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Abstract. We define a subset Z of (1,+∞) with the property that for each α ∈ Z
there is a nonzero real number ξ = ξ (α) such that the integral parts [ξαn] are even for
all n ∈ �. A result of Tijdeman implies that each number greater than or equal to 3
belongs to Z. However, Mahler’s question on whether the number 3/2 belongs to Z
or not remains open. We prove that the set S := (1,+∞) \ Z is nonempty and find
explicitly some numbers in Z ∩ (5/4, 3) and in S ∩ (1, 2).

2000 Mathematics Subject Classification. 11J71, 11R04, 11R06, 11R09.

1. Introduction. Suppose that α > 1 is a real number. Then either for any real
number ξ �= 0 the fractional parts {ξαn} are greater than or equal to 1/2 for infinitely
many n ∈ � or there exists a real number ξ = ξ (α) �= 0 such that {ξαn} < 1/2 for every
n ∈ �. The set of α > 1 for which the first possibility holds will be denoted by S.

Similarly, we will denote by Z the set of α > 1 for which the second possibility holds,
so S ∩ Z = ∅ and S ∪ Z = (1,+∞). Equivalently, α ∈ Z if and only if there is a real
number ξ = ξ (α) �= 0 such that the integral parts [ξαn], n = 1, 2, . . . , are all even.

In 1968, Mahler [16] asked whether the number 3/2 belongs to S or to Z (see also
[20]). There are many reasons to believe that 3/2 ∈ S. Although for a ‘random’ pair
ξ, α the fractional parts {ξαn}, n = 1, 2, . . . , are uniformly distributed in [0, 1) (see
[13], [21]), the behavior of the sequence {ξαn}, n = 1, 2, . . . , for almost any ‘specific’
pair ξ, α, where ξ �= 0, α /∈ �, is not known. See, however, [3], [4], [6]–[12], [22], [23]
for some results in this direction. In this note, we shall collect several results about the
sets S and Z.

Trivially, {2, 3, 4, . . .} ⊂ Z, because, for any integer g ≥ 2, by taking ξ = 2 we see
that the numbers [2gn] = 2gn, n = 1, 2, . . . , are all even. In general, one may expect
that ‘large’ α belong to the set Z (see, for instance, Tijdeman’s result [19] stated in
Theorem 1(i) below) whereas ‘small’ α lie in S. In connection with this, one can
ask whether there exist α > α′ > 1 such that α ∈ S and α′ ∈ Z. If the answer to
this question were negative then the sets S and Z would simply be two intervals.
Unfortunately, the situation is not that simple, because such α and α′ do exist. We will
show, for instance, that the set Z contains a number smaller than 1.26 and that the set
S contains the golden mean (1 + √

5)/2 = 1.61803 . . . .

In order to state our theorems, we recall first that α > 1 is called a Pisot number
if it is an algebraic integer whose conjugates over � different from α itself lie in the
open unit disc. A Pisot number is called a strong Pisot number if it is not a rational
integer and if its second largest (in modulus) conjugate is positive (see [2] and [6]). Also,

https://doi.org/10.1017/S0017089506003090 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089506003090
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α > 1 is called a Salem number if it is an algebraic integer whose conjugates over �

different from α itself lie in the closed unit disc |z| ≤ 1 with at least one conjugate lying
on the unit circle |z| = 1. Finally, let Pα(x) ∈ �[x] denote the minimal polynomial of
an algebraic number α. Note that Pα(1) ≤ −1 for each α which is a Pisot number or a
Salem number.

2. Results.

THEOREM 1. We have
(i) [3,+∞) ⊂ Z,

(ii) 3 − 2/q ∈ Z for any integer q ≥ 2,
(iii) α ∈ Z for any strong Pisot number α,
(iv) α ∈ Z for any Pisot or Salem number α whose minimal polynomial satisfies

Pα(1) ≤ −3.

By Theorem 1(iv), the thirteenth smallest known Salem number α = 1.2527759 . . .

whose minimal polynomial is

Pα(x) = x18 − x12 − x11 − x10 − x9 − x8 − x7 − x6 + 1

belongs to the set Z, because Pα(1) = −5 < −3. (See Mossinhoff’s page on Lehmer’s
problem http://www.cecm.sfu.ca/˜mjm/Lehmer/lists/SalemList.html for a list of
small Salem numbers.) Most of the results stated in Theorem 1 have been published
earlier or follow easily from [19], [10], [11], [22]. Nevertheless, for the sake of
completeness, we will give the proofs of (i)–(iii) below and derive (iv) from [10],
[22].

The first example of a number α > 1 lying in the set S was given recently by
the author in [8]: for any d ≥ 4 one can take α > 1 that satisfies αd − α − 1 = 0. So
the set S is nonempty. Note that if α ∈ S then α1/q ∈ S for each q ∈ �, because the
set of fractional parts {ξαn}, where n ∈ �, is a subset of the set {ξαn/q}, n ∈ �. The
next theorem not only contains the example given above but also describes some new
numbers in S.

THEOREM 2. We have
(i) 21/q ∈ S for any integer q ≥ 2,

(ii) α ∈ S for any α > 1 which is a root of an irreducible polynomial xd − xr − 1,
where 0 < r < d,

(iii) α ∈ S for any α > 1 which is a root of the polynomial xd − xm − xr + 1, where
0 < r ≤ m < d, but is not a Pisot number.

Note that in case (iii) the polynomial xd − xm − xr + 1 is reducible. Hence the
degree of α > 1 over � is smaller than d. The requirement that α is not a Pisot number
is necessary. If, for instance, m = r = d − 1 then

xd − 2xd−1 + 1 = (x − 1)(xd−1 − xd−2 − · · · − x − 1).

The polynomial Pα(x) = xd−1 − xd−2 − · · · − x − 1 is irreducible and defines a Pisot
number α > 1 for each d ≥ 3. Since Pα(1) ≤ −3 for every d ≥ 5, Theorem 1(iv) implies
that α ∈ Z. However, for d = 3, α = (1 + √

5)/2 belongs to S by Theorem 2(ii). All
irreducible polynomials of the form xd − xr − 1 have been described in [15].

Since
√

2 ∈ S and
√

m ∈ Z for each integer m ≥ 4, it is natural to ask the following:

PROBLEM 3. Determine whether
√

3 belongs to S or to Z.
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We remark that if
√

3 ∈ S then writing
√

3 in its base 3 expansion
√

3 = 1 +∑∞
j=1 bj3−j, where b1, b2, . . . ∈ {0, 1, 2}, and taking ξ = 1 we would derive that

{
√

3 · 3 j} = bj+13−1 + bj+23−2 + · · · ≥ 1/2

for infinitely many j ∈ �. Hence bm = 2 for infinitely many m ∈ �. Such results,
however, are completely out of reach. See, for instance, [1] for a recent progress on
the distribution of digits in the expansions of algebraic irrational numbers in base
b ≥ 2.

The next problem seems to be quite difficult too.

PROBLEM 4. Is it true that if α ∈ S then for each nonzero real number ξ the sequence
[ξαn], n = 1, 2, . . . , contains infinitely many even numbers?

By the definition of S, the sequence [ξαn], n = 1, 2, . . . , contains infinitely many
odd numbers. It is easy to see that the answer to Problem 4 is affirmative precisely
when there is a nonzero real number ξ such that {ξαn} ≥ 1/2 for each n ∈ �, where
{ξαn} > 1/2 for infinitely many n and {ξαn} = 1/2 for infinitely many n ∈ �. Taking, for
instance, ξ = 1/2 and α = √

3 we are back to a similar question about the distribution
of digits in base 3 expansion again. This time, the number in question is

√
3/2.

Note that all numbers of S described in Theorem 2 are algebraic integers and lie
in the interval (1, 2). We thus conclude this section with the following problem.

PROBLEM 5. Is there an element of S greater than 2?

3. Proof of Theorem 1. We shall prove (i) and (ii) using the method of nested
intervals as in [19]. Suppose first that α > 3. We claim that there is a ξ > 0 such that
{ξαn} ≤ β := 1/(α − 1) for every n ∈ �. Clearly, {ξαn} ≤ β if and only if there is an
integer kn such that knα

−n ≤ ξ ≤ (kn + β)α−n. Let k1 be an arbitrary integer greater
than α. Set I1 = [k1α

−1, (k1 + β)α−1]. The sequence of intervals Ij = [kjα
−j, (kj +

β)α−j], where kj ∈ �, j = 1, 2, . . . , is nested if and only if kjα
−j ≤ kj+1α

−j−1 and
(kj + β)α−j ≥ (kj+1 + β)α−j−1 for each j ∈ �. This happens precisely when for each
j ∈ � the interval [αkj, α(kj + β) − β] contains the integer kj+1. Since the length of
this interval is αβ − β = 1, such an integer kj+1 exists for every j ∈ �. Hence, setting
ξ := ∩∞

j=1Ij, we have that {ξαn} ≤ 1/(α − 1) < 1/2 for every n ∈ �. Therefore, each
α > 3 lies in Z. Trivially, 2, 3 ∈ Z. This proves (i) and also (ii) for α = 2, where q = 2.

Next, we will prove (ii) for α = (3q − 2)/q, where q ≥ 3 is an integer. As above,
{ξ (3 − 2/q)n} ≤ 1/2 if and only if there is an integer kn such that kn(3 − 2/q)−n ≤ ξ ≤
(kn + 1/2)(3 − 2/q)−n. Fix an integer k1 greater than 3. Set I1 = [k1(3 − 2/q)−1, (k1 +
1/2)(3 − 2/q)−1]. The sequence of intervals Ij = [kj(3 − 2/q)−j, (kj + 1/2)(3 − 2/q)−j],
where kj ∈ �, j = 1, 2, . . . , is nested if and only if

(3 − 2/q)kj ≤ kj+1 ≤ (3 − 2/q)(kj + 1/2) − 1/2 = (3 − 2/q)kj + 1 − 1/q.

It is easy to see that the interval [(3q − 2)kj, (3q − 2)kj + q − 1] contains an integer
divisible by q, say qu. So we can take kj+1 := u. Hence, setting ξ := ∩∞

j=1Ij, we derive
that {ξ (3 − 2/q)n} ≤ 1/2 for each n ∈ �. However, since 3 − 2/q, q ≥ 3, is not an integer,
there are only finitely many n ∈ � (or no such n at all) for which {ξ (3 − 2/q)n} = 1/2.

(See, for instance, Lemma 4 in [11].) If n0 is the largest among those n we can replace
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ξ by ξ (3 − 2/q)n0 . With this new ξ, the inequality {ξ (3 − 2/q)n} < 1/2 holds for every
n ∈ �. This completes the proof of (ii).

For a strong Pisot number α, we have {αn} → 1 as n → ∞ (see [6]). Indeed,
since Sn := αn + αn

2 + · · · + αn
d ∈ �, where α1 = α, α2, . . . , αd are the conjugates of

α labelled so that α > 1 > α2 > |αj| for j > 2, we deduce that Sn − αn is positive
for each n sufficiently large. Clearly, Sn − αn → 0 as n → ∞. It follows that {αn} =
1 − αn

2 − · · · − αn
d for each sufficiently large integer n. Hence {αn} → 1 as n → ∞. In

particular, by taking ξ = −αn0 with n0 sufficiently large, we obtain that {−αn0αn} < 1/2
for each n ∈ �. This proves (iii).

The proof of (iv) for Pisot and Salem numbers follows [10] and [22], respectively.
To be precise, it was shown in [10] that if the minimal polynomial of a Pisot number
α satisfies Pα(1) ≤ −2 then, setting ξ = 1/(P

′
α(α)(α − 1)), we have limn→∞{ξαn} =

1/|Pα(1)|. Similarly, Zaimi [22] showed that if the minimal polynomial of a Salem
number α satisfies Pα(1) ≤ −2 then, for any ε > 0, there is a nonzero ξ = ξ (α, ε) ∈ �(α)
such that 1/|Pα(1)| − ε < {ξαn} < 1/|Pα(1)| + ε for each n ∈ � large enough. So in
both (Pisot and Salem) cases one can find a positive integer n0 such that, by taking
ξαn0 ∈ �(α) instead of ξ, we obtain that 1/|Pα(1)| − ε < {ξαn} < 1/|Pα(1)| + ε for
each n ∈ �. Clearly, this implies the inequality {ξαn} < 1/2 for each n ∈ � under the
stronger condition Pα(1) ≤ −3 if ε < 1/6. This proves (iv). The proof of Theorem 1 is
completed.

Since in [10] and in [22] the statements concerning the fractional parts {ξαn}
mentioned in the proof of (iv) are not given explicitly, let us summarize them here as
follows.

THEOREM 6. Suppose that α is a Pisot number or a Salem number with minimal
polynomial Pα(x) ∈ �[x]. If Pα(1) ≤ −2 then for any ε > 0 there is a real number ξ ∈
�(α) (which depends on ε in the case α is a Salem number) such that

1/|Pα(1)| − ε < {ξαn} < 1/|Pα(1)| + ε

for any n ∈ �.

We remark that the fractional parts {ξαn}, n ∈ �, can be quite small for some Salem
numbers that are not too large. Take, for instance, the Salem number α = 1.6733248 . . .

given in [14] whose minimal polynomial is

Pα(x) = x14 − x12 − x11 − x10 − x9 − 2x8 − 3x7 − 2x6 − x5 − x4 − x3 − x2 + 1,

so that Pα(1) = −13. Then, by Theorem 6, for any ε > 0, there exists a real number
ξ = ξ (α, ε) ∈ �(α) such that 1/13 − ε < {ξαn} < 1/13 + ε for each n ∈ �. This not
only implies that α ∈ Z but also that every integral part [ζαn], where n ∈ � and
ζ = 12ξ, is divisible by 12.

4. Proof of Theorem 2. In all three cases it suffices to show that, for any ξ �= 0, the
integral parts xn := [ξαn], n = 1, 2, . . . , cannot all be even. Suppose they are, i.e. α ∈ Z.

Setting yn := {ξαn} for n ∈ �, we have xn+q − 2xn = 2yn − yn+q (case (i)) or xn+d −
xn+r − xn = yn + yn+r − yn+d (case (ii)) or xn+d − xn+m − xn+r + xn = −yn + yn+r +
yn+m − yn+d (case (iii)). A fractional part is a non-negative number smaller than 1.

So the right-hand sides of all three equalities belong to the interval (−2, 2). But all left-
hand sides are even integers. Hence, for every n ∈ �, we have xn+q − 2xn = 2yn − yn+q = 0
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(case (i)), xn+d − xn+r − xn = yn + yn+r − yn+d = 0 (case (ii)), xn+d − xn+m − xn+r +
xn = −yn + yn+r + yn+m − yn+d (case (iii)).

In case (i) we deduce that yn+qm = 2myn for any m ∈ �. Taking m arbitrarily
large we obtain that yn = {ξ2n/q} = 0 for every n ∈ �. Next, by considering, firstly,
the subsequence n = qk, k = 1, 2, . . . , and, secondly, the subsequence n = qk + 1,

k = 1, 2, . . . , we derive that ξ2n/q is an integer for every n ∈ � if and only if ξ = 0, a
contradiction. Hence 21/q ∈ S for each integer q ≥ 2. This proves (i).

In case (iii) the sequence sn := −yn + yn+r + yn+m − yn+d = 0 is periodic. So, by
Lemma 3 of [8], α > 1 must be a Pisot number or a Salem number. It cannot be a
Pisot number by the condition of (iii). Hence α is a Salem number. But from αd −
αm − αr + 1 = 0 on replacing α → α−1 (Salem numbers are reciprocal) we obtain
that αd − αd−r − αd−m + 1 = 0. Observe that if m + r = d then αd − αm − αr + 1 =
(αm − 1)(αr − 1) = 0, a contradiction with α > 1. If m + r �= d then

αd − αm − αr + 1 − (αd − αd−r − αd−m + 1) = αd−m − αr + αd−r − αm

= (αr + αm)(αd−r−m − 1) = 0,

a contradiction again. This proves (iii). (Note that we proved the following statement:
each irreducible reciprocal factor of xd − xm − xr + 1 is cyclotomic. See [15] for more
about irreducible factors of such quadrinomials.)

In case (ii) the sequence sn := −yn + yn+r − yn+d = 0 is periodic. As above,
Lemma 3 of [8] implies that α is a Pisot number or a Salem number and ξ ∈ �(α).
Since α > 1 is a root of an irreducible nonreciprocal polynomial xd − xr − 1, it can
only be a Pisot number. (Indeed it can: for instance, if r = 1 and d = 2 or d = 3.) Note
that it is not a strong Pisot number, because the polynomial xd − xr − 1 has no roots
in the interval [0, 1]. Suppose that the conjugates of α = α1 > 1 over � are α2, . . . , αd,

where |α1| > 1 > |α2| ≥ |α3| ≥ · · · ≥ |αd |. Since xn+d − xn+r − xn = 0 for every n ∈ �,

we have that xn = ξ1α
n
1 + · · · + ξdα

n
d . Moreover (see [5] or the proof of Theorem 3

in [8]), ξj ∈ �(αj), j = 1, . . . , d, and the numbers ξ1, . . . , ξd are conjugate over �.

Similarly, from the linear recurrence yn+d − yn+r − yn = 0, n = 1, 2, . . . , we obtain
that there exist certain complex numbers η1, . . . , ηd such that yn = η1α

n
1 + · · · + ηdα

n
d

for each n ∈ �. But xn + yn = ξαn
1, so that η1 = ξ − ξ1, η2 = −ξ2, . . . , ηd = −ξd . If

η1 �= 0 then |yn| → ∞ as n → ∞, a contradiction. It follows that η1 must be equal
to zero, so ξ1 = ξ. Summarizing, we have that yn = −ξ2α

n
2 − ξ3α

n
3 − · · · − ξdα

n
d, where

ξ2 ∈ �(α2), . . . , ξd ∈ �(αd) are conjugate over � and ξ2 �= 0.

In order to get a contradiction it suffices to show that the sums yn = −ξ2α
n
2 −

ξ3α
n
3 − · · · − ξdα

n
d are negative for infinitely many n ∈ �. Indeed, since every Pisot

number α = α1 has at most two conjugates of largest modulus in the unit disc (see
[18]) which is |α2|, but α is not a strong Pisot number, i.e. α2 /∈ (0, 1) there are only two
possibilities. Either α2 is a real negative number in (−1, 0) and |α2| > |αj| for j > 2 or
α2 and α3 are complex conjugate numbers, i.e. α3 = α2 and |α2| > |αj| for j > 3. In both
cases, since −ξ2α

n
2 − ξ3α

n
3 = −2�(ξ2α

n
2), the sign of yn is the same as that of −�(ξ2α

n
2)

for each n sufficiently large. Of course, if α2 ∈ (−1, 0) then −ξ2α
n
2 is positive for infinitely

many n ∈ � and negative for infinitely many n ∈ �. Assume that α2 is complex. Let us
write α2 = �eiθ and ξ2 = �′eiϑ . Then �(ξ2α

n
2) = ��′ cos(nθ + ϑ). Since θ/π is irrational

(see [17] or derive a contradiction from αm
2 = αm

3 , where m ∈ �, by mapping α2 to α),
Kronecker’s theorem [5] yields that the fractional parts {nθ/2π + ϑ/2π}, n = 1, 2, . . . ,

are dense in [0, 1). It follows that cos(nθ + ϑ) is positive for infinitely many n ∈ � and
negative for infinitely many n ∈ �. This completes the proof of Theorem 2.
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