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Abstract

We discuss the following general question and some of its extensions. Let (εk)k≥1 be a sequence with
values in {0, 1}, which is not ultimately periodic. Define ξ :=

∑
k≥1 εk/2k and ξ′ :=

∑
k≥1 εk/3k. Let P be a

property valid for almost all real numbers. Is it true that at least one among ξ and ξ′ satisfies P?
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1. Introduction

The main motivation for this note comes from the following problem, which appeared
at the end of a paper by Mendès France [15]. According to him (see the discussion in
[4, p. 403]), it was proposed by Mahler; however, we were unable to find any mention
of it in Mahler’s works.

P 1.1 (Mahler–Mendès France). For an arbitrary infinite sequence (εk)k≥1,
with values in {0, 1}, prove that the real numbers

+∞∑
k=1

εk

2k
and

+∞∑
k=1

εk

3k

are both algebraic if and only if both are rational.

The resolution of this problem seems to be far beyond our current state of
knowledge. Nonetheless, in this note, we discuss the following more general question.
Throughout, ‘almost all’ always refers to Lebesgue measure.

P 1.2. Let P be a property valid for almost all real numbers. Let b be an integer
greater than 1. Let b1 and b2 be distinct integers, at least as great as b. Let (εk)k≥1 be
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a sequence with values in {0, 1, . . . , b − 1}, which is not ultimately periodic. Is it true
that at least one among the numbers

ξ1 :=
∑
k≥1

εk

bk
1

and ξ2 :=
∑
k≥1

εk

bk
2

satisfies property P?

If P is the property of ‘being transcendental’ and b = b1 = 2 while b2 = 3, then
giving a positive answer to Problem 1.2 is equivalent to solving the Mahler–Mendès
France problem. The aim of this note is to discuss Problem 1.2 for other properties P,
including ‘not being a Liouville number’ or ‘not being badly approximable’.

Recall that the irrationality exponent of an irrational real number ξ, which we
denote by µ(ξ), is the supremum of the set of real numbers µ for which the inequality
|ξ − p/q| < q−µ has infinitely many solutions in rational numbers p/q for which q ≥ 1.
A real number ξ is a Liouville number if and only if µ(ξ) is infinite. The irrationality
exponent of every irrational real number is at least as great as 2. Recall also that
an irrational real number ξ for which there exists a positive real number c such that
|ξ − p/q| ≥ c/q2 for every pair (p, q) of integers for which q ≥ 1 is called a badly
approximable number.

For both properties mentioned above, the answer to Problem 1.2 is negative. Indeed,
it is easy to check that ∑

k≥1

1
bk!

is a Liouville number for every integer b greater than 1. Furthermore, Shallit [19] has
shown that ∑

k≥1

1

b2k

is a badly approximable number for every integer b ≥ 2. For this, he used a version
of the folding lemma for continued fractions, which was first established by Mendès
France [14] and then rediscovered by several authors [11, 12, 17, 18, 20, 21] (this list
is not exhaustive).

Furthermore, it has been proved recently [7], again using the folding lemma, that

µ
(∑

k≥1

1

bbckc

)
= c,

for every real number c ≥ 2 and every integer b ≥ 2. Here and below, bxc denotes the
greatest integer less than or equal to x.

More generally, most of the recent Diophantine results on real numbers expressed
as ∑

k≥1

εk

bk
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depend on combinatorial properties of the sequence of digits (εk)k≥1, but not on
the integer base b (here, it is assumed that all εk are in {0, 1, . . . , b − 1}) (see, for
example, [1, 2, 6, 8, 9]).

All these results motivate the following problems.

P 1.3. Let b ≥ 2 be an integer greater than 1. Let b1 and b2 be distinct integers at
least as great as b. Does there exist a sequence (εk)k≥1 with values in {0, 1, . . . , b − 1}
such that

µ
(∑

k≥1

εk

bk
1

)
= +∞ and µ

(∑
k≥1

εk

bk
2

)
< +∞?

Since the set of Liouville numbers has zero Hausdorff dimension, metric arguments
do not seem to help to solve Problem 1.3.

P 1.4. Let b ≥ 2 be an integer greater than 1. Let b1 and b2 be distinct integers
at least as great as b. Find an explicit sequence (εk)k≥1 with values in {0, 1, . . . , b − 1}
such that ∑

k≥1

εk

bk
1

is badly approximable, while ∑
k≥1

εk

bk
2

is not badly approximable.

With the notation of Problem 1.4, the Hausdorff dimension of the set of badly
approximable real numbers of the form∑

k≥1

εk

bk
1

,

with εk in {0, 1, . . . , b − 1} for k ≥ 1, is equal to the Hausdorff dimension of the set
of real numbers of this form, namely, (log b)/(log b1) (see, for example, [10]). This
implies that sequences (εk)k≥1 with the properties required in Problem 1.4 do exist
when b1 is less than b2. The difficult point is to provide an explicit construction of
such a sequence.

P 1.5. Let b ≥ 2 be an integer greater than 1. Let b1 and b2 be distinct integers
at least as great as b. Let µ1 and µ2 be real numbers at least as great as 2. Does there
exist a sequence (εk)k≥1 with values in {0, 1, . . . , b − 1} such that

µ
(∑

k≥1

εk

bk
1

)
= µ1 and µ

(∑
k≥1

εk

bk
2

)
= µ2?

Surprisingly, it does not even seem to be easy to construct a sequence (εk)k≥1 with
values in {0, 1, . . . , b − 1} such that

µ
(∑

k≥1

εk

bk
1

)
, µ

(∑
k≥1

εk

bk
2

)
;

see Theorem 2.1 below for a contribution to this question.
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Problem 1.5 is difficult since, in most cases, knowing the b-ary expansion of a
real number gives no information on its irrationality exponent (see [5]). However, if
the sequence (εk)k≥1 contains long repetitions which occur unexpectedly early, then,
by truncating and completing by periodicity, one can construct very good rational
approximants to

∑
k≥1 εk/bk

1 of the form P(b1)/(br
1(bs

1 − 1)), where r and s are positive
integers and P(X) is an integral polynomial. However, it is not clear at all whether
P(b1)/(br

1(bs
1 − 1)) is written in reduced form. Furthermore, P(b2)/(br

2(bs
2 − 1)) is then

a good rational approximant to
∑

k≥1 εk/bk
2, but we also do not know whether it is

written in reduced form. Such information is crucial when one wishes to determine
the exact value of the irrationality exponent. Otherwise, we get only a lower bound for
it. A related question has been discussed by Mahler [13].

We conclude this section with an extension of the Mahler–Mendès France problem.

P 1.6. Let b ≥ 2 be an integer greater than 1. Let b1 and b2 be distinct integers
at least as great as b. Let (εk)k≥1 be a sequence with values in {0, 1, . . . , b − 1}, which
is not ultimately periodic. Are the real numbers

ξ1 :=
∑
k≥1

εk

bk
1

and ξ2 :=
∑
k≥1

εk

bk
2

algebraically independent?

Under strong additional assumptions on the sequence (εk)k≥1, a positive answer to
Problem 1.6 has been given using the so-called Mahler method (see, for example,
Nishioka’s monograph [16, Ch. 3]). In particular, the real numbers∑

k≥1

1

b2k ,

where b ≥ 2, are algebraically independent.

2. Our result

Our small contribution towards Problem 1.5 is the following result.

T 2.1. Let b and b1 be integers such that b1 > b ≥ 2 and b1 , b2. Let a be a real
number and let w be an integer such that a ≥ 3 and w ≥ 3a. For k ≥ 1, set nk = b(aw)kc.
Define the sequence of integers (εk)k≥1 as follows. We set εk = b if and only if there
exist h ≥ 1 and m = 0, 1, . . . , w − 1 such that k = nh + 1 + m(2nh + 1). We set εk = 1 if
and only if there exist h ≥ 1 and m = 1, 2, . . . , w such that k = m(2nh + 1). Otherwise,
we set εk = 0. Define

ξ :=
∑
k≥1

εk

(b2)k
and ξ1 :=

∑
k≥1

εk

bk
1

.

Then

µ(ξ) =
a(2w + 1)

a + 2

https://doi.org/10.1017/S1446788712000079 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000079


[5] A problem of Mahler and Mendès France 41

and

µ(ξ1) =
a(2w + 1)
2(a + 1)

.

The conclusion of Theorem 2.1 also holds if the real number a satisfies a > 2 + 1/w
for a sufficiently large integer w.

Observe that for every sufficiently large real number µ, there are integers w and w1

and real numbers a and a1 such that 3 ≤ a ≤ w/3 while 3 ≤ a1 ≤ w1/3 and

µ =
a(2w + 1)

a + 2
=

a1(2w1 + 1)
2(a1 + 1)

.

The proof of Theorem 2.1 is elementary. The basic idea is to truncate the b2-ary
expansion of ξ (or the b1-ary expansion of ξ1) and then to complete by periodicity
to construct good rational approximants to ξ (or to ξ1). The denominators of these
rationals, when written in their lowest form, are essentially of the form br(bs − 1) (or
br

1(bs
1 − 1) respectively), where r and s are positive integers.

P  T 2.1. The key point is the observation that

b · b2n + 1
b2(2n+1) − 1

=
1

b2n+1 − 1
,

while the fraction
b · bn

1 + 1

b2n+1
1 − 1

is nearly in reduced form.
To be more precise, observe that

(b · bn
1 + 1)(bn+1

1 − 1) = b(b2n+1
1 − 1) + (b1 − b)bn

1 + b − 1,

thus gcd(b · bn
1 + 1, b2n+1

1 − 1) divides (b1 − b)bn
1 + b − 1. Since

(b1 − b)(b · bn
1 + 1) − b((b1 − b)bn

1 + b − 1) = b1 − b2,

it follows that gcd(b · bn
1 + 1, b2n+1

1 − 1) divides b1 − b2, hence this greatest common
divisor is bounded independently of n.

Observe that

ξ =
∑
k≥1

(b(b2)−nk−1 + (b2)−2nk−1)(1 + (b2)−2nk−1 + · · · + (b2)−(w−1)(2nk+1))

and
ξ1 =

∑
k≥1

(b · b−nk−1
1 + b−2nk−1

1 )(1 + b−2nk−1
1 + · · · + b−(w−1)(2nk+1)

1 ).
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To construct good rational approximants to ξ (or to ξ1), we simply truncate the
summation and complete by periodicity. When K ≥ 2, define

ξK :=
K−1∑
k=1

(b(b2)−nk−1 + (b2)−2nk−1)(1 + (b2)−2nk−1 + · · · + (b2)−(w−1)(2nk+1))

+
b(b2)−nK−1 + (b2)−2nK−1

1 − (b2)−2nK−1

=
mK

(b2)w(2nK−1+1)
+

b(b2)nK + 1
(b2)2nK+1 − 1

and

ξ1,K :=
K−1∑
k=1

(b · b−nk−1
1 + b−2nk−1

1 )(1 + b−2nk−1
1 + · · · + b−(w−1)(2nk+1)

1 )

+
bb−nK−1

1 + b−2nK−1
1

1 − b−2nK−1
1

=
m1,K

(b1)w(2nK−1+1)
+

b(b1)nK + 1
(b1)2nK+1 − 1

,

for some integers mK and m1,K . It follows from the key point explained at the beginning
of the proof that there exist integers pK and p1,K such that

ξK =
pK

(b2)w(2nK−1+1)(b2nK+1 − 1)

in lowest form and
ξ1,K =

p1,K

bw(2nK−1+1)
1 (b2nK+1

1 − 1)
,

and the greatest common divisor of p1,K and bw(2nK−1+1)
1 (b2nK+1

1 − 1) is bounded
independently of K.

Since a > 2 + 1/w, the inequality nK+1 + 1 > nK + 1 + w(2nK + 1) is satisfied if K
is sufficiently large. If this is the case, then we may check that

b(b2)−nK−1−w(2nK+1) ≤ |ξ − ξK | ≤ 2b(b2)−nK−1−w(2nK+1) (2.1)

and
bb−nK−1−w(2nK+1)

1 ≤ |ξ1 − ξ1,K | ≤ 2bb−nK−1−w(2nK+1)
1 . (2.2)

Since we know the reduced form of the rational numbers ξK and ξ1,K , up to a bounded
numerical constant, it then follows from (2.1) and (2.2) that

|ξ − ξK | � (den(ξK))−2(nK+1+w(2nK+1))/(2w(2nK−1+1)+2nK+1)

and
|ξ1 − ξ1,K | � (den(ξ1,K))−(nK+1+w(2nK+1))/(w(2nK−1+1)+2nK+1),
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where the notation AK � BK means that the ratio AK/BK is bounded from above and
from below by positive constants independent of K.

This gives the lower bounds

µ(ξ) ≥
a(2w + 1)

a + 2
and µ(ξ1) ≥

a(2w + 1)
2(a + 1)

. (2.3)

It remains to show that the inequalities in (2.3) are indeed equalities. To do this, we use
a classical lemma whose proof is based on the triangle inequality (see, for example,
[3, Lemma 4.1]).

L 2.2. Let ξ be a real number such that there exist positive real numbers
c1, c2, µ, θ and reduced rational numbers (pk/qk)k≥1 such that

c1

qµk
≤

∣∣∣∣∣ξ − pk

qk

∣∣∣∣∣ ≤ c2

qµk

and
qk ≤ qk+1 ≤ qθk

for all k ≥ 1. If θ ≤ (µ − 1)2, then the irrationality exponent of ξ is equal to µ.

We check that

lim
K→+∞

∣∣∣∣∣ log den(ξK+1)
log den(ξK)

−
2w(2nK + 1) + 2nK+1 + 1
2w(2nK−1 + 1) + 2nK + 1

∣∣∣∣∣ = 0

and

lim
K→+∞

∣∣∣∣∣ log den(ξ1,K+1)
log den(ξ1,K)

−
w(2nK + 1) + 2nK+1 + 1
w(2nK−1 + 1) + 2nK + 1

∣∣∣∣∣ = 0.

Consequently, by the definition of (nk)k≥1, the sequences

(log den(ξK+1)/log den(ξK))K≥1 and (log den(ξ1,K+1)/log den(ξ1,K))K≥1

both tend to aw as K tends to infinity.
Since

aw ≤
(a(2w + 1)

2(a + 1)
− 1

)2

if a ≥ 3 and w ≥ 3a, the theorem follows from Lemma 2.2. �
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