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Some Conditions for Decay of Convolution
Powers and Heat Kernels on Groups

Nick Dungey

Abstract. Let K be a function on a unimodular locally compact group G, and denote by Kn = K ∗
K ∗ · · · ∗ K the n-th convolution power of K. Assuming that K satisfies certain operator estimates in

L2(G), we give estimates of the norms ‖Kn‖2 and ‖Kn‖∞ for large n. In contrast to previous methods

for estimating ‖Kn‖∞, we do not need to assume that the function K is a probability density or non-

negative. Our results also adapt for continuous time semigroups on G. Various applications are given,

for example, to estimates of the behaviour of heat kernels on Lie groups.

1 Introduction

Given a suitable function K on a locally compact group G, many authors have con-

sidered the problem of estimating the L∞ norm ‖Kn‖∞ for large n, where

Kn = K ∗ K ∗ · · · ∗ K

denotes the n-th convolution power of K for n ∈ N = {1, 2, 3, . . .}. If G is a Lie
group, this problem occurs in describing the large time behaviour of the heat kernel
corresponding to a group invariant differential operator on G. For relevant back-

ground in these areas, see [8, 21, 22, 25] and references therein.

If K is a probability density, K ≥ 0 and
∫

G
K = 1, then there are various strate-

gies for estimating Kn. These include probabilistic methods, but also some gen-

eral functional-analytic methods, using Nash or Sobolev inequalities, for estimating
semigroups which are uniformly bounded in Lp for all 1 ≤ p ≤ ∞ (see, for ex-
ample, [2, 3, 21, 25]). But if the function K takes negative or complex values then
these methods are not readily applicable, and it is not clear how to proceed. Similar

difficulties occur in studying the heat kernels of differential operators which are not
second order or which have complex coefficients (see the survey [5]). Large time esti-
mates of such kernels on Lie groups are considered in [1,4,6,8–10,13,14] for example,
but these works rely on the structure theory of specific classes of Lie groups.

In this paper, we offer a new method for estimating Kn, which does not assume
K ≥ 0 and which applies in great generality to (unimodular) locally compact groups.
We derive estimates on ‖Kn‖∞ from certain semigroup estimates in L2; no assump-

tions are made about semigroup behaviour in L1. Our work yields a surprisingly
direct connection between L2 operator estimates and L∞ kernel estimates on groups,
which has many applications to estimates of group invariant heat kernels. Indeed,
in some specific situations we can derive new estimates, while in other situations we
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can give much simpler proofs of known results (for examples, see Sections 3 and 4
below).

An original aspect of this paper is the use of certain “convolution” Nash inequal-
ities (see Lemma 2.2 below), which are a modified version of standard Nash type
inequalities. A more systematic treatment of convolution Nash inequalities and their

relationship with estimates for convolution semigroups will be given elsewhere.

To state our basic results, we fix some notation. Throughout, G will be a second
countable, unimodular locally compact group, with identity element e. We fix a (bi-

invariant) Haar measure dg for G, and consider the spaces Lp
= Lp(G ; dg), 1 ≤ p ≤

∞, of complex-valued functions. The norm of a bounded operator T : Lp → Lq is
written ‖T‖p→q; when p = q = 2 we simply write ‖T‖. The identity operator is I.
In general, c, c ′, b and so on, denote positive constants whose value may change from

line to line when convenient.

Let L = LG be the left regular representation of G, so that (L(g) f )(h) = f (g−1h),
g, h ∈ G, for a function f : G → C. Given any locally integrable function f1, let L( f1)

denote the right invariant convolution operator given by

(L( f1) f2)(g) = ( f1 ∗ f2)(g) =

∫

G

dh f1(h) f2(h−1g)

for g ∈ G and suitable functions f2. This is at least well defined when f2 ∈ Cc(G), the
continuous, compactly supported functions on G. We can thus consider the (possibly
infinite) norms

‖L( f1)‖p→q = sup{‖L( f1) f2‖q : f2 ∈ Cc(G), ‖ f2‖p ≤ 1}

when 1 ≤ p < ∞.

In our basic results, we assume that K ∈ L2, and that T = L(K) is a contraction
in L2, ‖T‖ ≤ 1. Then the n-th convolution powers Kn = K ∗ K ∗ · · · ∗ K = Tn−1K

exist in L2, and

n 7→ ‖Kn‖2

is a non-increasing function of n ∈ N, because Kn+1 = TKn.

The following terminology will be useful. A Borel measurable function ρ : G →
[0,∞〉 is said to be a modulus function on G if ρ(g) > 0 for all g 6= e and Bρ(r) :=
{g ∈ G : ρ(g) ≤ r} is a relatively compact subset of G for each r > 0. We usually
denote by Vρ(r) = dg(Bρ(r)) the (finite) Haar measure of Bρ(r).

Heuristically, we think of ρ(g) as a distance between g and the identity e, so that

Bρ(r) is a ball of radius r.

Our basic theorem is the following.

Theorem 1.1 Suppose K ∈ L2 such that T = L(K) is a contraction in L2. Let ρ : G →
[0,∞〉 be a modulus function, and suppose there are α > 0, ν > 0, such that

(1) ‖(I − L(g))Tn‖ ≤ c(ρ(g)n−α)ν
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for all n ∈ N and g ∈ G. Assume there exist a > 0, D > 0 with Vρ(r) ≥ arD for all

r ≥ 1. Then there exists c ′ > 0 such that

‖Kn‖2 ≤ c ′n−Dα/2

for all n ∈ N and

‖Kn‖∞ ≤ c ′n−Dα

for all n ∈ N with n ≥ 2.

We make a number of remarks about Theorem 1.1.

• The proof will show that the constant c ′ in the conclusion depends only on
α, ν, c, a, D and ‖K‖2.

• It is also of interest to consider cases of faster growth, for example, where Vρ(r) ≥
aear for large r. See Theorem 2.7 in Section 2 below for an extension of Theorem 1.1
for such situations.

• The hypothesis ‖T‖ ≤ 1 in Theorem 1.1 can easily be replaced by the weaker
condition supn∈N

‖Tn‖ = c1 < ∞. But ‖T‖ ≤ 1 in all of the applications of the
theorem that we know of. Note that Theorem 1.1 can sometimes also be applied in

cases where ‖Tn‖ ≤ c1θ
n, n ∈ N, for some c1, θ > 0, by considering the operator

T̃ = θ−1T.

• It is a useful technical remark that (1) holds automatically if ρ(g)n−α ≥ 1,
because one has ‖(I − L(g))Tn‖ ≤ 2‖Tn‖ ≤ 2 for all g ∈ G. Thus when verifying (1)
it suffices to consider the case where ρ(g) ≤ nα.

• Theorem 1.1 is actually equivalent to the special case where ν = 1. Indeed, for a
general ν > 0 we can apply that case to the modulus ρ2 := ρν . It is, however, of some
interest to state the theorem for general ν, because for a fixed ρ, the condition (1) is
weakened if ν is decreased. We can roughly think of ν as a Hölder exponent.

• In our applications of Theorem 1.1, the modulus function ρ will also be subad-

ditive and symmetric, that is,

ρ(gh) ≤ ρ(g) + ρ(h), ρ(g) = ρ(g−1)

for all g, h ∈ G, but these properties are not assumed in general. There is, however,

a natural connection between these properties and the hypothesis (1). Namely, if
ν = 1 and ρ̃ is the smallest function such that (1) holds with c = 1, that is,

ρ̃(g) = sup
n∈N

nα‖(I − L(g))Tn‖,

then it is easy to check that ρ̃ is subadditive and symmetric.

• In case G is compactly generated, there is a natural modulus function on G.
We briefly discuss this modulus, which occurs in many important applications of
Theorem 1.1. To recall the definition, pick a compact neighborhood U of e with
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U = U−1 and G =

⋃∞
n=1 U n, where U n

= {u1 . . . un : u1, . . . , un ∈ U}. One defines
(as in [25, p. 77]) a symmetric, subadditive modulus ρU : G → N by

ρU (g) = inf{n ∈ N : g ∈ U n}.

Note that U n
= {g ∈ G : ρU (g) ≤ n} and VρU

(n) = dg(U n) for n ∈ N.
It is well known that the behaviour of ρU is essentially independent of U and

depends only on G. For if U ′ is another such neighborhood, then there exists k ∈ N

with U n ⊆ (U ′)kn, (U ′)n ⊆ U kn for all n ∈ N, and k−1ρU ≤ ρU ′ ≤ kρU . In the
sequel, we will often write VG(n) instead of VρU

(n) without specifying a particular
choice of U .

Recall that the compactly generated group G is said to have polynomial growth of
order D ≥ 0 if one has an estimate c−1nD ≤ VG(n) ≤ cnD for all n ∈ N.

For applications of our results to Lie groups, it is useful to recall (see [15]) that

any connected, non-compact Lie group either has polynomial growth of some order
D ≥ 1, or has exponential growth in the sense that VG(n) ≥ aean, n ∈ N, for some
constant a > 0.

It is interesting to point out that ρU is essentially the largest subadditive function
on a compactly generated group G. More precisely, if σ : G → [0,∞〉 is a subadditive
function which is bounded over compact sets, then an easy argument shows that
σ ≤ c1 ρU where c1 := sup{σ(g) : g ∈ U} < ∞.

• There are also interesting applications of Theorem 1.1 where the modulus func-
tion behaves differently from the canonical modulus ρU . In Section 4, we will present
such an application using certain “weighted” modulus functions on Lie groups.

Our next result is derived from Theorem 1.1 by choosing ρ = ρU (see Section 2).

Corollary 1.2 Suppose G is compactly generated. Let K ∈ L2 such that T = L(K) is a

contraction in L2, and suppose there exist α > 0 and a compact generating neighborhood

U ′ of e with

‖(I − L(u))Tn‖ ≤ cn−α

for all n ∈ N and u ∈ U ′. If D > 0 with VG(n) ≥ anD, n ∈ N, then the conclusion

of Theorem 1.1 holds, that is, there is a c > 0 with ‖Kn‖2 ≤ cn−Dα/2, n ∈ N, and

‖Kn‖∞ ≤ cn−Dα, n ≥ 2.

In case G is a Lie group, it is natural to try to rewrite our results by replacing the

difference operators I − L(g) with group-invariant vector fields. We next state one
such result, which is derivable from Corollary 1.2 (see Section 2).

Suppose G is a connected Lie group, with Lie algebra g and exponential map

exp: g → G. To each element x ∈ g we associate a right invariant vector field
X = dLG(x): as an operator, dLG(x) = limt→0 t−1(L(exp tx) − I). By a generat-

ing list we mean a finite list a1, . . . , ad ′ ∈ g of elements which algebraically generate
the Lie algebra g.

Corollary 1.3 Let G be a connected unimodular Lie group and D ≥ 1 with VG(n) ≥
anD, n ∈ N. Suppose K ∈ L2 such that T = L(K) is a contraction in L2, and assume
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there exist α > 0 and a generating list a1, . . . , ad ′ for g such that, with Ai = dLG(ai),

‖AiT
n‖ ≤ cn−α

for all n ∈ N and i ∈ {1, . . . , d ′}. Then the conclusion of Theorem 1.1 holds.

Let us mention a typical application of the preceding results; further examples will
be given in subsequent sections. On a Lie group G, consider a subelliptic operator of
the form

H = (−1)M/2

d ′∑

i=1

AM
i ,

where M ≥ 2 is an even positive integer, Ai = dLG(ai), and a1, . . . , ad ′ generate
g. It is known (see [11, 16]) that the semigroup e−tH generated by the non-negative
self-adjoint operator H is given by e−tH

= L(Kt ), t > 0, where the kernel Kt ∈
L1 ∩ L∞ is smooth (and satisfies Gaussian estimates for 0 < t ≤ 1.) Moreover,
Kt+s = Kt ∗ Ks for all s, t > 0.

We will obtain the following result from Corollary 1.3 with α = 1/M (see Sec-
tion 3).

Theorem 1.4 Let G be a connected unimodular Lie group and consider H as above. If

D ≥ 1 with VG(n) ≥ anD, n ∈ N, then the kernel Kt satisfies estimates

‖Kt‖2 ≤ ct−D/(2M), ‖Kt‖∞ ≤ ct−D/M

for all t ≥ 1.

The estimate of Theorem 1.4 is new in general, though it was well known in case
M = 2 (for example, [25]), or for general M on a nilpotent Lie group (see [14]). Note
that for certain solvable groups of polynomial growth and M ≥ 4, detailed analyses
of [7, 12] show that the exponent D/M is not necessarily optimal, depending on the

choice of generators a1, . . . , ad ′ . The methods of the current paper probably could
be used to generalize results of [7, 12], but we will not pursue this here.

In case the unimodular Lie group G has exponential growth, Theorem 1.4 shows
that limt→∞ tµ‖Kt‖∞ = 0, for any µ > 0. In fact, in Section 3 we will obtain the

more precise bound ‖Kt‖∞ ≤ c exp(−bt1/(M+1)) for t ≥ 1. This bound is well known
for the case M = 2 (see [25]) but is quite new for M ≥ 4.

We caution that the results of this paper do not give optimal estimates for all
classes of groups or all convolution powers. For example, if G is a non-compact

semisimple Lie group, then the heat kernel of a sublaplacian H = −
∑

i A2
i on G sat-

isfies a bound ‖Kt‖∞ ≤ c exp(−λ0t), t ≥ 1, where λ0 > 0 is the spectral gap of H.
This is sharper than the estimate ‖Kt‖∞ ≤ c exp(−bt1/3) provided by our methods,
and shows that other factors besides the growth of Vρ(r) influence the decay of ‖Kt‖∞
(see [24] for estimates of sublaplacian heat kernels on arbitrary Lie groups using an
algebraic classification of the Lie algebras). Nevertheless, our results seem to provide
good estimates for interesting examples on large classes of groups, for example, on
amenable unimodular Lie groups.
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We have focussed on convolution powers in this introduction, but our methods
also apply for semigroups of operators {Tt} acting in L2(G), provided Tt is group in-

variant. In this semigroup setting, it is remarkable that we can deduce the existence of
a bounded convolution kernel for Tt , assuming only that Tt satisfies certain operator
estimates in L2. See Theorem 2.9 for a typical result of this kind.

2 Proofs of the Basic Results

The first aim of this section is to prove the basic results Theorem 1.1 and Corollar-
ies 1.2 and 1.3. We then give an extension of these results for situations of “superpoly-

nomial” growth, and a local version of Theorem 1.1 for continuous time semigroups.
We begin with two essential lemmas. The second lemma is a convolution Nash

inequality; it differs essentially from more standard versions of the Nash inequality
(see for example [2,21]) by replacing the L1 norm ‖ f ‖1 with the convolution operator

norm ‖L( f )‖. This is an improvement since ‖L( f )‖ ≤ ‖ f ‖1, and is just what is
needed to avoid the use of L1 estimates.

Recall that the locally compact group G is assumed to be second countable and
unimodular.

Lemma 2.1 One has

(2) ‖ f1 ∗ f2‖2 ≤ ‖L( f1)‖‖ f2‖2, ‖ f2 ∗ f1‖2 ≤ ‖L( f1)‖‖ f2‖2

for all locally integrable functions f1, f2 on G satisfying ‖L( f1)‖ < ∞ and f2 ∈ L2.

Proof By density, it is enough to check inequalities (2) when f2 ∈ Cc(G). The first
inequality is immediate from the definition of ‖L( f1)‖. To prove the second inequal-

ity, given a locally integrable function f , define

(3) f̃ (g) = f (g−1)

for g ∈ G. Then ‖ f̃ ‖p = ‖ f ‖p for all p ∈ [1,∞] because G is unimodular. Also L( f̃ )

is formally adjoint to L( f ) in L2, so that ‖L( f̃ )‖ = ‖L( f )‖. Notice that ( f2 ∗ f1)̃ =

f̃1 ∗ f̃2. Therefore, we obtain

‖ f2 ∗ f1‖2 = ‖( f2 ∗ f1)̃ ‖2 = ‖ f̃1 ∗ f̃2‖2 ≤ ‖L( f1)‖‖ f2‖2,

as desired.
There is an alternative proof of the second inequality in (2), as follows. Observe

that, for any f ∈ Cc(G) with ‖ f ‖2 ≤ 1,

‖L( f2 ∗ f1) f ‖∞ = ‖ f2 ∗ f1 ∗ f ‖∞ ≤ ‖L( f2)‖2→∞‖L( f1)‖.

Then take supremums over all such f , and apply the standard equality

‖L( f3)‖2→∞ = ‖ f3‖2.
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Let us fix a modulus function ρ on G. If f ∈ L2, define a “Hölder” seminorm with
parameter ν > 0 by

[ f ]ν = sup
g∈G
g 6=e

ρ(g)−ν‖(I − L(g)) f ‖2 ∈ [0,∞],

recalling that ρ(g) > 0 for g 6= e. We now give some convolution Nash inequalities
associated with these seminorms.

Lemma 2.2 Let ρ be a modulus function on G.

(i) One has

‖ f ‖2 ≤ sup
g∈G

ρ(g)≤r

‖(I − L(g)) f ‖2 + Vρ(r)−1/2‖L( f )‖

≤ rν[ f ]ν + Vρ(r)−1/2‖L( f )‖

for all f ∈ L2, r > 0 and ν > 0, where the right sides of these inequalities are

permitted to be infinite.

(ii) Suppose there exist a > 0, D > 0 with Vρ(r) ≥ arD for all r ≥ 1. Given δ > 0,

ν > 0, then there exists c = c(δ, ν, a, D) > 0 such that

‖ f ‖
1+(2ν/D)

2 ≤ c[ f ]ν

for all f ∈ L2 satisfying ‖ f ‖2 ≤ δ and ‖L( f )‖ ≤ 1.

Remark 2.3 When ν = 1, we can intuitively think of [ f ]1 as the L2 norm of the
“gradient” of f . Indeed, if G is a Lie group and ρ is chosen to be the Caratheodory
modulus associated with a list of generators of the Lie algebra (see [21, 25]), then

[ f ]1 is equivalent to the L2 norm of a subelliptic gradient of f ; one direction of this
equivalence follows from the standard inequality (8) below.

Thus, in the Lie group case we can obtain versions of the above convolution Nash
inequalities with a subelliptic gradient replacing [ f ]1 (these inequalities resemble

Nash inequalities of [21], but with the important difference that ‖L( f )‖ replaces
‖ f ‖1). But for greater generality, we prefer to work directly with the inequalities
of Lemma 2.2, which are not restricted to the Lie group setting.

Note that part (ii) of the lemma is essentially an alternative form of part (i), in the

case where Vρ(r) ≥ arD for large r.

Proof of Lemma 2.2 To prove part (i), let r > 0 be given. If Vρ(r) = 0 then the
desired inequalities hold trivially, because we interpret Vρ(r)−1/2

= ∞. Assume

therefore that Vρ(r) > 0.
Following an idea of Robinson [21, Proposition IV.2.4], consider the function χ =

Vρ(r)−11Bρ(r), where 1E denotes the characteristic function of a subset E ⊆ G and we
recall that Bρ(r) = {g ∈ G : ρ(g) ≤ r}. Since

∫
G

χ = 1, one has

f = χ ∗ f +

∫

G

dg χ(g)(I − L(g)) f .
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Now take L2 norms on both sides. Using (2) we find that

‖χ ∗ f ‖2 ≤ ‖χ‖2‖L( f )‖ ≤ Vρ(r)−1/2‖L( f )‖.

Also, ∫

G

dgχ(g)‖(I − L(g)) f ‖2 ≤ sup
ρ(g)≤r

‖(I − L(g)) f ‖2 ≤ rν[ f ]ν ,

and we obtain part (i) of the lemma.
To prove part (ii), suppose Vρ(r) ≥ arD for all r ≥ 1, and let f ∈ L2 with 0 <

‖ f ‖2 ≤ 2a−1/2 and ‖L( f )‖ ≤ 1. By applying part (i) with

r = (2−1a1/2‖ f ‖2)−2/D ≥ 1,

and noting that Vρ(r)−1/2 ≤ 2−1‖ f ‖2, we get

‖ f ‖2 ≤ rν[ f ]ν + 2−1‖ f ‖2.

By the choice of r, after a rearrangement this becomes

‖ f ‖
1+(2ν/D)

2 ≤ 2(22/Da−1/D)ν [ f ]ν

for all f such that ‖ f ‖2 ≤ 2a−1/2 and ‖L( f )‖ ≤ 1. Part (ii) follows, since given
δ > 0, we can choose a small enough so that 2a−1/2 ≥ δ.

Proof of Theorem 1.1 Assume that K 6= 0 and put δ = ‖K‖2 = ‖K1‖2 > 0. Since

n 7→ ‖Kn‖2 is non-increasing, then ‖Kn‖2 ≤ δ for all n ∈ N. Because ‖L(Kn)‖ =

‖Tn‖ ≤ 1, part (ii) of Lemma 2.2 gives an estimate

‖Kn‖
1+(2ν/D)

2 ≤ c[Kn]ν

for all n ∈ N. The identity (I−L(g))Kn+m = (I−L(g))Tn(Km) and the hypothesis (1)
imply that

(4) ‖(I − L(g))Kn+m‖2 ≤ ‖(I − L(g))Tn‖‖Km‖2 ≤ c(ρ(g)n−α)ν‖Km‖2,

or in other words,

[Kn+m]ν ≤ cn−αν‖Km‖2

for all n, m ∈ N. Therefore,

(5) ‖Kn+m‖
1+(2ν/D)

2 ≤ c ′n−αν‖Km‖2

for all n, m ∈ N. For k ∈ N set

θ(k) = sup
1≤n≤k

nDα/2‖Kn‖2.
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Choosing m = n or m = n + 1 in (5) yields

(
nDα/2 max{‖K2n‖2, ‖K2n+1‖2}

) 1+(2ν/D)
≤ c ′ ′nDα/2‖Kn‖2

for all n ∈ N. From this estimate, together with the trivial inequality

‖K1‖
1+(2ν/D)

2 ≤ δ2ν/D‖K1‖2 ≤ δ2ν/D θ(k),

we see that there is a c1 > 0 with

θ(k)1+(2ν/D) ≤ c1θ(k)

for all k ∈ N. Thus θ(k) ≤ c
D/(2ν)

1 = c2 for all k, which means that ‖Kn‖2 ≤ c2n−Dα/2

for all n ∈ N.
An inspection of this proof shows that c2 depends only on the parameters α, ν, c,

a, D and ‖K‖2 occurring in the statement of Theorem 1.1.
Finally, observe that ‖Kn+m‖∞ = ‖Kn ∗ Km‖∞ ≤ ‖Kn‖2‖Km‖2 for all n, m ∈ N.

With m = n or m = n + 1, we deduce that ‖Kk‖∞ ≤ ck−Dα for all k ∈ N with k ≥ 2.
The proof of Theorem 1.1 is complete.

Let us also record the following corollary.

Corollary 2.4 Assume the hypotheses of Theorem 1.1. Then there exists c ′ > 0 such

that

‖(I − L(g))Kn‖2 ≤ c ′(ρ(g)n−α)νn−Dα/2

for all n ∈ N with n ≥ 2, and

‖(I − L(g))Kn‖∞ ≤ c ′(ρ(g)n−α)νn−Dα

for all n ∈ N with n ≥ 3.

Proof The first estimate follows through (4), and the second estimate then follows
by observing that ‖(I − L(g))Km+n‖∞ ≤ ‖(I − L(g))Km‖2‖Kn‖2.

Remark 2.5 Let us sketch an alternative version of the proof of Theorem 1.1, which
uses part (i) of Lemma 2.2 instead of part (ii). In the sequel, we will prefer this al-
ternative approach when proving extensions of Theorem 1.1 (for example, see Theo-
rem 2.9 below).

Define βn = nDα/2‖Kn‖2 for n ∈ N, and put f = K2n in part (i) of Lemma 2.2.
Because [K2n]ν ≤ cn−αν‖Kn‖2, one finds that there is a c1 > 0 such that

β2n ≤ c1(rn−α)νβn + c1(rn−α)−D/2

for all n ∈ N and r ≥ 1. Now fix ε > 0 small enough so that c1ε
ν < 2−1, and fix

k0 ∈ N large enough so that 2k0 > ε−1/α. Putting r = εnα, we obtain an inequality

(6) β2n ≤ 2−1βn + c2 ≤ max{βn, 2c2}
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for all n ∈ N satisfying n ≥ 2k0 ; this condition on n ensures that r ≥ 1. It follows by
induction from (6) that

β2k ≤ max{β2k0 , 2c2} = c3

for all integers k ≥ k0. Since n 7→ ‖Kn‖2 is non-increasing, it is then easy to deduce
the required estimate ‖Kn‖2 ≤ cn−Dα/2 for all n ∈ N.

Proofs of Corollary 1.2 and Corollary 1.3 Let U ′ be a compact generating neigh-
borhood of e as in the hypothesis. Set U = U ′∪ (U ′)−1, so that U = U−1. Let ρU be
the canonical modulus function associated with U as in Section 1. One has the basic
estimate

(7) ‖(I − L(g)) f ‖2 ≤ ρU (g) sup
u∈U

‖(I − L(u)) f ‖2 = ρU (g) sup
u∈U ′

‖(I − L(u)) f ‖2

for all g ∈ G and f ∈ L2. This is easily verified by noting the inequality ‖(I −
L(u1u2 · · · un)) f ‖2 ≤

∑n
i=1 ‖(I − L(ui)) f ‖2 for any u1, . . . , un ∈ U .

Replacing f by Tn f in (7), and using the hypothesis of the corollary, we see that

‖(I − L(g))Tn‖ ≤ c ρU (g)n−α

for all n ∈ N and g ∈ G. Therefore, the corollary follows from Theorem 1.1 with
ρ = ρU .

To prove Corollary 1.3, we consider the Caratheodory modulus ρA : G → [0,∞〉
associated with the vector fields A1, . . . , Ad ′ (see [21,25]). One has the basic inequal-

ity

(8) ‖(I − L(g)) f ‖2 ≤ ρA(g)
( d ′∑

i=1

‖Ai f ‖2
2

) 1/2

for all f ∈ L2 with Ai f ∈ L2, i ∈ {1, . . . , d ′} (see [21, p. 268]). Let us fix a compact

neighborhood U ′ of e. Note that sup{ρA(u) : u ∈ U ′} is finite, because ρA is a
continuous function. Therefore, replacing f with Tn f in (8) yields an inequality

sup
u∈U ′

‖(I − L(u))Tn‖ ≤ c

d ′∑

i=1

‖AiT
n‖

for all n ∈ N. Then Corollary 1.3 is a consequence of Corollary 1.2.

Remark 2.6 Alternatively, Corollary 1.3 can be deduced directly from Theorem 1.1
by taking ρ = ρA. With this alternative approach, one uses (8), and the standard
fact (see [25, Section III.4]) that ρA is equivalent at infinity to ρU at infinity, or more

precisely,
c−1ρU ≤ ρA + 1 ≤ cρU

for some c > 1. Thus the bound VG(n) ≥ anD, n ∈ N, is equivalent to VρA
(r) ≥ a ′rD,

r ≥ 1.
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The next result improves on Theorem 1.1 in cases where Vρ(r) grows as fast as a
function exp(rσ) for large r.

Theorem 2.7 Let K ∈ L2 such that T = L(K) is a contraction in L2. Let ρ be a

modulus function and suppose α > 0 such that

‖(I − L(g))Tn‖ ≤ cρ(g)n−α

for all n ∈ N and g ∈ G. Suppose there exist a > 0 and σ > 0 with

Vρ(r) ≥ aearσ

for all r ≥ 1. Then, setting γ = σα/(1 + σα), there exist c ′, b > 0 such that

‖Kn‖2 ≤ c ′e−bnγ

for all n ∈ N and

‖Kn‖∞ ≤ c ′e−bnγ

for all n ∈ N with n ≥ 2.

Proof We apply part (i) of Lemma 2.2 to f = Kn+m, noting that

[Kn+m]1 ≤ cm−α‖Kn‖2

and choosing r = εmα ≥ 1 for a fixed ε > 0. Provided ε is chosen sufficiently small,
it follows that there are constants c1, a ′ > 0 and m0 ∈ N such that

‖Kn+m‖2 ≤ 4−1‖Kn‖2 + c1e−a ′mσα

for all n, m ∈ N with m ≥ m0 (here m0 is chosen large enough so that εmα
0 ≥ 1). Let

us set

βn = ebnγ

‖Kn‖2

for n ∈ N, where γ = σα/(1 + σα) ∈ 〈0, 1〉 and b is a positive constant to be chosen.
Using the elementary estimate

(n + m)γ − nγ ≤ γmnγ−1,

we obtain an inequality

βn+m ≤ 4−1ebγmnγ−1

βn + c1e−a ′mσα+b(n+m)γ

for all n, m ∈ N with m ≥ m0. If m lies in the interval [2−1n1−γ, n1−γ], then since
γ = σα(1 − γ) we have

−a ′mσα + b(n + m)γ ≤ (−a ′2−σα + b2γ)nγ .
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It follows that we may fix b > 0 sufficiently small, so that the inequality

(9) βn+m ≤ 2−1βn + c1 ≤ max{βn, 2c1}

holds for all m, n ∈ N such that 2−1n1−γ ≤ m ≤ n1−γ and m ≥ m0.
It is possible to argue from (9) that the sequence {βn}

∞
n=1 is bounded. However,

we can alternatively argue as follows. Define an increasing sequence {n(k)}∞k=1 such
that n(1) = 2 and, for k ≥ 1, n(k + 1) is the greatest integer less than or equal to
n(k) + n(k)1−γ . For all sufficiently large k, we may apply (9) with n = n(k) and
m = n(k + 1) − n(k), to conclude that

sup
k∈N

βn(k) < ∞.

Since n 7→ ‖Kn‖2 is non-increasing, one easily deduces a bound of the desired form

‖Kn‖2 ≤ c ′ exp(−b ′nγ) for all n ∈ N. Finally, the estimate in L∞ follows since
‖Kn+m‖∞ ≤ ‖Kn‖2‖Km‖2 for all n, m ∈ N.

Remark 2.8 Let us mention some corollaries of Theorem 2.7. By combining The-

orem 2.7 with the proof of Corollary 1.2, we obtain the following result. Let G be
compactly generated, and assume the hypotheses of Corollary 1.2, but now assume
there are constants a > 0, σ ∈ 〈0, 1] with

(10) VG(n) ≥ aeanσ

for all n ∈ N. Then the conclusion of Theorem 2.7 holds.
Note that for a compactly generated group G, there always exists c > 0 with

VG(n) ≤ cenc, n ∈ N, so that it is not possible to have σ > 1 in (10) (see [15]
for instance).

There is also an extension of Corollary 1.3 for a Lie group. Suppose G is a uni-
modular Lie group of exponential volume growth, that is, (10) holds with σ = 1.

Then the hypotheses of Corollary 1.3 imply the conclusion of Theorem 2.7, with
γ = α/(1 + α). This result is a consequence of the above remarks and the proof of
Corollary 1.3.

We next give an analogue of Theorem 1.1 for a semigroup of operators {Tt} de-
fined for small times t . A crucial assumption is that the operators Tt are right invari-
ant. A typical application of this result is to estimate the small time behaviour of heat

kernels on Lie groups (see Section 3 for examples).
The result differs from Theorem 1.1 in that the existence of a convolution kernel

K is not assumed and is instead part of the conclusion.

Theorem 2.9 Let t0 ∈ 〈0,∞〉 and suppose {Tt}0<t<t0
is a family of right invariant,

bounded operators in L2, with ‖Tt‖ ≤ c and Ts+t = Tt Ts for all s, t, s + t ∈ 〈0, t0〉.
Suppose there exists a modulus function ρ : G → [0,∞〉 and α, ν > 0, such that

‖(I − L(g))Tt‖ ≤ c(ρ(g)t−α)ν
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for all t ∈ 〈0, t0〉 and g ∈ G. Assume there are a > 0, D > 0 with Vρ(r) ≥ arD for all

r ∈ 〈0, 1〉.
Then there exist continuous functions Kt : G → C such that Tt f = Kt ∗ f for all

f ∈ L2, Kt+s = Kt ∗ Ks when s, t, s + t ∈ 〈0, t0〉, and

‖Kt‖2 ≤ c ′t−Dα/2, ‖Kt‖∞ ≤ c ′t−Dα

for all t ∈ 〈0, t0〉.

Proof Let f ∈ Cc(G) with ‖ f ‖1 ≤ 1; the constants in this proof will be independent
of f . The right invariance of Tt implies that L(Tt f ) f2 = Tt L( f ) f2 for all f2 ∈ Cc(G).

Consequently,

‖L(Tt f )‖ ≤ ‖Tt‖‖L( f )‖ ≤ c‖L( f )‖ ≤ c‖ f ‖1 ≤ c

for all t ∈ 〈0, t0〉. Observe that

‖(I − L(g))Tt f ‖2 ≤ ‖(I − L(g))Tt/2‖‖Tt/2 f ‖2 ≤ c ′(ρ(g)t−α)ν‖Tt/2 f ‖2

for t ∈ 〈0, t0〉. Set βt = tDα/2‖Tt f ‖2. By applying Lemma 2.2(i) to the function Tt f ,

and using the above observations, we get an inequality

βt ≤ c1(rt−α)νβt/2 + c1(rt−α)−D/2

for all t ∈ 〈0, t0〉 and r ∈ 〈0, 1〉. Choosing r = εtα, where ε > 0 is a sufficiently small

fixed number, we find that

(11) βt ≤ 2−1βt/2 + c2 ≤ max{βt/2, 2c2}

for all t ∈ 〈0, t0〉. Now

lim
t→0

βt ≤ lim
t→0

ctDα/2‖ f ‖2 = 0,

so that βt ≤ 2c2 whenever t is sufficiently close to 0. Then by (11), it easily follows
that βt ≤ c3 = 2c2 for all t ∈ 〈0, t0〉. This estimate is independent of f , and hence Tt

extends to a bounded operator from L1 to L2 with

‖Tt‖1→2 ≤ c3t−Dα/2

for all t ∈ 〈0, t0〉. By duality, ‖T∗
t ‖2→∞ ≤ c3t−Dα/2. Then since T∗

t is right invariant,
by a standard result there exists Jt ∈ L2 such that T∗

t = L( Jt ) and ‖ Jt‖2 = ‖T∗
t ‖2→∞.

Setting Kt = J̃t (see (3)), it easily follows that Tt = L(Kt ) and that ‖Kt‖2, ‖Kt‖∞
satisfy the desired estimates.

Finally, let us show that Kt may be redefined to be continuous on G. The semi-
group property Tt+s = Tt Ts easily implies that Kt+s equals Kt ∗ Ks almost every-

where on G, when s, t, s + t ∈ 〈0, t0〉. Since the convolution of two L2 functions
is continuous, for each t ∈ 〈0, t0〉 we can replace Kt by the continuous function
K ′

t := Kt/2 ∗ Kt/2.
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3 Examples

In this section we present several examples, or classes of examples, which illustrate
the application of our results. In particular, in Example 3.3 below we give the proof
of Theorem 1.4.

As usual, the locally compact group G is assumed to be second countable and
unimodular.

Example 3.1 Suppose that G is compactly generated, and let 0 ≤ K ∈ L1 ∩ L∞ be
a bounded probability density on G. Then T = L(K) is a contraction in Lp for all

1 ≤ p ≤ ∞. We assume that K is symmetric (K(g) = K(g−1)), and that there exists
a compact generating neighborhood U of e with U = U−1 and

(12) inf{K(u) : u ∈ U} > 0.

A basic theorem, due essentially to Varopoulos [23], states that if D > 0 with VG(n) ≥
anD for all n ∈ N, then ‖Kn‖∞ ≤ cn−D/2 for all n. Other proofs of this result have
been given [17, 25].

Let us verify that this result is contained in Corollary 1.2. We require an inequality
(see [25, pp. 97–98])

‖(I − L(u)) f ‖2
2 ≤ c

∫

U 3

dh‖(I − L(h)) f ‖2
2

for all u ∈ U and f ∈ Cc(G). One sees straightforwardly from (12) that, for some

n0 ∈ N, inf{Kn0
(g) : g ∈ U 3} > 0. Let us write K(0)

= Kn0
and T0 = L(K(0)). Then

there is c ′ > 0 such that

sup
u∈U

‖(I − L(u)) f ‖2
2 ≤ c ′

∫

G

dh K(0)(h)‖(I − L(h)) f ‖2
2

= 2c ′ ((I − T0) f , f ) = 2c ′ ‖(I − T0)1/2 f ‖2
2

for all f ∈ Cc(G), where the second line follows by a standard calculation (see, for
example, [25, p. 97]). Using this inequality, and the spectral theorem for the non-

negative self-adjoint contraction T0, we obtain an estimate

‖(I − L(u))Tn
0 ‖ ≤ c‖(I − T0)1/2Tn

0‖ ≤ c ′n−1/2

for all u ∈ U and n ∈ N. Now T0 = Tn0 where T = L(K), and since n 7→ ‖(I −
L(u))Tn‖ is a non-increasing function of n, we see that ‖(I − L(u))Tn‖ ≤ c ′ ′n−1/2

for all u ∈ U and n ∈ N.

Thus the desired bound ‖Kn‖∞ ≤ cn−D/2 follows from Corollary 1.2 with
α = 1/2.

Note also that if one assumes a bound of the form (10), then Remark 2.8 yields an
estimate

‖Kn‖∞ ≤ ce−bnσ/(2+σ)

for n ∈ N. This was previously proved by different methods (see [17, 25] and refer-
ences therein).
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Example 3.2 In this example, we assume that G is a connected unimodular Lie
group, and a1, . . . , ad ′ is a generating list for the Lie algebra g of G. Consider, as

in [8], a second order, right invariant differential operator

H = −
d ′∑

i, j=1

ci jAiA j .

where Ai = dLG(ai) and the ci j are complex constants which satisfy an ellipticity
condition

Re
∑

i, j

ci jξiξ j ≥ µ|ξ|2

for some µ > 0 and all ξ ∈ C
d ′

. The standard case is ci j = δi j , for which H =

−
∑

i A2
i is called a sublaplacian.

Note that H can be precisely defined using the theory of sectorial quadratic forms
(see [18]), as the sectorial operator in L2 associated with the quadratic form Q( f ) =∑d ′

i, j=1

∫
G

ci jA j f Ai f , for f ∈ L2 with Ai f ∈ L2. Then standard arguments yield

that H generates a holomorphic contraction semigroup e−tH in L2, with ‖He−tH‖ ≤
ct−1 for all t > 0. It then follows, thanks to the Gårding inequality Re Q( f ) ≥
µ

∑
i ‖Ai f ‖2

2, that

(13) ‖Aie
−tH‖ ≤ c ′t−1/2

for all t > 0 and i ∈ {1, . . . , d ′} (see, for example, [8, Section II.2]).
The existence of a smooth kernel Kt ∈ L1 ∩ L∞, with e−tH

= L(Kt ) for all t > 0,
follows from local results: see, for example, [11]. Note that Kt+s = Kt ∗Ks = e−tH(Ks)

for all s, t > 0.
To estimate Kt for t ≥ 1, we apply Corollary 1.3 with K = K1, T = L(K) = e−H ,

and α = 1/2. Assuming that D ≥ 1 with VG(n) ≥ anD, n ∈ N, we get estimates

(14) ‖Kt‖2 ≤ ct−D/4, ‖Kt‖∞ ≤ ct−D/2

for all t ∈ N = {1, 2, 3, . . .}. Because e−tH is a contraction in L2, it is clear that ‖Kt‖2

is a non-increasing function of t > 0, so that the bounds (14) are valid for all t ≥ 1.
If the Lie group G has polynomial volume growth of order D, then the bounds

(14) are contained in [13] or [8] (where Gaussian estimates are also obtained). Our

proof is simpler than the proofs of [8,13], which rely on methods of homogenization
theory and on the detailed structure theory of Lie groups of polynomial growth.

In case G has exponential volume growth, then given any D > 0 one has an es-
timate (14), and therefore limt→∞ tµ‖Kt‖∞ = 0 for any µ > 0. This result can be

improved using Remark 2.8 above, which yields a more precise bound

‖Kt‖∞ ≤ ce−bt1/3

for t ≥ 1. The latter estimate is well known in the case that H is a sublaplacian
(see [21, 25]), but is new for complex coefficients ci j .
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Example 3.3 In this example, we show how to prove Theorem 1.4. Adopt the hy-
potheses and notation of that theorem; in particular, G is a connected unimodular

Lie group and M is a fixed positive even integer.
Using a quadratic form procedure as in Example 3.2 above, one can define H =

(−1)M/2
∑d ′

i=1 AM
i as a non-negative self-adjoint operator in L2 which generates a

holomorphic, self-adjoint contraction semigroup e−tH . Again, local results [11, 16]
yield the existence of a smooth kernel Kt ∈ L1 ∩ L∞ with e−tH

= L(Kt ), t > 0, and
Kt+s = Kt ∗ Ks for all s, t > 0. The function t 7→ ‖Kt‖2 is non-increasing.

To deduce Theorem 1.4 from Corollary 1.3, it is enough to show that

(15) ‖Aie
−tH‖ ≤ ct−1/M

for all t > 0 and i ∈ {1, . . . , d ′}. But it is straightforward to deduce from the

Gårding inequality (H f , f ) ≥
∑

i ‖A
M/2

i f ‖2
2 that ‖A

M/2

i e−tH‖ ≤ ct−1/2, t > 0. Then
(15) follows by a standard interpolation, and Theorem 1.4 is proved.

In case G has exponential volume growth, we get a more precise result by applying
Remark 2.8 with α = 1/M. Namely, we obtain

‖Kt‖∞ ≤ ce−bt1/(M+1)

for all t ≥ 1. For M ≥ 4, this estimate is apparently new.
Note that our results do not depend on the behaviour of the L1 norm ‖Kt‖1. For

M ≥ 4, it is apparently not known whether supt≥1 ‖Kt‖1 is finite, except for special

classes of G, for example, nilpotent groups [14].

Example 3.4 In Examples 3.2 and 3.3, we appealed to previous studies [11, 16] for
the existence of the kernel Kt . But alternatively, the existence of Kt in L2∩L∞ (though
not in L1) can easily be deduced from Theorem 2.9.

Indeed, with the operator H of Example 3.2, it follows from (13) and (8) that

‖(I − L(g))e−tH‖ ≤ cρA(g)t−1/2

for all t > 0 and g ∈ G. One has a standard local estimate, for some integer D ′ ≥ 1,

c−1rD ′

≤ VρA
(r) ≤ crD ′

for all r ∈ 〈0, 1〉 (see [25, Chapter V] for instance). Thus we may apply Theorem 2.9

with Tt = e−tH , α = 1/2, ρ = ρA, and any finite t0 > 0. This yields the existence of
a kernel Kt ∈ L2 ∩ L∞ with e−tH

= L(Kt ) for all t > 0, and

‖Kt‖2 ≤ ct−D ′/4, ‖Kt‖∞ ≤ ct−D ′/2

for all t ∈ 〈0, 1]. Similar arguments apply for Example 3.3, where one should take

α = 1/M.
It is interesting that we can derive the existence of a bounded convolution kernel

Kt without using any detailed regularity theory for subelliptic operators, and without
needing any information about the action of the semigroup in L1.
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Example 3.5 The following example is an adaption of Example 3.2 for discrete
groups.

Let G be a finitely generated discrete group and fix a list u1, . . . , ud ′ of generators
of G. Consider an operator

H =

d ′∑

i, j=1

ci j(I − L(ui))∗(I − L(u j )) =

∑

i, j

ci j(I − L(u−1
i ))(I − L(u j))

acting in L2, where ci j are complex constants satisfying the ellipticity condition of
Example 3.2 above. Then a formal variation of the reasoning of Example 3.2, with the
operators I − L(ui) replacing Ai , establishes that e−tH is a holomorphic contraction
semigroup in L2 and

‖(I − L(ui))e−tH‖ ≤ ct−1/2

for all t > 0 and i ∈ {1, . . . , d ′}. The kernel Kt ∈ L2 with e−tH
= L(Kt ) is given by

Kt = e−tH(δe), where δe : G → R is the function defined by δe(e) = 1, δe(g) = 0 for

g 6= e.
If we assume that D ≥ 1 with VG(n) ≥ anD, n ∈ N, then Corollary 1.2 yields

estimates of the form (14) for all t ≥ 1.
Moreover, if we assume that VG(n) satisfies a bound (10), then Remark 2.8 yields

‖Kt‖∞ ≤ c exp(−btγ) for all t ≥ 1, where γ = σ/(2 + σ). Such estimates are new
for complex coefficients.

4 Weighted Modulus Functions

In this section, we suppose that G is a connected unimodular Lie group, and
a1, . . . , ad ′ ∈ g is a generating list for the Lie algebra g of G. Set Ai = dLG(ai). Our
aim is to obtain a generalization of Corollary 1.3, in which the hypothesis ‖AiT

n‖ ≤
cn−α, n ∈ N, is replaced by

‖AiT
n‖ ≤ cn−αi

for some positive constants αi , i ∈ {1, . . . , d ′}. In this situation one could of course

apply Corollary 1.3 with α = min{α1, . . . , αd ′}, but the resulting estimates of Kn

may not be optimal.
To obtain more precise estimates we will apply Theorem 1.1 with respect to a

“weighted” modulus function ρ which takes into account different weights in the di-

rections Ai . In particular, the theory of this section yields interesting examples where
the modulus function of Theorem 1.1 is not equivalent to the canonical modulus ρU

associated with a compact neighborhood of e (or to the Caratheodory modulus ρA,

see Remark 2.6).
Let us fix “weights” w1, . . . , wd ′ ∈ [1,∞〉 corresponding to a1, . . . , ad ′ . Following

[11, Section 6] (see also [20]), we define a modulus ρ = ρA,w depending on the ai

and wi . For each r > 0, let C(r) be the set of absolutely continuous paths ϕ : [0, 1] →
G which satisfy

ϕ̇(t) =

d ′∑

i=1

σi(t) Ai |ϕ(t)
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almost everywhere, where σi are functions such that |σi(t)| < rwi for all t ∈ [0, 1]
and i ∈ {1, . . . , d ′}. Set

ρ(g) = inf{r > 0 : there exists ϕ ∈ C(r) with ϕ(0) = e, ϕ(1) = g}.

It is not difficult to see that ρ(gh) ≤ ρ(g) + ρ(h) and ρ(g−1) = ρ(g) for all g, h ∈ G.
Moreover, it follows from a detailed local analysis (see [11, 20, 25]) that ρ(g) < ∞
and that ρ is a modulus function in our sense. In the “unweighted” case where w1 =

· · · = wd ′ = 1, ρ is equivalent to the Caratheodory modulus ρA associated with
A1, . . . , Ad ′ .

The following is the main result of this section.

Theorem 4.1 Let G be a connected unimodular Lie group and consider as above the

generators a1, . . . , ad ′ of g, the weights w1, . . . , wd ′ ∈ [1,∞〉, and the modulus ρ =

ρA,w.

Let K ∈ L2 such that T = L(K) is a contraction in L2. Suppose α > 0 with

‖AiT
n‖ ≤ cn−wiα

for all n ∈ N and i ∈ {1, . . . , d ′}. If D > 0 with Vρ(r) ≥ arD for all r ≥ 1, then

‖Kn‖2 ≤ c ′n−Dα/2, n ∈ N, and ‖Kn‖∞ ≤ c ′n−Dα for n ∈ N with n ≥ 2.

Proof The main step is to prove an inequality (compare (8))

(16) ‖(I − L(g)) f ‖2 ≤
d ′∑

i=1

ρ(g)wi‖Ai f ‖2

for all g ∈ G and f ∈ L2 such that Ai f ∈ L2, i ∈ {1, . . . , d ′}. Given g ∈ G, r > 0
and ϕ ∈ C(r) with ϕ(0) = e, ϕ(1) = g−1, one calculates

(I − L(g)) f = −

∫ 1

0

ds
d

ds
L(ϕ(s)−1) f = −

∫ 1

0

ds

d ′∑

i=1

σi(s)
(

L(ϕ(s)−1)Ai f
)
.

Then

‖(I − L(g)) f ‖2 ≤
d ′∑

i=1

rwi‖Ai f ‖2,

and (16) follows from the definition of ρ and the equality ρ(g) = ρ(g−1).
From (16) and the hypothesis of the theorem, when ρ(g) ≤ nα we have

‖(I − L(g))Tn‖ ≤
d ′∑

i=1

ρ(g)wi‖AiT
n‖ ≤

d ′∑

i=1

c(ρ(g)n−α)wi ≤ d ′cρ(g)n−α,

where the last step used wi ≥ 1. The theorem now follows from Theorem 1.1 (recall
that (1) is trivial for ρ(g) ≥ nα).
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Estimates of Vρ(r) as r → 0 are given in [11], but these are not relevant for The-
orem 4.1. In the case of a simply connected nilpotent group, we can estimate Vρ(r),

r ≥ 1, as follows.

Example 4.2 Let the Lie group G be simply connected and nilpotent, and consider
ρ = ρA,w as above, where for simplicity we assume that w1, . . . , wd ′ ∈ N.

Following [19, Section 3], we consider the “dimension at infinity” defined by

D =

∑

j∈N

j(dim(g( j)) − dim(g( j+1))),

where g( j) denotes the linear subspace of g spanned by all commutators in a1, . . . , ad ′

of weighted length at least j for j ∈ N. Here, a commutator

[ai1
, [· · · [ain−1

, ain
] · · · ]] ∈ g

is said to have weighted length wi1
+ · · · + win

. The nilpotency of g ensures that
g( j) = {0} for all sufficiently large j, so D is well defined. We have the following
result, whose proof is described in the Appendix below.

Proposition 4.3 Choose a vector space basis b1, . . . , bd for g and v1, . . . , vd ∈ N, with

the property that g( j) = span{bk : vk ≥ j} for all j ∈ N. Define N : g → [0,∞〉 by

N(x) =

d∑

k=1

|ξk|
1/vk

for x =

∑
k ξkbk ∈ g. Then there exists c > 1 such that c−1(N(x)+1) ≤ ρ(exp x)+1 ≤

c(N(x) + 1) for all x ∈ g, and

c−1rD ≤ Vρ(r) ≤ crD

for all r ≥ 1.

Note that Proposition 4.3 is well known in case w1 = · · · = wd ′ = 1 (see [25,
Section IV.5]).

We give an example illustrating the use of Theorem 4.1 and Example 4.2.

Example 4.4 On a simply connected nilpotent Lie group G, consider an operator

H =

d ′∑

i=1

(−1)Mi/2AMi

i ,

where M1, . . . , Md ′ are even positive integers. Then H generates a holomorphic con-
traction semigroup in L2, and it is easy to obtain estimates (compare Example 3.3 of
Section 3)

‖Aie
−tH‖ ≤ ct−1/Mi
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for all t > 0 and i ∈ {1, . . . , d ′}. The existence of a kernel Kt with e−tH
= L(Kt ) is

known from [11, 16], but could alternatively be deduced using Theorem 2.9.

Let M be the lowest common multiple of M1, . . . , Md ′ , and set wi = M/Mi for
i ∈ {1, . . . , d ′}. Let D be defined as in Example 4.2, relative to ai and wi . Applying
Theorem 4.1 with α = 1/M, we obtain that ‖Kt‖∞ ≤ ct−D/M for t ≥ 1. This result
is known (see [9] for instance), but the proof just given is new.

A Appendix

In this appendix, we outline the proof of Proposition 4.3. Let the basis b1, . . . , bd of

g, and v1, . . . , vd ∈ N, be chosen such that g( j) = span{bk : vk ≥ j} for all j. A

general element in g can be written as x =

∑d
k=1 ξkbk, and we shall use the ξ = {ξk}

as coordinates of g.
Because G is simply connected and nilpotent, the exponential map exp: g → G

is a diffeomorphism which maps Lebesgue measure on the vector space g to Haar
measure dg. But it is easy to see that {x ∈ g : N(x) ≤ r} has Lebesgue measure crD

for all r > 0. Thus, to prove the proposition it suffices to obtain the upper and lower
estimates on ρ(exp x) + 1.

To show that ρ(exp x) ≤ c(N(x) + 1) is an easy variation of the argument of [25,
Proposition IV.5.6], which we only sketch. We may choose the basis b1, . . . , bd with

the additional property that each bk equals a commutator in ai ’s of weighted length vk.
If x =

∑
k ξkbk ∈ g, then following the argument of [25] one writes exp x as a product

of elements of G each of form

exp(β|ξk|
wi/vk ai),

where β are constants independent of x, and wi ≤ vk. Moreover, the number of
elements in the product is independent of x. Since |ξk|

wi/vk ≤ N(x)wi , one easily
obtains the desired estimate.

To prove the estimate N(x) + 1 ≤ c(ρ(exp x) + 1), let us suppose that r > 1 and
ϕ ∈ C(r) with ϕ(0) = e, and put γ = exp−1◦ϕ : [0, 1] → g. It is convenient to
define a smooth version N1 : g → [1,∞〉 of N by setting

N1

( d∑

k=1

ξkbk

)
= d−1

d∑

k=1

(1 + ξ2
k )1/(2vk)

(the constant d−1 ensures that N1(0) = 1). Then the desired estimate reduces to
showing that

(17) N1(γ(1)) ≤ cr,

where c > 1 is a constant independent of r > 1 and of ϕ ∈ C(r).
Consider the vector fields on g defined by Âi = (exp−1)∗(Ai), i ∈ {1, . . . , d ′},

and let ∂k = ∂/(∂ξk) be the vector fields on g corresponding to the coordinates ξk.

Calculations of [19, Section 4] show that Âi can be written as

Âi |x =

∑

vk≥wi

Pi,k(x)∂k,
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where the sum is over k ∈ {1, . . . , d} such that vk ≥ wi , and the Pi,k are polynomial
functions on g satisfying a growth estimate

|Pi,k(x)| ≤ cN1(x)vk−wi

for all x ∈ g. Because N1 satisfies estimates |(∂kN1)(x)| ≤ c N1(x)1−vk , we deduce
that

(18) |(ÂiN1)(x)| ≤ c
∑

vk≥wi

N1(x)vk−wi N1(x)1−vk
= c ′N1(x)1−wi

for all x ∈ g. Since ϕ ∈ C(r) and γ = exp−1 ◦ϕ, we may write

γ ′(t) =

d ′∑

i=1

σi(t)Âi |γ(t)

where |σi(t)| < rwi for all t ∈ [0, 1]. Now differentiate the function J(t) := N1(γ(t))
and use (18) to obtain an estimate

(19) | J ′(t)| ≤
d ′∑

i=1

|σi(t)||(ÂiN1)(γ(t))| ≤ c

d ′∑

i=1

rwi J(t)1−wi .

If J(1) ≤ r then (17) holds, so let us assume that J(1) > r > 1. Then, since J(0) =

N1(0) = 1, there exists a t0 ∈ 〈0, 1〉 with J(t0) = r and J(t) > r for all t ∈ 〈t0, 1].

But when J(t) > r, it follows from (19) that | J ′(t)| ≤ c ′r (here we use wi ≥ 1).
Therefore,

J(1) ≤ J(t0) +

∫ 1

t0

dt | J ′(t)| ≤ (1 + c ′)r,

and the proof of (17) is complete.

We remark that the derivative estimates (18) are the key point on which the pre-
ceding proof hinges.
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