required.

Acknowledgements

The author is grateful to the anonymous referees for helpful corrections and remarks.

References

- A. B. Aleksandrov and E. Doubtsov, Clark measures on the complex sphere. J. Funct. Anal. 278 (2020), no. 2, 108314, 30.
- [2] A. D. Baranov, Embeddings of model subspaces of the Hardy class: compactness and Schatten-von Neumann ideals. *Izv. Ross. Akad. Nauk Ser. Mat.* 73 (2009), no. 6, 3–28 (Russian); English transl.: *Izv. Math.* 73 (2009), no. 6, 1077–1100.
- [3] J. Bergh and J. Löfström, Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, vol. 223, Springer-Verlag, Berlin-New York, 1976.
- [4] B. R. Choe, The essential norms of composition operators. Glasgow Math. J. 34 (1992), no. 2, 143-155.
- [5] W. S. Cohn, Carleson measures and operators on star-invariant subspaces. J. Operator Theory 15 (1986), 181–202.
- [6] M. Cwikel, Real and complex interpolation and extrapolation of compact operators. Duke Math. J. 65 (1992), no. 2, 333–343.
- [7] S. V. Kislyakov and I. K. Zlotnikov, Interpolation for intersections of Hardy-type spaces. Israel J. Math. 239 (2020), no. 1, 21–38.
- [8] J. E. Littlewood, On Inequalities in the Theory of Functions. Proc. London Math. Soc. (2) 23 (1925), no. 7, 481–519.
- [9] Yu. I. Lyubarskii and E. Malinnikova, Composition operators on model spaces. Recent trends in analysis, Theta Ser. Adv. Math., vol. 16, Theta, Bucharest, 2013, pp. 149–157.

[10] J. H. Shapiro, The essential norm of a composition operator. Ann. of Math. (2) 125 (1987), no. 2, 375–404.

St. Petersburg Department of Steklov Mathematical Institute, Fontanka 27, St. Petersburg, Russia, 191023 e-mail: dubtsov@pdmi.ras.ru.