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Abstract We define and study the space of q-opers associated with Bethe equations for integrable models
of XXZ type with quantum toroidal algebra symmetry. Our construction is suggested by the study
of the enumerative geometry of cyclic quiver varieties, in particular the ADHM moduli spaces. We
define

(
GL(∞),q

)
-opers with regular singularities and then, by imposing various analytic conditions on

singularities, arrive at the desired Bethe equations for toroidal q-opers.

1. Introduction: Geometric facets of Bethe equations

1.1. Integrable models and Bethe ansatz

The study of 1-dimensional quantum integrable models fueled modern mathematics with

a variety of interesting ideas, in particular the discovery of the quantum groups and
related structures. A particularly useful tool in the study of integrable models is the so-

called algebraic Bethe ansatz method (see, e.g., [35, 54]), having its roots in the original

papers of Hans Bethe from the 1930s.

Let us briefly describe here the modern mathematical perspective on how algebraic
Bethe ansatz works for integrable models of specific type, namely the spin chains. Let

g be a simple Lie algebra and ĝk=0 = g
[
t±1
]
be the corresponding loop algebra (affine

algebra with vanishing central charge k = 0). The finite-dimensional modules {Vi} of g
give rise to the so-called evaluation modules {Vi(ai)}, where ai ∈ C

× stand for the value

of the loop parameter t. These modules generate a tensor category–namely, every finite-

dimensional representation of ĝ can be written as a tensor product of evaluation modules.
Passing from g

[
t±1
]
to the corresponding quantum affine algebra U� (ĝ) or the Yangian

Y�(g), one obtains a deformation of such a tensor category, known as a braided tensor

category [9]. This object features a new intertwining operator (not invertible in general)

RVi(ai),Vj(aj) : Vi(ai)⊗Vj (aj)−→ Vj (aj)⊗Vi(ai),

satisfying the famous Yang–Baxter equation. We note that in the deformed case, the

analogue of the evaluation map exists only in type A, and the {Vi(ai)} stand here for

modules appropriately ‘twisted’ by ai finite-dimensional representations of U� (ĝ).

https://doi.org/10.1017/S1474748021000220 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S1474748021000220
https://orcid.org/0000-0002-7191-1683
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1474748021000220&domain=pdf
https://doi.org/10.1017/S1474748021000220


582 P. Koroteev and A. M. Zeitlin

To describe the integrable model, we choose a specific object in such a braided tensor
category,

H= Vi1 (ai1)⊗·· ·⊗Vin (ain),

which we refer to as a physical space, and the vectors in this space are called states. For
a given module W (u) called an auxiliary module, with parameter u known as a spectral

parameter, we define the transfer matrix

TW (u) =TrW (u)

[
(Z⊗1)PRW (u),H

]
.

Here the twist Z is given by Z =
∏r

i=1 z
α̌i
i ∈ eh, where h is the Cartan subalgebra

in g, {α̌i}i=1,...,r are the simple coroots of g and P is a permutation operator. The

monodromy matrix MZ
W (u) = (Z⊗1)PRW (u),H is an operator in W (u)⊗H. Notice that

the transfer matrix TW (u) is an operator acting on the physical space H. The Yang–

Baxter equation implies that transfer matrices corresponding to various choices of W (u)

form a commutative algebra, known as a Bethe algebra. The commutativity of the Bethe
algebra implies integrability, and the expansion coefficients of the transfer matrix yield

(nonlocal) Hamiltonians of the XXX or XXZ spin chain depending on whether we deal

with the Yangian or the quantum affine algebra. From now on, we will primarily focus

on the quantum affine algebra and the XXZ model, although most of the construction
applies to the Yangian and the XXX models as well.

The classic example of the XXZ Heisenberg magnet corresponds to the quantum algebra

U�

(
ŝl(2)

)
in which the physical spaceH is constructed from Vi(ai) =C

2(ai)–the standard

2-dimensional evaluation modules of U�

(
ŝl(2)

)
.

The solution of the integrable model implies finding the eigenvalues and eigenvectors

of simultaneously diagonalised Hamiltonians–that is, elements of the Bethe algebra. One
way to accomplish the task is to follow the old-fashioned procedure from the 1980s known

as algebraic Bethe ansatz. It implies that the eigenvalues of the transfer matrices (upon

rescaling) are symmetric functions of the roots of the system of algebraic equations, known

as Bethe ansatz equations. Although this approach is straightforward and effective, we
will explore other modern techniques which provide insights into representation-theoretic

aspects of the problem.

1.2. Modern approach to Bethe ansatz

1.2.1. Quantum Knizhnik–Zamolodchikov equations. The intertwining opera-
tors for the quantum affine algebra U� (ĝ) and thus the matrix elements of their products,

known as conformal blocks, satisfy certain difference equations known as quantum

Kniznik–Zamolodchikov (qKZ) equations (also known as Frenkel–Reshetikhin equations)

[25].
Explicitly, qKZ equations can be written as follows: difference equations

Ψ(ai1, . . . ,qaik, . . . ,ain,{zi}) =H
(q)
ik

Ψ(ai1, . . . ,ain,{zi}), (1.1)
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where the solutions Ψ take values in H and operators H
(q)
i are expressed in terms of

products of R-matrices. The analytic properties of the solutions of qKZ equations will
be discussed later in Section 1.3.2. There is also a commuting system of equations in

{zi}-variables for Ψ, known as dynamical equations (see, e.g., [58, 59]).

The solution to the qKZ equation is given by an integral expression, so that the

integrand has the following asymptotic behaviour in the limit q→ 1 (or η = log(q)→ 0):

e
Y ({ai},{zi},{xi})

η [φ0 ({ai},{zi},{xi})+O(η)], (1.2)

where {xi} are the variables of integration. In the limit q → 1, the stationary phase

approximation gives Ψ = e
S
η (Ψ0 +O(η)), where S = Y |σi

, with σi the solutions of the

equations ∂xi
Y = 0 which need to be solved with respect to the variables {xi}. These

equations coincide with the Bethe equations, and Ψ0 is the eigenvector for operators
H

(1)
i , known as the nonlocal Hamiltonians of the corresponding XXZ model: they emerge

as coefficients from the expansion of the transfer matrices with respect to the spectral

parameter–that is, H
(1)
i Ψ0 = epiΨ0, where pi = ai∂ai

S.

1.2.2. QQ-systems and Baxter operators. When we earlier discussed the transfer

matrices TW (u), we consideredW (u) to be a finite-dimensional module of U� (ĝ). We notice
that the universal R-matrix, which produces particular braiding operators RVi(ai),Vj(aj),

belongs to the completion of the tensor product U�

(
b̂+

)
⊗U�

(
b̂−
)
, where U�

(
b̂±
)
are

the Borel subalgebras of U� (ĝ). Therefore, there is no obstruction in taking auxiliary

representations W (u) to be representations of U�

(
b̂+

)
.

The purpose of that is as follows. There exist prefundamental representations of

U�

(
b̂+

)
which are infinite-dimensional. If one extends the braided tensor category of

finite-dimensional modules by such representations, the Grothendieck ring of the resulting

category is generated by those modules.
The corresponding transfer matrices turn out to be well defined, and moreover, the

eigenvalues of the transfer matrices are polynomials of the spectral parameter, generating

elementary symmetric functions of the solutions of Bethe equations. Such transfer
matrices were originally introduced by Baxter and thus are known as Baxter operators ad

hoc via their eigenvalues. Their representation-theoretic meaning was realised much later,

in papers by Frenkel and Hernandez [21], following earlier ideas of Bazhanov, Lukyanov

and Zamolodchikov [4] and Hernandez and Jimbo [31].
There are two series of prefundamental representations

{
V i
+(u)

}
i=1,...,r

,
{
V i
−(u)

}
i=1,...,r

and the associated Baxter operators
{
Qi

±(u)
}
i=1,...,r

. They obey the following key relation

[22]:

ξ̃iQ
i
−(u)Q

i
+(�u)− ξiQ

i
−(�u)Q

i
+(u) = Λi(u)

∏
j �=i

[−aij∏
k=1

Qj
+

(
�
bkiju

)]
i= 1, . . . ,r, bkij ∈ Z.
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Here polynomials Λi(u) are known as Drinfeld polynomials, characterising the represen-

tation H of U� (ĝ), and ξi, ξ̃i are some monomials of {zi}.
This system of equations–known as the QQ-system, considered as equations on{
Qi

±(u)
}
i=1,...,r

and subject to some nondegeneracy conditions–is equivalent to the Bethe

ansatz equations.

We note that a similar construction and an analogue of the QQ-system should also
exist for Yangians, with some progress being made in [3].

We mention that the QQ-systems emerged recently in a seemingly different context, the

so-called ODE/IM correspondence [11, 5]. The statement of the correspondence can be
roughly formulated as follows. The vacuum eigenvalues of the Baxter-operator quantum

Korteweg–De Vries model associated with the affine Lie algebra ĝ appear as spectral

determinants of certain singular differential operators associated with the so-called affine

opers associated with Lĝ. In a particular case of standard quantum Korteweg–De Vries,
these operators are just singular Sturm–Liouville operators. As shown in [43, 44], they

turn out to be the solution of the QQ-system with different analyticity conditions on

entire Q-functions (which are generally nonpolynomial in this case).

1.3. Geometric interpretations

1.3.1. Quantum K -theory of Nakajima varieties. The relation between enumera-

tive algebraic geometry and integrability has been known for some time. Starting from the
pioneering works of Witten and Dubrovin, it flourished in the works of A. Givental and

his school in the 1990s. Recently, progress in understanding supersymmetric gauge theory

merged with developments in geometric representation theory. In particular, the study

of so-called symplectic resolutions from the representation-theoretic point of view gave a
new life to this fruitful relationship in work of A. Okounkov and his collaborators [8]. It

has been observed that some integrable systems based on quantum groups, specifically

XXX and XXZ models, naturally emerge from enumerative geometry for a large class of
algebraic varieties, known as Nakajima quiver varieties [47].

Let us recall this connection in the simplest nontrivial examples of such varieties,

namely the cotangent bundles over Grassmannians T ∗Grk,n. The standard objects in
the enumerative geometry are the appropriate deformations of the cup product and the

tensor product in the equivariant cohomology and K -theory, correspondingly, where the

deformation is characterised by the series in Kähler parameters, with coefficients being

produced by curve counting.
The physics results of Nekrasov and Shatashvili [50] lead to the following conjecture

about the equivariant quantum K -theory KT (T ∗Grk,n): quantum multiplication by the

generating function for the exterior algebra of the tautological bundle coincides with the
Baxter Q-operator for the Heisenberg XXZ spin chain. Also, since tautological bundles

generate the entire quantum K -theory, one can describe the equivariant quantum K -

theory ring as the ring of symmetric functions of Bethe roots.
The proof of that conjecture was given in [53]. It uses the theory of quasimaps to

Nakajima varieties as the ‘curve counting’, which is different from the older approach

to quantum K -theory given by Givental. To relate the quantum equivariant K -theory
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with spin chains, it is not enough to consider the operators of quantum multiplication by
classical K -theory classes: in fact, both multiplication in the equivariant K -theory and

the tautological classes should be deformed simultaneously–in our case of T ∗Grk,n, by

just one Kähler parameter z. One can define elements V̂τ ∈KT (T ∗Grk,n) [[z]], which we
call quantum tautological bundles. In the classical limit z → 0, these elements coincide

with the corresponding classical bundles V τ , which is a certain tensorial polynomial of

standard tautological bundles, corresponding to the symmetric polynomial τ in k variables

in the standard K -theory. The localised equivariant quantum K -theory Kloc
T (T ∗Grk,n)

can be identified with appropriate weight subspace in the space H of the XXZ Heisenberg

magnet, so that considering the union of such spaces for all k, one obtains the entire space

of states H.
To prove this conjecture, one needs to define and compute vertex functions, which

are quasimap analogues of Givental’s I-functions. These are certain Euler characteristics

which count quasimaps and determine the quantum K -theory classes. Such vertex
functions satisfy the quantum difference equations which coincide with qKZ and

dynamical equations [52], which were discussed in Section 1.2.1. To understand the action

of the operators of quantum multiplication by the quantum tautological bundles, one has

to study the q → 1 asymptotics of such solutions of qKZ. That allows us to identify
quantum tautological classes with the elements of the Bethe algebra, thereby leading to

the proof of the conjecture of Nekrasov and Shatashvili.

These results have been proven for larger classes of Nakajima varieties–for example,
partial flag varieties (see, e.g., [37, 41]).

Notice that this approach gives a geometric interpretation to qKZ and dynamical

equations associated to g of simply laced type for the specific physical spaces H emerging
from quiver varieties. Moreover, each of the Q-operators on its own has a geometric

meaning. The Qi
+-operators correspond to the exterior powers of tautological bundles.

Their Qi
− counterparts correspond to the exterior powers of tautological bundles of

Nakajima varieties with a different choice of stability parameters. In the case of flag
varieties, such a change in the stability parameters is provided by the action of Weyl

reflection.

However, the QQ-system relations themselves do not arise naturally, since in particular
Qi

±-operators do not act in the same space. In the next section, we will discuss another

geometric viewpoint on Bethe ansatz, specifically related to the geometric interpretation

of the QQ-system.

1.3.2. Quantum q-Langlands correspondence. To oversee the geometric interpre-

tation of QQ-systems, we take several steps back in time and deformation-wise. Earlier

we described the construction of the XXZ spin chain. There is a certain scaling limit

of the XXZ model which is called the Gaudin model. This limit can be understood
quasiclassically as the � → 0 of equation (1.1), so that q = �

k+h∨
, where h∨ is a dual

Coxeter element. Then the qKZ equation turns into the differential equation, known as

the Knizhnik–Zamolodchikov (KZ) equation:

(k+h∨)∂ai
Ψ=HiΨ, (1.3)
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where Hi emerge as coefficients of log� in H(q). The solution Ψ belongs to the classical
limit ofH–that is, the tensor product of some evaluation representations of the Lie algebra

ĝ with evaluation parameters ai: Hcl = V1(a1)⊗ ·· ·⊗Vn(an). The mutually commuting

Gaudin Hamiltonians Hi have easy-to-read expressions

Hi =

n∑
j=1,i�=j

tαi ⊗ tαj
ai−aj

+Zi,

where tα form an orthonormal basis in g with respect to the Killing form, Z belongs to

Cartan subalgebra of g and the indices i,j indicate on which of the representations Vi

these elements act.
One can see that in the limit k →−�

∨, known as the critical level limit, this equation

turns into an eigenvalue problem for Gaudin Hamiltonians. It is possible to interpret the

solutions of the KZ equations in a particular analyticity region in evaluation parameters

|a1| > |a2| > · · · > |an| as the equations for the intertwiners of ĝ with central charge k.
Moreover, the Gaudin Hamiltonians were shown in [15] to be part of a bigger structure,

namely the centre Z (U (ĝ)) of U (ĝ) at the critical level k =−h∨.
There is a natural Poisson structure on Z (U (ĝ)) arising from standard commutators

away from the critical level. The famous theorem of Feigin and Frenkel [14] provides

isomorphism of this Poisson algebra and the classical limit of the W-algebra W
(
Lg
)
,

associated to the Langlands dual Lie algebra Lg, also known as theGelfand–Dickey algebra
of pseudodifferential operators in the case g= sln.

Later this statement was reformulated [20] in terms of special connections for principal
LG̃-bundles, known as oper connections, on the punctured disk, where LG̃ is an adjoint

Lie group associated to Lg. The reformulated Feigin–Frenkel theorem implies that
there is an isomorphism between Z (U (ĝ)) and the space of functions on LG̃-oper

connections on a punctured disk. The path from such connections to Gelfand–Dickey

pseudodifferential operators is given by a well-known construction, known as Drinfeld–
Sokolov reduction [12].

Let us return to the eigenvalue problem for Gaudin Hamiltonians, arising from the

critical level limit of equation (1.3). Frenkel’s theorem [19] gives a geometric description
of the spectrum in terms of opers. Explicitly, it states that there is a one-to-one

correspondence between the space of Miura oper connections with regular singularities

with trivial monodromies around them on P
1 in the case when Z = 0. The word ‘Miura’

there means that there is an extra condition on such oper connections: they have to
preserve the reduction of the LG̃-bundle to a Borel subgroup. Later, this theorem was

generalised for Z �= 0 by adding irregular singularity at ∞∈ P
1 [16].

The constraints on such connections could be expressed in terms of Wronskian-type
relations, which are particularly manifest in the case of SL(N). That suggests that

the QQ-system, which is a deformation of the Wronskian relation, should arise from

an appropriate �-deformation of Miura opers. We will provide further motivation and
hints in this direction.

The pseudodifferential operators, corresponding to such Miura oper connections with

regular singularities through Drinfeld–Sokolov reduction, describe the constraints on the
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conformal blocks and intertwiners of the W
(
Lg
)
-algebra in the limit when the central

charge c → ∞. The most famous such constraint is known as the Belavin–Polyakov–
Zamolodchikov (BPZ) equation (essentially the Sturm–Liouville problem with singular

potential) for conformal blocks of Virasoro algebra, which is the case when g= sl(2).

Naturally, that led to the quantum Langlands correspondence linking conformal blocks
of W

(
Lg
)
-algebras and ĝ-conformal blocks away from the critical level. Recently, a q-

deformation of this correspondence was proposed in [1]. The proof provided in the case

of simply laced g is based on the enumerative geometry approach which we touched on
briefly in Section 1.3.1. The key to that is to further deform this correspondence–namely,

to identify conformal blocks for the quantum affine algebra U� (ĝ) and the deformed W -

algebra Wq,t

(
Lg
)
, which is the 2-parametric deformation of the Gelfand–Dickey algebra

[25].
The conformal blocks for U� (ĝ), as we discussed in Section 1.2.1, satisfy the qKZ

equation. We remark that as in the classical case, they correspond to the solution of qKZ,

analytic in the region |a1| > |a2| > · · · > |an|. However, the solutions of qKZ which are
provided by enumerative geometry–that is, vertex functions–are analytic in {zi}-variables.
Also, it turns out that they are the ones producing the conformal blocks of the Wq,t

(
Lg
)
-

algebra. The transition between two families of solutions is crucial for establishing the
exact correspondence between such conformal blocks. We refer to [1] for the details.

1.3.3. Miura �-opers. A natural question is to understand the difference analogues
of BPZ-type equations which serve as constraints for the conformal blocks of Wq,t

(
Lg
)
.

As we have discussed, the differential BPZ equations on the critical level correspond to

the classical objects, namely LG̃-oper connections with regular singularities on P
1. Let

LG be the simply conected group with Lie algebra Lg. There is a natural classical object,

the �-difference connection, locally a meromorphic LG-valued function A(z) on a Zariski

open set of P1, which transforms upon trivialisation change A(z)−→ g(�z)A(z)g−1(z).
In [24], following the constructions in [38] for SL(N), we developed the �-difference

analogue of opers as such �-difference connections for any simply connected semisimple

Lie group LG with a fixed Borel subgroup LB−. Locally, these �-connections have the

form A(z) = n′(z)
∏r

i=1 siφ
α̌i
i (z)n(z). Here n(z),n′(z) ∈G(z), φi(z) ∈ C(z) and si are the

lifts of the fundamental Weyl reflections to LG. In other words, A(z) ∈ B−(z)cB−(z),
where c=

∏r
i=1 si is a Coxeter element.

Moreover, we defined such
(
LG,�

)
-opers and their Miura versions with regular

singularities, which amounts to the connections of this type which preserve the opposite

Borel subgroup of B+ and taking φi(z) = Λi(z) ∈ C[z]. We proved several structural

theorems about them.
One of the major statements we make in [24] is devoted to the explicit relation of these

objects to the QQ-systems and Bethe ansatz.1 To do that, we work with two versions of

what we call Z-twisted conditions for Miura opers. The simplest Z -twisted condition

1We note here that the QQ-system we obtained in [24] differs from the ones we discussed in
Section 1.2.2 in the case not simply laced (the difference is in the coefficients {bij}). We mention
an upcoming paper [23], where the integrable model corresponding to such a QQ-system is
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implies that the
(
LG,�

)
-oper connection can be �-gauge-equivalent to a semisimple

element Z ∈H ⊂L G, where H is the Cartan subgroup. That means A(z) = g(�z)Zg−1(z).
This condition is a difference version of the zero-monodromy condition and double-pole

irregular singularity at the ∞ point of P1.

The relaxed version of this Z -twisted condition is as follows. Given the principal LG-
bundle, one can construct an associated bundle for any fundamental representation Vωi

for the fundamental weight ωi. It turns out one can associate a (GL(2),�)-oper to any

such pair of an
(
LG,�

)
-oper and Vωi

: this is done by restricting the Miura
(
LG,�

)
-oper to

the 2-dimensional subspace spanned by the two top weights in Vωi
. This is possible, since

a Miura
(
LG,�

)
-oper preserves the reduction to a positive Borel subgroup LB+ ⊂L G.

We say that the resulting Miura oper is a Z-twisted Miura–Plücker
(
LG,�

)
-oper if every

such (GL(2),�)-oper is �-gauge-equivalent to the restriction of Z to the corresponding 2-
dimensional space.

In [24] we showed that Z -twisted Miura–Plücker
(
LG,�

)
-opers with mild nondegeneracy

conditions are in one-to-one correspondence with certain solutions of QQ-systems, and
that does not depend on the order in the Coxeter element. In the simply laced case, such

QQ-systems are equivalent to standard Bethe ansatz equations. The case not simply laced

is more involved (see the discussion in [24] and the upcoming [23]).
While it immediately follows that any Z -twisted Miura oper is indeed a Z -twisted

Miura–Plücker one, the opposite statement, however, is highly nontrivial. In [24] we intro-

duce a chain of �-gauge transformations, which we refer to as �-Bäcklund transformations,

which on the level of QQ-systems amounts to Qi
+(z) → Qi

−(z), Z → si(Z), where si is
the elementary Weyl reflection. However, at every step, in order to progress further, we

have to impose the nondegeneracy condition on the QQ-system and the associated Miura

oper. We have shown that if one can proceed with this transformation to a Z -twisted
Miura–Plücker oper corresponding to the w0(Z), where w0 is the longest Weyl group

element, then such a Z -twisted Miura–Plücker Miura oper is Z -twisted. We call such

Miura–Plücker opers and the associated QQ-system w0-generic.
We also discuss the explicit version of the �-version of Drinfeld–Sokolov reduction,

following the ideas of [56]. The scalar difference equations emerging this way from Z -

twisted Miura
(
LG,�

)
-opers and the correspondence with the difference equations from

the conformal blocks for Wq,t

(
Lg
)
-algebras remains an interesting open problem.

1.4. Our goals in this paper

1.4.1. Two approaches to (SL(r+1),�)-opers. In this paper, we are investigating

several problems. The first one is devoted to the correspondence between the results of

[38], where we work with the SL(r+1) case only, and the more general approach of [24].

In [38] we used a definition of a (Miura) �-oper which is very specific to SL(r+1). It can
be deduced from the ‘universal’ definition of an (SL(r+1),�)-oper as an �-connection

for the principal SL(r+1)-bundle, which we discussed in the previous section, with the

standard order of reflections in the corresponding Coxeter element (following the order

discussed. In the present paper we will be working mostly with the QQ-system associated with
sl(n), and we refer the reader to [24] for more details.
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in the Dynkin diagram), so that in the defining representation it is represented as the

matrix with 0s above its superdiagonal.

Considering the associated bundle corresponding to the defining representation, one
can reinterpret the oper condition in the following way. Namely, it is the condition on the

oper action in the complete flag of subbundles of this associated bundle, which reflects

its matrix structure already described. In particular, that implies that on a Zariski-dense
subset in P

1, the total space of the flag can be re-created by the consecutive action of the

(SL(r+1),�)-oper connection on the section of the line bundle. The Miura condition can

be reformulated as the constraint that the connection preserve a different complete flag
of subbundles.

Such a definition leads to another approach to the derivation of the QQ-systems from

Z -twisted Miura (SL(r+1),�)-opers with regular singularities. This is done using �-

deformed Wronskian matrices. Their matrix elements are components of the nontrivial
section of the line bundle in the trivialisation when the oper connection is represented

by the regular semisimple twist element Z and describes the relative position of two

flags of subbundles. It turns out that the points where these flags are in a nongeneric
position correspond to Bethe roots and QQ-systems, as we demonstrated in [38]. Here we

show that the extension of the QQ-system by �-Bäcklund transformations is provided by

various minors in this �-Wronskian matrix.2

More importantly, we explicitly construct the element g(z) such that the connection

takes the form A(z) = g(�z)Zg−1(z). This element can be represented both in abstract

Lie-theoretic form and explicitly in matrix notation, which uses polynomials of the

extended QQ-system. As a consequence, we obtain that the w0-generic condition, which
was needed in general for a Z -twisted Miura–Plücker

(
LG,�

)
-oper to be just Z -twisted,

is not needed for LG= SL(N).

1.4.2. Completion to
(
GL(∞),�

)
-opers. Following the calculations of (SL(r+1),�)-

opers, it is not hard to extend this construction to SL(∞)–the group of infinite-
dimensional matrices with unit determinant with a finite number of nonzero off-diagonal

entries and a finite number of nonunit elements on the diagonal. However, for any Miura

(SL(∞),�)-oper, the corresponding QQ-system will always be finite. Let us explain how

to construct a Miura oper which corresponds to the ‘complete’ QQ-system associated with
the Dynkin diagram of A∞. We note that SL(∞) has a well-defined set of fundamental

representations based on semi-infinite wedge spaces, which has an interpretation in terms

of the Dirac sea, and the generators of the Lie algebra sl(∞) are represented via quadratic
expressions of the fermionic operators of exterior and interior multiplication, thereby

generating a Clifford algebra.

One can complete the corresponding Lie algebra sl(∞) by allowing infinite sums of
generators. The resulting Lie algebra, endowed by central extension equal to 1, has

fundamental representations realised in the same spaces as sl(∞). This is an important

2We note here that such extensions of the QQ-systems have been introduced in various
circumstances–for example, [3, 43, 44, 22]–and studied systematically in the case Z = 1 by
Mukhin and Varchenko [46].
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construction, which plays a central role in the celebrated boson–fermion correspondence
[26, 33].

To address related Miura opers, we take a certain completion of SL(∞), which will be

sufficient to put an infinite number of terms in the QQ-system. Namely, we construct
the group corresponding to the completion of the upper Borel subgroup in the Bruhat

decomposition of SL(∞). The resulting object, denoted by GL(∞), is the group of the

infinite matrices with an infinite number of elements above the diagonal and an infinite

number of nonunital elements on the diagonal, while the number of elements below the
diagonal remains finite. It has the same set of fundamental representations realised in the

same set of Dirac sea spaces already described.

The resulting Miura
(
GL(∞),�

)
-opers satisfy similar properties as the SL(r+1) ones.

One can define Z -twisted and Z -twisted Miura–Plücker opers and explicitly construct

the operator from the completed upper Borel subalgebra, diagonalising the corresponding

connection matrix. As before, it is constructed from the elements of the extended QQ-
system.

As an application of this construction, we can build the main novel objects of this

paper, namely toroidal opers.

1.4.3. Toroidal opers and the q-Langlands correspondence for toroidal alge-
bras. There is a natural family of automorphisms of an sl(∞)-algebra corresponding

to the Dynkin-diagram translations through n vertices. On the group-theoretic level,

such transformations are realised via the nth power of the ‘completed’ Coxeter element
c (infinite matrix with the only nonzero elements being units on the superdiagonal).

Imposing the condition cnA(z)c−n = A(pz) for Z -twisted
(
GL(∞),�

)
, where p is a new

parameter, we obtain that the resulting constrained infinite QQ-system generates Bethe

equations for the toroidal algebras
̂̂
gl(n).

While the corresponding QQ-system for toroidal algebras [22] has yet to emerge from
the perspective of prefundamental representations and Grothendieck rings, the Bethe

equations for the toroidal algebra
̂̂
gl(n) in a representation-theoretic setting emerged

through a shortcut, namely the Baxter TQ-relation [17, 32]–the relation between the

Q-operator and the transfer matrix.
However, a more natural approach to generating Bethe equations for toroidal algebras

emanates from enumerative geometry. In Section 1.3.1, we discussed elementary examples

of quiver varieties, namely T ∗Grk,n and, in general, cotangent bundles to partial flag
varieties. The corresponding quantum K -theory ring reproduces the Bethe algebra for the

XXZ model related to ŝl(n). Another set of varieties which have been extensively studied

are the framed cyclic quiver varieties, which are related to
̂̂
gl(n) toroidal algebras, where n

is the number of vertices. In the simplest situation of one vertex, such a variety is identified

with the space of ADHM instantons [55]. More details on algebraic properties of quantum

toroidal algebras and their geometric realisation can be found in recent reviews [49].
According to general construction, the q → 1 asymptotic of z -analytic solutions of the

resulting qKZ equations reproduces the Bethe equations, which serve as constraints for

the quantum K -theory ring. These are exactly the equations we reproduce from toroidal
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opers. Given that t1,t2 are the standard deformation parameters of Ut1,t2

(̂̂
gl(n)

)
, we

obtain the following exchange of parameters:

(�,p)↔
(
(t1t2)

−1,t1
)
, (1.4)

which serves as the first example of the analogue q-Langlands correspondence for toroidal
algebras.

1.4.4. String-theory motivation. In string-theory literature it is common to study
limits when the number of objects, such as branes, becomes infinite. The most relevant

example for this paper is the topological holography program initiated by Gopakumar

and Vafa [29]. According to that paper, a topological phase transition can be regarded as

an interpolation between two desingularisations of the conifold geometry–the deformed
conifold T ∗S3 and the resolved conifold O(−1)⊕2

P1 .

The M-theory description of the former phase, in the presence of certain defects and

flux through one of the complementary complex directions, after dimensional reduction,
leads to a 3-dimensional quiver gauge theory on S1×Cq. The massive spectrum of such

3D theories is described by the equivariant quantum K -theory of the corresponding quiver

varieties, which we discussed earlier. The parameter � from before plays the role of an
N = 4 R-symmetry-equivariant parameter.

The latter, resolved phase yields 5-dimensional gauge theory. The moduli space of

instantons in this 5D theory is given by the ADHM quiver, which later in this paper will

be discussed in connection with toroidal q-opers.
The topological phase transition from the deformed phase to the resolved phase occurs

when the number of branes which wrap the S3 cycle in the deformed geometry and

determines the number of gauge groups in the 3D theory becomes infinite. In addition,
a certain quantisation condition between the Ω-background parameters of the 3D gauge

theory and other mass parameters of the problem must be satisfied. Namely, if si and

si+1 are complexified gauge-field vacuum expectation values of vector superfields of the
ith and (i+1)th gauge groups, respectively, then the condition reads si+1

si
= pn, where n

is an integer. On the resolved side of the transition, p becomes an equivariant parameter

of the K -theory of the ADHM moduli space. The same parameters already appeared in

formula (1.4).
Representation-theoretic aspects of the Gopakumar–Vafa transition in connection with

quantum geometry of quiver varieties of A-type were discussed in [36]. The present paper

provides an alternative description of the same physics in terms of bona fide classical
objects: q-opers. By combining our results with those of the first author in [36], we can

establish the quantum/classical duality between the quantum XXZ spin chain of Â0-type,

whose Bethe equations coincide with relations in quantum equivariant K -theory of the
ADHM quiver variety, and the so-called 1-toroidal q-opers. This correspondence can be

regarded as the large-rank limit of the quantum/classical duality which has been discussed

in both the physics [27, 39] and mathematics [38] literature.
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We also note that oper-related structures in A-type, as well as their super analogues,
have appeared in recent physics literature on integrability in the AdS/CFT correspon-

dence [34, 10] as well as some earlier work [42].

1.4.5. Structure of the paper. In Section 2 we give two equivalent definitions of

(SL(r+1),q)-opers and their Miura versions as q-connections, which were introduced in

[24] and [38], correspondingly. The first definition uses the Lie-theoretic approach and
the second one uses complete flags of subbundles.

In Sections 3–5 we elaborate on the Lie-theoretic definition and recall basic construc-

tions of [24]. Section 3 is devoted to Z -twisted (SL(r+1),q)-opers, which are q-gauge-
equivalent to a diagonal matrix. In Section 4 a milder version of the Z -twisted condition

is introduced which is related to associated bundles leading to the notion of Z -twisted

Miura–Plücker (SL(r+1),q)-opers. We also discuss nondegeneracy conditions for these
objects. Section 5 addresses the one-to-one correspondence between Z -twisted Miura–

Plücker opers and the nondegenerate solutions of the QQ-systems (and thus Bethe

ansatz equations) as well as their extension. We also prove that Z -twisted Miura–Plücker

(SL(r + 1),q)-opers are Z -twisted, and relate the extended QQ-system to quantum
Bäcklund transformations, introduced in [24].

In Section 6 we use the second definition of Miura (SL(r+1),q)-opers and show how

the Z -twisted condition and quantum Bäcklund transformations can be reformulated in
terms of q-Wronskian matrices, extending the results of [38].

In Section 7 we describe the fermionic realisation of Z -twisted Miura (SL(r+1),q)-opers

using the realisation of the fundamental representations in the fermionic Fock space. We
then use it as a motivation to write an infinite-rank formula. To do that we introduce

the group GL(∞) and its representations in the fermionic Dirac sea–that is, semi-infinite

wedge space–and then in Sections 8 and 9 we extend the finite-dimensional notions of

(SL(r+1),q)-oper theory from earlier sections to the case of GL(∞). In particular, we
show the relation between the corresponding infinite generalisation of the QQ-system and

Z -twisted Miura
(
GL(∞),q

)
-opers.

Finally, Section 10 is devoted to the main target of the paper: the toroidal opers.
These are nondegenerate Z -twisted Miura opers with certain periodicity conditions. The

main goal of the section is to show that they are in one-to-one correspondence with

the nondegenerate solutions of the QQ-system for toroidal algebras. We also discuss the
relation to the enumerative geometry of ADHM spaces and generalisations to framed

cyclic quiver varieties.

2. (SL(r+1),q)-opers

2.1. Group-theoretic data and notations

Consider SL(r+1) to be the simple algebraic group of invertible (r+1)×(r+1) matrices

over C. We fix a Borel subgroup B− with unipotent radical N− = [B−,B−] of lower
triangular matrices and strictly lower triangular matrices correspondingly. The maximal

torus is the corresponding set of diagonal matrices H ⊂B−. Let B+ be the opposite Borel

subgroup containing H. Let {α1, . . . ,αr} be the set of positive simple roots for the pair
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H ⊂B+. Let {α̌1, . . . ,α̌r} be the corresponding coroots. Then the elements of the Cartan

matrix of the Lie algebra sl(r+1) of G are given by aij = 〈αj,α̌i〉. The Lie algebra sl(r+1)

has Chevalley generators {ei,fi,α̌i}i=1,...,r, so that b− = Lie(B−) is generated by the fis
and α̌is, and b+ =Lie(B+) is generated by the eis and α̌is. In the defining representation

α̌i ≡Eii−Ei+1,i+1, ei ≡Ei,i+1, fi ≡Ei−1,i, where Eij stand for the matrix with the only

nonzero element 1 in the ijth place. The fundamental weights ω1, . . . ,ωr are defined by
the condition 〈ωi,α̌j〉= δij .

LetWSL(r+1) =N(H)/H ≡Sr+1 be the Weyl group of SL(r+1). Let wi ∈WSL(r+1)(i=

1, . . . ,r) denote the simple reflection corresponding to αi. We also denote by w0 the longest
element of W, so that B+ = w0(B−). Recall that a Coxeter element of W is a product

of all simple reflections in a particular order. It is known that the set of all Coxeter

elements forms a single conjugacy class in WG. We will fix once and for all (unless

specified otherwise) a particular ordering of the simple roots according to the natural
ordering provided by the Dynkin diagram. Let c= wrwr−1 · · ·w1 be the Coxeter element

associated to this ordering. In what follows (unless specified otherwise), all products over

i ∈ {1, . . . ,r} will be taken in this order; thus, for example, we write c =
∏

iwi. We also
fix representatives si ∈N(H) of wi. In particular, s=

∏
i si will be a representative of c

in N(H).

In the following we will denote the deformation parameter q instead of �, for
convenience.3

2.2. (SL(r+1),q)-opers: Two definitions

Consider the automorphism Mq : P
1 −→ P

1 sending z �→ qz, where q ∈ C
× is not a root

of unity.

Given a principal SL(r+1)-bundle FSL(r+1) over P
1 (in Zariski topology), let Fq

SL(r+1)

denote its pullback under the map Mq : P1 −→ P
1 sending z �→ qz. A meromorphic

(SL(r+1),q)-connection on a principal SL(r+1)-bundle FSL(r+1) on P
1 is a section

A of HomOU

(
FSL(r+1),Fq

SL(r+1)

)
, where U is a Zariski-open dense subset of P

1.

We can always choose U so that the restriction FSL(r+1)|U of FSL(r+1) to U is

isomorphic to the trivial SL(r+1)-bundle. Choosing such an isomorphism – that is,

a trivialisation of FSL(r+1)|U – we also obtain a trivialisation of FSL(r+1)|M−1
q (U). Using

these trivialisations, the restriction of A to the Zariski-open dense subset U ∩M−1
q (U)

can be written as a section of the trivial SL(r+1)-bundle on U ∩M−1
q (U), and hence

as an element A(z) of SL(r + 1)(z), where we set K(z) = K(C(z)). Changing the

trivialisation of FSL(r+1)|U via g(z)∈ SL(r+1)(z) changes A(z) by the following q-gauge

transformation:

A(z) �→ g(qz)A(z)g(z)−1. (2.1)

3The notation mix-up is due to the fact that in the context of the q-deformed geometric
Langlands correspondence, � is used for the deformation parameter of the quantum algebra,
while q is the parameter in the qKZ equation (see the introduction). Since we do not use the
qKZ equation anywhere in the paper, we have renamed � as q.
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This shows that the set of equivalence classes of pairs
(
FSL(r+1),A

)
is in bijection with

the quotient of SL(r+1)(z) by these q-gauge transformations. Equivalently, one could
consider the vector bundle E of rank r+1 over P

1 associated to FSL(r+1) and define

the (SL(r+1),q)-connection as a section of HomOU
(E,Eq), which is invertible and has

determinant 1.
Following [24], we define an (SL(r+1),q)-oper as follows:

Definition 2.1. A meromorphic (SL(r+1),q)-oper (or simply a q-oper) on P
1 is a triple(

FSL(r+1),A,FB−

)
, where A is a meromorphic (SL(r+1),q)-connection on an SL(r+1)-

bundle FSL(r+1) on P
1 and FB− is the reduction of FSL(r+1) to B− satisfying the following

condition: there exists a Zariski-open dense subset U ⊂ P
1 together with a trivialisation

ıB− of FB− , such that the restriction of the connection A : FSL(r+1) −→ Fq
SL(r+1) to

U ∩M−1
q (U), written as an element of SL(r+1)(z) using the trivialisations of FSL(r+1)

and Fq
SL(r+1) on U ∩M−1

q (U) induced by ıB− , takes values in the Bruhat cell

B−
(
C
[
U ∩M−1

q (U)
])
cB−

(
C
[
U ∩M−1

q (U)
])
.

Thus, locally, any q-oper connection A can be written (using a particular trivialisation

ıB−) in the form

A(z) = n′(z)
∏
i

(
φi(z)

α̌isi
)
n(z), (2.2)

where φi(z)∈C(z) and n(z),n′(z)∈N−(z) are such that their zeros and poles are outside
the subset U ∩M−1

q (U) of P1.

However, we used another definition in [38]:

Definition 2.2. A meromorphic (GL(r+1),q)-oper on P
1 is a triple (A,E,L•), where E

is a vector bundle of rank r+1 and L• is the corresponding complete flag of the vector

bundles

Lr+1 ⊂ ·· · ⊂ Li+1 ⊂ Li ⊂ Li−1 ⊂ ·· · ⊂ L1 = E,

where Lr+1 is a line bundle, so that the q-connection A ∈ HomOU
(E,Eq) satisfies the

following conditions:

i) A·Li ⊂ Li−1.

ii) There exists a Zariski-open dense subset U ⊂ P
1 such that the restriction of A ∈

Hom(L•,Lq
•) to U ∩M−1

q (U) is invertible and satisfies the condition that the induced
maps Āi : Li/Li+1 −→Li−1/Li are isomorphisms on U ∩M−1

q (U).

An (SL(r+1),q)-oper is a (GL(r+1),q)-oper with the condition that det(A) = 1 on

U ∩M−1
q (U).

The equivalence of Definitions 2.1 and 2.2 can be proven along the same lines

as the equivalence of the analogous definitions in the case of classical opers. One
can derive the second definition from the first by considering the associated bundle

E =
(
FSL(r+1)×Vω1

)
/SL(r+1), where Vω1

in the defining representation of G. That

immediately provides a flag of subbundles in E, preserved by B−. From the chosen order
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in the Coxeter element we obtain that the induced q-connection on E locally has the form
of the matrix with coefficients in C(z) so that it has 0s above the superdiagonal. That

immediately leads to Definition 2.2(i) and (ii). In this way, the q-connection A induces

a q-connection A in Definition 2.2. Notice that the second definition implies the local
formula (2.2) in the defining representation, and thus by faithfulness the first definition

follows from the second. In the following we will use the same notation for A and A: it

will be clear from the context which q-connection is used.

2.3. Miura (SL(r+1),q)-opers

The Miura condition for the the q-opers corresponds to the introduction of an additional

datum: reduction of the underlying SL(r+1)-bundle to the Borel subgroup B+ (opposite
to B−) that is preserved by the oper q-connection.

Definition 2.3. AMiura (SL(r+1),q)-oper on P
1 is a quadruple

(
FSL(r+1),A,FB−,FB+

)
,

where
(
FSL(r+1),A,FB−

)
is a meromorphic (SL(r + 1),q)-oper on P

1 and FB+
is a

reduction of the SL(r+1)-bundle FSL(r+1) to B+ that is preserved by the q-connection A.

An equivalent definition using a flag of subbundles can be obtained by using the explicit

identification of G/B+ with the flag variety:

Definition 2.4. A Miura (SL(r+1),q)-oper on P
1 is a quadruple

(
E,A,L•,L̂•

)
, where

(E,A,L•) is a meromorphic (SL(r+1),q)-oper on P
1 and L̂• = {Li} is another full flag

of subbundles in E that is preserved by the q-connection A.

Forgetting FB+
, we associate an (SL(r+1),q)-oper to a given Miura (SL(r+1),q)-oper.

We will refer to it as the (SL(r+1),q)-oper underlying this Miura (SL(r+1),q)-oper.

From the point of view of local consideration, let U be a Zariski-open dense subset on
P
1 as in Definition 2.1. Choosing a trivialisation ıB− of FSL(r+1) on U ∩M−1

q (U), we can

write the q-connection A in the form of equation (2.2). On the other hand, using the B+-

reduction FB+
we can choose another trivialisation of FSL(r+1) on U ∩M−1

q (U) such that

the q-connection A acquires the form Ã(z)∈B+(z). Hence there exists g(z)∈SL(r+1)(z)

such that

g(zq)n′(z)
∏
i

(
φi(z)

α̌isi
)
n(z)g(z)−1 = Ã(z) ∈B+(z). (2.3)

Suppose we are given a principal SL(r+1)-bundle FSL(r+1) on any smooth complex

manifold X equipped with reductions FB− and FB+
to B− and B+, respectively. Then

we assign to any point x ∈ X an element of the Weyl group Sr+1. Namely, the fibre
FSL(r+1),x of FSL(r+1) at x is a G-torsor with reductions FB−,x and FB+,x to B− and B+,

respectively. Choose any trivialisation of FSL(r+1),x–that is, an isomorphism of SL(r+1)-

torsors FSL(r+1),x �SL(r+1). Under this isomorphism, FB−,x gets identified with aB− ⊂
SL(r+1) and FB+,x with bB+. Then a−1b is a well-defined element of the double quotient

B−\SL(r+1)/B+, which is in bijection with WSL(r+1). Hence we obtain a well-defined

element of WSL(r+1) = Sr+1.
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We will say that FB− and FB+
have a generic relative position at x ∈X if the element

of WG assigned to them at x is equal to 1 (this means that the corresponding element

a−1b belongs to the open dense Bruhat cell B− ·B+ ⊂ SL(r+1)).

Using Bruhat decomposition SL(r+1)(z) =
⊔

w∈WSL(r+1)
B+(z)wN−(z), we claim that

g(z) from equation (2.3) lies in the w = 1 cell–namely, g(z) ∈B+(z)N−(z).
Using the notion of relative position, we can reformulate this local statement as the

following theorem, which was proven in [24]:

Theorem 2.5. For any Miura (SL(r+1),q)-oper on P
1, there exists an open dense

subset V ⊂ P
1 such that the reductions FB− and FB+

are in generic relative position for
all x ∈ V .

Returning to the local expression (2.3), we now wish to characterise the explicit
representatives for Ã(z).

Theorem 2.6. Every element of the set N−(z)
∏

iφi(z)
α̌isiN−(z) ∩ B+(z) can be written

in the form ∏
i

gα̌i
i e

ti(z)φi(z)

gi
ei, gi ∈ C

×(z), (2.4)

where each ti(z) ∈ C(z) is determined by the lifting si.

This fact was proven in higher generality in [24]. Note that in the case of SL(r+1) for

a given order of si, this follows directly from the matrix realisation.

From now on we consider the liftings si of simple reflections wi ∈W in such a way that
ti = 1 for (i= 1, . . . ,r).

3. Z -twisted Miura (SL(r+1),q)-opers

3.1. Z -twisted (Miura) opers

In this paper we consider a class of (Miura) q-opers that are gauge-equivalent to a constant

element of SL(r+1) (as (SL(r+1),q)-connections). Moreover, we assume that such an
element Z is the regular element of the maximal torus H. One can express it as

Z =

r∏
i=1

ζα̌i
i , ζi ∈ C

×. (3.1)

Definition 3.1. A Z-twisted (SL(r+1),q)-oper on P
1 is an (SL(r+1),q)-oper that is

equivalent to the constant element Z ∈ H ⊂ H(z) under the q-gauge action of SL(r+

1)(z)–that is, if A(z) is the meromorphic oper q-connection (with respect to a particular

trivialisation of the underlying bundle), there exists g(z) ∈G(z) such that

A(z) = g(qz)Zg(z)−1. (3.2)

A Z-twisted Miura (SL(r + 1),q)-oper is a Miura (SL(r + 1),q)-oper on P
1 that is

equivalent to the constant element Z ∈ H ⊂ H(z) under the q-gauge action of B+(z)

–that is,

A(z) = v(qz)Zv(z)−1, v(z) ∈B+(z). (3.3)
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It follows from Definition 3.1 that any Z -twisted (SL(r+1),q)-oper is also Z ′-twisted for

any Z ′ in the Sr+1-orbit of Z. But if we endow it with the structure of a Z -twisted Miura

(SL(r+1),q)-oper (by adding a B+-reduction FB+
preserved by the oper q-connection),

then we fix a specific element in this Sr+1-orbit.

Thus we have the following proposition, which allows us to characterise Z -twisted Miura

q-opers associated to Z -twisted q-opers:

Proposition 3.2. Let Z ∈ H be regular. For any Z-twisted (SL(r + 1),q)-oper(
FSL(r+1),A,FB−

)
and any choice of B+-reduction FB+

of FSL(r+1) preserved by the

oper q-connection A, the resulting Miura (SL(r+1),q)-oper is Z ′-twisted for a particular
Z ′ ∈ Sr+1 ·Z. The set of A-invariant B+-reductions FB+

on the (SL(r+1),q)-oper is in

one-to-one correspondence with the elements of W.

3.2. (Miura) q-opers with regular singularities

Let {Λi(z)}i=1,...,N−1 be a collection of nonconstant polynomials.

Definition 3.3. An (SL(r + 1),q)-oper with regular singularities determined by
{Λi(z)}i=1,...,r is a q-oper on P

1 whose q-connection (2.2) may be written in the form

A(z) = n′(z)
∏
i

(
Λi(z)

α̌isi
)
n(z), n(z),n′(z) ∈N−(z). (3.4)

A Miura (SL(r + 1),q)-oper with regular singularities determined by polynomials
{Λi(z)}i=1,...,r is a Miura (SL(r+1),q)-oper such that the underlying q-oper has regular

singularities determined by {Λi(z)}i=1,...,r.

The following theorem follows from Theorem 2.6 and gives an explicit parameterisation
of generic elements from the space of Miura opers:

Theorem 3.4. For every Miura (SL(r+1),q)-oper with regular singularities determined

by the polynomials {Λi(z)}i=1,...,r, the underlying q-connection can be written in the form

A(z) =
∏
i

gi(z)
α̌ie

Λi(z)

gi(z)
ei, gi(z) ∈ C(z)×. (3.5)

3.3. Cartan connections

Consider a Miura (SL(r+1),q)-oper. By Theorem 3.4, the underlying (SL(r+1),q)-
connection can be written in the form of equation (3.5). Since it preserves the B+-bundle

FB+
underlying this Miura (SL(r+1),q)-oper (see Definition 2.3), it may be viewed as a

meromorphic (B+,q)-connection on P
1. Taking the quotient of FB+

by N+ = [B+,B+] and

using the fact that B/N+ �H, we obtain an H -bundle FB+
/N+ and the corresponding

(H,q)-connection, which we denote by AH(z). According to equation (3.5), it is given by

the formula

AH(z) =
∏
i

gi(z)
α̌i . (3.6)
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We call AH(z) the associated Cartan q-connection of the Miura q-oper A(z).

Now, if our Miura q-oper is Z -twisted (see Definition 3.1), then we also have A(z) =

v(qz)Zv(z)−1, where v(z) ∈B+(z). Since v(z) can be written as

v(z) =
∏
i

yi(z)
α̌in(z), n(z) ∈N+(z), yi(z) ∈ C(z)×, (3.7)

the Cartan q-connection AH(z) has the form

AH(z) =
∏
i

yi(qz)
α̌iZ

∏
i

yi(z)
−α̌i, (3.8)

and hence we will refer to AH(z) as the Z -twisted Cartan q-connection. This formula
shows that AH(z) is completely determined by Z and the rational functions yi(z). Indeed,

comparing this equation with equation (3.6) gives

gi(z) = ζi
yi(qz)

yi(z)
. (3.9)

We note that AH(z) determines the yi(z)s uniquely up to scalar. Indeed, if there is

another choice ỹi(z), we obtain that hi(z) = yi(z)ỹ
−1
i (z) satisfies the equation hi(qz) =

hi(z). Given the condition that q is not a root of unity, hi(z) has to be constant.

4. Miura–Plücker (SL(r+1),q)-opers

In this section we will talk about the notion of nondegeneracy and will relax the Z -twisted

condition slightly (we refer to [24] for details). We will associate to the given (SL(r+1),q)-

Miura oper a collection of (GL(2),q)-opers and require that all of them be Z -twisted with
some nondegeneracy conditions. This will lead to the notion of Z -twisted Miura–Plücker

q-opers. It turns out, as we will find out in Section 5, that these objects, supplied by

the nondegeneracy condition, are in one-to-one correspondence with solutions of certain
equations called a QQ-system, which are in turn related to Bethe ansatz equations. Also,

in the next section we will show that for SL(r+1), this relaxed Z -twisted Miura–Plücker

condition is equivalent to the original Z -twisted condition.

4.1. The associated Miura (GL(2),q)-opers and Miura–Plücker condition

Let Vi be the irreducible representation of SL(r+1) with the highest weight ωi. Notice

that the 1- and 2-dimensional subspaces Li and Wi of Vi spanned by the weight vectors

νωi
(the highest weight vector) and νωi

, fi ·νωi
are B+-invariant subspaces of Vi.

Now let
(
FSL(r+1),A,FB−,FB+

)
be a Miura (SL(r+1),q)-oper with regular singularities

determined by polynomials {Λi(z)}i=1,...,r (see Definition 3.3). Recall that FB+
is a B+-

reduction of a G-bundle FSL(r+1) on P
1 preserved by the (SL(r+1),q)-connection A.

Therefore for each i= 1, . . . ,r, the vector bundle

Vi = FB+
×
B+

Vi = FSL(r+1) ×
SL(r+1)

Vi
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associated to Vi contains a rank 2 subbundle

Wi = FB+
×
B+

Wi

associated to Wi ⊂ Vi, and Wi in turn contains a line subbundle

Li = FB+
×
B+

Li

associated to Li ⊂Wi.
Denote by φi(A) the q-connection on the vector bundle Vi corresponding to this Miura

q-oper connection A. Since by definition A preserves FB+
, we obtain that φi(A) preserves

the subbundles Li and Wi of Vi and thus produces a (GL(2),q)-oper on Wi. Let us denote
such a q-oper by Ai.

If we trivialise FB+
on a Zariski-open subset of P1 so that A(z) has the form of equation

(3.5) with respect to this trivialisation (see Theorem 3.4). This trivialises the bundles Vi,

Wi and Li, so that the q-connection Ai(z) becomes a 2×2 matrix whose entries are in
C(z). Moreover, Wi decomposes into a direct sum of two subbundles–L̂i, preserved by

B+, and Li–with respect to which it satisfies the (GL(2),q)-oper condition. We can unify

all that in the following proposition:

Proposition 4.1 ([24]). The quadruple
(
Ai,Wi,Li,L̂i

)
forms a Miura (GL(2),q)-oper,

so that explicitly

Ai(z) =

⎛⎝gi(z) Λi(z)
∏

j>i gj(z)
−aji

0 g−1
i (z)

∏
j �=i gj(z)

−aji

⎞⎠, (4.1)

where we use the ordering of the simple roots determined by the Coxeter element c.

Now we impose the condition of equation (3.8) on the corresponding AH -connection,
namely

gi = ζi
yi(qz)

yi(z)
.

Let Gi
∼= SL(2) be the subgroup of SL(r+1) corresponding to the sl(2)-triple spanned

by {ei,fi,α̌i} which preserves Wi. Performing the gauge transformation via diagonal

matrix for equation (4.1), we can represent the resulting connection as follows:

Ãi(z) = u(qz)Ai(z)u
−1(z) =

(
1 0

0
∏

j �=i ζ
−aji

j

)
Ai(z)

=

(
1 0

0
∏

j �=i ζ
−aji

j

)
gα̌i
i (z)e

ρi(z)

gi(z)
ei, (4.2)

where

ρi(z) = Λi(z)
∏
j>i

(ζjyj(qz))
−aji

∏
j<i

yj(z)
−aji . (4.3)

https://doi.org/10.1017/S1474748021000220 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000220


600 P. Koroteev and A. M. Zeitlin

Thus, under the assumption of equation (3.8), our Miura (SL(r+1),q)-oper A(z) gives

rise to a collection of meromorphic Miura (SL(2),q)-opers Ai(z) for i = 1, . . . ,N − 1. It

should be noted that it has regular singularities in the sense of Definition 3.3 if and only
if ρi(z) is a polynomial. For example, this holds for all i if all yj(z),j = 1, . . . ,N −1, are

polynomials, an observation we will use later.

Now we are ready to relax the Z -twisted condition as follows:

Definition 4.2 ([24]). A Z -twisted Miura–Plücker (SL(r+1),q)-oper is a meromorphic

Miura (SL(r+1),q)-oper on P
1 with the underlying q-connection A(z), such that there

exists v(z) ∈ B+(z) such that for all i = 1, . . . ,r, the Miura (GL(2),q)-opers Ai(z)

associated to A(z) by equation (4.1) can be written in the form

Ai(z) = v(zq)Zv(z)−1
∣∣
Wi

= vi(zq)Zivi(z)
−1, (4.4)

where vi(z) = v(z)|Wi
and Zi = Z|Wi

.

Note that it follows from this definition that the (H,q)-connection AH(z) associated to

a Z -twisted Miura–Plücker (SL(r+1),q)-oper can be written in the same form–equation

(3.8)–as the (H,q)-connection associated to a Z -twisted Miura (SL(r+1),q)-oper.
However, while it is true that every Z -twisted Miura (SL(r+1),q)-oper is automatically

a Z -twisted Miura–Plücker (SL(r+1),q)-oper, the converse is not necessarily true if r �=1.

4.2. Nondegeneracy conditions

In what follows, we will say that v,w ∈ C
× are q-distinct if qZv∩ qZw =∅.

In this subsection we introduce two nondegeneracy conditions for Z -twisted Miura–

Plücker q-opers. The first, called the H -nondegeneracy condition, is applicable to

arbitrary Miura q-opers with regular singularities. Recall from Theorey 3.4 that the
underlying q-connection can be represented in the form of equation (3.5).

Definition 4.3 ([24]). A Miura (SL(r+1),q)-oper A(z) of the form in equation (3.5) is

called H -nondegenerate if the corresponding (H,q)-connection AH(z) can be written in
the form of equation (3.8), where for all i,j,k with i �= j and aik �= 0,ajk �= 0, the zeros

and poles of yi(z) and yj(z) are q-distinct from each other and from the zeros of Λk(z).

Next we define the second nondegeneracy condition. This condition applies to Z -twisted

Miura–Plücker (SL(r+1),q)-opers. We start from (SL(2),q)-opers.

Consider a Miura (SL(2),q)-oper given by equation (3.5), which reads in this case

A(z) = g(z)α̌ exp

(
Λ(z)

g(z)
e

)
,

so that the corresponding Cartan q-connection AH(z) is AH(z) = g(z)α̌, where y(z) is a

rational function. Let us assume that A(z) is H -nondegenerate (see Definition 4.3). This

means that the zeros of Λ(z) are q-distinct from the zeros and poles of y(z).
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If we apply to A(z) a q-gauge transformation by an element of h(z)α̌ ∈H[z], we obtain
a new q-oper connection

Ã(z) = g̃(z)α̌ exp

(
Λ̃(z)

g̃(z)
e

)
, (4.5)

where g̃(z) = g(z)h(zq)h(z)−1, Λ̃(z) = Λ(z)h(zq)h(z). It also has regular singularities, but

for a different polynomial Λ̃(z), and Ã(z) may no longer be H -nondegenerate. However,
it turns out there is an essentially unique gauge transformation from H[z] for which the

resulting Ã(z) is H -nondegenerate ÃH(z) and ỹ(z) is a polynomial. This choice allows us

to fix the polynomial Λ(z) determining the regular singularities of our (SL(2),q)-oper.

Lemma 4.4 ([24]).

(1) There is an (SL(2),q)-oper Ã(z) in the H[z]-gauge class of A(z) for which ÃH(z) =

g̃(z)α̌ is nondegenerate and the rational function ỹ(z) is a polynomial. This oper

is unique up to a scalar a ∈ C
× that leaves g̃(z) unchanged but multiplies ỹ(z) and

Λ̃(z) by a and a2, respectively.

(2) This (SL(2),q)-oper Ã(z) may also be characterised by the property that Λ̃(z) has

maximal degree subject to the constraint that it is H-nondegenerate.

This motivates the following definition:

Definition 4.5 ([24]). A Z -twisted Miura (SL(2),q)-oper is called nondegenerate if

it is H -nondegenerate and the rational function y(z) appearing in equation (3.8) is a
polynomial.

We now turn to the general case. Recall Definition 4.2 of Z -twisted Miura–Plücker

(SL(r+1),q)-opers.

Definition 4.6 ([24]). Suppose that r > 1. A Z -twisted Miura–Plücker (SL(r+1),q)-oper

A(z) is called nondegenerate if its associated Cartan q-connection AH(z) is nondegenerate
and each associated Zi-twisted Miura (SL(2),q)-oper Ai(z) is nondegenerate.

It turns out that this simply means that in addition to AH(z) being nondegenerate,

each yi(z) from equation (3.8) is a polynomial. Here we provide the complete proof, since

we will need it for the infinite-dimensional case.

Proposition 4.7 ([24]). Suppose that r > 1 and let A(z) be a Z-twisted Miura–Plücker

(SL(r+1),q)-oper. The following statements are equivalent:

(1) A(z) is nondegenerate.

(2) The Cartan q-connection AH(z) is nondegenerate, and each Ai(z) has regular

singularities–that is, ρi(z) given by equation (4.3) is in C[z].

(3) Each yi(z) from equation (3.8) is a polynomial, and for all i,j,k with i �= j and

aik �= 0,ajk �= 0, the zeros of yi(z) and yj(z) are q-distinct from each other and from

the zeros of Λk(z).
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Proof. To prove that (2) implies (3), we need only show that if each ρi(z) given

by equation (4.3) is in C[z], then the yi(z)s are polynomials. Suppose yi(z) is not a

polynomial, and choose j �= i such that aij �= 0. Then −aij > 0, and so the denominator
of yi(z) or yi(qz) appears in the denominator of ρj(z). Moreover, since the poles of yi(z)

are q-distinct from the zeros of Λj(z) and the other yk(z)s, the poles of yi(z) or yi(qz)

would give rise to poles of ρj(z). But then Aj(z) would not have regular singularities.
Next, assume (3). Then AH(z) is nondegenerate by Definition 4.3. Since all the yi(z)s

are polynomials, the same is true for the ρi(z)s. (Here we are using the fact that the

off-diagonal elements of the Cartan matrix, aij with i �= j, are less than or equal to 0.)
Since ρi(z) is a product of polynomials whose roots are q-distinct from the roots of yi(z),

we see that the Cartan q-connection associated to Ai(z) is nondegenerate.

Finally, (2) is a trivial consequence of (1). �
If we apply a q-gauge transformation by an element h(z) ∈H[z] to A(z), we get a new

Z -twisted Miura–Plücker (SL(r+1),q)-oper. However, the following proposition shows
that it is only nondegenerate if h(z) ∈H is constant with respect to z. As a consequence,

the Λks of a nondegenerate q-oper are determined up to scalar multiples.

Proposition 4.8 ([24]). If A(z) is a nondegenerate Z-twisted Miura–Plücker (SL(r+

1),q)-oper and h(z) ∈H[z], then h(qz)A(z)h(z)−1 is nondegenerate if and only if h(z) is

a constant element of H.

5. Z -twisted Miura (SL(r+1),q)-opers and QQ-systems

5.1. QQ-systems and Miura–Plücker (SL(r+1),q)-opers

One of the main results of the previous section was the explicit structure of the
nondegenerate Miura–Plücker (SL(r+1),q)-oper with regular singularities defined by

{Λi(z)}i=(1,...,r) and associated with regular element Z =
∏

i ζ
α̌i
i . Following Proposition

4.7, the local expression A(z) can be expressed as follows:

A(z) =
∏
i

gi(z)
α̌ie

Λi(z)

gi(z)
ei, gi(z) = ζi

Q+
i (qz)

Q+
i (z)

, (5.1)

where Q+
i (z) are monic polynomials (here we changed the notation yi(z)≡Q+

i (z)). From

now on, we will assume that Z satisfies the following property:
r∏

i=1

ζ
aij

i =
ζ2j

ζj+1ζj−1
/∈ qZ, ∀ j = 1, . . . ,r, (5.2)

where aij are matrix elements of the Cartan matrix for slr+1. Since
∏r

i=1 ζ
aij

i �= 1 is a

special case of equation (5.2), this implies that Z is regular semisimple.

5.2. The SL(r+1)QQ-system

In [24] the following statement was proven (we specialise the result to the case of

SL(r+1)):

Theorem 5.1. There is a one-to-one correspondence between the set of nondegenerate

Z-twisted Miura–Plücker (SL(r+ 1),q)-opers and the set of nondegenerate polynomial
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solutions of the QQ-system

ξiQ
+
i (qz)Q

−
i (z)− ξi+1Q

+
i (z)Q

−
i (qz) = Λi(z)Q

+
i−1(z)Q

+
i+1(qz), i= 1, . . . ,r, (5.3)

subject to the boundary conditions Q±
0 (z) =Q±

r+1(z) = 1 and ξ0 = ξr+2 = 1 so that

ξ1 = ζ1, ξ2 =
ζ2
ζ1
, . . . , ξr =

ζr
ζr−1

, ξr+1 =
1

ζr
.

Note that ξi is the ith element on the diagonal of Z from equation (3.1).

We will say that a polynomial solution
{
Q+

i (z),Q
−
i (z)

}
i=1,...,r

of equation (5.3) is

nondegenerate if the following conditions are satisfied: equation (5.2) holds, and for i �= j

the zeros of Q+
i (z) and Q−

j (z) are q-distinct from each other and from the zeros of Λk(z)

for |i−k|= 1, |j−k|= 1.

For convenience we rewrite equation (5.3) as

ξiφi(z)− ξi+1φi(qz) = ρi(z), (5.4)

where

φi(z) =
Q−

i (z)

Q+
i (z)

, ρi(z) = Λi(z)
Q+

i−1(qz)Q
+
i+1(z)

Q+
i (z)Q

+
i (qz)

. (5.5)

5.3. Extended QQ-system and Z -twisted (SL(r+1),q)-opers

As was demonstrated in [24], for a simply connected simple Lie group G the set of

nondegenerate Z -twisted Miura–Plücker q-opers includes as a subset the set of Z -twisted

Miura (G,q)-opers. The opposite inclusion was deemed possible provided that Z -twisted
Miura–Plücker q-opers are in addition w0-generic [24, Theorem 7.10]. We will discuss this

notion in detail later, in Section 5.6.

In this section we shall demonstrate that when G is a special linear group, we do not
need this extra condition and the corresponding Z -twisted Miura–Plücker (SL(r+1),q)-

oper will be a Z -twisted Miura q-oper; namely, there exists v(z) ∈ B+(z) such that the

q-connection A(z) reduces to an element of the form of Equation (3.1)–or equivalently,

v(qz)−1A(z) = Zv(z)−1. (5.6)

Moreover, we will construct an explicit expression for v(z).
The following statement is a generalisation of the result of [46] to Z -twisted q-opers:

Theorem 5.2. Let A(z) be as in equation (5.1) and Z as in equation (3.1). Suppose
Q−

i,i+1,...,j(z) ( i,j ∈ Z, i < j) are polynomials satisfying equations:

ξiφi(z)− ξi+1φi(qz) = ρi(z), i= 1, . . . ,r,

ξiφi,i+1(z)− ξi+2φi,i+1(qz) = ρi+1(z)φi(qz), i= 1, . . . ,r−1,

... (5.7)

ξiφi,...,r−2+i(z)− ξr+i−1φi,...,r−2+i(qz) = ρr−1(z)φi,...,r−3+i(qz), i= 1,2,

ξ1φ1,...,r(z)− ξr+1φ1,...,r(qz) = ρr(z)φ1,...,r−1(qz),
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where for all j > i,

φi,...,j(z) =
Q−

i,...,j(z)

Q+
j (z)

. (5.8)

Then there exist v(z) ∈B+(z) such that equation (5.6) holds and is given by

v(z) =

r∏
i=1

Q+
i (z)

α̌i ·
r∏

i=1

Vi(z), (5.9)

where

Vi(z) =
r∏

j=i

exp(−φi,...,j(z)ei,...,j), ei,...,j = [. . . [[ei,ei+1],ei+2]. . . ej ] . (5.10)

We shall prove a more general statement in Section 9 about
(
GL(∞),q

)
-opers which

will contain Theorem 5.2 as a corollary. Here, to illustrate how the theorem works, we

will regard some low-rank examples.

Notice that although the expression for v(z) in equation (5.9) is rather complicated,
the inverse v(z)−1 can be succinctly presented as

v(z)−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
Q+

1 (z)

Q−
1 (z)

Q+
2 (z)

Q−
12(z)

Q+
3 (z)

· · · Q−
1,...,r−1(z)

Q+
r (z)

Q−
1,...,r(z)

0
Q+

1 (z)

Q+
2 (z)

Q−
2 (z)

Q+
3 (z)

· · · Q−
2,...,r−1(z)

Q+
r (z)

Q−
2,...,r(z)

0 0
Q+

2 (z)

Q+
3 (z)

· · · Q−
3,...,r−1(z)

Q+
r (z)

Q−
3,...,r(z)

...
...

...
. . .

...
...

0 · · · · · · · · · Q+
r−1(z)

Q+
r (z)

Q−
r (z)

0 · · · · · · · · · 0 Q+
r (z)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.11)

Before we continue, the following statement will be needed:

Lemma 5.3. The following relations hold for any u,v ∈ C and i,j = 1, . . . ,r:

uα̌ievej = exp(uajivei)u
α̌i . (5.12)

In general, if [X,Y ] = sY we have

uXevY = exp(usvY )uX . (5.13)

Using this lemma we can rewrite the q-connection of equation (5.1) such that the roots
of SL(r+1) are placed in decreasing order.

Lemma 5.4. Let

ρi(z) = Λi(z)
Qi−1(qz)Qi+1(z)

Qi(qz)Qi(z)
. (5.14)

Then the (SL(r+1),q)-oper reads

A(z) =
1∏

i=r

Q+
i (qz)

α̌i ·
1∏

i=r

e
ζi

ζi+1
ρi(z)ei ·

1∏
i=r

ζα̌i Q
+
i (z)

−α̌i, (5.15)
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or as a matrix,

A(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1(z) Λ1(z) 0 0 · · · 0 0

0 g2(z)
g1(z)

Λ2(z) 0 · · · 0 0

0 0 g3(z)
g2(z)

Λ3(z) · · · 0 0
...

...
...

...
. . .

...
...

...
...

...
...

. . . Λr−1(z) 0

0 0 0 · · · · · · gr(z)
gr−1(z)

Λr(z)

0 0 0 · · · · · · 0 1
gr(z)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.16)

At this point our choice of the order of simple roots may seem unsubstantiated, but it

will be justified in later sections, where we consider
(
GL(∞),q

)
-opers.

5.4. Examples

5.4.1. Miura (SL(2),q)-oper. The twist element Z = ζα̌ = diag
(
ζ,ζ−1

)
= diag(ξ1,ξ2).

The q-connection of equation (5.15) reads

A(z) =Q+(qz)α̌ ·eζρ(z)e · ζα̌Q+(z)−α̌ =

(
g(z) Λ(z)

0 g(z)−1

)
. (5.17)

We look for the gauge transformation in the form

v(z) =Q+(z)α̌e−φ(z)e, (5.18)

where φ(z) = Q−(z)
Q+(z) . The left-hand side of equation (5.6) reads

v(qz)−1A(z) = eφ(qz)eeζρ(z)e · ζα̌Q+(z)−α̌, (5.19)

where ρ(z) = Λ(z)
Q+(z)Q+(qz) . Meanwhile, the right-hand side equals

Zv(z)−1 = ζα̌e−φ(z)eQ+(z)−α̌ = e−ζ2φ(z)eζα̌Q+(z)−α̌, (5.20)

where we use Lemma 5.3 in the last step. Comparing these two expressions yields the

desired QQ-system equation

ζφ(z)− ζ−1φ(qz) = ρ(z), (5.21)

or equivalently,

ξ1φ(z)− ξ2φ(qz) = ρ(z). (5.22)
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5.4.2. Miura (SL(3),q)-oper. Consider Z = ζα̌1
1 ζα̌2

2 =diag
(
ζ1,

ζ2
ζ1
, 1
ζ2

)
=diag(ξ1,ξ2,ξ3).

The q-connection is given by

A(z) =Q+
1 (qz)

α̌1Q+
2 (qz)

α̌2 ·eζ2ρ2(z)e2e
ζ1ρ1(z)

ζ2
e1 · ζα̌1

1 ζα̌2
2 Q+

1 (z)
−α̌1Q+

2 (z)
−α̌2

=

⎛⎜⎝g1(z) Λ1(z) 0

0 g2(z)
g1(z)

Λ2(z)

0 0 1
g2(z)

⎞⎟⎠, (5.23)

and the gauge transformation reads

v(z) =Q+
1 (z)

α̌1Q+
2 (z)

α̌2e−φ1(z)e1e−φ12(z)[e1,e2]e−φ2(z)e2 . (5.24)

Thus the left-hand side of equation (5.6) becomes

v(qz)−1A(z) = eφ2(qz)e2eφ12(qz)[e1,e2]eφ1(qz)e1 ·eζ2ρ2(z)e2e
ζ1ρ1(z)

ζ2
e1 · ζα̌1

1 ζα̌2
2 Q+

1 (z)
−α̌1Q+

2 (z)
−α̌2

= e(φ2(qz)+ζ2ρ2)e2e(φ12(qz)+ζ2ρ2(z)φ1(qz))[e1,e2]e

(
φ1(qz)+

ζ1
ζ2

ρ1(z)
)
e1 · ζα̌1

1 ζα̌2
2 Q+

1 (z)
−α̌1Q+

2 (z)
−α̌2 .
(5.25)

Meanwhile, the right-hand side equals

Zv(z)−1 = ζα̌1
1 ζα̌2

2 ·eφ2(qz)e2eφ12(qz)[e1,e2]eφ1(qz)e1Q+
1 (z)

−α̌1Q+
2 (z)

−α̌2 . (5.26)

Now we need to move all Cartan elements from the front of this expression to its rear
using Lemma 5.3:

Zv(z)−1 = e
ζ22φ2(z)

ζ1
e2eζ1ζ2φ12(z)[e1,e2]e

ζ21φ1(z)

ζ2
e1 · ζα̌1

1 ζα̌2
2 Q+

1 (z)
−α̌1Q+

2 (z)
−α̌2 . (5.27)

By comparing equations (5.25) and (5.27), we get

ζ1φ1(z)−
ζ2
ζ1

φ1(qz) = ρ1(z),

ζ2
ζ1

φ2(z)−
1

ζ2
φ2(qz) = ρ2(z),

ζ1φ12(z)−
1

ζ2
φ12(qz) = ρ2(z)φ1(qz), (5.28)

or equivalently,

ξ1φ1(z)− ξ2φ1(qz) = ρ1(z),

ξ2φ2(z)− ξ3φ2(qz) = ρ2(z),

ξ1φ12(z)− ξ3φ12(qz) = ρ2(z)φ1(qz). (5.29)

5.5. The extended QQ-system and Bethe ansatz

The first line of equation (5.7) is the SL(r+1)QQ-system of equation (5.4). In the rest

of the equations we introduce new functions (5.8). Notice that

ρi+1(z)φi(qz) = Λi+1(z)
Q−

i (qz)Q
+
i+2(z)

Q+
i+1(z)Q

+
i+1(qz)

=: ρi,i+1(z),
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where ρi,i+1(z) is ρi+1(z) with Q+
i (z) replaced by Q−

i (z). In terms of this new notation

we can rewrite equation (5.7) as follows:

ξiφi(z)− ξi+1φi(qz) = ρi(z), i= 1, . . . ,r,

ξiφi,i+1(z)− ξi+2φi,i+1(qz) = ρi,i+1(z), i= 1, . . . ,r−1,

... (5.30)

ξiφi,...,r−2+i(z)− ξr+i−1φi,...,r−2+i(qz) = ρi,...,r−1+i(z), i= 1,2,

ξ1φ1,...,r(z)− ξr+1φ1,...,r(qz) = ρ1,...,r(z).

For future reference, let us rewrite these equations in terms of the Q-polynomials:

ξiQ
+
i (qz)Q

−
i (z)− ξi+1Q

+
i (z)Q

−
i (qz) = Λi(z)Q

+
i−1(qz)Q

+
i+1(z),

ξiQ
+
i+1(qz)Q

−
i,i+1(z)− ξi+2Q

+
i+1(z)Q

−
i,i+1(qz) = Λi+1(z)Q

−
i (qz)Q

+
i+2(z),

.

.

. (5.31)

ξiQ
+
r−2+i(qz)Q

−
i,...,r−2+i(z)− ξr−1+iQ

+
r−2+i(z)Q

−
i,...,r−2+i(qz) = Λr−1+i(z)Q

−
i,...,r−1+i(qz)Q

+
r+i(z),

ξ1Q
+
r (qz)Q

−
1,...,r(z)− ξr+1Q

+
r (z)Q

−
1,...,r(qz) = Λr(z)Q

−
1,...,r−1(qz).

We shall refer to equation (5.31) as the extended QQ-system for SL(r + 1). We
call its solution nondegenerate if the resulting solution of the original QQ-system is

nondegenerate.

Let us now show that starting from the solution of the nondegenerate QQ-system, we
obtain solutions for the extended QQ-system as well. To do that we need the following

result (which is true for other simply laced groups) of [24]:

Theorem 5.5. The solutions of the nondegenerate SL(r+1)QQ-system are in one-to-

one correspondence with the solutions of the Bethe ansatz equations for the sl(r+1) XXZ

spin chain:

Q+
i

(
qwi

k

)
Q+

i

(
q−1wk

i

) ξi
ξi+1

=−
Λi

(
wi

k

)
Q+

i+1

(
qwi

k

)
Q+

i−1

(
wi

k

)
Λi

(
q−1wi

k

)
Q+

i+1

(
wi

k

)
Q+

i−1

(
q−1wi

k

), (5.32)

where i= 1, . . . ,r and k = 1, . . . ,mi.

We extend the statement of this theorem as follows:

Theorem 5.6. There is a one-to-one correspondence between the set of nondegenerate

solutions of the extended QQ-system (5.31), the set of nondegenerate solutions of the

QQ-system (5.3) and the set of solutions of the Bethe ansatz equations (5.32).

Proof. Consider the first line of equation (5.31) which is also presented in equation
(5.3). If the QQ-system is nondegenerate, then according to Theorem 5.5, there is a

bijection between its polynomial nondegenerate solutions and Bethe equations. We will

now show recursively that given the nondegenerate solution of the QQ-system, one can
construct elements Qi,i+1,...,j satisfying the equations of the extended QQ-system. Let

us immediately consider the degenerate case, when Q−
i (z) and Q+

i+1(z) have common

roots: without loss of generality, let us now assume that Q−
i (z) and Q+

i+1(z) have just one
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common root u. Now we show that we can construct the solution to the line of equation
(5.31), namely Q+

i,i+1. Introducing the notation

Q+
i+1(z) = (z−u)Q̌+

i+1(z), (5.33)

we see from the nondegeneracy condition on the QQ-system–namely the fact that Q+
i (z)

and Q+
i+1(z) have q-distinct roots–that we have

Q−
i (z) = (z−u)

(
q−1z−u

)
Q̃−

i (z). (5.34)

Now consider the following equation from the second line of equation (5.30):

ξiφi,i+1(z)− ξi+1φi,i+1(qz) = Λi+1(z)
Q−

i (qz)Q
+
i+2(z)

Q+
i+1(z)Q

+
i+1(qz)

.

Substituting equations (5.33) and (5.34), we get

ξi
Q−

i,i+1(z)

(z−u)Q̌+
i+1(z)

− ξi+2

Q−
i,i+1(qz)

(qz−u)Q̌+
i+1(qz)

= Λi+1(z)
Q̃−

i (qz)Q
+
i+2(z)

Q̌+
i+1(z)Q̌

+
i+1(qz)

. (5.35)

From the residue decomposition of both sides of this equation, we conclude that u must

be the root of the polynomial Q−
i,i+1(z):

Q−
i,i+1(z) = (z−u)Q̌−

i,i+1(z).

Thus, one can represent the resulting system as follows:

ρi,i+1(z) = hi(z)+

mi+1∑
k=1,k �=s

bk

z−wi+1
k

+

mi+1∑
k=1,k �=s

ck

qz−wi+1
k

, (5.36)

φi,i+1(z) = φ̃i(z)+

mi+1∑
k=1,k �=s

dk

z−wi+1
k

, (5.37)

where wi+1
s = u, hi(z) and φ̃i(z) are polynomials. By matching the polar and polynomial

parts of equation (5.35) we can readily find coefficients dk and polynomials φ̃i(z) and

hence Q+
i,i+1(z).

The only constraint we need to satisfy is the one on bk,ck–namely, bk
ξi+2

+ ck
ξi

= 0, where

k �= s. These equations are explicitly given by

Q+
i+1

(
qwi+1

k

)
Q+

i+1

(
q−1wi+1

k

) ξi
ξi+2

=−
Λi+1

(
wi+1

k

)
Q+

i+2

(
qwi+1

k

)
Q−

i

(
wi+1

k

)
Λi+1

(
q−1wi+1

k

)
Q+

i+2

(
wi+1

k

)
Q−

i

(
q−1wi+1

k

), k �= s. (5.38)

At the same time, the ith equation can be rewritten as

ξi
Q+

i (qz)

Q+
i (z)

− ξi+1
Q−

i (qz)

Q−
i (z)

=
Λi(z)Q

+
i−1(qz)Q

+
i+1(z)

Q+
i (z)Q

−
i (z)

,
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which leads to

ξi
Q+

i

(
qwi+1

k

)
Q+

i

(
wi+1

k

) = ξi+1

Q−
i

(
qwi+1

k

)
Q−

i

(
wi+1

k

) ,
where wi+1

k are the roots of Q+
i+1(z) for k �= s.

Thus equation (5.38) is equivalent to the Bethe equations emerging from the QQ-

system:

Q+
i+1

(
qwi+1

k

)
Q+

i+1

(
q−1wi+1

k

) ξi+1

ξi+2
=−

Λi+1

(
wi+1

k

)
Q+

i+2

(
qwi+1

k

)
Q+

i

(
wi+1

k

)
Λi+1

(
q−1wi+1

k

)
Q+

i+2

(
wi+1

k

)
Q+

i

(
q−1wi+1

k

) . (5.39)

Therefore we have found that equation (5.35) follows from the XXZ Bethe equations.

This step can be iterated if the Q−
i,...,j polynomials have coincident roots with Q+

j .

Therefore we have shown that any QQ-system in the form of equation (5.30) with such
degeneracies is equivalent to a nondegenerate QQ-system.

In the next section we shall present a different proof of this theorem, exploring the

definition of Miura (SL(r+1,q)-opers involving flags of subbundles.

5.6. The extended QQ-system, Bethe equations and Bäcklund

transformations

We would like to understand the representation-theoretic meaning of the extended QQ-

system a bit better. In fact, motivated by [24] we can demonstrate that starting from

the original QQ-system (the first line of equation (5.31), or equation (5.3)), under certain
assumptions one can recover all the remaining equations of the entire extendedQQ-system

by Bäcklund transformations.

Bäcklund transformations were introduced for Miura q-opers in [24] and were associated
to the ith simple reflection from the Weyl group:

Proposition 5.7. Consider the q-gauge transformation of the q-connection given by

equation (5.1):

A �→A(i) = eμi(qz)fiA(z)e−μi(z)fi, μi(z) =
Q+

i−1(z)Q
+
i+1(z)

Qi
+(z)Q

i
−(z)

. (5.40)

Then A(i)(z) can be obtained from A(z) by substituting in equation (5.1)

Qj
+(z) �→Qj

+(z), j �= i, (5.41)

Qi
+(z) �→Qi

−(z), Z −→ si(Z)

(
ζi �→

ζi−1ζi+1

ζi

)
. (5.42)

It is possible that after the transformation, the resulting operator gives rise to the

nondegenerate QQ-system. Denoting the QQ-system after the Bäcklund transformation
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as
{
Q̃±

i

}
i=1,...,r

, we obtain

{
Q̃+

j

}
j=1,...,r

=
{
Q+

1 , . . . ,Q
+
i−1,Q

−
i ,Q

+
i+1, . . . ,Q

r
+

}
, (5.43){

Q̃−
j

}
j=1,...,r

=
{
Q−

1 , . . . ,Q
∗−
i−1,−Q+

i ,Q
−
i,i+1, . . . ,Q

−
r

}
,{

ζ̃j

}
j=1,...,r

=

{
ζ1, . . . ,ζi−1,

ζi−1ζi+1

ζi
, . . . ,ζr

}
.

The last line can be also rewritten in terms of ξ variables as{
ξ̃j

}
j=1,...,r

= {ξ1, . . . ,ξi−1,ξi+1,ξi,ξi+2, . . . ,ξr+1} .

Here we note that the notation Q−
i,i+1 was used for Q−

i+1, since the equation this new
polynomial satisfies is the second one from the extended QQ-system. At the same time,

the new polynomial Q∗−
i−1(z) does not belong to what we called the extended QQ-system.

As an example, if we apply the first Bäcklund transformation

Q+
1 �→Q−

1 , Q−
1 �→ −Q+

1 , ξ1 �→ ξ2, ξ2 �→ ξ1, Q−
2 �→Q−

1,2,

to the QQ system for SL(3),

ξ1Q
+
1 (qz)Q

−
1 (z)− ξ2Q

+
1 (z)Q

−
1 (qz) = Λ1(z)Q

+
2 (z),

ξ2Q
+
2 (qz)Q

−
2 (z)− ξ3Q

+
2 (z)Q

−
2 (qz) = Λ2(z)Q

+
1 (qz), (5.44)

the first equation will not change; however, the second will become

ξ1Q
+
2 (qz)Q

−
1,2(z)− ξ3Q

+
2 (z)Q

−
1,2(qz) = Λ2(z)Q

−
1 (qz), (5.45)

which completes its extended QQ-system (5.29).
In general, one can talk about successive Bäcklund transformations associated with

the Weyl group element w. If such transformations are possible–namely, if after each of

the elementary Bäcklund transformation one arrives at the nondegenerate q-oper (i.e.,

the nondegenerate solution of the QQ-system)–such an oper is called w -generic in [24].
As one can see, the equations of the extended QQ-system emerge as a part of the

QQ-system equations obtained after every Bäcklund transformation if the Weyl group

element is constructed by successive reflections along the order in the Dynkin diagram:
w = sisi+1 · · ·sj−1sj .

We will refer to the collection of QQ-system equations obtained via Bäcklund

transformations for all Weyl group elements w as the full QQ-system.
One of the applications of Bäcklund transformations which was proven in [24] is that a

Z -twisted Miura–Plücker (G,q)-oper is a Z -twisted Miura (G,q)-oper if it is w0-generic,

where w0 is the longest root.
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Here we show that a stronger result holds for (SL(r+1),q)-opers. Combining Theorems

5.2 and 5.6, we obtain the following theorem, which is the central result of this section:

Theorem 5.8. The nondegenerate Z-twisted Miura–Plücker (SL(r + 1),q)-opers are

Z-twisted Miura (SL(r+ 1),q)-opers. They are in one-to-one correspondence with the

nondegenerate solutions of the QQ-system and thus sl(r+1) XXZ Bethe equations.

6. q-Opers via quantum Wronskians

6.1. Sections of line bundles and q-Wronskians

In this section we will make use of an alternative definition of Miura (SL(r+ 1),q)-

opers (see Definition 2.4) to describe Z -twisted Miura q-opers with regular singularities,
following [38]. Namely, we have a complete flag of subbundles L• such that the q-

connection A maps Li into Lq
i−1 and the induced maps Āi : Li/Li+1 −→ Lq

i−1/L
q
i are

isomorphisms for i = 1, . . . ,r on U ∩M−1
q (U), where U is the Zariski-open dense subset.

Explicitly, considering the determinants⎛⎝i−2∏
j=0

(
A
(
qi−2−jz

))
s(z)∧·· ·∧A

(
qi−2z

)
s
(
qi−2z

)
∧s
(
qi−1z

)⎞⎠∣∣∣∣∣∣
ΛiLqi−1

r−i+2

(6.1)

for i = 1, . . . ,r+1, where s is a local section of Lr+1, we claim that (E,A,L•) is an

(SL(r+1),q)-oper if and only if at every point of U ∩M−1
q (U) there exists a local section

for which each such determinant is nonzero [38]. In the case of regular singularities (see
Section 3.2), each Āi is an isomorphism except at zeros of Λi, and thus we require the

determinants to vanish at zeros of the polynomial

Wk(s) = P1(z) ·P2(q
2z) · · ·Pk(q

k−1z), Pi(z) = ΛrΛr−1 · · ·Λr−i+1(z). (6.2)

Now we discuss the Z -twisted Miura condition. Recall from Section 2.3 that the Miura

condition implies that there exists a flag L̂• which is preserved by the q-connection A.
The Z -twisted condition implies that in the gauge where A is given by a fixed semisimple

diagonal element Z ∈H, such a flag is formed by the standard basis e1, . . . ,er+1.

The relative position between two flags is generic on U ∩M−1
q (U). The regular

singularity condition implies that quantum Wronskians, namely determinants

Dk(s) = e1∧·· ·∧ er+1−k ∧Zk−1s(z)∧Zk−2s(qz)∧·· ·∧Zs
(
qk−2

)
∧s
(
qk−1z

)
, (6.3)

have a subset of zeros which coincide with those of Wk(s). To be more explicit, for

k = 1, . . . ,r+1, we have nonzero constants αk and polynomials

Vk(z) =

rk∏
a=1

(z−vk,a) (6.4)

https://doi.org/10.1017/S1474748021000220 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000220


612 P. Koroteev and A. M. Zeitlin

for which

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 0 ξk−1
1 s1(z) · · · ξ1s1

(
qk−2z

)
s1
(
qk−1z

)
...

. . .
...

...
. . .

...
...

0 · · · 1 ξk−1
k sr+1−k(z) · · · ξksr+1−k

(
qk−2z

)
sk
(
qk−1z

)
0 · · · 0 ξk−1

k+1sr+1−k+1(z) · · · ξr+1−k+1sk+1

(
qk−2z

)
sk+1

(
qk−1z

)
...

. . .
...

...
. . .

...
...

0 · · · 0 ξk−1
r+1 sr+1(z) · · · ξr+1sr+1

(
qk−2z

)
sr+1

(
qk−1z

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=αkWkVk.

(6.5)

Since Dr+1(s) =Wr+1(s), we have Vr+1 = 1. We also set V0 = 1; this is consistent with

the fact that equation (6.3) also makes sense for k = 0, giving D0 = e1∧·· ·∧ er+1.
We can also rewrite equation (6.5) as

det
i,j

[
ξk−j
r+1−k+isr+1−k+i

(
qj−1z

)]
= αkWkVk, (6.6)

where i,j = 1, . . . ,k.

Note that these determinants have a slightly different form those of [38]–twist

parameters ξi entered in different powers. This is due to a different order of the simple

roots in the definition of the q-oper.

Theorem 6.1 ([38]). The polynomials {Vk(z)}k=1,...,r give the solution to the QQ-system

(5.3) so that Q+
j (z) = Vj(z) under the nondegeneracy condition that for all i,j,k with i �= j

and aik �= 0,ajk �= 0, the zeros of Vi(z) and Vj(z) are q-distinct from each other and from

the zeros of Λk(z).

Remark 6.2. Technically, we used stronger conditions in [38], namely that zeros of

{Λi}i=1...r and {Vj(z)}j=1...r had to be q-disjoint to satisfy the QQ-system equations,

but we can relax it easily and even more than we have in this theorem.

In the next subsection we will show that the extended QQ-system can be obtained from

various minors in q-Wronskian matrices. Theorem 6.1 allows us to relate the section s(z)

generating the line bundle Lr+1 with the elements of the extended QQ-system using the
transformation of equation (5.6).

Proposition 6.3. Let v(z) be the gauge transformation from equation (5.6) and s(z)
be the section generating Lr+1 in the definition of the (SL(r + 1),q)-oper. Then the

components of s(z) in the gauge when the q-oper connection is equal to Z are given by

sr+1(z) =Q+
r (z), sr(z) =Q−

r (z), sk(z) =Q−
k,...,r(z), (6.7)

for k = 1, . . . ,r−1.

Proof. Starting from equation (5.11), the proposition follows directly after acting with

v(z)−1 on the basis vector er+1 = (0,0, . . . ,0,1).

In the next subsection we will show that the extended QQ-system can be obtained from

various minors in q-Wronskian matrices.
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6.2. Wronskians and extended QQ-systems

First we will rewrite the extended QQ-system in a more convenient way to relate it to the

minors in the q-Wronskian matrix. Namely, we multiply Q-terms by certain polynomials

to get rid of the Λ-polynomials in the right-hand side. This is done in the following lemma:

Lemma 6.4. The system of equations (5.7) is equivalent to the following set of equations:

ξiD
+
i (qz)D

−
i (z)− ξi+1D

+
i (z)D

−
i (qz) = (ξi − ξi+1)D

+
i−1(qz)D

+
i+1(z),

ξiD
+
i+1(qz)D

−
i,i+1(z)− ξi+2D

+
i+1(z)D

−
i,i+1(qz) = (ξi − ξi+2)D

−
i (qz)D

+
i+2(z),

.

.

.

ξiD
+
r+i−2(qz)D

−
i,...,r−1+i(z)− ξr+i−1,D

+
r+i−2(z)D

−
i,...,r−1+i(qz) = (ξi − ξr+i−1)D

−
i,...,r−2+i(qz)D

+
r+i−1(z),

ξ1D
+
r (qz)D

−
1,...,r(z)− ξr+1D

+
r (z)D

−
1,...,r(qz) = (ξ1 − ξr+1)D

−
1,...,r−1(qz), (6.8)

where index i ranges between the same values as in the corresponding lines in equation
(5.7) for the polynomials

D+
k =Q+

k Fk, D−
k =Q−

k Fkηk, D−
l,...,k =Q−

l,...,kFkηl,...,k, (6.9)

where

Fi(z) =Wr−i

(
qr−iz

)
, ηl,...,i =

i−l∏
a=0

(ξl− ξl+a+1).

We shall refer to equation (6.8) as the extended DD-system for SL(r+1) and to its

first line specifically as merely the DD-system.

Proof. The proof is a direct extension of the proof of [38] to other lines in equation (5.31).

Since all equations are treated analogously, let us consider the second line of equation

(6.8), which we can write as

ξi−1D
+
i (qz)D−

i−1,i(z)− ξi+1D
+
i (z)D−

i−1,i(qz) = (ξi−1− ξi+1)D
−
i−1(qz)D

+
i+1(z). (6.10)

After replacing

D+
i =Q+

i Fi, D−
i =Q−

i Fiηi, D−
i−1,i =Q−

i−1,iFi ηi−1,i,

and assigning

ηi−1 = ξi−1− ξi, ηi−1,i = (ξi−1− ξi)(ξi−1− ξi+1),

we can see that equation (6.10) is equivalent to the second line of equation (5.31), provided

that the following difference equation is satisfied:

Fi−1(qz)Fi+1(z)

Fi(qz)Fi(z)
· ηi−1

ηi−1,i
(ξi−1− ξi+1) = Λi(z).
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The validity of this relation follows from the foregoine formulae and the definitions in
equation (6.2):

Fi−1(qz)Fi+1(z)

Fi(qz)Fi(z)
=

Wr−i+1

(
qr−i+1z

)
Wr−i (qr−iz)

Wr−i−1

(
qr−iz

)
Wr−i (qr−i+1z)

=
Pr−i+1

(
qr−iz

)
Pr−i (qr−iz)

= Λi(z).

As we shall see below, one can express the solutions of the QQ- and DD-systems in

terms of the section s(z) of subbundle Lr+1. Following the discussion of [38], we consider

the following matrices:

Mi1,...,ij =

⎛
⎜⎜⎝
ξj−1
i1

si1(z) · · · ξi1si1
(
qj−2z

)
si1

(
qj−1z

)
...

. . .
...

...

ξj−1
ij

sij (z) · · · ξij sij
(
qj−2z

)
sij

(
qj−1z

)
⎞
⎟⎟⎠, Vi1,...,ij =

⎛
⎜⎜⎝
ξj−1
i1

· · · ξi1 1
...

. . .
...

...

ξj−1
ij

· · · ξij 1

⎞
⎟⎟⎠,

(6.11)

where si are polynomials and Vi1,...,ij is the Vandermonde-like matrix whose determi-
nant is

detVi1,...,ij =
∏
i<j

(ξi− ξj) . (6.12)

In [38] the following proposition was proven (in slightly different notation), which allows
us to express solutions of the QQ-system in terms of q-Wronskians of equation (6.11).

Here we provide a sketch of the proof for completeness.

Proposition 6.5. Given polynomials D+
i ,D

−
i for i = 1, . . . ,r satisfying the first line of

equation (6.8), there exist unique polynomials s1, . . . ,sr+1 such that

D+
i (z) =

detMr+2−i,...,r+1(z)

detVr+2−i,...,r+1
and D−

i (z) =
detMr+1−i,r+3−i,...,r+1(z)

detVr+1−i,r+3−i,...,r+1
, (6.13)

where matrix M is given in equation (6.11).

Proof. The proof is based on the determinant Desnanot–Jacobi identity, which holds for

any l× l matrix M. In this proof we shall use this identity in the form

M1
1M

2
l −M1

l M
2
1 =M1,2

1,l M, (6.14)

whereMa
b (resp.,Ma,c

b,d ) is the determinant of matrixM with row a and column b removed
(resp., matrix M with rows a and c and column b and d removed). Note that the

Desnanot–Jacobi identity holds for any pairs of indices {a,c} and {b,d} as long as a �= c

and b �= d.
In [38] it was shown using periodic properties of matrix M that the first line of equation

(6.8) can be identified with equation (6.14) if Mi =Mr+1−i,...,r+1(z) is the determinant

of the bottom right i× i submatrix of the (r+1)× (r+1) matrix M1,...,r+1(z). It is easy
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to see, for instance, that

(Mi)
1
1 (z) =Mr+2−i,...,r+1(qz), (Mi)

2
1 (z) =Mr+1−i,r+3−i,...,r+1(qz),

(Mi)
1
i (z) = ξr+2−i

(
r+1∏

a=r+3−i

ξi

)
·Mr+2−i,...,r+1(z),

(Mi)
2
i (z) = ξr+1−i

(
r+1∏

a=r+3−i

ξi

)
·Mr+1−i,r+3−i,...,r+1(z),

(Mi)
1,2
1,i (z) =

(
r+1∏

a=r+3−i

ξi

)
·Mr+3−i,...,r+1(qz).

We can substitute these five relations into equation (6.14) and then divide both sides
by Vr+2−i,...,r+1Vr+1−i,r+3−i,...,r+1. The first DD-relation will follow after observing that

Vr+3−i,...,r+1Vr+1−i,...,r+1 = (ζr+1−i− ζr+2−i)Vr+2−i,...,r+1Vr+1−i,r+3−i,...,r+1.

In this proof we have derived an alternative presentation of D±
i polynomials and their

q-shifted counterparts in terms of minors Mi:

D+
i (z) =

(Mi)
1
i (z)

(Vi)1i
, D−

i (z) =
(Mi)

2
i (z)

(Vi)2i
, D+

i (qz) =
(Mi)

1
1(z)

(Vi)11
, D−

i (qz) =
(Mi)

2
1(z)

(Vi)21
,

(6.15)

where Vi = Vr+1−i,...,r+1(z) is the determinant of the bottom right i× i submatrix of the
(r+1)× (r+1) matrix V1,...,r+1(z). This way all polynomials which appear in the DD-

system can be universally presented as ratios of (unshifted) minors of two sets of matrices

{Mi} and {Vi} for i= 1, . . . ,r.
Thus the ith equation of the DD-system represents a Desnanot–Jacobi determinant

identity for matrix Mi of the form in equation (6.11). In the following subsection we shall

demonstrate that all equations of the extended DD-system can also be thought of as

determinant identities for matrices which are obtained from Mis by permutation of rows
and columns. The latter is provided by Bäcklund transformations.

6.3. Bäcklund transformations and the extended DD-system

We showed that the extended QQ-system is equivalent to the extended DD-system in

Lemma 6.4. Let us focus on the DD-system, namely the equations corresponding to
the first line in equation (6.8). We already mentioned that all of equation (5.31) can be

obtained from the QQ-system by applying Bäcklund transformations. The same works

for the DD-system. The ith Bäcklund transformation replaces the data{
D+

j ,D
−
j

}
j=1,...,r

, {ξj}j=1,...,r+1 ,
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with {
D̃+

j

}
j=1,...,r

=
{
D+

1 , . . . ,D
+
i−1,D

−
i ,D+

i+1, . . . ,D
+
r

}
, (6.16){

D̃−
j

}
j=1,...,r

=
{
D−

1 , . . . ,D∗−
i−1,D

+
i ,D

−
i−1,i,D

−
i+2, . . . ,D

−
r

}
,{

ξ̃j

}
j=1,...,r

= {ξ1, . . . ,ξi−1,ξi+1,ξi, . . . ,ξr+1} .

Notice that in the QQ-system this rule works as Q−
i �→ −Q+

i . In the DD-system the

sign disappears due to the presence of the multiplicative factor ηi between Q−
i - and

D-functions.

We also note that polynomials D∗−
i−1 do not belong to the extended DD-system; rather,

they will be a part of the full DD-system. By applying Bäcklund transformations further

we can readily find all polynomials from the full DD-system, which is in one-to-one
correspondence with the full QQ-system we discussed in Section 5.

We can now find a similar presentation for other polynomials D−
i,...,j in terms of ratios

of determinants by combining the foregoing ideas and Proposition 6.3. In particular, we
need to understand how Bäcklund transformations act on matrices (6.11).

Let us start with the (r+1)× (r+1) matrices M1 =M1,...,r+1 and V1 = V1,...,r+1 from

equation (6.11). During the ith Bäcklund transformation (5.43), the functions D+
i (z)↔

D−
i (z), D−

i+1(z)↔D−
i,i+1(z) and ξi ↔ ξi+1 in the extended DD-system get interchanged–

which, using the identification of equation (6.7), amounts to acting by permutations ri
on the set of indices as

{1, . . . ,i,i+1, . . . ,r+1} �→ {1, . . . ,i+1,i, . . . ,r+1}.

Therefore we can define a new tuple of matrices ri(M1)(z) = M1,...,i+1,i,...,r+1 and

ri(V1)(z) = V1,...,i+1,i,...,r+1 as well as their submatrices ri (Mj)(z) and ri (Vj)(z), which
are obtained by excising the corresponding (r− j+1)× (r− j+1) bottom right blocks.

Then by Proposition 6.5 we must have

D+
i (z) =

detri(M)r+2−i,...,r+1(z)

detri(V )r+2−i,...,r+1
, D−

i,i+1(z) =
detri(M)r+2−i,r+4−i,...,r+1(z)

detri(V )r+2−i,r+4−i,...,r+1
,

(6.17)

or equivalently,

D−
i (z) =

ri(Mi)
1
i (z)

ri(Mi)1i
, D−

i,i+1(z) =
ri(Mi+1)

1
i−1(z)

ri(Vi+1)1i−1

. (6.18)

Notice that the second equality of equation (6.17) can be written in terms of the original

matrix M :

D−
i,i+1 =

detMi,i+3...,r+1

detVi,i+3...,r+1
. (6.19)

In order to determine similar expressions for other D−
i,...,i+k, one needs to act by other

elements of the Weyl group W = Sr+1. Essentially, the Bäcklund transformation, being

associated with the elementary Weyl reflection, interchanges two rows in the q-Wronskian
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matrix. This brings us to the following statement, which can be verified by a direct
calculation along the lines of Proposition 6.5 for each set of equations of the extended

DD-system:

Proposition 6.6. The polynomials D−
i,...i+k from equation (6.8) read

D−
i,...,i+k =

detMi,i+k+2,...,r+1

detVi,i+k+2,...,r+1
, i= 1, . . . ,r, k = 0, . . . ,r− i, (6.20)

or equivalently,

D−
i,...,i+k =

ri+k−1(. . . ri+1(ri(Mi+k)). . . )
i+1
r+1

ri+k−1(. . . ri+1(ri(Vi+k)). . . )
i+1
r+1

. (6.21)

Although we do not discuss polynomials D∗−
i−1 which belong to the full DD-system

rather than to the extended DD-system, we can nevertheless provide a formula for them:

Proposition 6.7. The polynomials D∗−
i−1 from equation (6.8) read

D∗−
i−1 =

ri−1(Mi−1)
1
i+1(z)

ri−1(Vi−1)1i+1

. (6.22)

Proof. The (i− 1)th equation of the full DD-system after applying the ith Bäcklund

transformation reads

ξi−1D
+
i−1(qz)D

∗−
i−1(z)− ξi+1D

+
i−1(z)D

∗−
i−1(qz) = (ξi−1− ξi+1)D

+
i−2(qz)D

−
i (z).

Given the description in equation (6.15) of D polynomials in terms of minors, it can be

shown that this equation is equivalent to the Jacobi determinant identity of the form in

equation (6.14) for matrix Mi−1.

This statement implies that the solutions of the full DD- and thus the full QQ-system

are well defined if the original QQ-system is nondegenerate. Also, notice that all the other

equations in the QQ-system correspond to all possible Miura (SL(r+1),q)-opers for a

given (SL(r+1),q)-oper. Thus the following theorem, which generalises Theorem 5.8, is
true:

Theorem 6.8.

(1) The solution of the nondegenerate (SL(r+1))QQ-system can be extended to the

solution of the the full QQ-system.

(2) This full QQ-system comprises (r+1)!QQ-systems, with Bäcklund transformations
acting transitively between them.

(3) Each such QQ-system determines one of the (r+1)!Z-twisted Miura (SL(r+1),q)-

opers, corresponding to a unique Z-twisted (SL(r+1),q)-oper.

We can combine Lemma 6.4 with Propositions 6.5 and 6.6 to get the following

proposition, which will be used in later sections to study infinite-dimensional q-opers:
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Proposition 6.9. The polynomials which appear in the extended QQ-system (5.30) are

given by

Q+
i (z) =

1

Fi(z)
· (Mi)

1
i (z)

(Vi)1i
, Q−

i (z) =
1

Fi(z)ηi
· (Mi)

2
i (z)

(Vi)2i
,

Q−
i,...,i+k(z) =

1

Fi(z)ηi,...,k
· si+k−1(. . . si+1(si(Mi+k)). . . )

2
i (z)

si+k−1(. . . si+1(si(Vi+k)). . . )2i
, (6.23)

or equivalently,

Q+
i (z) =

1

Fi(z)
· detMr+2−i,...,r+1(z)

detVr+2−i,...,r+1
,

Q−
i (z) =

1

Fi(z)ηi
· detMr+1−i,r+3−i,...,r+1(z)

detVr+1−i,r+3−i,...,r+1
, (6.24)

Q−
i,...,i+k(z) =

1

Fi(z)ηi,...,k
· detMi,i+k+2,...,r+1(z)

detVi,i+k+2,...,r+1
.

Note also the following expressions for shifted Q-functions, which will be used later:

Q+
i (qz) =

1

Fi(z)
· (Mi)

1
1(z)

(Vi)11
, Q−

i (qz) =
1

Fi(z)ηi
· (Mi)

2
1(z)

(Vi)21
. (6.25)

6.4. Example: Miura (SL(3),q)-oper

Define matrices

M1(z) =

⎛⎝ξ21s1 (z) ξ1s1(qz) s1
(
q2z
)

ξ22s2 (z) ξ2s2(qz) s2
(
q2z
)

ξ23s3 (z) ξ3s3(qz) s3
(
q2z
)
⎞⎠, V1 =

⎛⎝ξ21 ξ1 1

ξ22 ξ2 1

ξ23 ξ3 1

⎞⎠,

M2(z) = (M1)23(z) =

(
ξ2s2(z) s2(qz)

ξ3s3(z) s3(qz)

)
, V2 = (V1)23 =

(
ξ2 1

ξ3 1

)
,

and the matrices obtained from them by the Weyl action:

r1(M1)(z) =

⎛⎝ξ22s2 (z) ξ2s2(qz) s2
(
q2z
)

ξ21s1 (z) ξ1s1(qz) s1
(
q2z
)

ξ23s3 (z) ξ3s3(qz) s3
(
q2z
)
⎞⎠, r1(V1) =

⎛⎝ξ22 ξ2 1
ξ21 ξ1 1

ξ23 ξ3 1

⎞⎠,

M1,2(z) = r1(M1)23(z) =

(
ξ1s1(z) s1(qz)
ξ3s3(z) s3(qz)

)
, V1,2 = r1(V1)23 =

(
ξ1 1
ξ3 1

)
.

Then the DD-system reads

ξ1D
+
1 (qz)D−

1 (z)− ξ2D
+
1 (z)D−

1 (qz) = (ξ1− ξ2)D
+
2 (qz)W (z),

ξ2D
+
2 (qz)D−

2 (z)− ξ3D
+
2 (z)D−

2 (qz) = (ξ2− ξ3)D
+
1 (z),

ξ1D
+
2 (qz)D−

1,2(z)− ξ3D
+
2 (z)D−

1,2(qz) = (ξ1− ξ3)D
−
1 (z), (6.26)

with

D+
1 (z) =

(M1)
1
2(z)

V 1
2

, D−
1 (z) =

(M1)
2
3(z)

V 2
3

, W (z) =
detM1(z)

detV1
,
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as well as

D+
2 (z) =

(M2)
1
2(z)

(V2)12
= s3(z), D−

2 (z) =
(M2)

2
2(z)

(V2)22
= s2(z), D−

1,2(z) =
(M1,2)

2
2(z)

(V1,2)
2
2

= s1(z),

where (Mi)
a
b (z) is the determinant of matrix Mi(z) with row a and column b removed.

The shifted D-functions read

D+
1 (qz) =

(M1)
1
1(z)

(V1)11
, D−

1 (qz) =
(M1)

2
1(z)

(V1)21
,

D+
2 (qz) =

(M2)
1
1(z)

(V2)11
, D−

2 (qz) =
(M2)

2
1(z)

(V2)21
, D−

1,2(qz) =
(M1,2)

2
1 (z)

(V1,2)
2
1

.

Then the solutions of the SL(3)QQ-system read

Q+
1 (z) =

1

F1(z)(ξ1− ξ2)
· (M1)

1
2(z)

V 1
2

, Q−
1 (z) =

1

F1(z)(ξ1− ξ2)
· (M1)

2
3(z)

V 2
3

,

as well as

Q+
2 (z) =

1

F2(z)(ξ2− ξ3)
· (M2)

1
2(z)

(V2)12
=

s3(z)

F1(z)(ξ1− ξ2)
,

Q−
2 (z) =

1

F2(z)(ξ2− ξ3)
· (M2)

2
2(z)

(V2)22
=

s2(z)

F2(z)(ξ2− ξ3)
, (6.27)

Q−
1,2(z) =

1

F2(z)(ξ2− ξ3)
· (M1,2)

2
2 (z)

(V1,2)
2
2

=
s1(z)

F2(z)(ξ2− ξ3)
.

6.5. Explicit formula for (SL(r+1),q)-oper via minors

We can now collect all the results of this section in order to present the Miura (SL(r+

1),q)-oper of equation (5.16) in terms of trivialisation of the subbundle Lr+1. Consider
functions gi(z) which appear on the diagonal:

gi(z) = ζi
Q+

i (qz)

Q+
i (z)

= ζi
Fi(z)

Fi(qz)
· (Mi)

1
1

(Mi)1i

(Vi)
1
i

(Vi)11

= ζi ·
(

i∏
a=1

ξr+2−a

)
·

i∏
b=1

Λr−i+b

(
q1−bz

)
Λr−i+b(z)

· (Mi)
1
1

(Mi)1i
. (6.28)

Then the diagonal entry of equation (5.16) becomes the meromorphic function

gi+1

gi
(z) = ξi+1H

(r)
i (z,q) ·G(r)

i (z,q), (6.29)

where

H
(r)
i (z,q) =

i∏
b=1

Λr−i+b

(
q1−bz

)
Λr−i+b (q−bz)

, G
(r)
i (z,q) =

(Mi+1)
1
1

(Mi)11
· (Mi)

1
i

(Mi+1)1i+1

. (6.30)
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6.6. Relation to Berenstein, Fomin and Zelevinsky’s work on generalised

minors

We devoted this section to the description of Miura (SL(r+1),q)-opers via various minors

of the q-Wronskian matrix. That matrix is produced by the components of the section of

the line bundle and the components of the constant regular element Z, representing the q-
connection in the given trivialisation. One may wonder whether such a construction exists

in the general case for a simply connected simple group G–namely, whether there exists

an analogue of the q-Wronskian. Of course, in that case we do not have a line bundle,

since the definition of (G,q) in terms of the flag of bundles is SL-specific. Nevertheless,
there is a notion of generalised minors [6, 7, 18]. These are the functions on G, defined on

the dense set, corresponding to the dense Bruhat cell N−HN+. For any g = n+hn−, the
so-called principal minors [g]ωi are defined as the values of the multiplicative characters
[·]ωi :H −→ C

∗ on h, namely [h]ωi , corresponding to the fundamental weight ωi for i =

1, . . . ,r. Other generalised minors Δuωi,vωi
are obtained by the action of the Weyl group

elements on the left and the right of g, application of the appropriate lifts of Weyl group
elements u,v on the right and the left and then application of [·]ωi . In the case of SL(r+1),

the nondegeneracy conditions imply that the full q-Wronskian matrix belongs to the dense

Bruhat cell (i.e., it has Gauss decomposition) and the action of the Weyl group elements

corresponds to the permutations of rows and columns.
One of the fundamental relations between generalised minors is as follows [18]. Set

u,v ∈W such that for i ∈ {1, . . . ,r}, �(usi) = �(u)+1, �(vsi) = �(v)+1. Then

Δuωi,vωi
Δusiωi,vsiωi

−Δusiωi,vωi
Δuωi,vsiωi

=
∏
j �=i

Δ−aji
uωj,vωj

.

When applied to the q-Wronskian matrix in the SL(r + 1) case, these equations

reproduce the DD-system. In the case of general G, the left- and right-hand sides of

this relation are very similar to the analogue of the DD-system [24]. Thus it is reasonable
to assume the existence of the analogue of the Wronskian matrix as an element in

n−(z)h(z)n+(z) ∈N−(z)H(z)N+(z)⊂G(z). We will discuss this in future work.

Note that one important feature of generalised minors is that relations between

them give a cluster algebra structure for double Bruhat cells, so that our Bäcklund
transformations descend from mutations for the cluster algebra elements.

We believe that these cluster structures stand behind known cluster structures relevant

for Grothendieck rings of quantum affine algebras.

7. GL(∞) and the fermionic Fock space

This section contains material on infinite-dimensional generalisations of GL(N) and their
representations which will be needed later. The reader may consult [38] for more details.

7.1. Miura (SL(r+1),q)-opers and the fermionic Fock space

First we note that given a defining representation Vω1
of SL(r+1), one can construct

all other fundamental representations Vωi
by considering wedge powers � Λi (Vω1

). If

ν1, . . . ,νr+1 are the standard basis vectors in Vω1
, so that ν1 is the highest weight, then

https://doi.org/10.1017/S1474748021000220 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000220


Toroidal q-opers 621

the highest weight vectors in Vωi
are

νi∧νi−1∧·· ·∧ν1.

Introducing operators ψi of exterior multiplication on νi and ψ∗
i of interior multiplication

by νi, we find that they satisfy a Clifford algebra relation

ψ∗
i ψj +ψjψ

∗
i = δij . (7.1)

Using those operators we can realise the Chevalley generators as follows:

α̌i = ψiψ
∗
i −ψi+1ψ

∗
i+1, ei = ψiψ

∗
i+1, fi = ψi+1ψ

∗
i , (7.2)

such that [ei,fi] = α̌i. We arrive at the following proposition:

Proposition 7.1. In any fundamental representation, the q-connection, corresponding

to the Miura (SL(r+1),q)-oper (5.1) reads as follows:

A(z) =
1∏

i=r

gα̌i
i e

Λi(z)

gi(z)
ei = g

−ψr+1ψ
∗
r+1

r

1∏
i=r

eΛi(z)ψiψ
∗
i+1 ·

[
gi

gi−1

]ψiψ
∗
i

, (7.3)

where g0 = 1.

Our goal in the following will be to make sense of the completion of this formula in the

infinite-dimensional Fock space.

7.2. SL(∞) and its completions

In the following we review some basic facts from [33] on representations of infinite-

dimensional Lie algebras and groups. We can define the group GL(∞) as a set of infinite-
dimensional matrices characterised as follows:

GL(∞) =
{
A= (aij)i,j∈Z

|A is invertible and all but a finite number of aij − δij are 0
}
.

SL(∞) is the subgroup of GL(∞) of unimodular matrices. The Lie algebra gl(∞) of

GL(∞) is given by

gl(∞) =
{
A= (aij)i,j∈Z

| aij = 0 for all but a finite number
}

(7.4)

and sl(∞) is the subalgebra of traceless matrices. The Lie algebra sl(∞) is the explicit

realisation of the simple Kac–Moody algebra a∞, which one associates to the infinite
Dynkin diagram A∞. However, there exists a bigger algebra, known as ā∞, which consists

of elements of the form

x=
∑
i∈Z

ciα̌i+
∑
α

ηαeα, (7.5)

where eα is an element of Cartan–Weyl basis corresponding to the root α with the height

ht(α) of sl(∞), so that the set

Sx = {k ∈ Z | ∃α,ηα �= 0, ht(α) = k}
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is finite. This algebra has two nontrivial central elements c1 =
∑

i iα̌i and c2 =
∑

i α̌i. The

explicit realisation of this algebra is given by the central extension of the algebra gl∞:

gl∞ =
{
A= (aij)i,j∈Z

| aij = 0 for |i− j| � 0
}
. (7.6)

Namely, there exists a homomorphism from ā∞ to gl∞⊕Cc where c1 is mapped to the
identity matrix and c2 = c corresponds to the central extension c. Indeed, one can modify

relations on the fundamental generators of a∞, namely

[e0,f0]c = α̌0+c, (7.7)

leaving all other relations between Chevalley generators intact. This leads to a nontrivial
central extension for gl∞, although for any gl(n) subalgebra it is trivial.

To describe these algebraic structures, it is convenient to use matrix notation. Let us

denote by Eij the matrix whose (i,j) entry is 1 and all others are 0. These matrices obey

the following commutation relations:

[Eij,Emn] = δjmEin− δniEmj .

One can then represent

α̌i = Eii−Ei+1,i+1, ei = Ei,i+1, fi = Ei,i−1.

Let us define

ai =
∑
k∈Z

Ek,k+i, i �= 0,

and

a0 =
∑
k>0

Ek,k−
∑
k≤0

Ek,k.

Then we have the following Heisenberg subalgebra:

[an,am] = ncδn,−m.

However, we will be interested in a smaller subalgebra ā′∞ ⊂ ā∞, so that for every
x ∈ ā′∞ in the form of equation (7.5), there are only a finite number of coefficients λα �= 0

for negative α. The corresponding subalgebra gl
′
∞ ⊂ gl∞ is formed by matrices (7.6) with

only a finite number of elements below the main diagonal. The corresponding Lie group

is denoted GL(∞):

GL(∞) =
{
A= (aij)i,j∈Z

| aij =0;k for i> j for all but a finite number;aii �= 0 ∀ i∈Z

}
.

Given the upper Borel part b+ of gl∞, generated by α̌i, ei, one can construct an upper

Borel subgroup B+ by exponentiating elements of b+, which we denote as B+:

B+ = {
{
A= (aij)i,j∈Z

| aij = 0 for i > j, aii �= 0 ∀ i ∈ Z

}
. (7.8)
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Combining it with B−, the Borel subgroup of SL(∞), we get

B− =
{
A= (aij)i,j∈Z

| aij = 0 for i < j,

aii �= 0 for all i, aii �= 1 for all but a finite number, (7.9)

aij �= 0 for i > j for all but a finite number, det(A) = 1
}
.

Then one can write the Bruhat decomposition GL(∞) = �w̄B−w̄B+, where w̄ is a

Weyl group element inherited from a Weyl group element of SL(k+1) subgroup for some

finite k.
Now we can construct the appropriate generalisation of the q-connection in equation

(3.5):

A(z) =

−∞∏
i=+∞

gi(z)
α̌ie

Λi(z)

gi(z)
ei, gi(z) ∈ C(z)×, Λi(z) ∈ C[z], (7.10)

which is a well-defined element of B+(z) ⊂ GL(∞)(z). Indeed, while it is an infinite

product, the multiplication is well defined, giving the element of B+(z)⊂GL(∞)(z) with

nonzero elements on the diagonal and superdiagonal only. In the next subsection we give
a simpler expression for equation (7.10) in the fundamental representations of GL(∞).

Remark 7.2. In principle, it could be possible to consider further completions of GL(∞)

and make full use of the central extension. However, since we are interested in Miura q-

opers, we only need to complete one of the Borels to arrive at this formula.

7.3. Infinite wedge-space representations for GL(∞)

Here we will explain the construction of the fundamental representations of ā′∞ with

central charge 1, which will serve as fundamental representations for GL(∞) as well.
Let V =⊕j∈ZCνj be the infinite-dimensional space where νj are basis elements. There

is a natural action of sl(∞) on V as infinite-dimensional matrices. Consider the following

expression:

Ψm = νm∧νm−1∧νm−2∧·· · . (7.11)

We will call it the highest weight vector in the vector space Fm. The other basis vectors

in Fm have the form

Ψ = νim ∧νim−1
∧νim−2

∧·· · , (7.12)

where im > im−1 > im−2 > · · · and ik = k for k � 0. The action of the sl(∞)-algebra

on Fm is defined in the following way. We identify ei, fi, α̌i with the matrix generators
Ei,i+1, Ei+1,i, Eii−Ei+1,i+1, respectively. Then we define the action of any element X

of sl(∞) on Fm by the following formula:

XΨ=Xνim ∧νim−1
∧νim−2

∧·· ·+νim ∧Xνim−1
∧νim−2

∧·· ·+νim ∧νim−1
∧Xνim−2

∧·· · .
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Remark 7.3. A famous representation of ā∞ with central charge c = 1 is achieved in
the following way. One has to modify the action of α̌0 via a shift α̌0 −→ α̌0−1:

α̌0Ψ=

α̌0νim ∧νim−1
∧νim−2

∧·· ·+νim ∧ α̌0νim−1
∧νim−2

∧·· ·+νim ∧νim−1
∧ α̌0νim−2

∧. . .
−vim ∧νim−1

∧νim−2
∧·· · .

Notice that n̄+Ψm = 0, where n̄+ =
[
b̄+,b̄+

]
and α̌kΨm = δk,mΨm. Thus {Fm} can be

interpreted as fundamental representations of ā′∞ and fundamental representations of
GL(∞) as well. The group action is given by the formula

g ·Ψ= gνim ∧gνim−1
∧gνim−2

∧·· · . (7.13)

Using the formalism of the Clifford algebra in equation (7.1), we have again formulas
(7.2) for the generators α̌, ei, fi, where now i ∈ Z. This allows us to write the expression

for the element of B+(z) from equation (7.10) acting on Fm as

A(z) =

1∏
i=+∞

eΛi(z)ψiψ
∗
i+1

[
gi

gi−1

]ψiψ
∗
i

·
−∞∏
i=0

eΛi(z)ψiψ
∗
i+1

[
gi

gi−1

]−ψ∗
i ψi

. (7.14)

8.
(
GL(∞),q

)
-opers

In this section and the next we generalise the definitions and theorems from Sections 2–5

to the infinite-dimensional case, namely, the (Miura)
(
GL(∞),q

)
-opers, Z -twisted and

Z -twisted Miura–Plücker versions, as well as nondegeneracy conditions. Then we relate

them to QQ-systems and explicitly describe the trivialising operator for the related Z -

twisted Miura q-oper. In the process we have to take into account the generally infinite

number of zeros and poles in the local expression. The explicit formulas will also change
slightly.

A particularly interesting part of the infinite-dimensional case is the infinite flag in

the associated bundle version of the definition of the q-oper, which will not involve the
‘starting’ line subbundle. Thus in the study of Z -twisted Miura

(
GL(∞),q

)
-opers we have

to rely on the QQ-system only, without addressing the q-Wronskian approach.

8.1. Definitions of
(
GL(∞),q

)
-opers and the canonical form of Miura(

GL(∞),q
)
-opers

Given a principal GL(∞)-bundle FGL(∞) over P
1, let Fq

GL(∞)
denote its pullback under

the map Mq : P1 −→ P
1 sending z �→ qz. A meromorphic

(
GL(∞

)
,q)-connection on a

principal GL(∞)-bundle FGL(∞) on P
1 is a section A of HomOU

(
FGL(∞),F

q

GL(∞)

)
, where

U is an open dense subset of P1 in the standard topology. Notice that now the number of

zeros and poles which we have to exclude from P
1 could be infinite. We assume that the

only two accumulations points possible are 0 and ∞. We can always choose U so that

the restriction FGL(∞)

∣∣∣
U

of FGL(∞) to U is isomorphic to the trivial GL(∞)-bundle.

The restriction of A to the Zariski-open dense subset U ∩M−1
q (U) can be written as a
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section of the trivial GL(∞)-bundle on U ∩M−1
q (U), and hence as an element A(z) of

GL(∞)(z).

Definition 8.1. A meromorphic
(
GL(∞),q

)
-oper on P

1 is a triple
(
FGL(∞),A,FB−

)
,

where A is a meromorphic
(
GL(∞),q

)
-connection on a GL(∞)-bundle FGL(∞) on

P
1 and FB−

is the reduction of FGL(∞) to B− satisfying the condition that there

exists an open dense subset U ⊂ P
1 together with a trivialisation ıB−

of FB−
,

such that the restriction of the connection A : FGL(∞) −→ Fq

GL(∞)
to U ∩M−1

q (U),

written as an element of GL(∞)(z) using the trivialisations of FGL(∞) and Fq

GL(∞)

on U ∩M−1
q (U) induced by ıB− , takes values in the infinite product of Bruhat cells∏−∞

i=+∞B−
(
C
[
U ∩M−1

q (U)
])
siB−

(
C
[
U ∩M−1

q (U)
])
, where the ordering in the product

follows the infinite version of the one in SL(r+1).

Therefore, any q-oper connection A can be written in the form

A(z) =

−∞∏
i=+∞

[
n′
i(z)

(
φi(z)

α̌isi
)
ni(z)

]
, (8.1)

where φi(z) ∈ C(z) and ni(z),n
′
i(z) ∈ N̄− =

[
B̄−,B̄−

]
(z) are such that their zeros and

poles are outside the subset U ∩M−1
q (U) of P1. As we stated before, we require that the

only accumulation points of zeros and poles of φi(z), ni(z),n
′
i(z) be 0 and ∞.

We can give an alternative definition of the
(
GL(∞),q

)
-oper connection using associated

bundles as well:

Definition 8.2. A meromorphic
(
GL(∞),q

)
-oper on P

1 is a triple (A,E,L•), where E is
an ambient vector bundle with the fibre being an infinite-dimensional vector space with

countable basis and L• is the corresponding complete flag of the vector bundles

· · · ⊂ Li+1 ⊂ Li ⊂ Li−1 ⊂ ·· · ⊂ E −−

that is, with the fibres for Li being semi-infinite spaces so that A∈HomOU
(E,Eq) satisfies

the following conditions:

i) A·Li ⊂ Li−1.

ii) There exists an open dense subset U ⊂ P
1 such that the restriction of A ∈

Hom(L•,Lq
•) to U ∩M−1

q (U) belongs to GL(∞)(z) and satisfies the condition that

the induced maps Āi : Li/Li+1 −→Li−1/Li are isomorphisms on U ∩M−1
q (U).

The equivalence between the two definitions can be established as in the finite-

dimensional case, using the associated bundle for the defining representation and its

faithfulness. We also will use the notation A for the associated version of the q-connection
A; it will be clear from context which one is meant.

Let us give two equivalent definitions of the Miura
(
GL(∞),q

)
-oper, as in the finite-

dimensional case:
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Definition 8.3.

i) A Miura
(
GL(∞),q

)
-oper on P

1 is a quadruple
(
FGL(∞),A,FB−

,

FB+

)
, where

(
FGL(∞),A,FB−

)
is a meromorphic

(
GL(∞),q

)
-oper on P

1 and FB+

is a reduction of the GL(∞)-bundle FGL(∞) to B+ that is preserved by the q-

connection A.

ii) A Miura
(
GL(∞),q

)
-oper on P

1 is a quadruple
(
E,A,L•,L̂•

)
, where (E,A,L•) is a

meromorphic GL(∞)-oper on P
1 and L̂• = {Li} is another full flag of subbundles in

E that is preserved by the q-connection A.

As in SL(r+1) case, we can define the relative position (see Section 2.3) between FB+

and FB−
because of the Bruhat decomposition of G. We will say that FB−

and FB+
have

a generic relative position at x ∈X if the element of WG assigned to them at x is equal

to 1 (this means that the corresponding element a−1b belongs to the open dense Bruhat
cell B− ·B+ ⊂GL(∞)).

We immediately have the following result, which is a generalisation of the finite-

dimensional case:

Theorem 8.4. For any Miura
(
GL(∞),q

)
-oper on P

1, there exists an open dense subset

V ⊂ P
1 such that the reductions FB−

and FB+
are in generic relative position for all

x ∈ V .

Proof. Notice that according to the local expression for the q-oper connection in equation

(2.2) and the condition that it belong to GL(∞)(z), there is a finite number of elements

below the diagonal. This means that for some k,l we have

A(z) =

[
k∏

i=+∞
gα̌i
i (z)e

φi(z)ei
gi(z)

]
n′(z)

l+1∏
j=k−1

(
φj(z)

α̌jsj
)
n(z)

[−∞∏
i=l

gα̌i
i (z)e

φi(z)ei
gi(z)

]
, (8.2)

where n(z),n′(z) ∈ N−(z) belong to the SL(k + l) subgroup with H generated by
{α̌j}j=l+1

j=k−1. The expression in the middle, A′(z) =n′(z)
∏

j (φj(z)
α̌jsj)n(z)∈SL(k+ l)(z),

is the local expression for the Miura (SL(k+ l),q)-oper for which the generic property

follows from the finite-dimensional case (see Theorem 2.5), and thus we have generic

relative position for the Miura
(
GL(∞),q

)
-oper.

That leads to the following corollary:

Corollary 8.5. For any Miura
(
GL(∞),q

)
-oper on P

1, there exists a trivialisation of

the underlying GL(∞)-bundle FGL(∞) on an open dense subset of P1 for which the oper
q-connection has the form

−∞∏
i=+∞

gα̌i
i e

λiti
gi

ei, gi ∈ C(z)×, (8.3)

where each ti ∈ C(z) is determined by the lifting si and the order in the product is
canonical.

As in the finite-dimensional case, we fix ti ≡ 1 from now on.
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8.2. Z -twisted Miura q-opers

Now we are ready to define the notion of the
(
GL(∞),q

)
-oper and the Miura

(
GL(∞),q

)
-

oper, which are straightforward definitions of their SL(r+1) counterparts. As in the

SL(r+1) case, let Z be the regular element of the maximal torus H = B+/
[
B+,B+

]
.

One can express it as follows:

Z =

−∞∏
i=+∞

ζα̌i
i , ζi ∈ C

×. (8.4)

Definition 8.6. A Z-twisted
(
GL(∞),q

)
-oper on P

1 is a
(
GL(∞),q

)
-oper that is

equivalent to the constant element Z ∈H ⊂H(z) under the q-gauge action of GL(∞)(z)–
that is, if A(z) is the meromorphic oper q-connection (with respect to a particular

trivialisation of the underlying bundle), there exists g(z) ∈GL(∞)(z) such that

A(z) = g(qz)Zg(z)−1. (8.5)

A Z-twisted Miura
(
GL(∞),q

)
-oper is a Miura

(
GL(∞),q

)
-oper on P

1 that is equivalent

to the constant element Z ∈H ⊂H(z) under the q-gauge action of B+(z)–that is,

A(z) = v(qz)Zv(z)−1, v(z) ∈B+(z). (8.6)

Naturally, we have a proposition addressing the characterisation of Z -twisted Miura

q-opers associated to Z -twisted q-opers:

Proposition 8.7. Let Z ∈ H be regular. For any Z-twisted
(
GL(∞),q

)
-oper(

FGL(∞),A,FB−

)
and any choice of B+-reduction FB+

of FGL(∞) preserved by the

oper q-connection A, the resulting Miura
(
GL(∞),q

)
-oper is Z ′-twisted for a particular

Z ′ ∈ S∞ ·Z. The set of A-invariant B+-reductions FB+
on the

(
GL(∞),q

)
-oper is in

one-to-one correspondence with the elements of W = S∞.

Given a Miura
(
GL(∞),q

)
-oper. By Theorem 3.4, the underlying (G,q)-connection can

be written in the form of equation (3.5). As in the SL(r+1) case, we obtain an H̄-bundle

FB+
/N̄+, where N̄+ =

[
B+,B+

]
. The corresponding

(
H̄,q

)
-connection AH̄(z) according

to formula (8.3) is given by

AH(z) =
∏
i

gi(z)
α̌i . (8.7)

We call AH̄(z) the associated Cartan q-connection of the Miura q-oper A(z).

The same can be done in the infinite-dimensional case. If our Miura q-oper is Z -twisted
(see Definition 8.6), then we also have A(z) = v(qz)Zv(z)−1, where v(z) ∈B+(z). Notice

that v(z) can be written as

v(z) =
∏
i

yi(z)
α̌in(z), n(z) ∈ N̄+(z), yi(z) ∈ C(z)×. (8.8)
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We refer to the associated Cartan q-connection AH̄(z) as Z -twisted, so that the explicit

realisation is given by the formula

AH(z) =
∏
i

[
ζi
yi(qz)

yi(z)

]α̌i

, (8.9)

and we note that AH(z) determines the yi(z)s uniquely up to a scalar.

9. Z -twisted Miura
(
GL(∞),q

)
-opers and QQ-systems

9.1. Definition and explicit realisation.

Let {Λi(z)}i∈Z be a collection of nonconstant polynomials with accumulation points of

roots at 0 or ∞ only.

Definition 9.1.

i) A
(
GL(∞),q

)
-oper with regular singularities determined by {Λi(z)}i∈Z

is a q-oper on P
1 whose q-connection may be written in the form

A(z) =

[
k∏

i=+∞
gα̌i
i (z)e

Λi(z)tiei
gi(z)

]
n′(z)

l+1∏
j=k−1

(
φj(z)

α̌jsj
)
n(z)

[−∞∏
i=l

gα̌i
i (z)e

Λi(z)tiei
gi(z)

]
,

(9.1)

for some k,l ∈ Z, where n(z),n′(z) ∈ N−(z) and belong to the SL(k+ l) subgroup

with H generated by {α̌j}j=l+1
j=k−1.

ii) A Miura
(
GL(∞),q

)
-oper with regular singularities determined by polynomials

{Λi(z)}i=1,...,r is a Miura
(
GL(∞),q

)
-oper such that the underlying q-oper has

regular singularities determined by {Λi(z)}i=1,...,r.

As in the SL(r+1) case, from now on we set ti(z) = 1, i∈Z. Then we have an analogue
of Theorem 3.4:

Corollary 9.2. For every Miura
(
GL(∞),q

)
-oper with regular singularities determined

by the polynomials {Λi(z)}i∈Z, the underlying q-connection can be written in the form

A(z) =

−∞∏
i=+∞

gi(z)
α̌ie

Λi(z)

gi(z)
ei, gi(z) ∈ C(z)×. (9.2)

9.2. Fermionic realisation

Let Fi be the irreducible representation of GL(∞) with the highest weight ωi which we

discussed in Section 7. Notice that the 1- and 2-dimensional subspaces Li and Wi of Fi

spanned by the weight vectors Ψi and fi ·Ψi are B+-invariant subspaces of Vi.
Now let

(
FGL(∞),A,FB−

,FB+

)
be a Miura

(
GL(∞),q

)
-oper with regular singularities

determined by polynomials {Λi(z)}i∈Z (see Definition 3.3). Recall that FB+
is a B+-

reduction of an i ∈ Z-bundle F(GL(∞) on P
1, preserved by the

(
GL(∞),q

)
-connection A.
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Therefore for each i ∈ Z, the vector bundle

Fi = FB+
×
B+

Vi = FG×
G
Fi.

Thus we have the following proposition:

Proposition 9.3. For every Miura
(
GL(∞),q

)
-oper with regular singularities determined

by the polynomials {Λj(z)}j∈Z
, the underlying q-connection φi(A) in the associated bundle

Fi for any i ∈ Z can be written in the form

φi(A)(z) =
1∏

j=+∞
eΛj(z)ψjψ

∗
j+1

[
gj(z)

gj−1(z)

]ψjψ
∗
j

·
−∞∏
j=0

eΛj(z)ψjψ
∗
j+1

[
gj(z)

gj−1(z)

]−ψ∗
jψj

. (9.3)

We will discuss the Miura–Plücker condition. As we noted in the beginning of Section

8, the key difference between the finite- and infinite-dimensional cases is that we do

not have a luxury of having a line bundle such that the q-Wronskian matrix of the
corresponding section will produce minors describing the complete QQ-system. We must

rely exclusively on the properties of the infinite QQ-system, which will allow us to

construct the trivialising group element v(z) so that A(z) = v(qz)Zv(z)−1 for any Z -

twisted Miura–Plücker
(
GL(∞),q

)
-oper (see Section 9.5).

9.3. Miura–Plücker
(
GL(∞),q

)
-opers

For all i ∈ Z, the infinite-rank bundle Fi contains a rank 2 subbundle

Wi = FB+
×
B+

Wi

associated to Wi ⊂ Fi, and Wi in turn contains a line subbundle

L̂i = FB+
×
B+

Li

associated to Li ⊂Wi.
Note that φi(A) preserves subbundles Li and Wi of Fi and thus produces a (GL(2),q)-

oper on Wi. We denote such a q-oper by Ai as in Section 4.1.

Notice that Wi decomposes into a direct sum of two subbundles–L̂i, preserved by B+,
and Li–with respect to which it satisfies the (GL(2),q)-oper condition. We can unify all

that in the following proposition:

Proposition 9.4. The quadruple
(
Ai,Wi,Li,L̂i

)
for any i∈Z forms a Miura (GL(2),q)-

oper, so that explicitly

Ai(z) =

(
gi(z) Λi(z)gi−1(z)

0 g−1
i (z)gi+1(z)gi−1(z)

)
, i �= 0, A0(z) =

(
1 Λ0(z)g−1(z)

0 g−2
0 (z)g1(z)g−1(z)

)
,

(9.4)

where we use the ordering of the simple roots determined by the Coxeter element c.
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We can see that the expression for A0(z) looks slightly different from the rest of Ai(z)

in equation (9.4). However, if we multiply A0(z) by the diagonal matrix proportional

to the identity diag(g0(z), g0(z)), then it will be of the same form as the rest of the
matrices. This is due to the central extension in the ā∞-algebra and a shift of the Chevalley

generator α̌0.

Now we impose the Z -twisted condition on the corresponding AH -connection, namely
gi = ζi

yi(qz)
yi(z)

.

Let Gi
∼= SL(2) be the subgroup of GL(∞) corresponding to the sl(2)-triple spanned

by {ei,fi,α̌i}, which preserves Wi, using a diagonal gauge transformation as in Section

4.1. We associate to the connection Ai a (Gi,q)-oper with the explicit form

Ai(z) = gα̌i
i (z)e

βi(z)

gi(z)
ei, where βi(z) = Λi(z)ζi−1yi+1(z)yi−1(qz). (9.5)

Note that the diagonal transformation for A0(z) looks a bit different than for other Ai(z)
because of the aforementioned shift.

Now we are ready to define Miura–Plücker
(
GL(∞),q

)
-opers.

Definition 9.5. A Z -twisted Miura–Plücker
(
GL(∞),q

)
-oper is a meromorphic Miura(

GL(∞),q
)
-oper on P

1 with the underlying q-connection A(z) such that there exists
v(z) ∈B+(z) such that for all i ∈ Z, the Miura (GL(2),q)-opers Ai(z) associated to A(z)

by equation (9.4) can be written in the form

Ai(z) = v(zq)Zv(z)−1|Wi
= vi(zq)Zivi(z)

−1, (9.6)

where vi(z) = v(z)|Wi
and Zi = Z|Wi

.

9.4. Nondegeneracy conditions

In this subsection we will generalise two nondegeneracy conditions we had in Section 4.2

for Z -twisted Miura–Plücker
(
GL(∞),q

)
-opers.

The first nondegeneracy condition deals with the associated H -connection.

Definition 9.6. A Miura (GL(∞),q)-oper A(z) of the form (3.5) is called H -

nondegenerate if the corresponding (H̄,q)-connection AH̄(z) can be written in the form

(8.9), where zeroes and poles yi(z) and yi±1(z) are q-distinct from each other and from
the zeros of Λk(z).

The second nondegeneracy condition addresses the associated (Gi,q)-opers.

Definition 9.7. A Z -twisted Miura-Plücker
(
GL(∞),q

)
-oper A(z) is called nondegen-

erate if its associated Cartan q-connection AH(z) is nondegenerate and each associated

Zi-twisted Miura (SL(2),q)-oper Ai(z) is nondegenerate.

We arrive at the analogue of Proposition 4.7, which is proven in exactly the same way:

Proposition 9.8. Let A(z) be a Z-twisted Miura–Plücker (G,q)-oper. The following

statements are equivalent:

https://doi.org/10.1017/S1474748021000220 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000220


Toroidal q-opers 631

(1) A(z) is nondegenerate.

(2) The Cartan q-connection AH(z) is nondegenerate, and each Ai(z) has regular

singularities–that is, ρi(z) given by equation (4.3) is in C[z].

(3) Each yi(z) from equation (3.8) is a polynomial, and for all i ∈ Z the zeros of yi(z)

and yi±1(z) are q-distinct from each other and from the zeros of Λk(z).

9.5. Z -twisted Miura–Plücker
(
GL(∞),q

)
-oper is Z -twisted

From the previous section we see that the q-connection of the nondegenerate Miura–

Plücker
(
GL(∞),q

)
-oper with regular singularities defined by polynomials {Λi(z)}i=1,...,r

reads as follows:

A(z) =

−∞∏
i=+∞

gi(z)
α̌ie

Λi(z)

gi(z)
ei, gi(z) = ζi

Q+
i (qz)

Q+
i (z)

. (9.7)

Let us assume as in the SL(r+1) case (see equation (5.2)) that ξi is q-distinct from ξi+1.

In particular, this means Z is regular semisimple.
First we define theQQ-system forGL(∞) as an infinite generalisation of equation (5.3):

ξi+1Q
+
i (qz)Q

−
i (z)− ξiQ

+
i (z)Q

−
i (qz) = Λi(z)Q

+
i−1(qz)Q

+
i+1(z), i ∈ Z. (9.8)

We say that a polynomial solution
{
Q+

i (z),Q
−
i (z)

}
of equation (9.8) is nondegenerate if

for i �= j, the zeros of Q+
i (z) and Q−

j (z) are q-distinct from each other and from the zeros
of Λk(z) for |i−k|= 1, |j−k|= 1.

The following theorem is a direct analogue of Theorem (5.1):

Theorem 9.9. There is a one-to-one correspondence between the set of nondegenerate

Z-twisted Miura–Plücker
(
GL(∞),q

)
-opers and the set of nondegenerate polynomial

solutions of the GL(∞)QQ-system (9.8).

This theorem can proved the same way as in [24] with the help of Proposition 9.4. The
following theorem serves as an infinite-dimensional generalisation of Theorem 5.2:

Theorem 9.10. Let A(z) be as in equation (9.7) and Z =
∏

i ζ
α̌i
i . Then the q-gauge

transformation v(z) which diagonalises the q-connection

A(z) = v(qz)Zv(z)−1

reads

v(z) =
+∞∏

i=−∞
Q+

i (z)
α̌i ·

+∞∏
i=−∞

Vi(z), (9.9)

where

Vi(z) = exp

⎛⎝−
∑
j>i

φi,...,j(z)ei,...,j

⎞⎠, (9.10)
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in which ei,...,j = [. . . [[ei,ei+1],ei+2]. . . ej ] and functions φi,...,j(z) satisfy the following

relations:

ξi+1φi(z)− ξiφi(qz) = ρi(z),

ξi+2φi,i+1(z)− ξiφi,i+1(qz) = ρi+1(z)φi(z),

... (9.11)

ξi+j+1φi,...,i+j(z)− ξiφi,...,i+j(qz) = ρi+j(z)φi,...,i+j−1(z),

...

where i ∈ Z, j ∈ Z+ and we use the same notation as in Section 5.

The set of equations (9.11) is called the extended QQ-system for GL(∞), which can
also be presented as

ξi+1Q
+
i (qz)Q

−
i (z)− ξiQ

+
i (z)Q

−
i (qz) = Λi(z)Q

+
i−1(qz)Q

+
i+1(z),

ξi+2Q
+
i+1(qz)Q

−
i,i+1(z)− ξiQ

+
i+1(z)Q

−
i,i+1(qz) = Λi+1(z)Q

−
i (qz)Q

+
i+1(z),

... (9.12)

ξi+j+1Q
+
i+j(qz)Q

−
i,...,i+j(z)− ξiQ

+
i+j(z)Q

−
i,...,i+j(qz) = Λi+j(z)Q

−
i,...,i+j−1(qz)Q

+
i+j+1(z),

...

Proof. Let us first rewrite the diagonalisation condition as

v(qz)−1A(z) = Zv(z)−1, (9.14)

as it will be easier to compute the left- and right-hand sides of and compare them. We

can make a statement similar to Lemma 5.4 and write the
(
GL(∞),q

)
-oper as

A(z) =
−∞∏

i=+∞
Q+

i (qz)
α̌i ·

−∞∏
i=+∞

e
ζi

ζi+1
ρi(z)ei ·

−∞∏
i=+∞

ζα̌i Q
+
i (z)

−α̌i . (9.15)

Then the left-hand side of equation (9.14) reads

v(qz)−1A(z) =

−∞∏
i=+∞

exp

⎛⎝∑
j>i

φi,...,j(qz)ei,...,j

⎞⎠ ·
−∞∏

i=+∞
e

ζi
ζi+1

ρi(z)ei ·
−∞∏

i=+∞
ζα̌i
i Q+

i (z)
−α̌i .

(9.16)

We now need to move the ith element from the middle product to the left until it

combines with the corresponding e−φi(qz)ei term. In this way, e
ζi

ζi+1
ρi(z)ei will need to

be carried over to Vi+1(qz)
−1 inside the first product. Each term e

ζi
ζi+1

ρi(z)ei will have
nontrivial commutators with exponentials containing ei+1–the others will vanish due to
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Serre relations. Thus equation (9.16) reads

v(qz)−1A(z) = · · · · exp
(
ζ1

ζ2
ρ1(z)+φ1(qz)

)
e1 · · · · · exp

(
ζi

ζi+1
ρr(z)φ1,...,i−1(qz)+φ1,...,i(qz)

)
e1,...,i

· · · · · exp
(
ζ2

ζ3
ρ2(z)+φ2(qz)

)
e2 · · · · · exp

(
ζj

ζj+1
ρj(z)φ2,...,j−1(qz)+φ2,...,j(qz)

)
e2,...,j

(9.17)

· · · · ·
−∞∏

i=+∞
ζ
α̌i
i Q+

i (z)−α̌i .

This expression needs to be compared against the right-hand side of equation (9.14),

which is given by

Zv(z)−1 =
∏
i

ζα̌i ·
−∞∏

i=+∞
exp

⎛⎝∑
j>i

φi,...,j(qz)ei,...,j

⎞⎠ ·
−∞∏

i=+∞
Q+

i (z)
−α̌i . (9.18)

To make the comparison manifest, one needs to move the Cartan terms from the end to

the front using equation (5.13):

Zv(z)−1 = · · · · exp
(

ζ21
ζ0ζ2

φ1(z)e1

)
· · · · · exp

(
ζ1ζj
ζ0

φ1,...,j(z)e1,...,j

)
· · · · · exp

(
ζ22
ζ1ζ3

φ2(z)e2

)
· · · · · exp

(
ζ2ζl
ζ1

φ2,...,l(z)e2,...,l

)
(9.19)

· · · · ·
−∞∏

i=+∞
ζα̌i
i Q+

i (z)
−α̌i .

Here we used the following fact about nested commutators in Chevalley basis:

[α̌a,ei,...,j ] =

⎧⎪⎨⎪⎩
ei,...,j, a= i or a= j,

−ei,...,j, a= i−1 or a= j+1,

0, otherwise.

(9.20)

Comparing equations (9.17) and (9.19) leads to equation (9.11).

Corollary 9.11. Theorem 5.2 follows.

Proof. In the proof of Theorem 9.10, one needs to replace all infinite products with

products ranging between 1 and r and put ζ0 = ζr+1 = 1.

Analogously to Theorem 5.6, we can make the following statement:

Theorem 9.12.

(1) Every nondegenerate solution of the QQ-system for GL(∞) (9.8) is also a
nondegenerate solution of the extended QQ-system for GL(∞) (9.12).

(2) There is a one-to-one correspondence between the set of nondegenerate solutions of

the the QQ-system for GL(∞) and the set of solutions of Bethe ansatz equations
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for GL(∞):

Q+
i

(
qwi

k

)
Q+

i

(
q−1wk

i

) ξi
ξi+1

=−
Λi

(
wi

k

)
Q+

i+1

(
qwi

k

)
Q+

i−1

(
wi

k

)
Λi

(
q−1wi

k

)
Q+

i+1

(
wi

k

)
Q+

i−1

(
q−1wi

k

), (9.21)

where i ∈ Z and k = 1, . . . ,mi.

10. Toroidal q-opers

10.1. Quantum toroidal algebras, Bethe equations and the QQ-system of Â0

type

The quantum toroidal algebra Ut1,t2

(̂̂
gl(1)

)
has attracted a lot of attention in recent

years.4 On one hand it has an explicit geometric realisation: there is a natural action of

this algebra on equivariant K -theory of ADHM instanton spaces [49] which corresponds

to the simplest framed quiver varieties with one loop and one vertex.

One can describe such moduli spaces MN of rank N torsion-free sheaves F on P
2 with

framing at infinity (also known as the moduli space of U(N) instantons on R
4). The

framing condition forces the first Chern class to vanish; however, the second Chern class

can range over the nonpositive integers c2(F ) = k. The moduli space can be represented
as a disjoint sum MN = �kMk,N . Each Mk,N can be described as the moduli spaces of

stable representations of the following ADHM quiver, where W is a trivial bundle of rank

N and V is a bundle of rank k. For N =1 this quiver variety describes a Hilbert scheme of
k points on C

2. For details and the equivalence of various descriptions of ADHM moduli

spaces, we refer the reader to [47].

W

V

Let us denote G=A× (C×)2, where A is the framing torus–that is, the maximal torus

of GL(N)–and (C×)2 is the torus acting on C
2 ⊂ P

2. We denote equivariant parameters
corresponding to A and G/A as a1, . . . ,aN and t1,t2, correspondingly.

The G-equivariant K -theory of Mk,N is generated by the equivariant vector bundle V
of rank k over Mk,N as in the case of the cotangent bundles to Grassmannians discussed

in the introduction. The space of the localised KG (Mk,N ) is a module spanned by the

fixed points of Ut1,t2

(̂̂
gl(1)

)
.

4Sometimes in the literature a different notation is used, Uq1,q2,q3

(̂̂
gl(1)

)
, where q1 = (t1t2)

−1,

q2 = t2, q1q2q3 = 1.
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This module has the structure of the analogue of an XXZ-module for the toroidal
algebra. Namely, the physical space

H= F (a1)⊗·· ·⊗F (aN )

is the product of Fock-space representations of the toroidal algebra {F (ai)}, where the

parameters {ai}, which have the meaning of evaluation parameters, correspond to the
zero mode value of the infinite-dimensional Heisenberg algebra. We refer to [52] for more

details.

As we described in the introduction, the quantum-equivariant K -theory based on
quasimaps is described by difference equations which coincide with quantum Knizhnik–

Zamolodchikov equations and the related dynamical equations. The solutions to these

difference equations can be computed as certain Euler characteristics on the moduli spaces
of quasimaps. They are given by a certain integral formula with the asymptotics given

by the Yang–Yang function Y, which can be described as follows.

Let �(x) be a multivalued function, which can be written in dilogarithm terms [27],

such that

exp2π
∂�(x)

∂x
= 2sinhπx.

The Yang–Yang function for the ADHM space Mk,N is given by [2]

YADHM (σ,α,ε1,ε2) =

k∑
a=1

N∑
m=1

�(σa−αm)+ �(−σa+αm− ε1− ε2)

+
k∑

a �=b

�(σa−σb+ ε1)+ �(σa−σb+ ε2)+ �(σa−σb− ε1− ε2)

−κ
k∑

a=1

σa, (10.1)

where

sb = e2πσb, ab = e2παb, t1 = e2πε1, t2 = e2πε2, κ= e2πκ, κ= (t1t2)
−N

2 z,

so that z is a Kähler parameter of Mk,N .
Then the Bethe equations in the case of Mk,N can be computed as critical points for

YADHM :

Lemma 10.1. The equations

exp2π
∂YADHM

∂σa
= 1, a= 1, . . . ,k, (10.2)

are equivalent to the following Bethe equations:

N∏
l=1

sa−al
t1t2sa−al

·
k∏

b=1
b �=a

sa− t1sb
t1sa−sb

sa− t2sb
t2sa−sb

sa− t1t2sb
t1t2sa−sb

= z, a= 1, . . . ,k. (10.3)
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Recall that equation (10.3) describes relations in the quantum-equivariant K -theory of

Mk,N . Generalising the results of [53] with the help of [57], one can prove the following:

Proposition 10.2. The eigenvalues of quantum multiplication operators by bundles

ΛlV , 1 ≤ l ≤ k, in the localised quantum G-equivariant K-theory of MN,k are given by
elementary symmetric polynomials el(s1, . . . ,sk) of Bethe roots which satisfy the Bethe

equations (10.3).

The quantum-equivariant K -theory ring of MN,k can be described by the symmetric

functions of variables s1, . . . ,sk subject to Bethe equations. We refer to that as the Bethe

algebra of the XXZ model for a quantum toroidal algebra.
On the other hand, Feigin, Jimbo, Miwa and Mukhin [13, 17] studied such an XXZ

model explicitly and derived such Bethe equations for the corresponding transfer matrices.

Another important issue, featured in [17], is the explicit construction of the Q-operator.
We recall that this is the operator in the Bethe algebra whose eigenvalues form a

generating function of the elementary symmetric functions of Bethe roots–that is, it is a

generating function of operators from Proposition (10.2).

Frenkel and Hernandez [22] wrote down the QQ-system leading to the Bethe ansatz
equations for a quantum toroidal gl1-algebra:

ξQ+
(
(t1t2)

−1z
)
Q−(z)−Q+(z)Q− ((t1t2)−1z

)
= L(z)Q+

(
t−1
1 z

)
Q+

(
t−1
2 z

)
, (10.4)

where we have altered the authors’ notation slightly and introduced a ‘framing polyno-

mial’ L(z). We will refer to this functional equation as the Â0QQ-system. Its equations
can also be written as

ξφ(z)−φ
(
(t1t2)

−1z
)
= ρ(z), (10.5)

where

φ(z) =
Q−(z)

Q+ ((t1t2)−1z)
, ρ(z) = L(z)

Q+
(
t−1
1 z

)
Q+

(
t−2
1 z

)
Q+(z)Q+ ((t1t2)−1z)

. (10.6)

We call the solutions for such a system nondegnerate if Q+(z), Q−(z) and L are t1- and

t2-distinct and ξ �= 1.

That leads to the following lemma:

Lemma 10.3. There is a one-to-one correspondence between the set of nondegenerate

solutions of equations (10.4) and (10.3).

Proof. Since

Q(u) =

k∏
a=1

(z−sa), L(u) =
N∏
i=1

(z−ai),

we can first evaluate equation (10.4) at u = sa, then shift u by t1t2 and evaluate the

equation again at z = sa. This leads us to

L(sa)
L(t1t2sa)

·
Q
(
t−1
1 sa

)
Q(t1sa)

Q
(
t−1
2 sa

)
Q(t2sa)

Q(t1t2sa)

Q((t1t2)−1sa)
=−ξ.
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This shows the implication in one direction–from the QQ-system to the Bethe equations.
The opposite statement can be proved analogously to Theorem 5.6. We leave it to the

reader.

There exists a generalisation of this construction to a higher-rank quantum toroidal

algebra Ut1,t2

(̂̂
gl(N)

)
for cyclic quiver varieties with N vertices. It is easy to write the

Yang–Yang function in this case as well as the Bethe equations (see [2] for a universal

treatment). It is also easy to present the analogue of the QQ-system (see later). However,

the representation-theoretic approach along the lines of [22, 17]–that is, construction of the

Q-operator as a transfer matrix for a special auxiliary representation of Ut1,t2

(̂̂
gl(N)

)
–

has not yet been developed.

10.2. Miura 1-toroidal q-opers

We can now define toroidal opers. Let us consider the automorphism of the Dynkin

diagram of a∞ which corresponds to a shift by one vertex. This automorphism can be

realised by the transformation corresponding to the conjugation via the infinite Coxeter
element

∏−∞
i=+∞ si. In matrix notation, such an infinite Coxeter element can be realised

via V1 =
∑

i∈Z
Ei,i−1.

Definition 10.4. Set p,ξ ∈ C
×. We refer to a Z -twisted Miura

(
GL(∞),q

)
-oper (3.4)

satisfying

V1A(z)V−1
1 = ξA(pz) (10.7)

as the Z-twisted 1-toroidal Miura q-oper. We call it nondegnerate if it is nondegenerate
as a Z -twisted Miura

(
GL(∞),q

)
-oper.

Equation (10.7) translates to the following conditions on polynomials which appear in

the QQ-system:

gi+1(z)

gi(z)
= ξ

gi(pz)

gi−1(pz)
, Λi+1(z) = ξΛi(pz). (10.8)

The first condition (recall that ξi =
ζi

ζi−1
) becomes

ξi+1

Q+
i+1(qz)Q

+
i (z)

Q+
i+1(z)Q

+
i (qz)

= ξξi
Q+

i (qz)Q
+
i−1(pz)

Q+
i (z)Q

+
i−1(pqz)

, (10.9)

which can be satisfied provided that

ξi = ξi, Q+
i (z) =Q+

(
piz
)
, Λi(z) = ξiΛ

(
piz
)
. (10.10)

Let us now study how these periodic conditions affect the QQ-system for GL(∞). The
QQ-equations (9.8) can be rewritten as

ξi+1φ
(
piz
)
− ξiφ

(
piqz

)
= ξiΛ

(
piz
)Q+

(
pi−1z

)
Q+

(
pi+1qz

)
Q+ (piz)Q+ (piqz)

, (10.11)
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where φi(z) is replaced by φ
(
piz
)
and thus

Q−
i (z) =Q− (piz) . (10.12)

By shifting the variable z �→ p−iz, we get

ξφ(z)−φ(qz) = Λ(z)
Q+

(
p−1z

)
Q+(pqz)

Q+(z)Q+(qz)
. (10.13)

Equivalently, we can impose ρi(z) = ρ
(
piz
)
.

Notice that these equations coincide with equations (10.5) and (10.6); therefore we

recover the Â0QQ-system, provided that

L(z) = Λ(z), p= t1, q = (t1t2)
−1. (10.14)

This brings us to the following:

Theorem 10.5. The space of nondegenerate Z-twisted Miura 1-toroidal q-opers with reg-

ular singularities at a1, . . . ,aN is isomorphic to the space of solutions of the nondegenerate
Â0QQ-system (10.6) or equivalently to

ξQ+(qz)Q−(z)−Q+(z)Q−(qz) = Λ(z)Q+
(
p−1z

)
Q+(pqz). (10.15)

The full set of equations for the extended QQ-system for GL(∞) (9.12) reads

Q+(qz)Q−(z)− ξQ+(z)Q−(qz) = Λ(z)Q+
(
p−1qz

)
Q+(pz),

Q+(qz)Q−
(1)(z)− ξ2Q+(z)Q−

(1)(qz) = ξΛ(z)Q− (p−1qz
)
Q+(pz),

... (10.16)

Q+(qz)Q−
(j)(z)− ξj+1Q+(z)Q−

(1)(qz) = ξjΛ(z)Q−
(j−1)

(
p−1qz

)
Q+(pz),

...

where

Q−
(j)

(
piz
)
=Q−

i−j+1,i−j+2,...,i(z). (10.17)

The gauge transformation which brings a toroidal q-oper to the diagonal form can be

directly generalised from equation (5.11) using equations (10.10), (10.12) and (10.17):

https://doi.org/10.1017/S1474748021000220 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000220


Toroidal q-opers 639

v(z)−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

... · · · · · ·
...

...

0
Q+

(
pi−1z

)
Q+ (piz)

Q− (pi−1z
)

Q+ (pi+1z)
· · · · · ·

Q−
(j)

(
pi−1z

)
Q+ (pi+jz)

...

0 0
Q+

(
piz
)

Q+ (pi+1z)
· · · · · ·

Q−
(j−1)

(
piz
)

Q+ (pi+jz)

...

...
...

...
. . .

...
...

...

0 · · · · · · · · ·
Q+

(
pi+j−2z

)
Q+ (pi+j−1z)

Q− (pi+j−2z
)

Q+ (pi+jz)

...

0 · · · · · · · · · · · ·
Q+

(
pi+j−1z

)
Q+ (pi+jz)

...

0 · · · · · · · · · · · · 0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(10.18)

We would like to mention that a similar folding procedure on the level of TQ-systems

for SL(∞) was performed by Hernandez [30]. For further developments and applications

of the QQ-system (10.15), see [40].

10.3. Miura N -toroidal q-Opers

Here we briefly show how the foregoing construction can be immediately generalised to

higher rank. Namely, one has to generalise the periodicity conditions.

Definition 10.6. Set p,ξ ∈C
×. The Z -twisted N -toroidal Miura q-oper is a (GL(∞),q)-

oper (3.4) satisfying

VN A(z)V−1
N = ξN A

(
pN z

)
, (10.19)

where VN = VN
1 . We call it nondegenerate if it is nondegenerate as a Z -twisted Miura(

GL(∞),q
)
-oper.

If we impose equation (10.19) on the q-connection, we get the following family of
equations for i≥ j:

gi+N (z)

gj+N (z)
= ξN gi

(
pN z

)
gj (pN z)

, Λi+N (z) = ξN Λi

(
pN z

)
, (10.20)

which imposes N -periodicity on all functions

Q±
i+N (z) =Q±

i

(
pN z

)
, ξi+N = ξN ξi,

for all i.

Thus we arrive at the generalisation of Theorem 10.5:

Theorem 10.7. The nondegenerate Z-twisted Miura N-toroidal q-opers with regular

singularities given by Λi(u) =
∏N

j=1

(
z−a

(i)
j

)
are in one-to-one correspondence with the
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nondegenerate solutions of the following ÂN −1QQ-system:

ξ1Q
+
1 (qz)Q

−
1 (z)− ξ2Q

+
1 (z)Q

−
1 (qz) = Λ1(z)Q

+
N (qz)Q+

2 (z), (10.21)

ξiQ
+
i (qz)Q

−
i (z)− ξi+1Q

+
i (z)Q

−
i (qz) = Λi(z)Q

+
i−1(qz)Q

+
i+1(z), i= 2, . . . ,N −1,

ξNQ+
N (qz)Q−

N (z)− ξ1Q
+
N (z)Q−

N (qz) = ΛN (z)Q+
N −1(qz)Q

+
1 (z),

with the nondegeneracy conditions induced from the original GL(∞)QQ-system.
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