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Abstract

We consider continuous space–time decay–surge population models, which are semi-
stochastic processes for which deterministically declining populations, bound to fade
away, are reinvigorated at random times by bursts or surges of random sizes. In a partic-
ular separable framework (in a sense made precise below) we provide explicit formulae
for the scale (or harmonic) function and the speed measure of the process. The behavior
of the scale function at infinity allows us to formulate conditions under which such pro-
cesses either explode or are transient at infinity, or Harris recurrent. A description of the
structures of both the discrete-time embedded chain and extreme record chain of such
continuous-time processes is supplied.
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1. Introduction

This paper deals with decay–surge population models, where a deterministically declining
evolution following some nonlinear flow is interrupted by bursts of random sizes occurring
at random times. Decay–surge models are natural models of many physical and biological
phenomena, including the evolution of ageing and declining populations which are reinvigo-
rated by immigration, the height of the membrane potential of a neuron decreasing in between
successive spikes of its presynaptic neurons because of leakage effects and jumping upwards
after the action potential emission of its presynaptic partners, work processes in single-server
queueing systems as from Cohen [9], etc. Our preferred physical image will be that of ageing
populations subject to immigration.

Decay–surge models have been extensively studied in the literature; see among others
Eliazar and Klafter [12] and Harrison and Resnick [19, 20]. Most studies, however, concentrate
on non-Markovian models such as shot-noise or Hawkes processes, where superpositions of
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overlapping decaying populations are considered; see Brémaud and Massoulié [5], Eliazar and
Klafter [13, 14], Huillet [23], Kella and Stadje [25], Kella [24], and Brockwell et al. [6].

Inspired by storage processes for dams, the papers of Brockwell et al. [6], Kella [24], Çinlar
and Pinsky [8], Asmussen and Kella [2], Boxma et al. [4], Boxma et al. [3], and Harrison
and Resnick [19] are mostly concerned with growth–collapse models when growth is from
stochastic additive inputs such as compound Poisson or Lévy processes or renewal processes.
Here, the water level of a dam decreasing deterministically according to some fixed water
release program is subject to sudden uprises due to rain or flood. Growth–collapse models are
also very relevant in the Burridge–Knopoff stress-release model of earthquakes and continental
drift, as in Carlson et al. (1994), and in stick–slip models of interfacial friction, as in Richetti
et al. (2001). As we shall see, growth–collapse models are in some sense ‘dual’ to decay–surge
models.

In contrast with these last papers, and as in the works of Eliazar and Klafter [12, 13, 14],
we concentrate in the present work on a deterministic and continuous decay motion in between
successive surges, described by a nonlinear flow, determining the decay rate of the population
and given by

xt(x) = x −
∫ t

0
α(xs(x))ds, t ≥ 0, x0(x) = x ≥ 0.

In our process, upward jumps (surges) occur with state-dependent rate β(x), when the current
state of the process is x. When a jump occurs, the present size of the population x is replaced by
a new random value Y(x) > x, distributed according to some transition kernel K (x, dy), y ≥ x.

This leads to the study of a quite general family of continuous-time piecewise deterministic
Markov processes Xt(x) representing the size of the population at time t when started from
the initial value x ≥ 0; see Davis [10]. The infinitesimal generator of this process is given for
smooth test functions by

Gu(x) = −α(x)u′(x) + β(x)
∫

(x,∞)
K(x, dy)[u(y) − u(x)], x ≥ 0,

under suitable conditions on the parameters α, β and K(x, dy) of the process. In the sequel we
focus on the study of separable kernels K (x, dy) where for each 0 ≤ x ≤ y,∫

(y,∞)
K(x, dz)=k(y)

k(x)
, (1)

for some positive non-increasing function k : [0, ∞) → [0, ∞] which is continuous on (0, ∞).
The present paper proposes a precise characterization of the probabilistic properties of the

above process in this separable frame. Supposing that α(x) and β(x) are continuous and positive
on (0, ∞), the main ingredient of our study is the function

�(x) =
∫ x

1
γ (y)dy, where γ (y) = β(y)/α(y), y, x ≥ 0. (2)

Supposing that �(·) is a space transform, that is, �(0) = −∞ and �(∞) = ∞, we show the
following:

1. Starting from some strictly positive initial value x > 0, the process does not become
extinct (does not hit 0) in finite time almost surely (Proposition 2). In particular, addi-
tionally imposing k(0) < ∞, we can study the process restricted to the state space
(0, ∞). This is what we do in the sequel.
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2. The function

s(x) =
∫ x

1
γ (y)e−�(y)/k(y)dy, x ≥ 0, (3)

is a scale function of the process, that is, solves Gs(x) = 0 (Proposition 3). It is always
strictly increasing and satisfies s(0) = −∞ under our assumptions. But it might not be a
space transform; that is, s(∞) can take finite values.

3. This scale function plays a key role in the understanding of the exit probabilities of
the process and yields conditions under which the process either explodes in finite time
or is transient at infinity. More precisely, if s(∞) < ∞, we have the following explicit
formula for the exit probabilities, given in Proposition 4: for any 0 < a < x < b,

P(Xt enters (0, a] before entering [b, ∞) |X0 = x) = s(x) − s(a)

s(b) − s(a)
. (4)

Taking b → ∞ in the above formula, we deduce from this that s(∞) < ∞ implies either
that the process explodes in finite time (possesses an infinite number of jumps within
some finite time interval) or that it is transient at infinity.
Because of the asymmetric dynamic of the process (continuous motion downwards and
jumps upwards such that entering the interval [b, ∞) starting from x < b always happens
by a jump), (4) does not hold if s(∞) = ∞.

4. Imposing additionally that β(0) > 0, Harris recurrence (positive or null) of the pro-
cess is equivalent to the fact that s is a space transform, that is, s(∞) = ∞ (Theorem 2).
In this case, up to constant multiples, the unique invariant measure of the process
possesses a Lebesgue density (speed density) given by

π (x) = k(x)e�(x)

α(x)
, x > 0.

More precisely, we show how the scale function can be used to obtain Foster–Lyapunov
criteria in the spirit of Meyn and Tweedie (1993), implying the non-explosion of the pro-
cess together with its recurrence under additional irreducibility properties. Additional
conditions, making use of the speed measure, under which first moments of hitting times
are finite, are also supplied in this setup.

Organization of the paper. In Section 2, we introduce our model and state some first
results. Most importantly, we establish a simple relationship between decay–surge models and
growth–collapse models as studied in Goncalves, Huillet and Löcherbach [16], that allows
us to obtain explicit representations of the law of the first jump time and of the associated
speed measure without any further study. Section 3 is devoted to the proof of the existence
of the scale function (Proposition 3) together with the study of first moments of hitting times,
which are shown to be finite if the speed density is integrable at +∞ (Proposition 6). Section 4
then collects our main results. If the scale function is a space transform, it can be naturally
transformed into a Lyapunov function in the sense of Meyn and Tweedie (1993) such that the
process does not explode in finite time and comes back to certain compact sets infinitely often
(Proposition 4). Using the regularity produced by the jump heights according to the absolutely
continuous transition kernel K(x, dy), Theorem 1 then establishes a local Doeblin lower bound
on the transition operator of the process—a key ingredient to prove Harris recurrence, which
is our main result, Theorem 2. Several examples are supplied, including one related to linear
Hawkes processes and to shot-noise processes. In the final section of the work, we focus on
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the embedded chain of the process, sampled at the jump times, which, in addition to its funda-
mental relevance, is easily amenable to simulations. Following Adke (1993), we also draw the
attention to the structure of the extreme record chain of Xt(x), allowing in particular the deriva-
tion of the distribution of the first upper record time and overshoot value, as a level crossing
time and value. This study is motivated by the understanding of the time of the first cross-
ing of some high population level and the amount of the corresponding overshoot, as, besides
extinction, populations can face overcrowding.

2. The model, some first results, and a useful duality property

We study population decay models with random surges described by a piecewise determin-
istic Markov process Xt, t ≥ 0, starting from some initial value x ≥ 0 at time 0 and taking values
in [0, ∞). The main ingredients of our model are the following:

1. The drift function α(x). We suppose that α : [0, ∞) → [0, ∞) is continuous, with
α(x) > 0 for all x > 0. In between successive jumps, the process follows the decaying
dynamic

.
xt(x) = −α(xt(x)) , x0(x) = x ≥ 0. (5)

2. The jump rate function β(x). We suppose that β : (0, ∞) → [0, ∞) is continuous and
β(x) > 0 for all x > 0.

3. The jump kernel K(x, dy). This is a transition kernel from [0, ∞) to [0, ∞) such that for
any x > 0, K(x, [x, ∞)) = 1. Writing K(x, y) = ∫

(y,∞) K(x, dz), we suppose that K(x, y)
is jointly continuous in x and y.

In between successive jumps, the population size follows the deterministic flow xt(x) given
in (5). For any 0 ≤ a < x, the integral

ta(x) :=
∫ x

a

dy

α(y)
(6)

is the time needed for the flow to hit a starting from x. In particular, starting from x > 0, the
flow reaches 0 after some time t0(x) = ∫ x

0
dy
α(y) ≤ ∞. We refer to [15, Section 2] for a variety of

examples of such decaying flows that can hit zero in finite time or not.
Jumps occur at state-dependent rate β(x). At the jump times, the size of the population grows

by a random amount �(Xt−) > 0 of its current size Xt−. Writing Y(Xt−) := Xt− + �(Xt−) for
the position of the process right after its jump, Y(Xt−) is distributed according to K(Xt−, dy).

Up to the next jump time, Xt then decays again, following the deterministic dynamics (5),
started at the new value Y(Xt−) := Xt− + �(Xt−).

We are thus led to consider the piecewise deterministic Markov process Xt with state space
[0, ∞) solving

dXt = −α(Xt) dt + �(Xt−)

∫ ∞

0
1{r≤β(Xt−(x))}M(dt, dr) , X0 = x, (7)

where M(dt, dr) is a Poisson measure on [0, ∞) × [0, ∞). Taking dt � 1 to be the system’s
scale, this dynamics means alternatively that we have transitions

Xt− = x → x − α(x)dt with probability 1 − β(x)dt,

Xt− = x → x + �(x) with probability β(x)dt.

This is a nonlinear version of the Langevin equation with jumps.
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2.1. Discussion of the jump kernel

We have

P(Y(x) > y | Xt− = x) = K(x, y) =
∫

(y,∞)
K(x, dz).

Clearly K(x, y) is a non-increasing function of y for all y ≥ x satisfying K(x, y) = 1 for all
y < x. By continuity, this implies that K(x, x) = 1, so that the law of �(x) has no atom at 0.

In the sequel we concentrate on the separable case

K(x, y) =k(y)

k(x)
, (8)

where k : [0, ∞) → [0, ∞] is any positive non-increasing function. In what follows we suppose
that k is continuous and finite on (0, ∞).

Fix z > 0 and assume y = x + z. Then

P(Y(x) > y) = k(x + z)

k(x)
.

Depending on k(x), this probability can be a decreasing or an increasing function of x for
each z.

Example 1. Suppose k(x) = e−xα
, α > 0, x ≥ 0 (a Weibull distribution).

If α < 1, then ∂xK(x, x + z) > 0, so that the larger x, the larger P(Y(x) > x + z). In other
words, if the population stays high, the probability of a large number of immigrants will be
enhanced. There is positive feedback of x on �(x), translating to a herd effect.

If α = 1, then ∂xK(x, x + z) = 0 and there is no feedback of x on the number of immigrants,
which is then exponentially distributed.

If α > 1, then ∂xK(x, x + z) < 0 and the larger x, the smaller the probability
P(Y(x) > x + z). In other words, if the population stays high, the probability of a large number
of immigrants will be reduced. There is negative feedback of x on �(x).

Example 2. The case k(0) < ∞. Without loss of generality, we may take k(0) = 1. Assume
that k(x) = P(Z > x) for some proper random variable Z > 0 and that

Y(x)
d= Z | Z > x,

so that Y(x) is amenable to the truncation of Z above x. Thus

P(Y(Xt−) > y | Xt− = x) = P(Z > y, Z > x)

P(Z > x)
= k(y)

k(x)
, for y > x.

A particular (exponential) choice is

k(x) = e−θx, θ > 0,

with P(Y(Xt−) > y | Xt− = x) = e−θ(y−x) depending only on y − x. Another possible choice
(Pareto) is k(x) = (1 + x)−c, c > 0.

Note that K(0, y) = k(y) > 0 for all y > 0, and k(y) turns out to be the complementary
probability distribution function of a jump above y, starting from 0: state 0 is reflecting.
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The case k(0) = ∞. Consider k(x) = ∫ ∞
x μ(Z ∈ dy) for some positive Radon measure μ

with infinite total mass. In this case,

P(Y(Xt−) > y | Xt− = x) = μ(Z > y, Z > x)

μ(Z > x)
= k(y)

k(x)
, for y > x.

Now, K(0, y) = 0 for all y > 0 and state 0 becomes attracting. An example is k(x) = x−c,
c > 0, which is not a complementary probability distribution function.

The ratio k(y)/k(x) is thus the conditional probability that a jump is greater than the level
y given that it did occur and that it is greater than the level x; see Equation (1) of Eliazar and
Klafter [14] for a similar choice.

Our motivation for choosing the separable form K(x, y) = k(y)/k(x) is that it accounts for
the possibility of having state 0 either absorbing or reflecting for upward jumps launched from
0, and also that it can account for either negative or positive feedback of the current population
size on the number of incoming immigrants.

Example 3. One can think of many other important and natural choices of K(x, y), not in the
separable class, among which are those for which

K(x, dy) = δVx(dy)

for some random variable V > 1. For this class of kernels, state 0 is always attracting. For
example, we have the following:

1. Choosing V = 1 + E where E is exponentially distributed with probability density
function e−θx, Y(x) = Vx yields

P(Y(x) > y | X− = x) = K(x, y) = P((1 + E) x > y) = e−θ( y
x −1).

2. Choosing V = 1 + E where E is Pareto-distributed with probability density function
(1 + x)−c, c > 0, Y(x) = Vx yields

P(Y(x) > y | X− = x) = K(x, y) = P((1 + E) x > y) = (y/x)−c ,

both with K(0, y) = 0.

3. If V ∼ δv, v > 1, then K(x, y) = 1(y/x ≤ v). The three kernels depend on y/x.

Note that in all three cases, ∂xK(x, x + z) > 0, so that the larger x, the larger
P(Y(x) > x + z). If the population stays high, the probability of a large number of immigrants
will be enhanced. There is positive feedback of x on �(x), translating to a herd effect.

Remark 1. A consequence of the separability condition of K is the following. Consider a
Markov sequence of after-jump positions defined recursively by Zn = Y(Zn−1), Z0 = x0. With
xm > xm−1, we have

P(Zm > xm | Zm−1 = xm−1) = K(xm−1, xm) , m = 1, ..., n,

so that, with x0 < x1 < ... < xn, and under the separability condition on K, the product

n∏
m=1

P(Zm > xm | Zm−1 = xm−1) =
n∏

m=1

K(xm−1, xm) =
n∏

m=1

k(xm)

k(xm−1)
= k(xn)

k(x0)

depends only on the initial and terminal states (x0, xn) and not on the full path (x0, ..., xn).
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2.2. The infinitesimal generator

In what follows we always work with separable kernels. Moreover, we write Xt(x) for the
process given in (7) to emphasize the dependence on the starting point x; that is, Xt(x) des-
ignates the process with the above dynamics (7) and satisfying X0(x) = x. If the value of the
starting point x is not important, we shall also write Xt instead of Xt(x).

Under the separability condition, the infinitesimal generator of Xt acting on bounded smooth
test functions u takes the following simple form:

(Gu) (x) = −α(x)u′ (x) + β(x)

k(x)

∫ ∞

x
k(y)u′ (y) dy, x ≥ 0. (9)

Remark 2. Eliazar and Klafter [12] investigate a particular scale-free version of decay–surge
models with α(x) ∝ xa, β(x) ∝ xb and k(x) ∝ x−c, c > 0.

Remark 3. If xt goes extinct in finite time t0(x) < ∞, since xt is supposed to represent the size
of some population, we need to impose xt = 0 for t ≥ t0(x), forcing state 0 to be absorbing.
From this time on, Xt can re-enter the positive orthant if there is a positive probability of
moving from 0 to a positive state, meaning k(0) < ∞ and β(0) > 0. In such a case, the first
time Xt hits state 0 is only a first local extinction time, the expected value of which needs
to be estimated. The question of the time elapsed between consecutive local extinction times
(excursions) also arises.

By contrast, for situations for which k(0) = ∞ or β(0) = 0, the first time Xt hits state 0 will
be a global extinction time.

2.3. Relationship between decay–surge and growth–collapse processes

In this subsection, we exhibit a natural relationship between decay–surge population mod-
els, as studied here, and growth–collapse models as developed in Boxma et al. [4], Goncalves
et al. [16], Gripenberg [17], and Hanson and Tuckwell [18]. Growth–collapse models describe
deterministic population growth where at random jump times the population undergoes a catas-
trophe and falls to a random fraction of its previous size. More precisely, the generator of a
growth–collapse process, having parameters (α̃, β̃, h̃), is given for all smooth test functions by

(G̃u
)
(x) = α̃(x)u′(x) − β̃(x)/h̃(x)

∫ x

0
u′(y)h̃(y)dy, x ≥ 0. (10)

In the above formula, α̃, β̃ are continuous and positive functions on (0, ∞), and h̃ is positive
and non-decreasing on (0, ∞).

In what follows, consider a decay–surge process Xt defined by the triple (α, β, k) and let
X̃t = 1/Xt.

Proposition 1. The process X̃t is a growth–collapse process as studied in [16] with triple(̃
α, β̃, h̃

)
given by

α̃(x) = x2α(1/x), β̃(x) = β(1/x), h̃(x) = k(1/x), x > 0.

Proof. Let u be any smooth test function, and study u(X̃t) = u ◦ g(Xt) with g(x) = 1/x. By
Itô’s formula for processes with jumps,

u
(
X̃t

) = u ◦ g(Xt) = u
(
X̃0

) +
∫ t

0
G(u ◦ g)(Xt′ )dt′ + Mt,
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where Mt is a local martingale. We obtain

G(u ◦ g)(x) = −α(x)(u ◦ g)′(x) + β(x)

k(x)

∫ ∞

x
(u ◦ g)′(y)k(y)dy

= 1

x2
α(x)u′(1

x

)
+ β(x)

k(x)

∫ ∞

x
u′(1

y

)
k(y)

−dy

y2
.

Using the change of variable y = 1/x, this last expression can be rewritten as

1

x2
α(x)u′(1

x

)
− β(x)

k(x)

∫ 1/x

0
u′(z)k

(1

z

)
dz = α̃(y)u′(y) − β̃(y)

h̃(y)

∫ y

0
u′(t)̃h(t)dt,

which is the generator of the process X̃t. �
In what follows we speak about the above relation between the decay–surge (DS) process

X and the growth–collapse (GC) process X̃ as the DS–GC duality. Some simple properties of
the process X follow directly from the above duality, as we show next. Of course, the above
duality does only hold up to the first time one of the two processes leaves the interior (0, ∞) of
its state space. Therefore, particular attention has to be paid to state 0 for Xt, or equivalently to
state +∞ for X̃t. Most of our results will only hold true under conditions ensuring that, starting
from x > 0, the process Xt will not hit 0 in finite time.

Another important difference between the two processes is that the simple transformation
x → 1/x maps a priori unbounded sample paths Xt into bounded ones X̃t (starting from X̃0 =
1/x, almost surely, X̃t ≤ x̃t(1/x)—a relation which does not hold for X).

2.4. First consequences of the DS–GC duality

Given X0 = x > 0, the first jump times both of the DS process Xt, starting from x, and of the
GC process X̃t, starting from 1/x, coincide and are given by

Tx = inf
{
t > 0 : Xt �= Xt−|X0 = x

} = T̃ 1
x
= inf

{
t > 0 : X̃t �= X̃t−|X̃0 = 1

x

}
.

Introducing

�(x) :=
∫ x

1
γ (y)dy, where γ (x) := β(x)/α(x), x > 0,

and the corresponding quantity associated to the process X̃t,

�̃(x) =
∫ x

1
γ̃ (y)dy, γ̃ (x) = β̃(x)/α̃(x), x > 0,

clearly �̃(x) = −�(1/x) for all x > 0.
Arguing as in Sections 2.4 and 2.5 of [16], a direct consequence of the above duality is the

fact that for all t < t0(x),

P(Tx > t) = e− ∫ t
0 β(xs(x))ds = e−[�(x)−�(xt(x))]. (11)

To ensure that P(Tx < ∞) = 1, in accordance with Assumption 1 of [16] we will impose the
following condition.

Assumption 1. �(0) = −∞.
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Proposition 2. Under Assumption 1, the stochastic process Xt(x), x > 0, necessarily jumps
before reaching 0. In particular, for any x > 0, Xt(x) almost surely never reaches 0 in finite
time.

Proof. By duality, we have

P(X jumps before reaching 0|X0 = x) = P

(
X̃ jumps before reaching +∞|X̃0 = 1

x

)
= 1,

as has been shown in Section 2.5 of [16], and this implies the assertion. �
In particular, the only situation where the question of the extinction of the process X (either

local or total) makes sense is when t0(x) < ∞ and �(0) > −∞.

Example 4. We give an example where finite-time extinction of the process is possible.
Suppose α(x) = α1xa with α1 > 0 and a < 1. Then xt(x), started at x, hits 0 in finite time
t0(x) = x1−a/ [α1(1 − a)], with

xt(x) =
(

x1−a + α1(a − 1) t
)1/(1−a)

;

see [15]. Suppose β(x) = β1 > 0 is constant. Then, with γ1 = β1/α1 > 0,

�(x) =
∫ x

1
γ (y)dy = γ1

1 − a

(
x1−a − 1

)

with �(0) = − γ1
1−a > −∞. Assumption 1 is not fulfilled, so X can hit 0 in finite time and there

is a positive probability that Tx = ∞. On this last event, the flow xt(x) has all the time necessary
to first hit 0 and, if in addition the kernel k is chosen so that k(0) = ∞, to go extinct definitively.
The time of extinction τ (x) of X itself can be deduced from the renewal equation in distribution

τ (x)
d= t0(x)1{Tx=∞} + τ ′ (Y

(
xTx(x)

))
1{Tx<∞},

where τ ′ is a copy of τ .
We conclude that for this family of models, X itself goes extinct in finite time. This is an

interesting regime that we shall not investigate any further.

Let us come back to the discussion of Assumption 1. It follows immediately from Equation
(13) in [16] that for x > 0, under Assumption 1 and supposing that t0(x) = ∞ for all x > 0,

E(Tx) = e−�(x)
∫ x

0

dz

α(z)
e�(z).

Clearly, when x → 0, E(Tx) ∼ 1/α(x).

Remark 4. (i) If β(0) > 0, then Assumption 1 implies t0(x) = ∞, so that 0 is not accessible.
(ii) Notice also that t0(x) < ∞ together with Assumption 1 implies that β(0) = ∞, so that

the process Xt(x) is prevented from hitting 0 even though xt(x) reaches it in finite time, since
the jump rate β(x) blows up as x → 0.

Remark 5. The DS–GC duality makes it possible to translate known results on moments for
growth–collapse models obtained e.g. in [11], [29], or [30] to analogous moment results for
decay–surge models.
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2.5. Classification of state 0

Recall that for all x > 0,

t0(x) =
∫ x

0

dy

α(y)

represents the time required for xt to move from x > 0 to 0. So the following hold:

If t0(x) < ∞ and �(0) > −∞, state 0 is accessible.

If t0(x) = ∞ or �(0) = −∞, state 0 is inaccessible.

We therefore introduce the following conditions, which apply in the separable case K(x, y) =
k(y)/k(x).

Condition (R): β(0) > 0 and K(0, y) = k(y)/k(0) > 0 for some y > 0.
Condition (A): β(0)

k(0) k(y) = 0 for all y > 0.
State 0 is reflecting if Condition (R) is satisfied, and it is absorbing if Condition (A) is

satisfied.
This leads to four possible combinations for the boundary state 0:

1. Condition (R) is satisfied, and t0(x) < ∞ and �(0) > −∞ : regular (reflecting and
accessible).

2. Condition (R) is satisfied, and t0(x) = ∞ or �(0) = −∞ : entrance (reflecting and
inaccessible).

3. Condition (A) is satisfied, and t0(x) < ∞ and �(0) > −∞ : exit (absorbing and
accessible).

4. Condition (A) is satisfied, and t0(x) = ∞ or �(0) = −∞ : natural (absorbing and
inaccessible).

2.6. Speed measure

Suppose now an invariant measure (or speed measure) π(dy) exists. Since we supposed
α(x) > 0 for all x > 0, we necessarily have x∞(x) = 0 for all x > 0, and so the support of π is
[x∞(x) = 0, ∞). Thanks to our duality relation, by Equation (19) of [16] the explicit expression
for the speed measure is given by π (dy) = π (y)dy with

π (y) = C
k(y)e�(y)

α(y)
, (12)

up to a multiplicative constant C > 0. If and only if this function is integrable at 0 and ∞, π (y)
can be tuned to a probability density function.

Remark 6. (i) When k(x) = e−κ1x, κ1 > 0, α(x) = α1x, and β(x) = β1 > 0 constant, �(y) =
γ1 log y, γ1 = β1/α1, and

π (y) = Cyγ1−1e−κ1y,

a Gamma(γ1, κ1) distribution. This result is well known, corresponding to the linear decay–
surge model (a jump version of the damped Langevin equation) having an invariant (integrable)
probability density; see Malrieu [26]. We shall show later that the corresponding process X is
positive recurrent.
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(ii) A less obvious power-law example is as follows. Assume α(x) = α1xa (a > 1) and
β(x) = β1xb, α1, β1 > 0, so that

�(y) = γ1

b − a + 1
yb−a+1.

We have �(0) = −∞ if we assume b − a + 1 = −θ with θ > 0; hence �(y) = − γ1
θ

y−θ . Taking
k(y) = e−κ1yη

, κ1, η > 0,

π (y) = Cy−ae−(
κ1yη+ γ1

θ
y−θ

)
,

which is integrable at both y = 0 and y = ∞. As a special case, if a = 2 and b = 0 (constant
jump rate β(x)), η = 1,

π (y) = Cy−2e−(
κ1y+γ1y−1

)
,

an inverse Gaussian density.
(iii) In Eliazar and Klafter [13, 14], a special case of our model was introduced for which

k(y) = β(y). In such cases,

π (y) = Cγ (y)e�(y),

so that ∫ x

0
π (y)dy = C

(
e�(x) − e�(0)

)
= Ce�(x),

under the assumption �(0) = −∞. If in addition �(∞) < ∞, π (y) can be tuned to a probability
density.

3. Scale function and hitting times

In this section we start by studying the scale function of Xt, before switching to hitting
time features that make use of it. A scale function s(x) of the process is any function solving
(Gs) (x) = 0. In other words, a scale function is a function that transforms the process into a
local martingale. Of course, any constant function is a solution. Notice that for the growth–
collapse model considered in [16], no scale functions exist other than the constant ones.

In what follows we are interested in non-constant solutions and in conditions ensuring their
existence. To clarify ideas, we introduce the following condition.

Assumption 2. Let

s(x) =
∫ x

1
γ (y)e−�(y)/k(y)dy, x ≥ 0, (13)

and suppose that s(∞) = ∞.

Notice that Assumption 2 implies that k(∞) = 0, which is reasonable since it prevents the
process Xt from jumping from some finite position Xt− to an after-jump position Xt = Xt− +
�(Xt−) = +∞.

Proposition 3. (1) Suppose �(∞) = ∞. Then the function s introduced in (13) above is a
strictly increasing version of the scale function of the process obeying s(1) = 0.

(1.1) If additionally Assumptions 1 and 2 hold and if k(0) < ∞, then s(0) = −∞ and
s(∞) = ∞, so that s is a space transform [0, ∞) → [−∞, ∞).
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(1.2) If Assumption 2 does not hold, then

s1(x) =
∫ ∞

x
γ (y)e−�(y)/k(y)dy = s(∞) − s(x)

is a version of the scale function which is strictly decreasing and positive, such that s1(∞) = 0.
(2) Finally, suppose that �(∞) < ∞. Then the only scale functions belonging to C1 are the

constant ones.

Remark 7.

1. We shall see later that—as in the case of one-dimensional diffusions; see e.g. Example 2
in Section 3.8 of Has’minskii [21]—the fact that s is a space transform as in item 1.1
above is related to the Harris recurrence of the process.

2. The assumption �(∞) < ∞ of item 2 above corresponds to Assumption 2 of [16],
where this was the only case that we considered. As a consequence, for the GC model
considered there we did not dispose of non-constant scale functions.

Proof. A C1 scale function s necessarily solves

(Gs) (x) = −α(x)s′(x) + β(x)/k(x)
∫ ∞

x
k(y)s′ (y) dy = 0,

so that for all x > 0,

k(x)s′ (x) − γ (x)
∫ ∞

x
k(y)s′ (y) dy = 0. (14)

Putting u′ (x) = k(x)s′ (x), the above implies in particular that u′ is integrable in a neighbor-
hood of +∞, so that u(∞) must be a finite number. We get u′ (x) = γ (x) (u(∞) − u(x)).

Case 1: u(∞) = 0, so that u(x) = −c1e−�(x) for some constant c1, whence �(∞) = ∞. We
obtain

s′(x) = c1
γ (x)

k(x)
e−�(x) (15)

and thus

s(x) = c2 + c1

∫ x

1

γ (y)

k(y)
e−�(y)dy (16)

for some constants c1, c2. Taking c2 = 0 and c1 = 1 gives the formula (13), and both items 1.1
and 1.2 follow from this.

Case 2: u(∞) �= 0 is a finite number. Putting v(x) = e�(x)u(x), v then solves

v′(x) = u(∞)γ (x)e�(x),

so that
v(x) = d1 + u(∞)e�(x),

and thus
u(x) = e−�(x)d1 + u(∞).

Letting x → ∞, we see that the above is perfectly well-defined for any value of the constant
d1, if we suppose �(∞) = ∞.
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As a consequence, u′(x) = −d1γ (x)e−�(x), leading us again to the explicit formula

s(x) = c2 + c1

∫ x

1

γ (y)

k(y)
e−�(y)dy, (17)

with c1 = −d1, implying items 1.1 and 1.2.
Finally, if �(∞) < ∞, we see that we have to take d1 = 0, implying that the only scale

functions in this case are the constant ones. �
Example 5. In the linear case example with β(x) = β1 > 0, α(x) = α1x, α1 > 0, and k(y) = e−y,
with γ1 = β1/α1, Assumption 2 is satisfied, so that

s(x) = γ1

∫ x

1
y−(γ1+1)eydy,

which is diverging both as x → 0 and as x → +∞. Notice that 0 is inaccessible for this process;
i.e., starting from a strictly positive position x > 0, Xt will never hit 0. If we define the process
on the state space (0, ∞), invariant under the dynamics, the process is recurrent and even
positive recurrent, as we know from the gamma shape of its invariant speed density.

3.1. Hitting times

Fix a < x < b. In what follows we shall be interested in hitting times of the positions a and
b, starting from x, under the condition �(∞) = ∞. Because of the asymmetric structure of the
process (continuous motion downwards and up-moves by jumps only), these times are given
by

τx,b = inf{t > 0 : Xt = b} = inf{t > 0 : Xt ≤ b, Xt− > b}
and

τx,a = inf{t > 0 : Xt = a} = inf{t > 0 : Xt ≤ a}.
Obviously, τa,a = τb,b = 0.

Let T = τx,a ∧ τx,b. In contrast to the study of processes with continuous trajectories, it is
not clear that T < ∞ almost surely. Indeed, starting from x, the process could jump across the
barrier of height b before hitting a and then never enter the interval [0, b] again. So we suppose
in the sequel that T < ∞ almost surely. Then

P
(
τx,a < τx,b

) + P
(
τx,b < τx,a

) = 1.

Proposition 4. Suppose �(∞) = ∞ and that Assumption 2 does not hold. Let 0 < a < x < b <

∞ and suppose that T = τx,a ∧ τx,b < ∞ almost surely. Then

P
(
τx,a < τx,b

) =
∫ b

x
γ (y)
k(y) e−�(y)dy∫ b

a
γ (y)
k(y) e−�(y)dy

. (18)

Proof. Under the above assumptions, s1(Xt) is a local martingale and the stopped martingale
Mt = s1(XT∧t) is bounded, which follows from the fact that XT∧t ≥ a together with the obser-
vation that s1 is decreasing, implying that Mt ≤ s1(a). Therefore from the stopping theorem we
have

s1(x) =E(M0) =E(s1(X0)) =E(MT ).
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Moreover,
E(MT ) = s1(a)P(T = τx,a) + s1(b)P(T = τx,b).

But {T = τx,a} = {τx,a < τx,b} and {T = τx,b} = {τx,b < τx,a}, so that

s1(x) = s1(a)P(τx,a < τx,b) + s1(b)P(τx,b < τx,a).

�
Remark 8. See [25] for similar arguments in a particular case of a constant flow and
exponential jumps.

We stress that it is not possible to deduce the above formula without imposing the existence
of s1 (that is, if Assumption 2 holds but s1 is not well-defined). Indeed, if we were to consider
the local martingale s(Xt) instead, the stopped martingale s(Xt∧T ) is not bounded since Xt∧T

might take arbitrary values in (a, ∞), so that it is not possible to apply the stopping rule.

Remark 9. Let τx,[b,∞) = inf{t > 0 : Xt ≥ b} and τx,[0,a] = inf{t > 0 : Xt ≤ a} be the entrance
times to the intervals [b, ∞) and [0, a]. Observe that by the structure of the process, namely
the continuity of the downward motion,

{τx,a < τx,b} ⊂ {τx,a < τx,[b,∞)} ⊂ {τx,a < τx,b}.
Indeed, the second inclusion is trivial since τx,[b,∞) ≤ τx,b. The first inclusion follows from
the fact that it is not possible to jump across b and then hit a without touching b. Observing
moreover that for a < x, τx,a = τx,[0,a], (18) can therefore be rewritten as

P
(
τx,[0,a] < τx,[b,∞)

) = s1 (x) − s1 (b)

s1 (a) − s1 (b)
. (19)

Now suppose that the process does not explode in finite time; that is, during each finite
time interval, almost surely, only a finite number of jumps appear. In this case τx,[b,∞) → +∞
as b → ∞. Then, letting b → ∞ in (19), we obtain for any a > 0

P
(
τx,a < ∞) = s1(x)

s1(a)
=

∫ ∞
x

γ (y)
k(y) e−�(y)dy∫ ∞

a
γ (y)
k(y) e−�(y)dy

< 1, (20)

since
∫ x

a
γ (y)
k(y) e−�(y)dy > 0 by the assumptions on k and γ .

As a consequence, we obtain the following.

Proposition 5. Suppose that �(∞) = ∞ and that Assumption 2 does not hold. Then either the
process explodes in finite time with positive probability, or it is transient at +∞; i.e. for all
a < x, τx,a = ∞ with positive probability.

Proof. Let a < x < b and T = τx,a ∧ τx,b, and suppose that almost surely, the process does
not explode in finite time. We show that in this case, τx,a = ∞ with positive probability.

Indeed, suppose that τx,a < ∞ almost surely. Then (18) holds, and letting b → ∞, we obtain
(20), implying that τx,a = ∞ with positive probability, which is a contradiction. �
Example 6. Choose α(x) = x2, β(x) = 1 + x2, so that γ (x) = 1 + 1/x2 and �(x) = x − 1/x with
�(0) = −∞ and �(∞) = ∞.
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Choose also k(x) = e−x/2. Then Assumption 2 is violated: the survival function of the big
upward jumps decays too slowly in comparison to the decay of e−� . The speed density is

π (x) = C
k(x)e�(x)

α(x)
= Cx−2ex/2−1/x,

which is integrable at 0 but not at ∞. The process explodes (has an infinite number of upward
jumps in finite time) with positive probability.

3.2. First moments of hitting times

Let a > 0. We are looking for positive solutions of

(Gφa) (x) = −1, x ≥ a,

with boundary condition φa (a) = 0. The above is equivalent to

(Gφa) (x) = −α(x)φ′
a(x) + β(x)

k(x)

∫ ∞

x
k(y)φ′

a(y) dy = −1.

This is also

−k(x)φ′
a(x) + γ (x)

∫ ∞

x
k(y)φ′

a(y)dy = − k(x)

α(x)
.

Putting U(x) := ∫ ∞
x k(y)φ′

a(y)dy, the latter integro-differential equation reads

U′(x) = −γ (x)U(x) − k(x)

α(x)
.

Supposing that
∫ +∞

π (y)dy < ∞ (recall (12)), this leads to

U(x) = e−�(x)
∫ ∞

x
e�(y) k(y)

α(y)
dy,

−U′(x) = γ (x)e−�(x)
∫ ∞

x
e�(y) k(y)

α(y)
dy + k(x)

α(x)
= k(x)φ′

a (x) ,

so that

φa (x) =
∫ x

a
dy

γ (y)

k(y)
e−�(y)

∫ ∞

y
e�(z) k(z)

α(z)
dz +

∫ x

a

dy

α(y)

=
∫ ∞

a
dzπ (z) [s1(a) − s1(x ∧ z)] +

∫ x

a

dy

α(y)
. (21)

Notice that [a, ∞) � x → φa(x) is non-decreasing and that φa(x) < ∞ for all x > a > 0 under
our assumptions. Dynkin’s formula implies that for all x > a and all t ≥ 0,

Ex(t ∧ τx,a) = φa(x) −Ex
(
φa

(
Xt∧τx,a

))
. (22)

In particular, since φa( · ) ≥ 0,

Ex(t ∧ τx,a) ≤ φa(x) < ∞,
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so that we may let t → ∞ in the above inequality to obtain by monotone convergence that

Ex(τx,a) ≤ φa(x) < ∞.

Next we obtain from (22), using Fatou’s lemma, that

Ex(τx,a) = lim
t→∞ Ex(t ∧ τx,a) = φa(x) − lim

t→∞ Ex
(
φa

(
Xt∧τx,a

))
≥ φa(x) −Ex

(
lim inf

t→∞ φa
(
Xt∧τx,a

)) = φa(x),

where we have used that lim inft→∞ φa(Xt∧τx,a ) = φa(a) = 0.
As a consequence we have just shown the following.

Proposition 6. Suppose that
∫ +∞

π (y)dy < ∞. Then Ex(τx,a) = φa(x) < ∞ for all 0 < a < x,
where φa is as given in (21).

Remark 10. The last term
∫ x

a
dy

α(y) in the right-hand side of the expression for φa(x) in (21) is
the time needed for the deterministic flow to first hit a starting from x > a, which is a lower
bound of φa(x). Considering the tail function of the speed density π (y), namely

π (y) :=
∫ ∞

y
e�(z) k(z)

α(z)
dz,

the first term in the expression for φa(x) is∫ x

a
−ds1(y)π (y) = − [

s1(y)π(y)
]x

a −
∫ x

a
s1(y)π (y)dy,

emphasizing the importance of the pair (s1(·) , π(·)) in the evaluation of φa(x). If a is a small
critical value below which the population can be considered in danger, this is the mean value
of a ‘quasi-extinction’ event when the initial size of the population was x.

Remark 11. Notice that the above discussion is only possible for pairs 0 < a < x, since starting
from x, Xt∧τx,a ≥ a for all t. A similar argument does not hold true for x < b and the study of
τx,b.

3.3. Mean first hitting time of 0

Suppose that �(0) > −∞. Then for flows xt(x) that go extinct in finite time t0(x), under the
condition that

∫ +∞
π (y)dy < ∞, one can let a → 0 in the expression for φa(x) to obtain

φ0(x) =
∫ x

0
dy

γ (y)

k(y)
e−�(y)

∫ ∞

y
e�(z) k(z)

α(z)
dz +

∫ x

0

dy

α(y)
,

which is the expected time to eventual extinction of X starting from x; that is, φ0(x) =Eτx,0.
The last term

∫ x
0

dy
α(y) = t0(x) < ∞ in the expression for φ0(x) is the time needed for the

deterministic flow to first hit 0 starting from x > 0, which is a lower bound of φ0(x).
Notice that under the conditions t0(x) < ∞ and k(0) < ∞,

∫
0 π (y)dy < ∞, so that π can be

tuned into a probability. It is easy to see that �(0) > −∞ then implies that φ0(x) < ∞.

Example 7. (Linear release at constant jump rate) Suppose α(x) = α1 > 0, β(x) = β1 > 0,
γ (x) = γ1 = β1/α1, �(x) = γ1x with �(0) = 0 > −∞. Choose k(x) = e−x.

State 0 is reached in finite time t0(x) = x/α1, and it turns out to be reflecting. We have∫
0 π (x)dx < ∞ and

∫ ∞
π (x)dx < ∞ if and only if γ1 < 1. In such a case, the first integral term

in the above expression for φ0(x) is γ1/
[
α1(1 − γ1)

]
x, so that φ0(x) = x/

[
α1(1 − γ1)

]
< ∞.
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4. Non-explosion and recurrence

In this section we come back to the scale function s introduced in (13) above. Despite
the fact that we cannot use s to obtain explicit expressions for exit probabilities, we show
how we might use it to obtain Foster–Lyapunov criteria in the spirit of Meyn and Tweedie
[27] that imply the non-explosion of the process together with its recurrence under additional
irreducibility properties.

Let S1 < S2 < . . . < Sn < . . . be the successive jump times of the process and S∞ =
limn→∞ Sn. We start by discussing how we can use the scale function s to obtain a general
criterion for non-explosion of the process, that is, for S∞ = +∞ almost surely.

Proposition 7. Suppose �(∞) = ∞ and suppose that Assumption 2 holds. Suppose also that β

is continuous on [0, ∞). Let V be any C1 function defined on [0, ∞) such that V(x) = 1 + s(x)
on [1, ∞) and such that V(x) ≥ 1/2 for all x. Then V is a norm-like function in the sense of
Meyn and Tweedie [27], and we have the following:

1. GV(x) = 0 for every x ≥ 1.

2. supx∈[0,1] |GV(x)| < ∞.

As a consequence, S∞ = supn Sn = ∞ almost surely, so that X is non-explosive.

Proof. We check that V satisfies the condition (CD0) of [27]. It is evident that V is norm-
like because limx→∞ V(x) = 1 + limx→∞ s(x) = 1 + s(∞) = ∞, since Assumption 2 holds.
Moreover, since K(x, y) = k(y)

k(x) ,

GV(x) = −α(x)V ′(x) + β(x)

k(x)

∫ ∞

x
k(y)V ′(y)dy.

Since for all 1 ≤ x ≤ y, V ′(x) = s′(x) and V ′(y) = s′(y), we have GV = Gs = 0 on [1, ∞[.
For the second point, for x ∈ ]0, 1[,

GV(x) = −α(x)V ′(x) + β(x)

k(x)

∫ ∞

x
k(y)V ′(y)dy

= −α(x)V ′(x) + β(x)

k(x)

∫ ∞

1
k(y)V ′(y)dy + β(x)

∫ 1

x
K(x, y)V ′(y)dy.

The function α(x)V ′(x) is continuous and thus bounded on [0, 1]. Moreover, for all y ≥ x,
K(x, y) ≤ 1, implying that β(x)

∫ 1
x K(x, y)V ′(y)dy ≤ β(x)

∫ 1
x V ′(y)dy < ∞. We also have, for

all y ≥ 1, ∫ ∞

1
k(y)V ′(y)dy =

∫ ∞

1
k(y)s′(y)dy.

Thus, using GV(x) = Gs(x) = 0 on ]0,1[, we have

β(x)

k(x)

∫ ∞

1
k(y)V ′(y)dy = β(x)

k(x)
k(1)V ′(1)/γ (1) < ∞,

because β is continuous on [0,1] and k takes finite values on (0, ∞). As a consequence,
supx∈[0,1] |GV(x)| < ∞. �
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We close this subsection with a stronger Foster–Lyapunov criterion implying the existence
of finite hitting time moments.

Proposition 8. Suppose there exist x∗ > 0, c > 0 and a positive function V such that GV(x) ≤
−c for all x ≥ x∗. Then for all x ≥ a ≥ x∗,

E(τx,a) ≤ V(x)

c
.

Proof. Using Dynkin’s formula, we have for x ≥ a ≥ x∗ that

E
(
V

(
Xt∧τx,a

)) = V(x) +E(
∫ t∧τx,a

0
GV(Xs)ds) ≤ V(x) − cE

(
t ∧ τx,a

)
,

so that

E
(
t ∧ τx,a

) ≤ V(x)

c
,

which, if we let t → ∞, implies the assertion. �
Example 8. Suppose α(x) = 1 + x, β(x) = x, and k(x) = e−2x. We choose V(x) = ex. Then

(GV) (x) = −ex ≤ −1 ∀x ≥ 0.

As a consequence, E(τx,a) < ∞ for all a > 0.

4.1. Irreducibility and Harris recurrence

In this section we impose the assumption that �(∞) = ∞, so that non-trivial scale func-
tions do exist. We also suppose that Assumption 2 holds, since otherwise the process either is
transient at ∞ or explodes in finite time. Then the function V introduced in Proposition 7 is a
Lyapunov function. This is almost the Harris recurrence of the process; all we need to show is
an irreducibility property that we are going to check now.

Theorem 1. Suppose that we are in the separable case, that k ∈ C1, and that 0 is inaccessi-
ble, that is, t0(x) = ∞ for all x. Then every compact set C ⊂ ]0, ∞[ is ‘petite’ in the sense of
Meyn and Tweedie. More precisely, there exist t > 0, α ∈ (0, 1), and a probability measure ν

on (R+,B(R+)) such that
Pt(x, dy) ≥ α1C(x)ν(dy).

Proof. Suppose without loss of generality that C = [a, b] with 0 < a < b. Fix any t > 0.
The idea of our construction is to impose that all processes Xs(x), a ≤ x ≤ b, have one single
common jump during [0, t]. Indeed, notice that for each x ∈ C, the jump rate of Xs(x) is given
by β(xs(x)) taking values in a compact set [β∗, β∗], where β∗ = min{β(xs(x)), 0 ≤ s ≤ t, x ∈ C}
and β∗ = max{β(xs(x)), 0 ≤ s ≤ t, x ∈ C}. Notice that 0 < β∗ < β∗ < ∞ since β is supposed
to be positive on (0, ∞). We then construct all processes Xs(x), s ≤ t, x ∈ C, using the same
underlying Poisson random measure M. It thus suffices to impose that E holds, where

E = {M([0, t − ε] × [0, β∗]) = 0, M([t − ε, t] × [0, β∗]) = 1, M([t − ε, t] × ]β∗, β∗]) = 0}.
Indeed, the above implies that up to time t − ε, none of the processes Xs(x), x ∈ C, jumps. The
second and third assumption imply moreover that the unique jump time, call it S, of M within
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[t − ε, t] × [0, β∗] is a common jump of all processes. For each value of x ∈ C, the associated
process X (x) then chooses a new after-jump position y according to

1

k(xS(x))
|k′(y)|dy1{y≥xS(x)}. (23)

Case 1. Suppose k is strictly decreasing, that is, |k′|(y) > 0 for all y. Fix then any open ball
B ⊂ [b, ∞[ and notice that 1{y≥xS(x)} ≥ 1B(y), since b ≥ xS(x). Moreover, since k is decreasing,
1/k(xS(x)) ≥ 1/k(xt(a)). Therefore, the transition density given in (23) can be bounded below,
independently of x, by

1

k(xt(a))
1B(y)|k′(y)|dy = pν̃(dy),

where ν̃(dy) = c1B(y)|k′(y)|dy, normalized to be a probability density, and where p = 1
k(xt(a))/c.

In other words, on the event E, with probability p, all particles choose a new and common
position y ∼ ν̃(dy) and couple.

Case 2. Suppose |k′| is different from 0 on a ball B (but not necessarily on the whole state
space). We suppose without loss of generality that B has compact closure. Then it suffices to
take t sufficiently large in the first step so that xt−ε(b) < inf B. Indeed, this implies once more
that 1B(y) ≤ 1{y≥xs(x)} for all x ∈ C and for s the unique common jump time.

Conclusion. In any of the above cases, let b̄ := sup{x : x ∈ B} < ∞ and restrict the set E to

E′ = E ∩ {M([t − ε] × ]β∗, b̄] = 0}.
Putting α := p Pr (E′) and

ν(dy) =
∫ t

tε
L(S|E′)(ds)

∫
ν̃(dz)δxt−s(z)(dy)

then allows us to conclude. �
Remark 12. If β is continuous on [0, ∞) with β(0) > 0, and if moreover k(0) < ∞, the above
construction can be extended to any compact set of the form [0, b ], b < ∞, and to the case
where t0(x) < ∞.

As a consequence of the above considerations we obtain the following theorem.

Theorem 2. Suppose that β(0) > 0, k(0) < ∞, that �(∞) = ∞, and moreover that
Assumption 2 holds. Then the process is recurrent in the sense of Harris, and its unique
invariant measure is given by π .

Proof. Condition (CD1) of Meyn and Tweedie [27] holds with V as given in Proposition 4
and with the compact set C = [0, 1]. By Theorem 1, all compact sets are ‘petite’. Then Theorem
3.2 of [27] allows us to conclude. �
Example 9. A meaningful recurrent example consists of choosing β(x) = β1/x, β1 > 0 (the
surge rate decreases like 1/x), α(x) = α1/x (finite-time extinction of xt), α1 > 0, and k(y) = e−y.
In this case, all compact sets are ‘petite’. Moreover, with γ1 = β1/α1, �(x) = γ1x and

π (y) = y

α1
e(γ1−1)y,

which can be tuned into a probability density if γ1 < 1. This also implies that Assumption 2
is satisfied, so that s can be used to define a Lyapunov function. The associated process X is
positive recurrent if γ1 < 1, null-recurrent if γ1 = 1.
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5. The embedded chain

In this section, we illustrate some of the previously established theoretical results by simula-
tions of the embedded chain that we are going to define now. Defining T1 = S1, Tn = Sn − Sn−1,
n ≥ 2, to be the successive inter-jump waiting times, we have

P
(
Tn ∈ dt, XSn ∈ dy | XSn−1 = x

) = dtβ(xt(x)) e− ∫ t
0 β(xs(x))dsK(xt(x), dy)

= dtβ(xt(x)) e− ∫ x
xt(x)

γ (z)dzK(xt(x), dy).

The embedded chain is then defined through Zn := XSn , n ≥ 0. If 0 is not absorbing, for all
x ≥ 0

P(Zn ∈ dy | Zn−1 = x) =
∫ ∞

0
dtβ(xt(x)) e− ∫ x

xt (x) γ (z)dzK(xt(x), dy)

= e−�(x)
∫ x

0
dzγ (z)e�(z)K(z, dy),

where the last line is valid for x > 0 only, and only if t0(x) = ∞. This implies that Zn is a
time-homogeneous discrete-time Markov chain on [0, ∞).

Remark 13. We also have that (Sn, Zn)n≥0 is a discrete-time Markov chain on R
2+, with

transition probabilities given by

P(Sn ∈ dt | Zn−1 = x, Sn−1 = s) = dtβ(xt−s(x)) e− ∫ t−s
0 β(xs′ (x))ds′ , t ≥ s,

and

P(Zn ∈ dy | Zn−1 = x, Sn−1 = s) =
∫ ∞

0
dtβ(xt(x)) e− ∫ x

xt(x)
γ (z)dzK(xt(x), dy) ,

independent of s. Note that

P(Tn ∈ dτ | Zn−1 = x) = dτβ(xτ (x)) e− ∫ τ
0 β(xs(x))ds, τ ≥ 0.

Coming back to the marginal Zn and assuming �(0) = −∞, the arguments of Sections 2.5
and 2.6 in [16] imply that

P(Zn > y | Zn−1 = x) = e−�(x)
∫ x

0
dzγ (z)e�(z)

∫ ∞

y
K

(
z, dy′)

= 1 − e�(x∧y)−�(x) + e−�(x)
∫ x∧y

0
dzγ (z)e�(z)K(z, y) . (24)

To obtain the last line, we have used that K(z, y) = 1 for all y ≤ z, and whenever z < y we
have split the second integral in the first line into the two parts corresponding to z < y ≤ x and
z ≤ x < y.

To simulate the embedded chain, we have to decide first whether, given Zn−1 = x, the
forthcoming move is down or up:
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FIGURE 1. Notice that in accordance with the fact that k(x) = 1/(1 + x2) has slower-decaying tails than
k(x) = e−x, the process with jump distribution k(x) = 1/(1 + x2) has higher maxima than the process with
k(x) = e−x.

• A move up occurs with probability given by

P(Zn > x | Zn−1 = x) = e−�(x)
∫ x

0
dzγ (z)e�(z)K(z, x) .

• A move down occurs with complementary probability.

As soon as the type of move is fixed (down or up), to decide where the process goes precisely,
we must use the inverse of the corresponding distribution function (24) (with y ≤ x or y > x),
conditioned on the type of move.

Remark 14. If state 0 is absorbing, Equation (24) is valid only when x > 0, and the boundary
condition P(Zn = 0 | Zn−1 = 0) = 1 should be added.

In the following simulations, as before, we work in the separable case K(x, y) = k(y)
k(x) , where

we choose k(x) = e−x in the first simulation and k(x) = 1/
(
1 + x2

)
in the second. Moreover, we

take α(x) = α1xa and β(x) = β1xb with α1 = 1, a = 2, β1 = 1, and b = 1. In these cases, there
is no finite-time extinction of the process xt(x); that is, in both cases, state 0 is not accessible.

The graphs in Figure 1 do not provide any information about the jump times. In what follows
we take this additional information into account and simulate the values Zn of the embed-
ded process as a function of the jump times Sn. To do so we must calculate the distribution
P
(
Sn ≤ t | XSn−1 = x, Sn−1 = s

)
. Using Remark 13 we have

P
(
Sn ≤ t | XSn−1 = x, Sn−1 = s

) =
∫ t

s
dt′β

(
xt′−s (x)

)
e− ∫ t′−s

0 β(xs′ (x))ds′

=
∫ t−s

0
duβ(xu(x)) e− ∫ u

0 β(xs′ (x))ds′ = 1 − e− ∫ t−s
0 β(xs′ (x))ds′ = 1 − e−[�(x)−�(xt−s(x))].

The simulation of the jump times Sn then goes through a simple inversion of the condi-
tional distribution function P

(
Sn ≤ t | XSn−1 = x, Sn−1 = s

)
. In the following simulations (see

Figures 2, 3, 4, 5, 6, and 7), we use the same parameters as in the previous simulations.
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FIGURE 2. The above graphs give the positions Zn as a function of the jump times Sn. The waiting times
between successive jumps are longer in the first process than in the second one. Since we use the same
jump rate function in both processes and since this rate is an increasing function of the positions, this is
due to the fact that jumps lead to higher values in the second process than in the first, so that jumps occur
more frequently.

FIGURE 3. These graphs represent the sequence Tn = Sn − Sn−1 of the inter-jump waiting times for the
two processes, showing once more that these waiting times are indeed longer in the first process than in
the second.

FIGURE 4. The above graphs represent the records of the two processes as a function of the ranks of the
records, the one on the left with k(x) = e−x and the one on the right with k(x) = 1/(1 + x2). We can notice
that there are more records in the first graph than in the second. Records occur more frequently in the first
graph than in the second. On the other hand, the heights of the records are much lower in the first graph
than in the second.
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FIGURE 5. The above graphs give ZRn as a function of Rn. We remark that the gap between two consec-
utive records decreases over time, whereas the time between two consecutive records becomes longer. In
other words, the higher a record is, the longer it takes to surpass it statistically.

FIGURE 6. The above graphs give An = Rn − Rn−1 as a function of n. The differences between two con-
secutive records are much greater in the first graph than in the second. It is also noted that the maximum
time gap is reached between the penultimate record and the last record.

FIGURE 7. The above graphs give the records obtained from the simulation of the two processes, as
a function of time. We remark that the curve is slowly increasing with the time. In fact, to reach the
12th record, the first simulated process needs 5500 units of time, and analogously, the second simulated
process needs 1500 units of time to reach its 8th record.
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6. The extremal record chain

Of interest are the upper record times and values sequences of Zn, namely

Rn = inf
(
r ≥ 1 : r > Rn−1, Zr > ZRn−1

)
,

Z∗
n = ZRn .

Unless X (and so Zn) goes extinct, Z∗
n is a strictly increasing sequence tending to ∞.

Following [1], with
(
R0 = 0, Z∗

0 = x
)
,
(
Rn, Z∗

n

)
n≥0 clearly is a Markov chain with transition

probabilities for y > x given by

P
∗
(k, x, y) := P

(
Rn = r + k, Z∗

n > y | Rn−1 = r, Z∗
n−1 = x

)
= P(x, y) if k = 1

=
∫ x

0
...

∫ x

0

k−2∏
l=0

P(xl, dxl+1) P(xk−1, y) if k ≥ 2,

where P(x, dy) = P(Zn ∈ dy | Zn−1 = x), P(x, y) = P(Zn > y | Zn−1 = x), and x0 = x.
Clearly the marginal sequence

(
Z∗

n

)
n≥0 is Markov with transition matrix

P
∗
(x, y) := P

(
Z∗

n > y | Z∗
n−1 = x

) =
∑
k≥1

P
∗
(k, x, y),

but the marginal sequence (Rn)n≥0 of record times is non-Markov. However,

P
(
Rn = r + k | Rn−1 = r, Z∗

n−1 = x
) = P

∗
(k, x, x) ,

showing that the law of An := Rn − Rn−1 (the age of the nth record) is independent of Rn−1
(although not of Z∗

n−1):

P
(
An = k | Z∗

n−1 = x
) = P

∗
(k, x, x) , k ≥ 1.

Of particular interest is
(
R1, Z∗

1 = ZR1

)
, the first upper record time and value, because SR1

is the first time (Xt)t exceeds the threshold x, and ZR1 is the corresponding overshoot at y > x.
Its joint distribution is simply (y > x)

P∗ (k, x, dy) = P
(
R1 = k, Z∗

1 ∈ dy | R0 = 0, Z∗
0 = x

)
= P(x, dy) if k = 1

=
∫ x

0
...

∫ x

0

k−2∏
l=0

P(xl, dxl+1) P(xk−1, dy) if k ≥ 2.

If yc > x is a critical threshold above which one wishes to evaluate the joint probability of(
R1, Z∗

1 = ZR1

)
, then P∗ (k, x, dy) /P

∗
(k, x, yc) for y > yc is its right expression.

Note that P
(
R1 = k | R0 = 0, Z∗

0 = x
) = P

∗
(k, x, x) and also that

P∗ (x, dy) := P
(
Z∗

1 ∈ dy | Z∗
0 = x

) =
∑
k≥1

P∗ (k, x, dy) .

Of interest also is the number of records in the set {0, ..., N} :

RN := # {n ≥ 0 : Rn ≤ N} =
∑
n≥0

1{Rn≤N}.
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7. Decay–surge processes and their relationship to Hawkes and shot-noise processes

7.1. Hawkes processes

In the section we study the particular case β(x) = β1x, β1 > 0 (the surge rate increases
linearly with x), α(x) = α1x, α1 > 0 (exponentially declining population), and k(y) = e−y. In
this case, with γ1 = β1/α1, �(x) = γ1x.

In this case, we remark that �(0) = 0 > −∞. Therefore there is a strictly positive probability
that the process will never jump (in which case it is attracted to 0). However, we have t0(x) =
∞, so the process never hits 0 in finite time. Finally, β(0) = 0 implies that state 0 is natural
(absorbing and inaccessible).

Note that for this model,

π (y) = 1

α1y
e(γ1−1)y

and we may take a version of the scale function given by

s(x) = γ1

1 − γ1
[e−(γ1−1)y]x

0 = γ1

1 − γ1

(
e(1−γ1)x − 1

)
.

Clearly, Assumption 2 is satisfied if and only if γ1 < 1. We call the case γ1 < 1 subcritical, the
case γ1 > 1 supercritical, and the case γ1 = 1 critical.

Supercritical case. It can be shown that the process does not explode almost surely, so that
it is transient in this case (see Proposition 5). The speed density is integrable neither at 0 nor
at ∞.

Critical and subcritical case. If γ1 < 1, then π is integrable at +∞, and we find

φa(x) = − [
s(y)π (y)

]x
a −

∫ x

a
s(y)π (y)dy + 1

α1
log

x

a
,

where (with Ei the exponential integral function)∫ x

a
s(y)π (y)dy = γ1

α1(1 − γ1)

[
ln

( x

a

)
− Ei((γ1 − 1) x) + Ei((γ1 − 1) a)

]
.

In the critical case γ1 = 1, the hitting time of a will be finite without having finite expectation.
In both the critical and subcritical cases, that is, when γ1 ≤ 1, the process Xt converges to 0

as t → ∞, as we shall show now.
Owing to the additive structure of the underlying deterministic flow and the exponential

jump kernel, we have the explicit representation

Xt = e−α1tx +
∑

n≥1 : Sn≤t

e−α1(t−Sn)Yn, (25)

where the (Yn)n≥1 are independent and identically distributed exponential random variables
with mean 1, such that for all n, Yn is independent of Sk, k ≤ n, and of Yk, k < n. Finally, in
(25), the process Xt jumps at rate β1Xt−.

The above system is a linear Hawkes process without immigration, with kernel function
h(t) = e−α1t and with random jump heights (Yn)n≥1 (see [22]; see also [5]). Such a Hawkes
process can be interpreted as an inhomogeneous Poisson process with branching. Indeed, the
additive structure in (25) suggests the following construction:

https://doi.org/10.1017/apr.2022.30 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.30


On decay–surge population models 469

• At time 0, we start with a Poisson process having time-dependent rate β1e−α1tx.

• At each jump time S of this process, a new (time-inhomogeneous) Poisson process is
born and added to the existing one. This new process has intensity β1e−α1(t−S)Y , where Y
is exponentially distributed with parameter 1, independent of what has happened before.
We call the jumps of this newborn Poisson process jumps of generation 1.

• At each jump time of generation 1, another time-inhomogeneous Poisson process is
born, of the same type, independently of anything else that has happened before. This
gives rise to jumps of generation 2.

• The above procedure is iterated until it eventually stops, since the remaining Poisson
processes do not jump any more.

The total number of jumps of any of the offspring Poisson processes is given by

β1E(Y)
∫ ∞

S
e−α1(t−S)dt = γ1.

So we see that whenever γ1 ≤ 1, we are considering a subcritical or critical Galton–Watson
process which goes extinct almost surely, after a finite number of reproduction events. This
extinction event is equivalent to the fact that the total number of jumps in the system is finite
almost surely, so that after the last jump, Xt just converges to 0 (without, however, ever reaching
it). Notice that in the subcritical case γ1 < 1, the speed density is integrable at ∞, while it is
not at 0, corresponding to absorption in 0.

An interesting feature of this model is that it can exhibit a phase transition when γ1 crosses
the value 1.

Finally, in the case of a linear Hawkes process with immigration we have β(x) = μ + β1x,
with μ > 0. In this case,

π (y) = 1

α1
e(γ1−1)yyμ/α1−1,

which is always integrable in 0 and which can be tuned into a probability in the subcritical case
γ1 < 1 corresponding to positive recurrence.

Remark 15. An interpretation of the decay–surge process in terms of Hawkes processes is
only possible in the case of affine jump rate functions β, additive drift α, and exponential
kernels k as considered above.

7.2. Shot-noise processes

Let h(t), t ≥ 0, with h(0) = 1 be a causal non-negative non-increasing response function
translating the way shocks will attenuate as time passes in a shot-noise process. We assume
h(t) → 0 as t → ∞ and ∫ ∞

0
h(s) ds < ∞. (26)

With X0 = x ≥ 0, consider then the linear shot-noise process

Xt = x +
∫ t

0

∫
R+

yh(t − s) μ(ds, dy) , (27)

where, with (Sn; n ≥ 1) being the points of a homogeneous Poisson point process with intensity
β, μ(ds, dy) = ∑

n≥1 δSn (ds) δ�n (dy) (translating to independence of the shot heights �n and
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occurrence times Sn). Note that, with dNs = ∑
n≥1 �nδSn (ds), so with Nt = ∑

n≥1 �n1{Sn≤t}
representing a time-homogeneous compound Poisson process with jump amplitudes �,

Xt = x +
∫ t

0
h(t − s) dNs (28)

is a linearly filtered compound Poisson process. In this form, it is clear that Xt cannot be
Markov unless h(t) = e−αt, α > 0. We define

ν(dt, dy) = P(Sn ∈ dt, �n ∈ dyfor some n ≥ 1)

= βdt · P(� ∈ dy) .

In the sequel, we shall assume without much loss of generality that x = 0.
The linear shot-noise process Xt has two alternative equivalent representations, emphasizing

its superposition characteristics:

(1) Xt =
∑
n≥1

�nh(t − Sn) 1{Sn≤t},

(2) Xt =
Pt∑

p=1

�ph(t − Sp(t)),

where Pt = ∑
n≥1 1{Sn≤t}.

Both show that Xt is the size at t of the whole decay–surge population, summing up all
the declining contributions of the sub-families which appeared in the past at jump times (a
shot-noise or filtered Poisson process model appearing also in physics and queuing theory;
see [32] and [28]). The contributions �ph

(
t − Sp (t)

)
, p = 1, ...Pt, of the Pt families to Xt are

stochastically ordered in decreasing sizes.
In the Markov case, h(t) = e−αt, t ≥ 0, α > 0, we have

Xt = e−αt
∫ t

0
eαsdNs, (29)

so that
dXt = −αXtdt + dNt,

showing that Xt is a time-homogeneous Markov process driven by Nt, known as the classical
linear shot-noise. This is clearly the only choice of the response function that makes Xt Markov.
In that case, by Campbell’s formula (see [28]),

�X
t (q) := Ee−qXt = e−β

∫ t
0

(
1−φ�

(
qe−α(t−s)

))
ds

= e− β
α

∫ 1
e−αt

1−φ�(qu)

u du where e−αs = u,

with
�X

t (q) → �X∞ (q) = e− β
α

∫ 1
0

1−φ�(qu)

u du as t → ∞.

The simplest explicit case is when φ� (q) = 1/ (1 + q/θ) (otherwise � ∼Exp(θ)), so that,
with γ = β/α,

�X∞ (q) = (1 + q/θ)−γ ,
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the Laplace–Stieltjes transform of a Gamma(γ, θ)-distributed random variable X∞, with
density

θγ

�(γ )
xγ−1e−θx, x > 0.

This time-homogeneous linear shot-noise process with exponential attenuation function and
exponentially distributed jumps is a decay–surge Markov process with triple(

α(x) = −αx; β(x) = β; k(x) = e−θx) .

Shot-noise processes being generically non-Markov, there is no systematic relationship
between decay–surge Markov processes and shot-noise processes. In [14], it is pointed out
that decay–surge Markov processes could be related to the maximal process of nonlinear shot
noise; see Eliazar and Klafter [13, 14].
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