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Abstract

We obtain examples of smooth projective varieties over C that violate the integral Hodge
conjecture and for which the total Chow group is of finite rank. Moreover, we show that
there exist such examples defined over number fields.
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1. Introduction

In this paper, we consider smooth projective varieties over C violating the integral Hodge
conjecture; i.e., varieties X with some n for which there exists some α ∈ H2n(X, Z(n)) that is
not algebraic but for which some multiple of α is. Violations of the integral Hodge conjecture
are known to exist in all degrees 2n for n �= 0, 1, dim(X) and have been known to exist since
work of Atiyah–Hirzebruch [1]. Violations satisfying additional hypotheses have been noted
by a number of different authors, including some rather recent ones (see, for instance, [2, 6,
8, 12, 15, 18, 19, 20]).

In particular, there is the recent result of Ottem–Suzuki [15], which shows that there are
examples of smooth projective varieties of dimension 3 violating the Hodge conjecture in
degree 4 for which CH0(X) ∼=Z (a similar example for which the latter assumption holds
conjecturally can also be found in [8] section 5·7). Motivated by this, one can consider
whether there exist violations of the integral Hodge conjecture involving smooth projective
varieties, all of whose Chow groups are as small as possible. More precisely, we consider
whether there are violations of the integral Hodge conjecture for which the total Chow group
CH∗(X)Q is of finite Q-rank. We refer to such varieties as Chow-trivial varieties. (It is a
consequence of Roitmann’s Theorem [3] that any such X will satisfy CH0(X) ∼=Z.) To this
end, we have the following result:

THEOREM 1·1. For all d ≥ 4, there exist smooth projective varieties V over C of dimen-
sion d that are Chow-trivial and which violate the integral Hodge conjecture in degree 4;
more precisely, for which there exists a non-algebraic torsion class in H4(V , Z(2)). In fact,
one can find V of this type that are defined over a number field.
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Several remarks should be made at the outset. First, it is sufficient to consider the case
that V is of dimension 4. Once the result is proved in this case, one can obtain results in all
higher dimensions d in the standard way; i.e., by replacing V with V × Pd−4 and using the
projective bundle formula.

Additionally, our example in dimension 4 has the form S1 × S2, where S1 and S2 are
Enriques surfaces. The method of proof we use is the same method of proof employed by
Colliot–Thélène in [6], which combines the main result of [8] with a degeneration method
of Gabber [9]. This kind of argument works best on examples involving elliptic curves,
and so we show in the sequel how the problem can be reduced to one involving elliptic
curves. In our approach, the degeneration part of this argument involves reduction to positive
characteristic, and we explain in the final section why this is necessary. We also observe that
Schreieder has recently generalised the method of [6] to obtain violations in higher degree
using refined unramified cohomology [18].

Finally, our note leaves open the question of whether there are violations to the integral
Hodge conjecture involving three-dimensional Chow-trivial varieties. The primary difficulty
is that verifying Chow-triviality in cases where it is expected is difficult in general.

2. Chow-trivial varieties

We begin with the following well-known result relating the various notions of triviality of
the Chow group:

THEOREM 2·1. Let X be a smooth projective variety over C. Then, the following are
equivalent:

(a) X is Chow-trivial;

(b) for all algebraically closed extensions K/C, CH∗(X ×C K)Q is of finite Q-rank;

(c) rational equivalence and numerical equivalence (⊗Q) coincide for algebraic cycles
on X;

(d) the rational Chow motive M(X)Q is a sum of Lefschetz motives;

(e) the total cycle class map to singular cohomology:

CH∗(X)Q −→ H2∗(X, Q( ∗ ))

is an isomorphism.

Proof. This follows from [21, theorem 4].

Note that (e) in Theorem 2·1 shows that Chow-trivial varieties automatically satisfy the
usual Hodge conjecture. So, it is natural to wonder if these also satisfy the integral Hodge
conjecture. As a result, we obtain the following examples of Chow-trivial varieties over C:

Example 2·2.

(a) (Cellular varieties) If X admits a stratification with strata isomorphic to a disjoint
union of An’s, then X is Chow-trivial. This follows from an argument involving the
localisation sequence for Chow groups.

(b) (Products) If X and Y are Chow-trivial, then so is X × Y . This follows from
characterisation (d) in Theorem 2·1.
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(c) (Projective bundles) If X is Chow-trivial, then so is any projective bundle over X. This
follows from a projective bundle formula argument.

(d) (Enriques surfaces) Any Enriques surface is Chow-trivial (by the main result of [4]).

Remark 2·3. Since our examples involve surfaces, we note that it is classical that if X is a
smooth projective surface over C that is Chow trivial, then h1(X) = 0 = pg(X) [14]. Bloch’s
conjecture predicts that the converse also holds; i.e., if X is a smooth projective surface
over C with h1(X) = 0 = pg(X), then, X is Chow trivial. Bloch’s conjecture is known for
all surfaces not of general type and has been verified for a number of surfaces of general
type; for instance, see [10], [22] and [17]. It is possible that the method we use to prove
Theorem 1·1 would also work on examples involving these surfaces.

3. Unramified cohomology

Definition 3·1. Let X be a smooth variety over C, G be a finite Abelian group and Hi
X(G)

be the Zariski sheaf over X associated to the presheaf U 
→ Hi(U, G), where H∗ denotes
singular cohomology. Then,

Hi
nr(X, G) := H0(X, Hi

X(G))

is the ith unramified cohomology group with coefficients in G.

Unramified cohomology was defined in this way in [5] (see also [7]). The following facts
are all well known (and either in or derivable from these two sources):

(a) Hi
nr(X, G) is a subgroup of Hi(C(X), G), where the latter group denotes the Galois

cohomology of C(X);

(b) there is a natural map Hi(X, G) → Hi(C(X), G) factoring as Hi(X, G) → Hi
nr(X, G) ↪→

Hi(C(X), G) whose kernel is N1Hi(X, G), where N∗ denotes the coniveau filtration on
cohomology;

(c) H1(X, G) → H1
nr(X, G) is an isomorphism and H2(X, G) → H2

nr(X, G) is surjective;
for i > 2, not much is known about Hi(X, G) → Hi

nr(X, G) apart from some special
cases.

The work of Colliot–Thélène and Voisin [8] proved the relation between unramified coho-
mology in degree 3 and the integral Hodge conjecture in degree 4. This work has since been
generalised by Schreieder [18] to a relation between refined unramified cohomology and the
integral Hodge conjecture in higher degree.

THEOREM 3·2. When X is Chow-trivial, the integral Hodge conjecture for X in degree
4 is false ⇔ H3

nr(X, Z/m(2)) �= 0 for some some m. Moreover, if γ ∈ H3(X, Z/m(2)) has
nonzero image in H3(C(X), Z/m(2)), then δ(γ ) ∈ H4(X, Z(2)) is a non-algebraic m-torsion
class, where δ : H3(X, Z/m(2)) → H4(X, Z(2)) is the coboundary in the long exact sequence
in cohomology associated to the short exact sequence 0 →Z→Z→Z/m → 0.

Proof. The first statement follows directly from [8] Théorème 3·9. For the second state-
ment, let Z4(X) be the quotient of H4(X, Z(2)) by the subgroup of algebraic classes. Then,
the second statement follows directly from the commutativity of the diagram:
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The commutativity follows from the fact that the isomorphism in the bottom row arises
from the coboundary map in the analogous sequence for unramified cohomology.

4. Proof of Theorem 1·1
As noted earlier, it will suffice to prove that we can find such a V of dimension d = 4.

Moreover, we will take V to be a product of two Enriques surfaces defined over number
fields. Section 2 shows that V is Chow-trivial. Now, we let S denote an Enriques surface
satisfying the following criterion:

Assumption 4·1. S = Y/φ, where Y is a K3 surface and φ is an Enriques (=fixed-point-free)
involution on Y , both defined over a number field K. Moreover, φ acts on a genus 1 curve Ẽ ⊂
Y , also defined over K and with Ẽ(K) �= ∅; let π : Ẽ → E := Ẽ/φ be the induced quotient.
Assume that there is some place p of K, not lying over 2, over which Ẽ has multiplicative
reduction.

Moreover, we let S denote an Enriques surface constructed as above with corresponding
prime p and let S2 denote an Enriques surface defined over K with good reduction at a
prime p lying over p. Note that for a particular p, it may be nontrivial to show that such an
Enriques surface exists, so we do not claim that what follows works for any odd prime p
but only that it works for any odd prime for which there exists such an Enriques surface.
(Indeed, there must be some odd primes for which this is the case, since there are certainly
Enriques surfaces defined over K which will necessarily have good reduction at almost all
primes.) Then, take V = S × S2 and let

γ := π∗
S α ∪ π∗

S2
β ∈ H3(V , Z/2(2)),

where α ∈ H1(S, Z/2(1)) ∼= H1(S, Z/2) is the class corresponding to the double cover Y → S
and β ∈ H2(S2, Z/2(1)) is any class mapping nontrivially via the map:

H2(S2, Z/2(1)) ∼= H2
ét(S2,C, Z/2(1)) −→ Br(S2,C)[2] ∼=Z/2, (1)

where the first arrow is the canonical isomorphism between singular and étale cohomol-
ogy and the second arrow is from the Kummer sequence. By Theorem 3·2, it will suffice
to show that the image of γ under H3(V , Z/2(2)) → H3(C(V), Z/2(2)) is non-zero or,
equivalently, γ �∈ N1H3(V , Z/2(2)). Now, by the functoriality of the coniveau filtration
(there are many ways to see this; e.g., see [16] section 2·1) it will suffice to show that
γ ′ = γ |W �∈ N1H3(W, Z/2(2)) where W = E × S2 and E ⊂ S is as above. For the remainder
of the proof, we use étale cohomology with Z/2 coefficients. In particular, we may view:

α′ := α|E ∈ H1
ét(EC, Z/2(1)) ∼= H1

ét(EKp
, Z/2(1)),

β ∈ H2
ét(S2,C, Z/2(1)) ∼= H2

ét(S2,Kp
, Z/2(1)), (2)

where we view E/Kp as a genus 1 curve over Kp (and similarly view S/Kp as an Enriques
surface over Kp) and use the standard base change results from étale cohomology (see [13]
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section VI·2). Let W = E × S2/Kp, again viewed as a variety over Kp. We need to show that
γ ′ ∈ H3

ét(WKp
, Z/2(2)) does not vanish under the map to the Galois cohomology:

H3
ét

(
WKp

, Z/2(2)
)

−→ H3 (
Kp(W), Z/2(2)

)
. (3)

To this end, we will need to spread out the classes in (2). In particular, we will need the
following lemma:

LEMMA 4·2. Let o denote the corresponding ring of integers of Kp. There are smooth
schemes E , Ẽ → Spec(o) whose generic fibers are E and Ẽ and whose special fibers, E0 and
Ẽ0, are k-isomorphic to Gm,k. Moreover, π : Ẽ → E extends to an étale morphism π :Ẽ → E
over Spec(o).

Proof of Lemma. Ẽ(K) = ∅ by assumption, so the Neron model of Ẽ, Ẽ → Spec(o), has
the structure of an Abelian group scheme. Since φ acts on Ẽ by translation by a two-torsion
point (since φ acts freely on Ẽ), this action extends to an action on Ẽ → Spec(o). We denote
the induced quotient by E → Spec(o) and note that there is a corresponding étale double
cover Ẽ → E . Finally, we observe that since Ẽ has multiplicative reduction over p, so does
the special fiber E0 of E → Spec(o). Hence, the second statement.

Now, we let E → Spec(o) be the corresponding model from Lemma 4·2 and let S2 →
Spec(o) denote a smooth projective morphism whose generic fiber is S2/Kp. Then, consider
W := E ×o S2, whose generic fiber is W.

LEMMA 4·3. There is some finite unramified Galois extension L/Kp with ring of inte-
gers o′ and residue field k′ for which there exist A′ ∈ H1

ét(E ×o o
′, Z/2(1)) and B ∈ H2

ét
(S2 ×o o

′, Z/2(1)) lifting α′ and β, resp.

Proof. We can describe the first class explicitly. First note that one can take A′ ∈
H1

ét(E , Z/2(1)) to be the class of the étale double cover (over o) Ẽ → E in H1
ét(E , Z/2(1)) ∼=

H1
ét(E , Z/2). Indeed, since 2 is invertible in the residue field k of o, this group parametrises

Z/2-torsors over E (i.e., étale double covers of E) (see, for instance, [13] chapter III).
Moreover, the class of α′ in (2) is nothing but the class of the étale double cover ẼKp

→ EKp
,

which is the fiber product of Ẽ → E with a geometric point Spec(Kp) → Spec(o). This then
gives a lift of α′. Note that for this class, we did not need to extend Kp yet.

To lift β, we set S ′ := S2 ×o o
′ and S′ the generic fiber. We need to find a suitable finite

unramified Galois extension L/Kp with ring of integers o′ for which the base extension map:

Br(S ′)[2] −→ Br
(

S′
Kp

)
[2] ∼=Z/2

is surjective. To this end, note that the special fiber S′
0 of S ′ → Spec

(
o′) is smooth and

projective by assumption. So, we observe that there is a commutative diagram:

(4)
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where the horizontal arrows are the base extension maps, the left vertical arrow is the
restriction map to the special fiber, which is surjective (by [13] chapter VI corollary 2·7
and the Kummer sequence), and the right vertical arrow is induced by the specialisation
isomorphism ([13] chapter VI corollary 4·2). Indeed, there is a specialisation isomorphism:

H2
ét

(
S′

Kp
, Z/2(1)

) ∼=−→ H2
ét

(
S′

0, k
, Z/2(1)

)

which maps Pic(SKp
)/2 injectively into Pic

(
S′

0, k

)
/2. Now, both these latter groups have

the same Z/2-rank, since S′
0, k

is also an Enriques surface (note: the characteristic of k is
�= 2). Hence, it follows that the induced map

Pic
(

S′
Kp

)
/2 −→ Pic

(
S′

0, k

)
/2

is an isomorphism. The Kummer sequence then shows that the right vertical arrow in (4)
is an isomorphism. What remains then is to find some extension k′/k for which the base

extension map Br
(
S′

0

)
[2] → Br

(
S′

0, k

)
[2] ∼=Z/2 is surjective (in this case, L/Kp will be

the finite unramified Galois extension whose residue field extension is k′/k). To this end,
we let k′/k be a finite extension for which the action of Gal(k/k′), on H2

ét(S
′
0, k

, Z/2(1)) is
trivial. Then, note that the Hochschild–Serre spectral sequence:

Hp
(

Gal(k/k′), Hq
ét

(
S′

0, k
, Z/2(1)

))
=⇒ Hp+q

ét

(
S′

0, Z/2(1)
)

degenerates, since k′ is a finite field. It follows that the base extension map

H2
ét

(
S′

0, Z/2(1)
) −→ H2

ét(S
′
0, k

, Z/2(1))Gal(k/k′) = H2
ét(S

′
0, k

, Z/2(1)) (5)

is surjective. Since S′
0 is an Enriques surface, Br

(
S′

0, k

) ∼=Z/2. In particular,

Br
(

S′
0, k

)
[2]Gal(k/k′) = Br

(
S′

0, k

)
[2] ∼=Z/2.

So, we deduce that the map Br
(
S′

0

)
[2] → Br

(
S′

0, k

)
[2] is surjective, as desired.

Now, let 	′ := π∗
E ′A′ ∪ π∗

S ′B ∈ H3
ét(W ′, Z/2(2)), where E ′ := E ×o o

′ and W ′ :=
W ×o o

′. This is a lift of γ ′ ∈ H3
ét

(
WKp

, Z/2(2)
)

. We need to prove that γ ′ ∈
H3

ét

(
WKp

, Z/2(2)
)

does not vanish under (3). To this end, note that the specialisation

argument in [9] shows that it is sufficient to prove that

	′
0 ∈ H3

ét

(
W ′

0,k
, Z/2(2)

)

the restriction of 	′ to the geometric special fiber W ′
0,k

of W ′ → Spec(o′) does not vanish
under the map to Galois cohomology:

H3
ét

(
W ′

0,k
, Z/2(2)

)
−→ H3(F, Z/2(2)), (6)

where F = k
(

W ′
0,k

)
. For this, note that W ′

0 is of the form U × S′
0, where U ∼=Gm (by

Lemma 4·2) and S′
0 is the special fiber of S ′ → Spec(o′) as before. Let R ∼= P1

k′ be the smooth

https://doi.org/10.1017/S0305004123000233 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000233


On the integral Hodge conjecture for varieties with trivial Chow group 439

completion of U over k′ and consider x ∈ R(k) not in U(k). Let ν be the valuation of F
corresponding to the divisor x ×k S′

0,k
on Rk ×k S′

0,k
and let

rν : H3 (F, Z/2(2)) −→ H2
(

k
(

S′
0,k

)
, Z/2(1)

)

be the corresponding residue. Then, the residue computation is the same as in [6] and [9].
Indeed, we have

rν

(
	′

0

) = rx
(
α′

0

) · β0 ∈ H2(k(S′
0,k

), Z/2(1)), (7)

where α′
0 �= 0 ∈ H1(k(R), Z/2(1)) is the image of A′ under the composition

H1
ét (E , Z/2(1)) −→ H1

ét

(
E0,k, Z/2(1)

)
−→ H1 (

k(R), Z/2(1)
)

,

rx : H1(k(R), Z/2(1)) →Z/2 is the residue map corresponding to x as above and β0 is the
image of B under the composition

H2
ét

(S ′, Z/2(1)
) −→ H2

ét(S
′
0,k

, Z/2(1)) −→ H2
(

k(S′
0,k

), Z/2(1)
)

.

The right-hand side of (7) is non-zero, so long as rx
(
α′

0

) �= 0 ∈Z/2. There exist x ∈ R(k′)
for which this holds; indeed, we have⋂

x∈R(k)

ker {rx : H1(k(R), Z/2(1)) −→Z/2} = H1
ét(Rk, Z/2(1)) = 0.

Thus, there is some x for which (7) is non-zero. This shows that the image of 	′
0 under (6)

does not vanish, as desired.

5. An explicit example

In this section, we give an example of S as in the proof of Theorem 1·1. There are con-
ceivably many such examples, but we give one where all the assumptions may be checked
directly. We need to check that the S we construct satisfies Assumption 4·1.

Construction 5·1. Let X′ ⊂ P3 be a quartic surface over Q for which there is a fixed-point-
free automorphism of order 4, φ, defined over some number field. We do not assume that X′
is smooth, but we do assume the following:

(a) φ extends to an action of P3 with only finitely many fixed points, and the correspond-
ing fixed locus of ι := φ2 on P3 consists of two skew lines;

(b) the singular locus X′
sing consists of a finite set of ≤ 8 rational double points;

(c) the fixed locus of ι on X′ contains X′
sing (thus, the fixed locus is a scheme of length 8 in

which the smooth points of X′ have multiplicity 1 and the double points muliplicity 2).

It is well known that when (b) holds, the resolution X obtained by blowing up the singular
points is a K3 surface (this is also easy to check); φ then lifts to an action on X. We also
check in the lemma below that ι acting on X via this induced action is a Nikulin involution.
In this case, let Y be the resolution of X/ι obtained by blowing up the 8 rational double
points of X/ι; then, Y is a K3 surface. Moreover, φ and φ3 both lift to fixed-point-free
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automorphisms on X, which means that the induced action of φ on Y is that of a fixed-
point-free involution. So, S = Y/φ is an Enriques surface. Note that S is defined over Q (as
is everything else in the construction). Let π : Y → S be the corresponding double cover.
Morever, let α �= 0 ∈ H1(S, Z/2) = Hom(π1(S), Z/2) denote the corresponding class.

LEMMA 5·2. ι (acting on X) is a Nikulin involution.

Proof. One may obtain X as the strict transform of X′ relative to the blow-up ε : P → P3

of P3 at all the singular points of X′. The action of φ on P3 then lifts to P and acts linearly
on the exceptional divisors of P. In particular, the fixed locus of ι = φ2 on each of these
exceptional divisors is a union of projective linear subspaces, and so ι does not act trivially
on the exceptional divisors of X′ → X, which are all conics. The action of ι on X thus fixes
precisely 8 points. It now remains to show that any such involution is necessarily symplectic;
or, equivalently, that Y is a K3 surface. To this end, we observe that Y is certainly simply-
connected. So, what remains is to show that the canonical divisor of Y is trivial, which is
standard. Indeed, there is a branched double cover g : X̃ → Y , where X̃ is the blow-up of X
along the 8 fixed points of ι. Since X is a K3 surface, it follows that

KX̃ =
8∑

i=1

Ei ∈ CH1(X̃), (8)

where Ei are the exceptional divisors of X̃. We also have that

KX̃ = g∗KY + R ∈ CH1(X̃),

where R is the ramification divisor of g. However, this latter is precisely the right-hand side
of (8), from which it follows that g∗KY = 0 ∈ CH1(X̃). Since Y is simply-connected, CH1(Y)
is torsion-free, from which it follows that KY = 0 ∈ CH1(Y).

Notation 5·3. We fix the following for the sequel:

(i) p: an odd prime;

(ii) C′: the quartic curve defined by f (x0, x1, x2) := x4
0 + px4

1 + x4
2 − 2x2

0x2
2 − x0x2

1x2 = 0;

(iii) X′: the quartic surface defined by g(x0, x1, x2, x3) = f (x0, x1, x2) + x4
3 = 0;

(iv) φ: the automorphism on P3 induced by [x0, x1, x2, x3] → [x0, ix1, −x2, −ix3], where
i = √−1.

LEMMA 5·4. X′ and φ as in Notation 5·3 satisfies the assumptions of Construction 5·1.

Proof. One verifies directly that X′ is stable under the action of φ and that the set of fixed
points of φ on P3 is {[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]}, none of which lies on X′.
Additionally, ι = φ2 is given by

[x0, x1, x2, x3] −→ [x0, −x1, x2, −x3]

So, the fixed locus of ι on P3 is the L02 ∪ L13 where Lij denotes the line in P3 defined by
xi = xj = 0. It follows that the fixed locus of ι on X′ is given by F02 ∪ F13, where

Fij = {[x0, x1, x2, x3] ∈ P3 | xi = xj = g(x0, x1, x2, x3) = 0}.
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Note #F02 = 4 and F13 consists of the two points [1, 0, ±1, 0]. As a finite scheme, F13 ⊂
P1

x0x2
is cut out by (x0 − x2)2(x0 + x2)2 = 0. Hence, these two points each have multiplicity

2. Moreover, a direct calculation shows that both of these points are singular points of X′,
which we note below are both rational double points. What remains then is to establish that
the only two singular points of X′ are [1, 0, ±1, 0]. Indeed, a direct calculation shows that
X′ is singular precisely at the points [x0, x1, x2, 0] where [x0, x1, x2] is a singular point of C′.
So, we need to check that [1, 0, ±1] are the only singular points of C′. Computing gradients
of f , the singular locus is defined by:

4x3
0 − 4x0x2

2 − x2
1x2 = 4x3

2 − 4x2
0x2 − x0x2

1 = 4px3
1 − 2x0x1x2 = 0. (9)

If x1 = 0, we obtain the singular points [1, 0, ±1]. Moreover, it is routine to check that
these are rational double points on C′, which implies that they are also rational double points
on X′. If x1 �= 0, the last equation in (9) gives 2px2

1 = x0x2, which leads to:

4x3
0 −

(
4 + 1

2p

)
x0x2

2 = 4x3
2 −

(
4 + 1

2p

)
x2

0x2 = 0.

One checks that the only solution to this system is x0 = x2 = 0, which then forces x1 = 0.
So, [1, 0, ±1] are the only singular points.

Since X′ now satisfies all the assumptions in Construction 5·1, we let Y , S, γ , π be the
associated objects corresponding to the X′ and φ in the construction. Additionally, note that
φ acts on C′. In fact, we have the following:

LEMMA 5·5. The action of φ on the nodal curve C′ lifts to an action on its resolution
C in X for which the induced action of ι = φ2 is fixed-point free. Moreover, C is a genus 1
curve.

Proof. Let ρ : X → X′ be the blow-up of X′ along the two singular points of X′. This
resolves the singularities of X′, as was observed in the proof of Lemma 5·4. Additionally,
the strict transform of C′, which we denote by C, is a smooth curve; a computation shows
that its genus is 1. The action of φ on C′ lifts to an automorphism on C, since the latter is
obtained by blowing up C on what happen to be the set of fixed points of ι (acting on C′).
What remains is to see that the induced action of ι = φ2 on C is fixed-point-free. For this,
note that since ι acts on C as an involution, either ι is fixed-point-free on C or the quotient
C/ι has genus 0. However, the latter case cannot occur, since C/ι is also stable under the
action of the fixed-point-free involution φ acting on Y (impossible if C/ι has genus 0). It
follows that the action of ι on C is fixed-point-free, as desired.

As observed in the proof of Lemma 5·5, Ẽ := C/ι ⊂ Y is a genus 1 curve. Since π is
étale, E = π(Ẽ) is also a genus 1 curve on S. Also observe that Ẽ, E are defined over K =
Q(i). Note that since C(K) �= ∅, the same is true of Ẽ. Thus, let Ẽ, E/Kp denote the above
genus 1 curves, viewed as curves over Kp, the completion of K at p, a prime lying over p.
What remains now is to verify that this construction satisfies the reduction hypothesis in
Assumption 4·1:

LEMMA 5·6. Ẽ has multiplicative reduction at a prime p lying over p.
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Proof. Let C′ denote the subscheme of P2
o defined by

f (x0, x1, x2) := x4
0 + px4

1 + x4
2 − 2x2

0x2
2 − x0x2

1x2 = 0.

The generic fiber of C′ → Spec(o) is certainly C′ and the special fiber C′
0 is the curve in

P2
k (where k denotes the residue field) defined by

(x2
0 − x2

2)2 − x0x2
1x2 = 0.

A direct gradient computation shows that the singular locus of C′
0 consists of [1, 0, ±1]

and [0, 0, 1]; these also happen to be exactly the fixed points of ι on C′
0. The points

[1, 0, ±1] ∈ C′(Kp) may be viewed as sections s± : Spec(o) → C′. By abuse of notation, let
s± also denote the corresponding closed subschemes of C′. Blowing up along s+ ∪ s− yields
a scheme C → Spec(o), whose generic fiber is certainly C. The involution ι on C extends
to an action on C → Spec(o). The special fiber C0 is a nodal rational curve (since C′

0 had 3
nodes). Let C0,sm ⊂ C0 be the complement of this node; i.e., the smooth part of C0. Then,
C0,sm ∼=Gm By construction, the action of ι on C0,sm is fixed-point-free. It follows that the
quotient C0,sm/ι is also isomorphic to Gm, which gives the desired multiplicative reduction.

6. A remark on the proof of Theorem 1·1
It is well known that if an Enriques surface S contains genus 1 curves, then there is an

elliptic pencil h : S → P1. In particular, one may ask whether we could have instead taken
the approach of [2] and [6], using the fact that S (in the proof of Theorem 1·1) admits an
elliptic fibration, h : S → P1. This argument does not work out, as it turns out. Indeed, let α

be the class from the proof of Theorem 1·1, corresponding to the double cover Y → S and
let Et = h−1(t). The claim is that α|Et

∈ H1(Et, Z/2) vanishes for almost all t ∈ P1(C). This
will follow if we show that the Enriques involution φ that acts on Y acts non-trivially on
the pencil |Ẽ| (in the notation of the proof of Theorem 1·1), so that the π−1(Et) is a disjoint
union of two fibers in the pencil |Ẽ|. To this end, note that φ acts on Ẽ ⊂ Y by assumption
and, hence, also acts on the pencil |Ẽ|. If φ were to act trivially on |Ẽ|, then it would act on
the corresponding elliptic pencil h̃ : Y → P1. Let U ⊂ P1 be the open subscheme over which
h̃ is smooth. Then, φ would act on YU := h̃−1(U) → U. Moreover, since φ acts freely, it
would then follow that it acts by translation on the fibers of this latter. In particular, φ∗

would act trivially on H1
(

U, R1h̃∗C(1)
)

⊂ H2(YU , C(1)). Now, the Gysin sequence gives

an injective map:

C∼= H2,0(Y) −→ H1
(

U, R1h̃∗C(1)
)

via restriction. This would imply that φ∗ acts trivially on H2,0(Y), which would mean φ∗
acted symplectically. This gives the desired contradiction, from which it follows that φ acts
non-trivially on |Ẽ|. Thus, φ fixes exactly two of the curves in |Ẽ|, one of which is Ẽ itself.
One can show that the corresponding pencil on S then has a multiple fiber whose corre-
sponding reduced curve is E. Since φ acts non-trivially on |Ẽ|, one can likely show that the
Y and S considered here are cases of the more general examples considered in [11].
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