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Abstract
We investigate the connection between a cluster’s structural configuration and observable measures of its gas emission that can be obtained
in X-ray and Sunyaev–Zeldovich (SZ) surveys. We present an analytic model for the intracluster gas density profile: parameterised by the
dark matter halo’s inner logarithmic density slope, α, the concentration, c, the gas profile’s inner logarithmic density slope, ε, the dilution,
d, and the gas fraction, η, normalised to cosmological content. We predict four probes of the gas emission: the emission-weighted, TX,
and mean gas mass-weighted, Tmg , temperatures, and the spherically, Ysph, and cylindrically, Ycyl, integrated Compton parameters. Over
a parameter space of clusters, we constrain the X-ray temperature scaling relations, M200 − TX and M500 − TX, within 57.3% and 41.6%,
and M200 − Tmg and M500 − Tmg , within 25.7% and 7.0%, all respectively. When excising the cluster’s core, the M200 − TX and M500 − TX
relations are further constrained, to within 31.3% and 17.1%, respectively. Similarly, we constrain the SZ scaling relations, M200 − Ysph
and M500 − Ysph, within 31.1% and 17.7%, and M200 − Ycyl and M500 − Ycyl, within 25.2% and 22.0%, all respectively. The temperature
observable Tmg places the strongest constraint on the halo mass, whilst TX is more sensitive to the parameter space. The SZ constraints are
sensitive to the gas fraction, whilst insensitive to the form of the gas profile itself. In all cases, the halo mass is recovered with an uncertainty
that suggests the cluster’s structural profiles only contribute a minor uncertainty in its scaling relations.
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clusters
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1. Introduction

Our currently favoured standard cosmological model predicts that
dark matter halos are the building blocks of structure formation
and host the galaxies, galaxy groups, and clusters that we observe
(e.g. White & Rees, 1978; White & Frenk, 1991). At the mass
scale of galaxy clusters, the halo’s mass can be observationally
inferred from the thermodynamic properties of its hot gaseous
atmosphere, either from its X-ray emission (e.g. Vikhlinin et al.,
2006, 2009; Babyk & McNamara, 2023) or from the distortion of
the Cosmic Microwave Background (CMB) due to interactions
of CMB photons with energetic electrons (e.g. Vanderlinde et al.,
2010; Andersson et al., 2011), known as the Sunyaev–Zeldovich
(SZ; Sunyaev & Zeldovich, 1970, 1972) effect.

Observationally, the advent of precision X-ray telescopes
such as XMM-Newton (e.g. Jansen et al., 2001), Chandra (e.g.
Weisskopf et al., 2000), and eROSITA (e.g. Predehl et al., 2021)
have allowed for halomass estimates to be routinely obtained from
statistical samples of X-ray emitting galaxy clusters. These X-ray
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derived halo mass estimates typically rely on multi-parameter 3-
dimensional fits to the gas density and temperature profiles, from
which the total halo mass within a halocentric radius is estimated
by requiring hydrostatic equilibrium (i.e. pressure forces balance
gravitational forces; see, e.g. Sarazin, 1988). These halo masses can
be correlated with mean-weighted temperature observables, typ-
ically weighted by either the X-ray emission or the gas mass, to
establish scaling relations with the halo mass (see, e.g. Arnaud
et al., 2005; Vikhlinin et al., 2006, 2009; Babyk & McNamara,
2023).

Similarly, SZ-selected cluster observations have been cata-
logued by precision microwave telescopes such as the South Pole
Telescope (SPT) (e.g. Bleem et al., 2015), the Atacama Cosmology
Telescope (ACT) (e.g. Choi et al., 2020) and Planck (e.g. Planck
Collaboration et al., 2016b). These surveys allow the integrated
SZ signal, also called the Compton parameter, to be measured for
galaxy clusters, which when combined with X-ray cluster obser-
vations permitting hydrostatic mass estimates, can establish the
scaling relation between the cluster’s SZ signal and its halo mass
(e.g. Andersson et al., 2011; Czakon et al., 2015; Liu et al., 2015).

Generally, fits to a cluster’s X-ray emission allow tight limits
to be placed on the halo mass, up to a hydrostatic bias, which is
thought to underestimate the halo mass in relaxed galaxy clus-
ters by ∼ 10− 20% (e.g. Martizzi & Agrusa, 2016; Ettori & Eckert,
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2022). However, it is notable that these hydrostatic mass esti-
mates rely on fitting multi-parameter models to the gas emission,
which are often empirically rather than physically motivated, pro-
ducing a variety of ‘universal forms’ for the gas density profile
(e.g. Vikhlinin et al., 2006; Pratt et al., 2023; Lyskova et al., 2023),
the gas temperature profile (e.g. Sun et al., 2009; Ghirardini et al.,
2019b) and the gas pressure profile (e.g. Arnaud et al., 2010). This
reflects both the variance in the forms of gas profiles devised from
observational data, and the complexity of the underlying physical
processes (e.g. cosmological gas accretion, infalling groups, out-
flows of feedback; see, e.g. Power et al., 2020) that shape these
profiles. Moreover, these empirical fits are often at odds with
theoretically motivated, analytic models for the gas profile (e.g.
Cavaliere & Fusco-Femiano, 1978; Komatsu & Seljak, 2001) which
struggle to capture empirical results.

Simple parametric models of galaxy clusters have been con-
structed to predict their emission properties, as informed by
empirical and numerical results (e.g. Bode et al., 2009; Allison
et al., 2011). Similar work has investigated the nature of
galaxy cluster scaling relations; in particular, applying Bayesian
approaches to constraining these relations from observational data
(e.g. Maughan, 2014), and developing semi-analytic models that
explain observed deviations of these scaling relations from self-
similarity (e.g. Ettori, 2015; Ettori et al., 2023). More recently,
algorithms for ‘baryon pasting’ gas profiles onto numerically sim-
ulated dark matter-only halos have generated mock observations,
particularly for SZ observables (e.g. Osato & Nagai, 2023), exciting
the prospect of constraining the halo mass, when informed by its
reconstruction from these mock observables.

In these parametric and statistical approaches to studying
galaxy clusters and their scaling relations, the structures of
the cluster’s dark matter and intracluster gas components are
assumed, and their relation to the hydrostatic state of the system.
In this work, we investigate how these scaling relations depend
on cluster structure and composition, and how much they are
expected to vary, when the cluster is parameterised by relatively
agnostic prescriptions for its structure. This study builds on our
previous work (Sullivan et al. 2024, Accepted), where we inves-
tigated the scaling relation between the kinematic observables of
tracer populations within a halo and the underlying halo mass. In
this work, we turn to the scaling of X-ray and SZ observables with
the halo mass, specifically at the mass scale of galaxy clusters, and
within the regime of self-similarity. To achieve this, one of our key
goals is to construct a physically motivated, simple analytical pro-
file to model galaxy clusters and their intracluster gas component
and to accurately predict their emission observables in terms of
the cluster’s structural parameters.

Our analytic tool kit is detailed in Section 2: we review theoret-
ical predictions and empirically motivated forms for the density
profiles of the intracluster gas and the dark matter within galaxy
clusters and postulate a generalised profile which we call the ‘ideal
baryonic cluster halo’. Thereafter, we use the virial theorem to
constrain the correspondence between a cluster’s halo mass and
its emission observables: namely, its mean-weighted temperatures
and integrated SZ signals. In Section 3 the analytic profiles for
these observables are derived, with an analysis of their bounds
over the outlined parameter space fixing constraints on the halo
mass. Scaling relations are presented in Section 4, along with a
discussion on the dependence of our results on the chosen param-
eters built into the cluster’s structural model. We present our
conclusions in Section 5.

2. Theoretical background andmethods

2.1. Constructing a generalised dark matter profile

In the first paper of our series (Sullivan et al. 2024, Accepted,
referred to as Paper I hereafter), we modelled halos as dark matter-
only systems, using a generalisation of the Navarro–Frenk–White
profile (Navarro et al. (1995, 1996, 1997), hereafter NFW) which
has been found to provide a good fit to the ensemble average
of dynamically relaxed halos in cosmological N-body simula-
tions. We referred to this generalisation as ‘ideal physical halos’;
they describe spherically symmetric halos with logarithmic den-
sity slope (hereafter, for brevity, slope) of −3 at large radius, and
inner slope −α, such that the density profile is parameterised by
ρ(r)∼ r−α at small radii. This form was motivated as a reason-
able approximation to relaxed and unperturbed halos in both the
observed and simulated universe.

The dark matter halo inner slope α

The NFW profile is the α = 1 member of the ideal physical halo
class, with its divergent behaviour at small radii referred to as a
‘cusp’. If the density profile were instead to flatten in the inner
region, as α � 0, this is referred to as a ‘core’. NFW-like cusps are
consistently predicted in cosmological N-body simulations, while
even ‘cuspier’ inner slopes of α � 1.5 have been recovered in recent
high-resolution idealised N-body simulations that follow the col-
lapse of proto-halos (e.g. Ogiya & Hahn, 2018). However, this is
in tension with observational evidence of dark matter dominated
galaxies, such as dwarfs and low-surface brightness galaxies (e.g.
Moore, 1994; de Blok&McGaugh, 1997; de Blok et al., 2001; Kuzio
de Naray et al., 2008), which favour central cores; this is often
referred to as the ‘core-cusp problem’. We note that there is evi-
dence from cosmological hydrodynamical simulations that model
galaxy formation processes (e.g. gas cooling, stellar feedback) that
these can disrupt cusps (Oh et al., 2011; Pontzen & Governato,
2012; Di Cintio et al., 2014b,a) and produce cored central den-
sities. For these reasons, in Paper I we chose to model the ideal
physical halos within the parameter space of halo inner slopes
α ∈ [0, 1.5], encompassing a plausible range of predictions.

The concentration parameter c

The properties of darkmatter halos are usually referenced in terms
of their so-called virial parameters. These parameters describe
gravitational structures in virial equilibrium, the state in which
its gravitational potential energy is balanced by its internal energy
(approximately; cf. Cole & Lacey (1996)), as expected to be estab-
lished within halos, predicted from gravitational collapse models.
The virial mass, Mvir, defines the halo mass enclosed within a
sphere of virial radius, rvir, as:

Mvir ≡ 4
3
πr3vir�ρcrit,0, (1)

such that the mean enclosed mass density is given by the overden-
sity parameter,�, times the present critical density of the universe,
ρcrit,0 (e.g. White, 2001).

A standard convention in the literature is that � = 200, defin-
ing M200 and r200 to approximate a halo’s virial mass and radius,
respectively. In X-ray observations, where temperature measure-
ments are usually limited to the higher density, smaller radii,
regions of a halo’s gas distribution, it is often convenient to choose
� = 500, corresponding to the halo massM500 and the halo radius
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r500. In our investigation, we will estimate the relationship between
the observable properties of clusters and the halo mass, in both of
the conventionsM200 andM500.

When normalising a dark matter halo’s density profile to con-
tain Mvir within rvir, the concentration parameter, c, is typically
introduced to parameterise the profile, defined as the ratio of the
outer virial radius, rvir, to the inner scale radius, rs, as:

c≡ rvir
rs

. (2)

The concentration parameter is found in cosmological N-body
simulations to be weakly dependent on halo mass, with c= 5
corresponding to cluster-scale halos in the standard �CDM cos-
mology (e.g. Bullock et al., 2001; Duffy et al., 2008; Ludlow et al.,
2012, 2014).

The definition of the concentration parameter, c, depends
on the choice in overdensity, �. As r500 < r200, by definition in
Equation (2), this implies an overdensity-dependent concentra-
tion, whereby c500 < c200. In this paper, we refer to the concen-
tration only as c and take suitable values when taking different
choices of �. In particular, we take the typical �CDM cluster-
scale concentration c= 5 when � = 200 and assume to first order
r500/r200 � 0.5a, so that c= 2.5 appropriately describes cluster-
scale halos when � = 500.

The ideal physical halo profile

To model a halo’s density profile in a scale-free formalism, a
dimensionless radial scale, s, can be introduced, defined as:

s≡ r
rvir

, (3)

where r is the halocentric radius. As per Paper I, this allowed us to
express the density profile of the ideal physical halos in the form:

ρ(s, c, α)
�ρcrit,0

= u(c, α)
3sα(1+ cs)3−α

, (4)

where c is the concentration, α is the halo’s inner slope, and we
refer to u(c, α) as the generalised concentration function, defined
by the integral:

u(c, α)≡
[∫ 1

0

s2−αds
(1+ cs)3−α

]−1

. (5)

2.2. Constructing a generalised intracluster gas profile

We begin this work by constructing a gas density profile, ρgas(r), to
model the distribution of hot, X-ray emitting ionised gas within a
galaxy cluster. For now, we assume that the halo’s underlying dark
matter density profile, ρdm(r), takes the form given by the ideal
physical halo profile in Equation (4), parameterised by the halo’s
concentration and inner slope.

To model the gas distribution within a cluster, historically
the isothermal-β profile has been the preferred model: taken to
model a spherically symmetric isothermal gas profile with a central
core (Cavaliere & Fusco-Femiano, 1978). However, X-ray sur-
veys have demonstrated that the temperature distribution within
clusters is far from isothermal, when parameterised as function

aIn general, the value of r500/r200 for a given halo will depend on the specific form of its
density profile. This exact conversion is not of strong importance in our model, as r200 and
r500 are both assumed to be virial radius approximations, and so any modification of their
ratio will be quantitative rather than qualitative.

of halocentric radius (e.g. Vikhlinin et al., 2006; Sun et al., 2009;
Lyskova et al., 2023). These X-ray studies instead devise a cluster-
averaged intracluster gas density profile, when combining radially
parameterised fits for each cluster within a given survey; typi-
cally, this recovers a gas profile described by dual inner and outer
logarithmic density slopes, with general consensus for the outer
slope nearing −3 towards limiting radii (e.g. Vikhlinin et al., 2006;
Croston et al., 2008; Lyskova et al., 2023; Pratt et al., 2023).

In this study, we parameterise a scale-free gas density profile in
terms of a minimal set of physically understood parameters. To do
this, we will assume an ansatz for this profile, of the form:

ρgas(s, ε)
�ρcrit,0

= δchar

3sε(1+ Cs)3−ε
; (6)

or, equivalently, that the gas density is encompassed by the set of all
spherically symmetric gas profiles with an outer slope of −3, and
an inner slope of −ε, such that ρgas(r)∼ r−ε models the gas dis-
tribution in the inner region of the cluster. In this assumed form,
there are two additional terms: the profile’s characteristic density,
δchar, and the parameter C, which each represent undetermined
normalisation factors. From this ansatz, we will seek to constrain
expressions for δchar and C in terms of structural parameters for
the intracluster gas, such that the form of this density profile is
well understood and physically grounded.

The dilution parameter d

The defining assumption built into the ansatz in Equation (6) is
that the logarithmic slope of the gas and the dark matter profile
converge at some outer radius. This must occur, as the character-
istic form imposed for these profiles imposes that each attain an
outer slope of −3 beyond some radial scale. This assumption is
justified from modelling provided by hydrodynamic simulations,
whereby this convergence is unanimously recovered in galaxy
clusters (see, e.g. Frenk et al., 1999).

The radius in which these density slopes first converge we term
the dilution radius, rdil, describing the point where the gas slope
is ‘diluted’ to the same slope as the underlying halo. To encode
this structural property, we define the dilution parameter, d, as the
ratio of the virial radius, rvir to this dilution radius, rdil, as:

d ≡ rvir
rdil

. (7)

From hydrodynamic simulations of �CDM cluster halos, this
dilution of the gas typically occurs at or near rdil � 0.5r200 (e.g.
Yoshikawa et al., 2000). Consequently, when taking an overdensity
� = 200, we will assume a dilution of d = 2 tomodel the intraclus-
ter gas profile. Importantly, just as the halo concentration, c, was
overdensity-dependent, by its definition in Equation (7), the dilu-
tion, d, is also overdensity-dependent. In the same way, we will
assume a factor of 0.5 when taking an overdensity � = 500, such
that the corresponding dilution is d = 1 in this instance.

With this definition of the dilution parameter, we can take the
logarithmic derivatives of the expected dark matter halo profile
from Equation (4) and the assumed form of the gas profile from
Equation (6), and impose equality for r ≥ rdil, or in their scale-
free composition, for s≥ 1/d. By imposing this condition, the
parameter C can be constrained as:

C(c, α, d, ε)≡ d(α − ε)+ c(3− ε)
3− α

, (8)

as specified by the parameters c and α that describe the dark mat-
ter halo profile, and the dilution, d. We will refer to this function
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C(c, α, d, ε) as the gas’ concentration parameter, as it appears in
analogue to the halo’s concentration parameter, c, in the form of
the density profiles.

The fraction of cosmological baryon content η

When normalising the density profiles of a cluster comprised of
both dark matter and intracluster gas, we must ensure that the
virial mass is defined by integrating the total density (ρdm + ρgas)
out to the virial radius, rather than only the dark matter com-
ponent, as was done in Paper I. To do this, we must introduce a
measure of the relative contribution of gas to dark matter in con-
tributing to the halo’s total mass; in this case, we will parameterise
the fraction of gas mass to total mass, fgas(r ≤ rvir), as measured at
the cluster’s virial radius, rvir.

The present-day cosmological value of the fraction of bary-
onic mass (stars + gas) to total mass in the universe is called the
cosmological baryon fraction, fb,cos, defined in the ratio:

fb,cos ≡ �b,0

�m,0
, (9)

of the present-day baryonic density parameter, �b,0, to the
present-day total mass density parameter, �m,0. This cosmologi-
cal parameter has been constrained from precision measurement
of anisotropies on the CMB. We take the value fb,cos = 0.158
(Planck Collaboration et al., 2016a) whilst neglecting uncertain-
ties, as these will be insignificant compared to the range spanned
by the parameter space of the gas profiles.

Although our cluster halo model does not consider stars, it is
thought that the hot intracluster gas component dominates the
baryonic composition of X-ray emitting clusters (see, e.g. Akino
et al., 2022). This allows us to apply a cosmological normali-
sation to our gas profiles, by defining the parameter η as the
ratio of the halo cluster’s gas fraction to the cosmological baryon
fraction, as:

η ≡ fgas(r ≤ rvir)
fb,cos

, (10)

where rvir is taken as either r200 or r500, depending on the choice in
overdensity, �. We refer to this parameter η as the halo’s fraction
of cosmological baryon content.

Observational measurements for the gas fraction of clusters are
routinely devised in X-ray observations, from fits to the gas density
profile, where this fraction is consistently found to be an increasing
function of cluster halo mass (e.g. Arnaud et al., 2005; Vikhlinin
et al., 2009). Whilst early X-ray surveys measured the mean gas
fraction for cluster samples around fgas(≤ r500)� 0.106− 0.110,
corresponding to η � 0.67− 0.70 (e.g. Vikhlinin et al., 2006; Ettori
et al., 2009), recent, more precisely calibrated surveys have con-
sistently measured a higher mean gas fraction of fgas(≤ r500)�
0.130− 0.132, corresponding to η � 0.82− 0.84 (e.g. Eckert et al.,
2013; Morandi et al., 2015; Pratt et al., 2023). At the cluster out-
skirts, the mean gas fraction is found to be an increasing function
of halocentric radius, and its mean value at r200 has been estimated
around fgas(≤ r200)� 0.150, close to the cosmological value η � 1
(e.g. Morandi et al., 2015; Lyskova et al., 2023).

Encompassing this range of observational predictions – and
remaining agnostic to the choice in measuring the gas fraction
within either r200 or r500, so that this parameter is not overdensity-
dependent – we take the values of η ∈ [0.6, 1] in our parameter
space of idealised halos. In terms of this parameterisation, we can
normalise the gas content in our cluster halo model by integrating

the gas density profile from Equation (6) up to rvir, and setting the
enclosed mass to contain a fraction of η times the virial mass,Mvir.
From this condition, we can constrain the profile’s characteristic
density, δchar, in the form:

δchar ≡ ηfb,cosU(c, α, d, ε), (11)
where we refer to U(c, α, d, ε) as the gas’ generalised concentration
function, as defined by the integral expression:

U(c, α, d, ε)≡
[∫ 1

0

s2−εds
[1+ C(c, α, d, ε)s]3−ε

]−1

, (12)

with this function appearing in complete analogue to the
halo’s generalised concentration function, u(c, α), as defined in
Equation (5).

The gas inner slope ε

The remaining free parameter in Equation (6) is ε, the inner
slope of the gas profile. Recent fits for the average density pro-
file of the intracluster gas using XMM-Newton (Pratt et al., 2023)
and eROSITA (Lyskova et al., 2023) have observed weak cusps
of ε � 0.4− 0.7 in the central, r� 0.1r500 regions of clusters, in
contrast to the central core modelled in the isothermal-β pro-
file and assumed in some analytic models for the gas density
(e.g. Komatsu & Seljak, 2001). More comprehensive studies have
observed a large scatter in the behaviour of the gas profile in
this central region (see, e.g. Croston et al., 2008), with no clear
trend between this inner structure of the gas and the cluster’s
macroscopic properties.

Numerical studies have suggested that the behaviour of gas
profiles in the central region of clusters are dominated by non-
gravitational feedback processes (e.g. McDonald et al., 2017).
Analytic modelling has been employed to attempt to relate this
inner gas structure to the gas accretion properties at or near the
virial radius: in particular, by modelling the shock-wave propa-
gated across this boundary. This approach has established mathe-
matical correlations between the gas inner slope and the strength
of this shock (see, e.g. Patej & Loeb, 2015); however, it is not clear if
this behaviour in real halos is instead dominated bymore complex,
non-analytic feedback processes.

In this study, we will model the intracluster gas density pro-
file by inner slopes within the range ε ∈ [0, 1]: encompassing the
predictions from recent observational fits, whilst permitting a gen-
erous scatter in values, as anticipated for real clusters undergoing
complex processes in the central regions.

The ideal baryonic cluster halo profiles

With this parameterisation of the intracluster gas profile, together
with a parameterisation for the underlying halo, we can math-
ematically model the structural composition of idealised cluster
halos. We refer to the structures modelled by these idealised
profiles as ‘ideal baryonic cluster halos’.

Importantly, when modelling the dark matter halo’s density
profile by Equation (4) (i.e. the ideal physical halo considered in
Paper I), we must apply a scalar factor of (1− ηfb,cos) to take into
account the gas mass contribution. This scalar factor ensures that
the total density of the cluster halo, now considering the gas con-
tribution, still integrates to the normalised virial mass. This results
in a slightly adjusted dark matter density profile to model the ideal
baryonic cluster halos, of the form:

ρdm(s, c, α, η)
�ρcrit,0

= (1− ηfb,cos)u(c, α)
3sα(1+ cs)3−α

, (13)
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Table 1. Summary of the five parameters in the ideal baryonic cluster halo model: their symbol, definition and physical values.

c α η d ε

Definition: Concentration Inner density slope of the
dark matter profile

Fraction of cosmological
baryon content

Dilution Inner density slope of the
intracluster gas profile

Physical values: c= 5 (� = 200),
c= 2.5 (� = 500)

α ∈ [0, 1.5] η ∈ [0.6, 1] d= 2 (� = 200),
d= 1 (� = 500)

ε ∈ [0, 1]

where the halo’s concentration function, u(c, α), remains defined
by Equation (5). In terms of the gas structural parameters detailed,
the gas profile to model the ideal baryonic cluster halos takes the
form:

ρgas(s, c, α, η, d, ε)
�ρcrit,0

= ηfb,cosU(c, α, d, ε)
3sε[1+ C(c, α, d, ε)s]3−ε

, (14)

where the gas’ concentration parameter, C(c, α, d, ε), and the gas’
generalised concentration function, U(c, α, d, ε), are defined in
Equations (8) and (12), respectively.

These idealised density profiles are constrained by five
parameters – the underlying dark matter halo’s structural param-
eters: its concentration, c, and inner slope, α; the gas distribution’s
structural parameters: its dilution, d, and inner slope, ε; and the
relative contribution of each component, set by η, the fraction of
cosmological baryon content. As detailed, these five parameters
take on physically motivated values: three are bounded continu-
ously – α ∈ [0, 1.5], η ∈ [0.6, 1] and ε ∈ [0, 1]; and the remaining
two are set at fixed values, depending on the overdensity: c= 5 and
d = 2 when � = 200, and c= 2.5 and d = 1 when � = 500. These
parameters and their chosen values are summarised in Table 1.

The resulting parameter space of intracluster gas density pro-
files predicted in this model is shown in the light blue shaded
region of Figure 1, with the overdensity taken as � = 500. Here,
two recent observational constraints on the average intracluster
gas density profile are shown in comparison to our model: the
best-fit from Pratt et al. (2023) shown by the blue-dotted line,
from 93 clusters observed with XMM-Newton and fit to a gen-
eralised NFW density model; and the best-fit from Lyskova et al.
(2023) shown by the orange-dotted line, from 38 clusters observed
with eROSITA and fit to a ten-parameter function. Both of these
independent observational best-fits are well contained within the
predicted parameter space of our model, motivating the use of this
analytic model to allow predictions for the observable X-ray and
SZ emission properties of galaxy clusters.

2.3. Thermodynamic profiles of cluster halos

For idealised, spherically symmetric gravitational systems consist-
ing of gas and dark matter components, simple analytical expres-
sions can be used to predict the corresponding thermodynamic
emission profiles.

Hydrostatic equilibrium

To relate the gravitational mass of a cluster halo to its thermo-
dynamic state, it is typically assumed that the intracluster gas is
in a state of hydrostatic equilibrium: such that the thermal pres-
sure exerted by the hot gas is balanced by the halo’s gravitational
potential. For a cluster halo consisting of dark matter, ρdm(r), and
hot gas, ρgas(r), density contributions, the hydrostatic equilibrium
state is solved by the differential equation:

d
dr
[
ρgas(r)T(r)

]= −Gμmp

kB
ρgas(r)M(r)

r2
, (15)

Figure 1. The intracluster gas density profiles, in scale-free form ρgas/500ρcrit,0, traced
over the cluster’s scaled halocentric radius, r/r500, as indicated by the light blue shaded
region, as predicted for the ideal baryonic cluster halos. This shaded region evaluates
the five parameters of our model, shown in Table 1, at values chosen to correspond
to the overdensity� = 500. This prediction is compared to recent observational intra-
cluster gas density fits: Pratt et al. (2023) (the blue-dotted line) and Lyskova et al. (2023)
(the orange dash-dotted line), with the hydrogen gas density in the latter converted to
a gas density.

where M(r) is the total mass of the halo cluster within halocen-
tric radius r, given by integrating the density components of the
system:

M(r)= 4π
∫ r

0

[
ρdm(r′)+ ρgas(r′)

]
r′2dr′, (16)

and where T(r) is the equilibrium temperature of the gas, to
be solved for. In Equation (15), the physical constants involved
are: Newton’s gravitational constant, G, the mean molecular gas
weight, μ, the proton mass, mp, and the Boltzmann constant, kB.
Given profiles for the gas and the dark matter – that is, the ideal
baryonic cluster halos posited in this investigation – and some ini-
tial or boundary condition on the system, this differential equation
can be solved for the gas’ equilibrium temperature, T(r), over the
radial extent of the cluster.

Analytic studies have circumvented prescribing the form of the
gas density profile or any boundary conditions in solving the clus-
ter’s temperature distribution, by imposing a polytropic equation
of state on the gas (see, e.g. Komatsu & Seljak, 2001). However,
observational fits for the gas and temperature profiles of clusters
have shown that this polytropic relation fails at large radii (e.g.
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De Grandi & Molendi, 2002), whilst these polytropic models fail
to predict the rise in gas temperature with halo radii in the cen-
tral region as consistently found observationally (e.g. Vikhlinin
et al., 2006; Sun et al., 2009; Lyskova et al., 2023). As such, in this
study, we will not assume a polytropic relation for the gas and
instead solve for the hydrostatic equilibrium state of the gas by
imposing a sensible boundary condition on the gas temperature:
limr→∞ T(r)= 0; or, equivalently, that the temperature goes to
zero at very large cluster radii. This allows the general solution for
the gas’ equilibrium temperature, solving the hydrostatic state in
Equation (15), to be expressed as:

T(r)= Gμmp

kB
1

ρgas(r)

∫ ∞

r

M(r′)ρgas(r′)dr′

r′2
. (17)

To allow this equilibrium temperature to be composed in a
scale-free formulation, we can introduce the virial temperature,
Tvir, defined as the temperature of a gas distribution, at halocen-
tric radius, rvir, for a gravitational system in virial and hydrostatic
equilibrium, as:

Tvir ≡ 1
3

μmp

kB
GMvir

rvir
. (18)

Of note, in this definition of Tvir in Equation (18), the prefactor
of 1/3 is not unique: some definitions instead will use a prefactor
of 1/2 instead, with these differences arising due to assumptions
in the form of the gas profile deriving the virial parameter. As
we will only use Tvir as a normalisation factor and remain con-
sistent throughout this analysis, the choice in prefactor is entirely
ambiguous and will not impact our predictions.

This general solution for the equilibrium temperature in
Equation (17) can then be expressed as a scale-free profile, in a
ratio to the virial temperature and as a function of the dimension-
less radius, s, taking the form:

T(s)
Tvir

= 3
�ρcrit,0

ρgas(s)

∫ ∞

s

M(s′)
Mvir

ρgas(s′)
�ρcrit,0

ds′

s′2
, (19)

in terms of the scale-free profiles for the intracluster gas den-
sity, ρgas(s), and the total mass, M(s), itself encoding both density
constituents comprising the system:

M(s)
Mvir

= 3
∫ s

0

[
ρdm(s′)
�ρcrit,0

+ ρgas(s′)
�ρcrit,0

]
s′2ds′. (20)

The corresponding equilibrium pressure, p, of the intracluster
gas is then related to the equilibrium temperature and density of
the gas by the ideal gas law:

p= kBT
μmp

ρgas, (21)

hence the scale-free pressure profile of the gas, p(s), will be given
by the profile:

p(s)
pvir

= 3
∫ ∞

s

M(s′)
Mvir

ρgas(s′)
fb,cos�ρcrit,0

ds′

s′2
, (22)

with the total mass,M(s), still defined by Equation (20), and where
pvir is defined as the virial pressure:

pvir ≡ kBTvir

μmp
fb,cos�ρcrit,0, (23)

as the pressure of a halo with temperature Tvir at halocentric radius
rvir, given the halo is in virial and hydrostatic equilibrium, andwith
a gas fraction of exactly cosmological baryon content, fb,cos.

The emission-weighted temperature

In X-ray observations, the temperature of a cluster is typically
weighted by the properties of the emitting gas for an average
measure of the cluster’s temperature. Most commonly, this is the
emission-weighted temperature, or simply the X-ray temperature,
TX(< rdet), as measured when the cluster’s temperature is weighted
by the gas’ emission out to a halocentric radius, called the detec-
tion radius, rdet. For a spherically symmetric galaxy cluster, the
emission-weighted temperature can be calculated by the integral:

TX(< rdet)=
∫ rdet
0 ρ2

gas(r)�(T)T(r)r2dr∫ rdet
0 ρ2

gas(r)�(T)r2dr
, (24)

where the emission is taken to be proportional to ρ2
gas(r)�(T),

in terms of the cooling function, �(T), which depends on the
emission mechanism that dominates at the cluster’s physical tem-
perature. For X-ray emitting hot gas, Bremsstrahlung or ‘free-
free’ emission dominates, with X-ray emission proportional to
ρ2
gas(r)T1/2(r). In this regime, the emission-weighted temperature

is given by:

TX(< rdet)=
∫ rdet
0 ρ2

gas(r)T3/2(r)r2dr∫ rdet
0 ρ2

gas(r)T1/2(r)r2dr
, (25)

which is accessible in X-ray cluster observations, given fits for a
cluster’s radial gas density and temperature profiles out to some
detection radius, usually limited to r500. Formulating this expres-
sion in terms of the dimensionless radius, s, and a corresponding
dimensionless detection radius, sdet, the scale-free formulation of
this X-ray temperature is:

TX(< sdet)
Tvir

=
∫ sdet
0

[
ρgas(s)
�ρcrit,0

]2 [ T(s)
Tvir

]3/2
s2ds

∫ sdet
0

[
ρgas(s)
�ρcrit,0

]2 [ T(s)
Tvir

]1/2
s2ds

, (26)

as weighted by the scale-free profiles for the cluster’s gas density
and temperature.

Themean gas mass-weighted temperature

Often, rather than measuring the emission-weighted temperature,
observational surveys can instead measure a mean gas mass-
weighted temperature, Tmg(< rdet), similarly measured out to a
halocentric radius of rdet. For a spherically symmetric mass distri-
bution, this observable is recovered by weighting the temperature
by the gas density profile, such that:

Tmg(< rdet)=
∫ rdet
0 ρgas(r)T(r)r2dr∫ rdet

0 ρgas(r)r2dr
. (27)

This weighted temperature is similarly accessible in X-ray observa-
tions, given fits to the cluster’s gas density and temperature. Due
to its weighting by the mean gas mass, which should be propor-
tional to the total halo mass, this observable is often preferred in
X-ray scaling relations, as a tight proportionality to the halo mass
is expected. In terms of our scale-free framework, this temperature
measure is:

Tmg(< sdet)
Tvir

=
∫ sdet
0

ρgas(s)
�ρcrit,0

T(s)
Tvir

s2ds∫ sdet
0

ρgas(s)
�ρcrit,0

s2ds
, (28)

as weighted by the scale-free profiles within the dimensionless
detection radius, sdet.
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The Sunyaev–Zeldovich signal

The SZ effect is known to induce a frequency-dependent temper-
ature shift, �TSZE, on the CMB temperature, TCMB, of the form
(Sunyaev & Zeldovich, 1970, 1972):

�TSZE

TCMB
= f (ν) · y, (29)

where f (ν) encodes the frequency dependence and y is the
Compton parameter. The SZ signal for a galaxy cluster is encoded
in this Compton parameter, which measures the cluster’s electron
pressure, pe, integrated inside some volume, V , as:

y≡ σT

mec2γ

∫
V
pedV , (30)

usually integrated along the line of sight. In Equation (30), the
physical constants are: the Thompson cross-section, σT, the speed
of light, cγ b, and the electron mass, me. The electron pressure is
related to the intracluster gas pressure, p, by the ratio of the mean
molecular weight, μ, to the mean molecular weight of electrons,
μe, and with this gas pressure related to the gas’ density and tem-
perature by the ideal gas law, Equation (21), such that the electron
pressure can be expressed as:

pe = μ

μe
p= kBT

μemp
ρgas. (31)

As such, the Compton parameter can be equivalently defined by
the volume integral:

y≡ kBσT

mec2γ μemp

∫
V

ρgasTdV . (32)

In observational surveys, the SZ signal for a galaxy cluster can
bemeasured by calculating the Compton parameter as in Equation
(32) when integrated over some well-defined volume: typically,
this is either a spherical volume, by integrating fits for the clus-
ter’s 3-dimensional gas and temperature profiles, or in a cylindrical
volume, by integrating these fits along the line of sight direc-
tion within some 2-dimensional projected radius, Rap, known as
the aperture radius. In these integral expressions, we will consis-
tently notate 3-dimensional halo radii with a lower-case r, and
2-dimensional projected radii with an upper-case R, inclusive of
all subscripts.

For a spherically integrated, Ysph(< rdet), Compton parame-
ter, measured within the sphere of halocentric radius of rdet, the
associated SZ signal is given by:

Ysph(< rdet)= 4πkBσT

mec2γ μemp

∫ rdet

0
ρgas(r)T(r)r2dr. (33)

Similarly, for a cylindrically integrated, Ycyl(< Rap), Compton
parameter, measured along the line of sight direction within an
aperture radius, Rap, the associated SZ signal will be:

Ycyl(< Rap, rb)= 4πkBσT

mec2γ μemp

∫ Rap

0
RdR

[∫ rb

R

ρgas(r)T(r)rdr√
r2 − R2

]
;

(34)

bThe speed of light is denoted with a subscript, as cγ , to avoid confusion with the halo’s
concentration, denoted c.

or, equivalently, by subtracting from the total spherically inte-
grated parameter at the halocentric cluster boundary, rb, as
(Arnaud et al., 2010):

Ycyl(< Rap, rb)= Ysph(< rb)

− 4πkBσT

mec2γ μemp

∫ rb

Rap

ρgas(r)T(r)r
√
r2 − R2

apdr.
(35)

In Equations (34) and (35), this halocentric cluster boundary, rb,
is taken to occur at the cluster’s accretion shock, beyond which
the electron pressure is expected to fall to the ambient pressure of
the intergalactic medium, thus truncating the cluster’s SZ signal.
This cluster boundary is usually taken as rb � 5r500, as predicted in
hydrodynamic simulations (see, e.g. Arnaud et al., 2010).

When the SZ effect is integrated over some volume, it becomes
an important observational probe, as the integrated Compton
parameter will be proportional to the number of electrons inside
the region, and so proportional to the cluster’s mass. To cap-
ture these SZ observables in a scale-free formalism, we introduce
the virial Compton parameter, Yvir, defined as the spherically
integrated value enclosed by the halocentric radius rvir, as:

Yvir ≡ 4
3
πr3vir

σT

mec2γ
μ

μe
pvir, (36)

where pvir is the virial pressure, defined in Equation (23).
Taking this definition of Yvir, the scale-free spherically integrated
Compton parameter, measured within a dimensionless detection
radius, sdet, is given by the profile:

Ysph(< sdet)
Yvir

= 3
∫ sdet

0

ρgas(s)
fb,cos�ρcrit,0

T(s)
Tvir

s2ds. (37)

To devise an expression for the scale-free cylindrically integrated
Compton parameter, we must define a dimensionless projected
radius scale, denoted by S, as the ratio of the projected radius to
the virial radius, as:

S≡ R
rvir

. (38)

As such, in terms of a dimensionless aperture radius, Sap, the scale-
free cylindrically integrated Compton parameter is given by the
profile:

Ycyl(< Sap, sb)
Yvir

= Ysph(< sb)
Yvir

− 3
∫ sb

Sap

ρgas(s)
fb,cos�ρcrit,0

T(s)
Tvir

s
√
s2 − S2apds,

(39)

as subtracted from the total, scale-free spherically integrated signal
from Equation (37), and where all 3-dimensional, dimensionless
halo radii are denoted by a lower-case s, and all 2-dimensional,
dimensionless projected radii are denoted by an upper-case S,
inclusive of all subscripts.

In this scale-free composition, sb ≡ rb/rvir is now the
overdensity-dependent cluster boundary, requiring its specifica-
tion in units of r200 or r500, when � is fixed. Taking the predicted
value rb = 5r500 when � = 500, we will assume this is equiva-
lently approximated to rb = 2.5r200 when � = 200, approximately
consistent with numerical predictions (e.g. Lau et al., 2015).
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2.4. Predictions for the X-ray and SZ scaling relations

With this scale-free framework for X-ray and SZ observables, we
now seek to construct an analytical correspondence between these
observables and the halo mass, in the form of scaling relations.

Dimensional analysis

For this derivation, we use the method of dimensional analysis.
This technique allows us to link the halo’s mass, Mhalo (measured
in M), to the temperature observables, TX, Tmg (measured in
K), and the SZ observables, Ysph, Ycyl (measured in Mpc2), by
some combination of physical constants that ensure dimension-
ality in each scaling relation, and by the introduction of some
dimensionless prefactor, denotedA.

For the temperature observables, we can reasonably assume
that the correspondence contains the physical constants: G (mea-
sured in Mpc km2 s−2 M−1

 ), ρcrit,0 (measured in M Mpc−3), kB
(measured in M km2 s−2 K−1), and mp (measured in M), such
that, by dimensionality, this relation will take the form:

Mhalo =A ·
√

1
ρcrit,0

[
kB
mpG

]3
· T3/2

X , (40)

where the temperature observable is either TX, as shown, or
Tmg ; this correspondence is interchangeable. For constraints to be
placed on this relationship, the dimensionless prefactor, A, must
be predicted and constrained. For this, we can use the virial the-
orem, to relate the halo’s virial mass to its virial temperature, by
utilising the definitions in Equations (1) and (18), whereby:

Mvir = 9
2

√
1

π�ρcrit,0

[
kB

Gμmp

]3
· T3/2

vir , (41)

with this above relationship encoding the same dimensional form
as Equation (40). By taking the virial mass,Mvir, as an approxima-
tion to the halo’s mass, in either conventionM200 orM500, we can
use the form of this correspondence to recover the desired scaling
relation, such that:

Mvir = 9
2

√
1

π�ρcrit,0

[
kB

Gμmp

]3
·
[
TX

τ1

]3/2
, (42)

in terms of the emission-weighted temperature, TX, by the intro-
duction of a dimensionless parameter, denoted τ1. Equivalently,
this correspondence can be constructed in terms of the mean gas
mass-weighted temperature, Tmg , by the introduction of a similar
dimensionless parameter, τ2, such that:

Mvir = 9
2

√
1

π�ρcrit,0

[
kB

Gμmp

]3
·
[Tmg

τ2

]3/2
. (43)

In these scaling relations above, the dimensionless parameters τ1
and τ2 are each defined as:

τ1 ≡ TX(< rdet)
Tvir

, τ2 ≡ Tmg(< rdet)
Tvir

, (44)

as the scale-free form of the weighted temperatures, TX and Tmg ,
respectively, when measured within some detection radius, rdet.
Each of these parameters can then be analytically predicted, by
Equations (26) and (28).

Using this same technique, we can predict the scaling rela-
tions between the halo mass and the SZ observables. When
considering the correspondence between the virial mass and the

virial Compton parameter, defined in Equation (36), these scal-
ing relations can be recovered by the introduction of similarly
defined dimensionless parameters. For the spherically integrated
Compton parameter, the scaling takes the form:

Mvir =
⎡
⎣ 81
4π�ρcrit,0

(
μemec2γ

μσTfb,cosG

)3
⎤
⎦

1/5

·
[
Ysph

ζ1

]3/5
, (45)

and for the cylindrically integrated Compton parameter, the form:

Mvir =
⎡
⎣ 81
4π�ρcrit,0

(
μemec2γ

μσTfb,cosG

)3
⎤
⎦

1/5

·
[Ycyl

ζ2

]3/5
. (46)

In these relations, the dimensionless parameters ζ1 and ζ2 are each
defined as:

ζ1 ≡ Ysph(< rdet)
Yvir

, ζ2 ≡ Ycyl(< Rap)
Yvir

, (47)

as the scale-free form of the SZ observables, each which can be
analytically predicted in Equations (37) and (39), respectively.

Constraining the scaling relations

Whenmodelling each of these dimensionless parameters, τ1, τ2, ζ1,
and ζ2, continuously over the parameter space of ideal baryonic
cluster halos, as detailed in Table 1, each of these dimensionless
parameters will be bounded within some interval, when mea-
sured within a detection radius, rdet, or in the case of Ycyl, within
an aperture radius, Rap. From these bounds, the scaling relations
in Equations (42), (43), (45), and (46) will each be constrained,
within a corresponding minimum and maximum proportionality.

Evaluating the physical constants in Equation (42) and assum-
ing a mean molecular weight μ = 0.60, the halo’s X-ray tempera-
ture scaling relationMvir − TX reduces to the form:

Mvir

M
= 2.757× 104

τ
3/2
1 �1/2h

[
TX

K

]3/2
, (48)

which will have the same numerical form as theMvir − Tmg scaling
relation, Equation (43), when replacing τ1 with τ2. Here, h is the
Hubble parameter, h≡H0/100km s−1Mpc−1, for H0 the Hubble
constant. In this analysis, we take the value h= 0.6751 (Planck
Collaboration et al., 2016a), neglecting its uncertainty, as this will
be tiny compared to the anticipated bounds in the scaling rela-
tions. In Equation (48), the values for the overdensity, �, must be
chosen to specify the virial mass approximation. Taking the con-
vention � = 200 in Equation (48), the M200 − TX scaling relation
takes the form:

M200

M
= 2.888× 103

τ
3/2
1

[
TX

K

]3/2
, (49)

and similarly, in the convention � = 500, the M500 − TX scaling
relation takes the form:

M500

M
= 1.826× 103

τ
3/2
1

[
TX

K

]3/2
, (50)

each dependent on constraints derived for the parameter τ1. The
analogous scaling relations M200 − Tmg and M500 − Tmg will each
take on the same numeric form, but again will instead depend on
the constraints derived for τ2, rather than τ1.

In complete analogy, the SZ scaling relations are determined
by evaluating the physical constants in Equation (45), assuming a
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Table 2. The constraints placed on τ1 ≡ TX(< rdet)/Tvir and τ2 ≡ Tmg (< rdet)/Tvir over the parameter space of the ideal baryonic cluster halos, each
evaluated at two conventions in the overdensity,� = 200 and� = 500.

Overdensity parameter Detection radius Concentration Dilution Bounds in τ1 ≡ TX(< rdet)/Tvir
� = 200 rdet = 0.5r200 c= 5 d= 2 τ1,min = 0.899 τ1,max = 2.145

� = 500 rdet = r500 c= 2.5 d= 1 τ1,min = 0.956 τ1,max = 1.725

Overdensity parameter Detection radius Concentration Dilution Bounds in τ2 ≡ Tmg (< rdet)/Tvir

� = 200 rdet = 0.5r200 c= 5 d= 2 τ2,min = 1.162 τ2,max = 1.650

� = 500 rdet = r500 c= 2.5 d= 1 τ2,min = 1.210 τ2,max = 1.329

Table 3. The constraints placed on ζ1 ≡ Ysph(< rdet)/Yvir and ζ2 ≡ Ycyl(< Rap)/Yvir over the parameter space of the ideal baryonic cluster
halos, each evaluated at two conventions in the overdensity,� = 200 and� = 500.

Overdensity parameter Detection radius Concentration Dilution Bounds in ζ1 ≡ Ysph(< rdet)/Yvir
� = 200 rdet = 0.5r200 c= 5 d= 2 ζ1,min = 0.336 ζ1,max = 0.983

� = 500 rdet = r500 c= 2.5 d= 1 ζ1,min = 0.726 ζ1,max = 1.319

Overdensity parameter Aperture radius Cluster boundary Concentration Dilution Bounds in ζ2 ≡ Ycyl(< Rap)/Yvir

� = 200 Rap = 0.5r200 rb = 2.5r200 c= 5 d= 2 ζ2,min = 0.492 ζ2,max = 1.161

� = 500 Rap = r500 rb = 5r500 c= 2.5 d= 1 ζ2,min = 0.916 ζ2,max = 1.928

mean molecular weight μ = 0.60, and a mean molecular weight of
electrons μe = 1.148, and taking the integrated Compton parame-
ters in units ofMpc2. As such, theMvir − Ysph scaling relation takes
the form:

Mvir

M
= 6.388× 1017

ζ
3/5
1 �1/5h2/5

[
Ysph

Mpc2

]3/5
, (51)

which will have the same numerical form as the Mvir − Ycyl scal-
ing relation, Equation (46), when replacing ζ1 with ζ2. Evaluating
this scaling relation for chosen values of�, theM200 − Ysph scaling
relation takes the form:

M200

M
= 2.591× 1017

ζ
3/5
1

[
Ysph

Mpc2

]3/5
, (52)

and theM500 − Ysph scaling relation, the form:

M500

M
= 2.157× 1017

ζ
3/5
1

[
Ysph

Mpc2

]3/5
, (53)

as dependent on constraints for ζ1; and analogously, the scaling
relations M200 − Ycyl and M500 − Ycyl will take the same form, but
instead depend on constraints for ζ2.

Regimes to bound the X-ray and SZ scaling relations

When deriving these anticipated bounds in the dimensionless
parameters, τ1, τ2, ζ1, and ζ2, the overdensity-dependent param-
eters – the concentration, c, the dilution, d, and the SZ cluster
boundary, in the scale-free form sb ≡ rb/rvir – must each be speci-
fied at fixed values. The scale-free detection radius, sdet ≡ rdet/rvir,
and aperture radius, Sap ≡ Rap/rvir, in real surveys depend on
observational contingencies: as they are intrinsically dependent
on the available data within a given cluster. Generally, fits for
the radial gas profiles are limited to within r500, and so rdet = r500
and Rap = r500 are the most common choice in the literature. As
such, we will adopt these values when� = 500, and when� = 200

we will adopt the values rdet = 0.5r200 and Rap = 0.5r200 in rough
likeness.

Given these choices in fixed parameters, the four scaling rela-
tions will be evaluated in two distinct regimes, at each overdensity,
as summarised below:

1. TheM200 − TX,M200 − Tmg ,M200 − Ysph scaling relations:
with parameters: rdet = 0.5r200, c= 5, d = 2.

2. TheM200 − Ycyl scaling relation:
with parameters: Rap = 0.5r200, rb = 2.5r200, c= 5, d = 2.

3. TheM500 − TX,M500 − Tmg ,M500 − Ysph scaling relations:
with parameters: rdet = r500, c= 2.5, d = 1.

4. TheM500 − Ycyl scaling relation:
with parameters: Rap = r500, rb = 5r500, c= 2.5, d = 1.

For further clarity, these regimes and their associated parame-
ters are detailed in Tables 2 and 3 in the following section, which
show the bounds devised for the dimensionless parameters cor-
responding to each of these scaling relations, in each of these
regimes.

3. Analysis

3.1. Analytical profiles for the ideal baryonic cluster halos

To derive and constrain the dimensionless parameters τ1, τ2, ζ1,
and ζ2, in terms of the outlined parameter space within each of the
desired regimes, we will model the darkmatter and intracluster gas
density profiles with the ideal baryonic cluster halo model, as per
Equations (13) and (14), respectively. With this structural model,
we can analytically predict and numerically trace the associated
scale-free X-ray and SZ emission profiles, and hence the associated
dimensionless parameters, by substituting these idealised density
forms into the equations for each emission observable, as detailed
in Section 2.3.
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Figure 2. The temperature profiles for the ideal baryonic cluster halos, in scale-free form T/Tvir, traced over the scaled halocentric radius, r/rvir. Each row varies the halo concen-
tration, c, and the dilution, d, and each column varies the gas inner slope, ε. Within each box, each colour varies the halo inner slope, α, with the solid coloured lines tracing a
fraction of cosmological baryon content of η = 0.8, and the shaded colour region around each solid line (not visible for all curves) tracing this value continuously between η = 0.6
and η = 1.

The temperature profile of the ideal baryonic cluster halos

Each of the cluster emission observables depend on the equilib-
rium temperature profile of the intracluster gas, which is derived
from the general solution to the hydrostatic equilibrium state,
Equation (19). For the ideal baryonic cluster halos, substituting the
corresponding density profiles into this solution, the associated
scale-free temperature profile takes the analytic form:

T(s, c, α, η, d, ε)
Tvir

= 3sε
[
1+ C(c, α, d, ε)s]3−ε · I(s, c, α, η, d, ε),

(54)
where, for notation simplicity, we define I(s, c, α, η, d, ε) as the
integral function:

I(s, c, α, η, d, ε)≡
∫ ∞

s

ds′
{
(1− ηfb,cos)u(c, α) ·

∫ s′
0

s′ ′2−αds′ ′
(1+cs′ ′)3−α

s′2+ε
[
1+ C(c, α, d, ε)s′]3−ε

+ ηfb,cosU(c, α, d, ε) ·
∫ s′

0

s′′2−εds′′[
1+ C(c, α, d, ε)s′′]3−ε

}
.

(55)
These scale-free temperature profiles, T/Tvir, are traced in
Figure 2, as a function of the dimensionless halocentric radius,
s≡ r/rvir. These panels encompass the variation of the halo’s tem-
perature within the desired parameter space, for α ∈ [0, 1.5], η ∈
[0.6, 1], and ε ∈ [0, 1], and at fixed concentration, c, and dilution,
d, values corresponding to the two desired overdensity choices.
Except for some curves in the left panels of Figure 2, those with
gas cores, ε = 0, inside cuspy, α = 1, α = 1.5, dark matter halos,

all other temperature profiles in Figure 2 exhibit a characteristic
temperature peak within 0.03rvir − 0.1rvir. This general shape is
consistent with cluster temperature fits devised in X-ray observa-
tions (e.g. Vikhlinin et al., 2006; Sun et al., 2009; Ghirardini et al.,
2019b; Lyskova et al., 2023).

The pressure profile of the ideal baryonic cluster halos

Similarly, by taking the density profiles of the ideal baryonic
cluster halos into Equation (22), the scale-free, equilibrium gas
pressure profiles of these halos take the form:

p(s, c, α, η, d, ε)
pvir

= ηU(c, α, d, ε) · I(s, c, α, η, d, ε). (56)

To illustrate the predictive power of these simple analytic pro-
files, in Figure 3 we trace the total variation of these scale-free
temperature and gas pressure profiles, from Equation (54) and
(56), respectively, over the physical parameter space correspond-
ing to � = 500. For observational comparison, in the top panel
of Figure 3 we compare our temperature profiles to the best-fit
profile of observed X-COP galaxy clusters derived in Ghirardini
et al. (2019b):- split into cool core clusters, the blue-dotted line,
and non-cool core clusters, the orange dash-dotted line, and with
their profiles re-scaled to meet our definition of T500. Similarly, in
the bottom panel of Figure 3, we compare our gas pressure pro-
files to the universal profile from Arnaud et al. (2010), shown by
the purple dotted line, again re-scaled to meet out definition of
p500.

In the panels in Figure 3, the predicted variation within our
model does a reasonable job at encompassing the observed fits,
particularly within halocentric radii of r� 0.5r500. Towards larger
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Figure 3. The equilibrium temperature and pressure profiles, in scale-free form T/T500
and p/p500, shown in the top and bottom panels, respectively, each traced over the
cluster’s scaled halocentric radius, r/r500, as indicated by the light blue shaded regions,
as predicted for the ideal baryonic cluster halos. These shaded regions evaluate the
five parameters of our model, from Table 1, at values chosen to correspond to the
overdensity� = 500. These predictions are compared to recent observational fits for
the temperature profile of galaxy clusters, from Ghirardini et al. (2019b), for samples
of cool core clusters (the blue-dotted line, in the top panel) and non-cool core clusters
(the orange dash-dotted line, in the top panel), as well as to the universal gas pressure
profile from Arnaud et al. (2010) (the purple dotted line, in the bottom panel).

halocentric radii, as seen in the top panel of Figure 3, the temper-
ature predictions in our model begin to deviate from the observed
fits; in particular, our model systematically over-predicts the gas’
temperature. To a lesser extent this trend is visible in the pressure
comparison in the bottom panel of Figure 3, where ourmodel loses
centring of the universal pressure profile. This over-prediction of
the gas’ temperature and pressure towards large halocentric radii
is theoretically expected, due to non-thermal pressure contribu-
tors, such as turbulence and shocks, increasing towards the outer
radii of real clusters, as studied in non-radiative hydrodynamic
simulations (e.g. Nelson et al., 2014; Angelinelli et al., 2020) and
inferred observationally from measuring the hydrostatic bias of
cluster masses (e.g. Eckert et al., 2019; Sayers et al., 2021). As these
non-thermal pressure contributions were neglected in our model,
our solutions for the gas’ temperature and pressure will continue
to satisfy the balance of hydrostatic equilibrium without their con-
sideration, and so will expectedly overestimate the trends in real

systems wherever non-thermal pressure becomes significant, as at
these large halocentric radii. In future work, we will endeavour
to improve our model by considering the non-thermal pressure
profile of galaxy clusters.

Convectional instabilities in the parameter space

The minority of temperature profiles in Figure 2 that do not
exhibit a temperature peak, as in the left panels, corresponding
to ε = 0, gas cores, instead show a flattening or increase of the
temperature with decreasing halocentric radii. In particular, for
cuspy, α = 1.5 halos, shown in magenta, the temperature in the
central region becomes divergent. To discuss the physical nature
of these halos, we can quantify the effective polytropic index, �,
for each halo over the parameter space, with this index defined by
the logarithmic derivative:

� ≡ 1+ d ln T
d ln ρgas

. (57)

Physically, the index � must not exceed the gas’ adiabatic gas con-
stant, γ = 5/3 for a monatomic gas, or the system will be unstable
against convection. This allows us to categorise whether a partic-
ular structural configuration of a cluster halo represents a stable
configuration in its gas and dark matter components, or whether
the halo will be unable tomaintain such a configuration over time.

When calculating the index � over the parameter space of ideal
baryonic cluster halos, we find that � > 5/3 for all clusters with a
halo inner slope α = 1.5 and a gas core shallower than ε � 0.05;
thus, the divergent temperature curves in Figure 2 are unstable
halo configurations, as expected. Whenmeasuring � down to very
small halocentric radii, we find that � > 5/3 for all ε = 0 gas cores
inside halos cuspier than α � 1.04. This implies that modelling a
gas core inside a cuspier-than-NFW halo is an unstable parameter
choice, particularly in the inner region of a cluster. Interestingly,
this instability is corrected whenever the gas’ inner slope becomes
just slightly positive, that is, ε = 0+, for most of these halos, up to
a maximum requirement of ε � 0.05 for α = 1.5 halos, as already
discussed. As this unstable parameter region essentially comprises
a boundary of the parameter space chosen in Table 1, it is not
mathematically necessary to remove this region for our analysis.
As such, we will maintain the parameter choices in Table 1, but
we note that this unstable region of halo configurations should be
kept in mind for application of our model to real clusters.

Aside from this unstable region, the effective polytropic index
of all other halos in our model is a monotonically increasing func-
tion of halocentric radii in the region 0.01rvir ≤ r ≤ rvir, with all
halos converging towards a value of � � 1.1− 1.2 near the virial
radius, in both overdensity conventions. This general trend is
broadly consistent with observational constraints on the effective
polytropic index of the intracluster gas in X-ray emitting clusters
(see, e.g. Ghirardini et al., 2019a).

The emission-weighted temperature of the ideal baryonic cluster
halos

Taking the scale-free temperature profile for the ideal baryonic
cluster halos, as in Equation (54), we can model the mean-
weighted temperature observables for these halos over the desired
parameter space. From Equation (26), we predict the emission-
weighted temperature profiles for these halos, in our scale-free
framework, as:
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Figure 4. The emission-weighted temperature profiles for the ideal baryonic cluster halos, in scale-free form τ1 ≡ TX(< rdet)/Tvir, traced over the scaled detection radius, rdet/rvir.
Each row varies the halo concentration, c, and the dilution, d, and each column varies the gas inner slope, ε. Within each box, each colour varies the halo inner slope, α, with the
solid coloured lines tracing a fraction of cosmological baryon content of η = 0.8, and the shaded colour region around each solid line (not visible for all curves) tracing this value
continuously between η = 0.6 and η = 1.

TX(< sdet, c, α, η, d, ε)
Tvir

= 3 ·

∫ sdet
0

[
I(s,c,α,η,d,ε)

]3/2
s2ds{

sε[1+C(c,α,d,ε)s]3−ε
}1/2

∫ sdet
0

[
I(s,c,α,η,d,ε)

]1/2
s2ds{

sε[1+C(c,α,d,ε)s]3−ε
}3/2

. (58)

These scale-free temperature profiles, TX(< rdet)/Tvir, are shown
in Figure 4, as a function of the dimensionless detection radius,
sdet ≡ rdet/rvir.

The mean gas mass-weighted temperature of the ideal baryonic
cluster halos

From Equation (27), we predict the mean gas mass-weighted
temperature profiles for the ideal baryonic cluster halos, in our
scale-free framework, as:

Tmg(< sdet, c, α, η, d, ε)
Tvir

= 3 ·
∫ sdet
0 I(s, c, α, η, d, ε) s2ds∫ sdet

0
s2−εds

[1+C(c,α,d,ε)s]3−ε

. (59)

These scale-free temperature profiles, Tmg(< rdet)/Tvir, are shown
in Figure 5, as a function of the dimensionless detection radius,
sdet ≡ rdet/rvir.

The spherically integrated Compton parameter of the ideal bary-
onic cluster halos

By integrating the product of the scale-free gas density and
temperature profiles for the ideal baryonic cluster halos, as in
Equations (14) and (54), the integrated Compton parameters

for these halos can be devised. From Equation (37), the spheri-
cally integrated Compton parameter profiles for these halos are
given by:

Ysph(< sdet, c, α, η, d, ε)
Yvir

= 3η U(c, α, d, ε)

×
∫ sdet

0
I(s, c, α, η, d, ε)s2ds.

(60)

These scale-free SZ profiles, Ysph(< rdet)/Yvir, are shown in
Figure 6, as a function of the dimensionless detection radius, sdet ≡
rdet/rvir.

The cylindrically integratedComptonparameter of the ideal bary-
onic cluster halos

Finally, taking the profiles for the ideal baryonic cluster halos into
Equation (39), the cylindrically integrated Compton parameter
profiles are given by:

Ycyl(< Sap, sb, c, α, η, d, ε)
Yvir

= 3η U(c, α, d, ε) ×
[∫ sb

0
I(s, c, α, η, d, ε)s2ds−

∫ sb

Sap
I(s, c, α, η, d, ε)

√
s2 − S2apsds

]
.

(61)
These scale-free SZ profiles, Ycyl(< Rap)/Yvir, are shown in
Figure 7, as a function of the dimensionless aperture radius, Sap ≡
Rap/rvir.
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Figure 5. The mean gas mass-weighted temperature profiles for the ideal baryonic cluster halos, in scale-free form τ2 ≡ Tmg (< rdet)/Tvir, traced over the scaled detection radius,
rdet/rvir. Each row varies the halo concentration, c, and the dilution, d, and each column varies the gas inner slope, ε. Within each box, each colour varies the halo inner slope, α,
with the solid coloured lines tracing a fraction of cosmological baryon content of η = 0.8, and the shaded colour region around each solid line (not visible for all curves) tracing
this value continuously between η = 0.6 and η = 1.

Figure 6. The spherically integrated Compton parameter for the ideal baryonic cluster halos, in scale-free form ζ1 ≡ Ysph(< rdet)/Yvir, traced over the scaled detection radius,
rdet/rvir. Each row varies the halo concentration, c, and the dilution, d, and each column varies the gas inner slope, ε. Within each box, each colour varies the halo inner slope,
α, with the solid coloured lines tracing a fraction of cosmological baryon content of η = 0.8, and the shaded colour region around each solid line tracing this value continuously
between η = 0.6 and η = 1.
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Figure 7. The cylindrically integratedComptonparameter for the ideal baryonic cluster halos, in scale-free form ζ2 ≡ Ycyl(< Rap)/Yvir, traced over the scaled aperture radius,Rap/rvir.
Each row varies the cluster boundary, in scale-free form rb/rvir, the halo concentration, c, and the dilution, d, and each column varies the gas inner slope, ε. Within each box, each
colour varies the halo inner slope, α, with the solid coloured lines tracing a fraction of cosmological baryon content of η = 0.8, and the shaded colour region around each solid
line tracing this value continuously between η = 0.6 and η = 1.

3.2. Constraints on τ1, τ2, ζ1 and ζ2

With these scale-free predictions for the X-ray and SZ observables,
the dimensionless parameters τ1 ≡ TX(< rdet)/Tvir, τ2 ≡ Tmg(<
rdet)/Tvir, ζ1 ≡ Ysph(< rdet)/Yvir and ζ2 ≡ Ycyl(< Rap)/Yvir are con-
strained inside minimum and maximum values, when evaluating
these profiles in each of the desired regimes.

Constraints on τ1 and τ2 within each regime

The two regimes in which the dimensionless weighted tempera-
ture parameters, τ1 and τ2, are to be bounded can be traced within
Figures 4 and 5, respectively. Each row of panels in each of these
figures fixes the halo concentration, c, and dilution, d, to the set of
values required in each regime, such that when these profiles are
evaluated at a chosen detection radius, in scale-free form rdet/rvir,
the bounds in τ1 and τ2 will be determined. Figure 8 evaluates
these scale-free weighted temperatures from Figures 4 and 5 as a
continuous function of the halo inner slope, α, at detection radii
corresponding to the two regimes – rdet/rvir = 0.5 for � = 200 and
rdet/rvir = 1 for � = 500 – producing four distinct windows, two
for each observable. In the panels of Figure 8, within each box,
the scale-free weighted temperatures are always bounded between
the minimum, ε = 1, in purple, and the maximum, ε = 0, in teal,
fixed gas slope curves. As such, the values τ1,min and τ1,max, or τ2,min
and τ2,max, are simply the minimum and maximum values of the
parameter space traced between these curves, in each box, corre-
sponding to each of the two regimes, for each parameter. These
results produce the constraints in τ1 and τ2 as summarised in
Table 2.

Constraints on ζ1 and ζ2 within each regime

Similarly, the two regimes in which the dimensionless SZ param-
eters ζ1 and ζ2 are to be bounded can be traced within Figures 6
and 7, respectively. As before, each row of panels fixes the halo
concentration, c, and dilution, d, to the set of values required
in each of the required regimes. At the desired detection and
aperture radii – rdet/rvir = 0.5 and Rap/rvir = 0.5 when � = 200
and rdet/rvir = 1 and Rap/rvir = 1 when � = 500 – the integrated
Compton parameter profiles in Figures 6 and 7 are consider-
ably degenerate for the parameters shown across these panels.
By taking the minimum and maximum values of ζ1 ≡ Ysph(<
rdet)/Yvir and Ycyl(< Rap)/Yvir at each desired detection and aper-
ture radius, respectively, the bounds summarised in Table 3 are
calculated.

4. Results

4.1. TheMvir − TX andMvir − Tmg scaling relations

From our analysis, we are now able to present the predicted scaling
relations of the halo mass with its weighted temperatures observ-
ables. In particular, from the minimum and maximum values of
τ1 and τ2 detailed in Table 2, the scaling relations of the halo
mass with the weighted temperatures, TX and Tmg , as devised in
Section 2.4 – Equations (49) and (50) – will be constrained. These
predictions are illustrated in Figure 9, with the left panels show-
ing the M200 − TX and M500 − TX scaling relations, and the right
panels showing the M200 − Tmg and M500 − Tmg scaling relations.
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Figure 8. The emission-weighted and mean gas mass-weighted temperature profiles, in scale-free form τ1 ≡ TX(< rdet)/Tvir and τ2 ≡ Tmg (< rdet)/Tvir, shown in the top and bottom
panels, respectively, for the ideal baryonic cluster halos, evaluated at fixed detection radii, and traced over halo inner slopes, α. Each column fixes the values of the detection
radius, in scale-free form rdet/rvir, the halo concentration, c, and the dilution, d, with these choices corresponding to a particular choice in the overdensity: the left panels for
� = 500, and the right panels for � = 200. Within each box, each colour varies the gas inner slope, ε, with the solid coloured lines tracing a fraction of cosmological baryon
content of η = 0.8, and the shaded colour region around each solid line (not visible for all curves) tracing this value continuously between η = 0.6 and η = 1.

Each of these scaling relations and their predicted uncertainties
are presented analytically below.

TheM200 − TX andM500 − TX scaling relations

In terms of the mid-range value and the associated uncertainty,
theM200 − TX scaling relation is predicted as:

M200 = (6.81± 3.90) ·
[

TX

107 K

]3/2
· 1013 M, (62)

and similarly, theM500 − TX scaling relation, as:

M500 = (4.36± 1.81) ·
[

TX

107 K

]3/2
· 1013 M, (63)

with each of these relations attaining an uncertainty of 57.3% and
41.6%, respectively.

TheM200 − Tmg andM500 − Tmg scaling relations

Similarly, the M200 − Tmg and M500 − Tmg scaling relations are
predicted as:

M200 = (5.80± 1.49) ·
[ Tmg

107 K

]3/2
· 1013 M, (64)

and, as:

M500 = (4.05± 0.28) ·
[ Tmg

107 K

]3/2
· 1013 M, (65)

with each attaining an uncertainty of 25.7% and 7.0%, respectively.

Comparison of our predictions to observed X-ray relations

Where possible, in Figure 9, our predicted scaling relations are
compared to relations devised in the literature of X-ray cluster
observations: from Arnaud et al. (2005), Vikhlinin et al. (2006)
and Vikhlinin et al. (2009). Of note, some of these studies use the

cluster’s spectroscopic temperature, Tsp, to fit the scaling relation.
This temperature measure is usually assumed to be comparable
to the emission-weighted temperature, TX, hence the comparison
in the left panels of Figure 9; however, Tsp is known to underesti-
mate TX (see, e.g. Rasia et al., 2005), and so this comparison is not
one-to-one.

Despite the differences between our model’s predictions and
the observational comparisons in Figure 9, it remains clear that
our predictions generally contain the expected trends, whilst
systematically overestimating the cluster’s halo mass. Only our
M500 − Tmg prediction, in the lower right panel, excludes the
observed fit, from Vikhlinin et al. (2006), which lies ∼ 6% below
our lower bound. This small deviation is reasonable, and likely
attributed to systematics involved when comparing the normali-
sation of our model and the observational measurement of r500 for
calculating Tmg .

Moreover, whilst the observed scaling relations are all expected
to underestimate the halo mass, due to the hydrostatic bias, our
modelling is also expected to underestimate the halo mass, by the
same bias, as in our model we do not consider non-thermal pres-
sure, which will decrease the temperature required to attain a given
halo mass. As such, the hydrostatic bias itself cannot explain our
systematic overestimates in the scaling relations; instead, this is
attributed to the chosen parameter space and the generous range
chosen in halo structures, driving a larger scatter, which is mit-
igated in the real universe as real clusters do not not uniformly
sample this parameter space.

Excising the central core in theM200 − TX andM500 − TX scaling
relations

In the observational comparisons shown in Figure 9, the cluster
region in which the weighted temperature is measured differs for
each study, all excising some central region, e.g. 0.1r500, 70 kpc,
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Figure 9. Our predictions for the halo mass - temperature scaling relations, in terms of the emission-weighted temperature, M200 − TX and M500 − TX, in the left panels, and the
mean gasmass-weighted temperature,M200 − Tmg andM500 − Tmg , in the right panels. The light blue intervals trace the uncertainties in each of these scaling relations, as quantified
by constraints in the dimensionless parameters, τ1 and τ2, given in Table 2, derived over specified halo parameters. In the left panels, the additional pink interval traces the scaling
relations formed by excising the cluster’s central core, given by the constraints in Table 4. For each of these coloured intervals, the solid dotted lines enclosing each interval
correspond to the minimum and maximum bounds in the scaling relation, with the solid central line tracing its mid-range value. These predictions are shown in comparison to
observational fits to these scaling relations, from Arnaud et al. (2005) (the blue-dotted lines), Vikhlinin et al. (2006) (the orange dash-dotted line) and Vikhlinin et al. (2009) (the
purple dotted line).

or some other excised halocentric radius, rex. In our model, excis-
ing a central core has a significant impact on the TX estimate, and
thus the constraints on τ1, due to its dependence on integrating
the temperature T3/2, as in Equation (24), which in the central
region, for non-cool core clusters with high central temperatures,
will have a non-negligible contribution to the value of TX attained
within the detection radius. For this reason, in Figure 9, we show
an additional prediction for both the M200 − TX and M500 − TX
scaling relations, shown in pink, that each excise a central region
of 0.1r200 and 0.15r500, respectively. These scaling relations are
constrained by new values of τ1,min and τ1,max, given in Table 4,
as derived in analogue to our previous analysis, and traced by
the scale-free profiles τ1 ≡ TX[rex − rdet]/Tvir that are shown in
Figure 10. These core-excised scaling relations take the form:

M200 = (5.67± 1.78) ·
[

TX

107 K

]3/2
· 1013 M, (66)

and:

M500 = (3.84± 0.66) ·
[

TX

107 K

]3/2
· 1013 M, (67)

each attaining a significantly lower uncertainty than the previous
estimates, by approximately half, at 31.3% and 17.1%, respectively.
Thus, expectedly, by excluding the variance of temperature curves
in the central region, these scaling relations provide a stronger
halo mass constraint. Moreover, these core-excised predictions
lower the mid-range value of each scaling relation, and so become
closer to the observational fits, as expected in this more aligned
comparison.

4.2. TheMvir − Ysph andMvir − Ycyl scaling relations

Furthermore, we now present the predicted scaling relations of
the halo mass with the integrated SZ observables of galaxy clus-
ters. In analogue, from the minimum and maximum values of ζ1
and ζ2 detailed in Table 3, the scaling relations of the halo mass
with the integrated Compton parameters, Ysph and Ycyl, as devised
in Section 2.4 – Equations (52) and (53) – will be constrained. In
Figure 11, these predictions are shown, with the scaling relations
M200 − Ysph andM500 − Ysph shown in the left panels, and the scal-
ing relationsM200 − Ycyl andM500 − Ycyl shown in the right panels.
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Table 4. The constraints placed on τ1 ≡ TX[rex − rdet]/Tvir over the parameter space of the ideal baryonic cluster halos, evaluated at two conventions in
the overdensity,� = 200 and� = 500, when excising a central core of halocentric radius rex.

Overdensity parameter Detection radius Excised core Concentration Dilution Bounds in τ1 ≡ TX[rex − rdet]/Tvir
� = 200 rdet = 0.5r200 rex = 0.1r200 c= 5 d= 2 τ1,min = 1.146 τ1,max = 1.766

� = 500 rdet = r500 rex = 0.15r500 c= 2.5 d= 1 τ1,min = 1.181 τ1,max = 1.487

Figure 10. The core-excised emission-weighted temperature profiles, in scale-free form τ1 ≡ TX[rex − rdet]/Tvir, for the ideal baryonic cluster halos, evaluated at fixed detection
radii, and traced over halo inner slopes,α. Each panel fixes the core-excised region, in scale-free form rex/rvir, the detection radius, in scale-free form rdet/rvir, the halo concentration,
c, and the dilution, d, with these choices corresponding to a particular choice in the overdensity: the left panel for� = 500, and the right panel for� = 200. Within each box, each
colour varies the gas inner slope, ε, with the solid coloured lines tracing a fraction of cosmological baryon content of η = 0.8, with the variation between η = 0.6 and η = 1 so weak
that no shaded colour region around these solid lines is visible.

Again, these scaling relations and their predicted uncertainties are
given analytically, as detailed below.

TheM200 − Ysph andM500 − Ysph scaling relations

As before, taking the mid-range value and the associated uncer-
tainty, theM200 − Ysph scaling relation is predicted as:

M200 = (9.54± 2.97) ·
[

Ysph

10−6 Mpc2

]3/5
· 1013 M, (68)

and similarly, theM500 − Ysph, as:

M500 = (5.58± 0.99) ·
[

Ysph

10−6 Mpc2

]3/5
· 1013 M, (69)

with each attaining an uncertainty of 31.1% and 17.7%, respec-
tively.

TheM200 − Ycyl andM500 − Ycyl scaling relations

Finally, in the sameway, the predicted scaling relationsM200 − Ycyl
andM500 − Ycyl are given by:

M200 = (7.96± 2.01) ·
[ Ycyl

10−6 Mpc2

]3/5
· 1013 M, (70)

and:

M500 = (4.68± 1.03) ·
[ Ycyl

10−6 Mpc2

]3/5
· 1013 M, (71)

with each of these scaling relations attaining an uncertainty of
25.2% and 22.0%, respectively.

Comparison of our predictions to observed SZ relations

As shown in Figure 11, our predicted scaling relations are com-
pared to the SZ scaling relations devised in Arnaud et al. (2010),

for the scaling relation with the halo mass M500. Unlike in the
previous comparison, in this comparison the observed fits can
be compared like-for-like with our predictions, as the integrated
Compton parameters fit to each scaling are identical in definition
to the observables chosen in our model. Here, our predicted inter-
vals perfectly contain the observed fits, illustrating the strong pre-
dictive power of our simplemodel, and the self-similar expectation
for this scaling relation.

4.3. Parameter dependence of the scaling relations

For each of these scaling relations, we now comment on their
dependence and sensitivity to the parameters assumed in our
model. In particular, we discuss the sensitivity of these results to
the range in values chosen for each of the continuous parameters
detailed in Table 1: the dark matter halo inner slope, α, the
fraction of cosmological baryon content, η, and the intracluster
gas inner slope, ε, as well as the dependence on the measurement
parameters detailed in our analysis: the detection radius, rdet,
and the aperture radius, Rap, each as was fixed for observational
comparison. These parameter dependencies are discussed in each
of the headings below, with reference to each of the four predicted
scaling relations.

In terms of the fixed parameters in Table 1: the concentration,
c, and the dilution, d, we offer a brief discussion here as to their
impact on our results. The dependence of our predictions on these
parameters is best discussed with reference to Figure 2, tracing the
scale-free temperature profiles of our model, with each panel cor-
responding to the two overdensity conventions:� = 500 in the top
panels, with c= 2.5 and d = 1, and � = 200 in the bottom panels,
with c= 5 and d = 2. In this figure, the change in profiles between
the top panel and the bottom panel is clearly a translation shift of
each temperature profile towards smaller halocentric radii, and an
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Figure 11. Our predictions for the halo mass – Sunyaev–Zeldovich scaling relations, in terms of the spherically integrated Compton parameter, M200 − Ysph and M500 − Ysph, in the
left panels, and the cylindrically integrated Compton parameter, M200 − Ycyl and M500 − Ycyl, in the right panels. The light blue intervals trace the uncertainties in each of these
scaling relations, as quantified by constraints in the dimensionless parameters, ζ1 and ζ2, given in Table 3, derived over specified halo parameters. The solid dotted lines enclosing
each interval correspond to the minimum and maximum bounds in the scaling relation, with the solid central line tracing its mid-range value. These predictions are shown in
comparison to the scaling relations predicted by Arnaud et al. (2010) (the blue-dotted lines).

amplitude increase for all profiles, except those that exhibit a peak
in temperature beyond the meeting point of the profiles, in which
case the amplitude is decreased. This quantifiable change in the
temperature profiles is mathematically driven by the concentra-
tion, which is thus important for the normalisation of each scaling
relation with its measurement parameter, as this choice in c sets
the radial translation, and will thus impact the calibration of rdet
and Rap to the virial radii r200 and r500 in the emission observables.
This general effect can be followed through by comparing the top
and bottom panels of Figures 4, 5, 6, and 7, tracing the profiles of
each of these observables.

To mitigate this potential for introducing a quantitative mea-
surement offset, more accurate modelling could calibrate to spe-
cific choices in c on a cluster-by-cluster basis, as informed by the
mass-concentration relation (e.g. Bullock et al., 2001; Duffy et al.,
2008; Ludlow et al., 2012, 2014; Correa et al., 2015); however, in
these relations c is not a strong function of halo mass in the cluster
mass regime, and so any variation in its values is not expected to
propagate drastically from our predictions. This avenue was not
pursued in our study, as fixing these parameters c and d allowed
us to explore the predictions of our model when instead varying

the composition and configuration of clusters, whilst maintaining
a self-similar approach.

Dependence of theMvir − TX scaling relation

Wefirst comment on the dependence of theMvir − TX scaling rela-
tion before considering the excision of a central core, and so we
refer to the top row of Figure 8, which illustrates the dependence
of the parameter τ1 ≡ TX(< rdet)/Tvir on the continuous structural
parameters from Table 1. In these panels, the rate of change of τ1
with respect to the halo inner slope α (the gradient of the curves
in these panels) is greatest at the largest, cuspiest value of α = 1.5
in the permitted range: setting the value of τ1,max in both regimes.
This imposes a strong dependence of the Mvir − TX scaling rela-
tion on the maximum value of α chosen in the parameter space.
Furthermore, the value τ1,min is set by the cuspiest gas inner slope
of ε = 1 within α � 0 halo cores. As α < 0 halos are unphysical,
this minimum value of τ1 is most sensitive to the maximum value
of ε chosen in the parameter space, implicating the dependence of
the Mvir − TX scaling relation on the cuspiest permitted gas pro-
file. For each of these τ1 curves in Figure 8, varying the gas content
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between η = 0.6 and η = 1 has a negligible impact on the value of
τ1, with this change only barely noticeable for the cuspiest, α � 1.5,
gas cores, of ε = 0; thus, there is essentially no dependence of this
scaling relation on the gas content of the cluster.

In terms of the detection radius, rdet, it is clear from the pro-
files shown in Figure 4 that there is almost no dependence of the
value of τ1 on this choice for values rdet � rvir, except marginal
dependence in the case of α � 0 halo cores. This independence
of the temperature TX on the detection radius at large halocentric
radii towards rdet � r200 is mathematically expected for NFW-like
halo profiles (see, e.g. Komatsu & Seljak, 2001), which is well
reproduced in the panels of Figure 4.

When considering the Mvir − TX scaling relation when TX is
measured with an excised core, these aforementioned parame-
ter dependencies are much more strongly constrained. As seen in
Figure 10, tracing τ1 ≡ TX[rex − rdet]/Tvir over the same parameter
space, it is clear that τ1 becomes almost insensitive to the gas inner
slope, ε, particularly beyond halo cores α � 0. The dependence on
the maximal value of α remains, as the gradient is still steepest at
this boundary; however, this gradient attains a much lower value
than previously, and so this dependence is significantly reduced.
Moreover, the dependence on the gas content, as in the value of η,
is completely invisible in these curves. This reinforces the impor-
tance of core-excision in calibrating theMvir − TX scaling relation,
as sensitivities to both the dark matter and the gas distribution are
very strongly reduced.

Dependence of theMvir − Tmg scaling relation

In the bottom row of Figure 8, the dependence of the parame-
ter τ2 ≡ Tmg(< rdet)/Tvir, and thus theMvir − Tmg scaling relation,
on the halo’s structural parameters can be assessed. Unlike for τ1,
there is no consistent trend in which the gradient of these curves
is maximised for a particular halo inner slope, α, despite its value
clearly being sensitive to this parameter. Moreover, in these panels
it is clear that varying the gas inner slope between ε = 0 and ε = 1
has minimal impact on the value of τ2, whilst the effect of varying
the gas content between η = 0.6 and η = 1 is completely invisible.
As such, theMvir − Tmg scaling relation is almost completely inde-
pendent of the gas structure and composition over this parameter
space.

Of most sensitivity to this scaling relation is the choice in mea-
surement parameter, the detection radius, rdet. This is illustrated
by Figure 5, where the τ2 profiles do not flatten off for detec-
tion radii at large halocentric radii, unlike the behaviour of the τ1
profiles of Figure 4. This imposes a strong sensitivity when cali-
brating the Mvir − Tmg scaling relation at a fixed detection radius
(i.e. when rdet = r500), as, if observational measurements are not
precisely measuring this detection radius in a given cluster, the
assumed correspondence will be compromised.

Dependence of theMvir − Ysph scaling relation

To discuss the Mvir − Ysph scaling relation, we refer to Figure 6,
tracing the SZ parameter ζ1 ≡ Ysph(< rdet)/Yvir over the outlined
parameter space. In this figure, varying the gas inner slope between
the values ε = 0, ε = 0.5, and ε = 1 across each row entails no
clear variation in the profiles traced within each box. In contrast,
varying the gas content between η = 0.6 and η = 1 for each of the
coloured curves, each individually tracing a fixed halo inner slope,
α, creates a large interval (shown by the shaded colour regions)
that increases in size towards higher detection radii. These inter-
vals are significantly overlapping, such that the values predicted

by varying each of η and α are strongly degenerate. At detection
radii rdet � rvir, the intervals spanned by varying η dominate the
contribution to the bounding region of ζ1. These trends impose a
strong dependence of the Mvir − Ysph scaling relation on the gas
content of clusters, but not on the gas profile itself. As such, if
values of η for galaxy clusters could be more narrowly bounded
than η ∈ [0.6, 1], this scaling relation would be significantly more
constrained.

In terms of the measurement parameter in this scaling rela-
tion, rdet, in each panel of Figure 6 the values of ζ1 are a strongly
increasing function of increasing rdet. As such, these predictions
are strongly sensitive to the chosen value of rdet, implying these
relations will be compromised outside of this chosen correspon-
dence.

Dependence of theMvir − Ycyl scaling relation

Finally, Figure 7 allows us to discuss the Mvir − Ycyl scaling rela-
tion, by tracing the SZ parameter ζ2 ≡ Ycyl(< Rap)/Yvir over the
outlined parameter space. The same general trends observed for
the parameter dependence of ζ1 are replicated in these panels –
as expected, as both of these observables reflect the same physical
dependencies of the Compton parameter, only integrated over dif-
ferent volumes. As such, theMvir − Ycyl scaling relation is strongly
dependent on the gas content of clusters, but not the gas profile
itself. The values of ζ2 in Figure 7, traced over a 2-dimensional
aperture radius, Rap, are strongly increasing with increasing Rap;
therefore, there is again a strong coupling of this scaling relation to
this measurement parameter, with these predictions compromised
outside the chosen values of Rap.

4.4. Limitations of the model

The results presented in this section, for the scaling relations
of galaxy clusters with X-ray and SZ observables, are all depen-
dent upon the assumption of self-similarity. This is built into the
derivation of these scaling relations and incorporated into each of
the profiles modelled for the ideal baryonic cluster halos, which
are all composed in scale-free, and hence self-similar, form. In
the real universe, the scaling of galaxy clusters will deviate from
self-similarity, particularly with halo mass, towards the low cluster
mass regime, and with high redshift.

Low cluster mass limitations

When the temperature of the hot ionised gas falls below ∼ 107K,
Bremsstrahlung will no longer dominate the cooling mechanism
of galaxy clusters (see, e.g. Sarazin, 1988). Below this regime, typ-
ically at cluster masses of less than M200 ∼ a few ×1014M, the
cooling function in our definition of TX, from Equation (25),
will become an increasingly unreliable model of the gas emission,
breaking the assumed self-similarity in this observable. As such, at
these low cluster masses, our predictions for theMvir − TX scaling
relation will become unreliable. Without any explicit dependence
on the cooling mechanism of the gas or its emission processes,
our predictions for the Mvir − Tmg scaling relation, and both of
the SZ scaling relations, are not expected to strongly deviate from
self-similarity in the low cluster mass regime. This self-similarity
is corroborated by observational constraints, over a wide range
of cluster masses, whereby slight deviations from self-similarity
at the low cluster mass regime can be sufficiently explained in
terms of a decrease in the gas fraction, increasing gas clumpiness,
or changes in the slope of the gas’ pressure profile (e.g. Ettori,
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2015; Ettori&Eckert, 2022). These differences all reflect changes
in the gas’ composition or increasing non-gravitational feedback
processes in the low cluster mass regime, all of which could be
accounted for by adjusting the value of η, or introducing non-
thermal pressure (in modifying the gas’ pressure slope), whilst
maintaining our general analytic approach.

Furthermore, the parameter choices within our model were
all strongly informed by observational fits to the intracluster gas
density, which represent only the X-ray emitting ionised gas com-
ponent of galaxy clusters, at temperatures above ∼ a few ×106K.
As such, the intracluster gas below such temperatures is not well
constrained observationally and could become significant towards
low cluster masses. For example, the gas fraction of galaxy clusters
is observed to fall below η = 0.6, our chosen minimum value, at
cluster masses less than M200 ∼ a few ×1013M (Dev et al. 2024,
Submitted). Whether lower temperature ionised gas, below detec-
tion capabilities (sometimes known as the ‘warm’ gas component)
compensates for these lower gas fractions in low mass clusters is
not confidently known.

High redshift limitations

In our analysis, the form of the cluster’s scale-free profiles were
all devised in terms of a redshift z = 0 normalisation, scaled by
the cluster’s present-day virial parameters, each defined in terms
of the present-day critical density, ρcrit,0. This analysis would need
to be corrected for application to high redshift; in particular, re-
scaling each profile by redshift-dependent virial parameters, in
terms of the critical density, ρcrit(z), at redshift z, which will
increase towards earlier times. This will result in a comparatively
higher gas density, and a subsequently higher gas temperature and
pressure; however, the analytic form of the scale-free profiles will
remain unadjusted with this re-scaling. Instead, when maintain-
ing the halo mass conventions M200 and M500, each cluster at a
given halo mass will be able to maintain denser, and thus hotter,
gas; this will shift the scaling relations to predict a comparatively
smaller halo mass at a given cluster temperature or SZ signal.
Beyond this linear adjustment, the parameters in our model were
all informed by low-redshift observations, and redshift evolution
of some of these parameters – in particular, the halo concentration
(Bullock et al., 2001; Duffy et al., 2008; Ludlow et al., 2012, 2014)
– is expected. As such, a wider parameter space would need to be
physically motivated to encompass high redshift clusters.

More limiting for the application of our model, towards higher
redshift, is the more dynamic and chaotic state of galaxy clusters at
earlier times. In particular, our model predicts the scaling of clus-
ters in virial and hydrostatic equilibrium; at high redshift, both of
these equilibria are expected to be more commonly violated, as
attributed to higher merger rates (see, e.g. Genel et al., 2009), in
the case of virial equilibrium, and higher gas accretion rates (see,
e.g. Pizzardo et al., 2023), in the case of hydrostatic equilibrium.
For these such clusters, our model will not reliably predict their
scaling relations, and thus our approach will not be applicable to a
larger population of galaxy clusters toward earlier times.

5. Conclusion

This study has explored the relationship between a galaxy clus-
ter’s dark matter halo mass, the density profile of its dark matter
and intracluster gas components, and its intracluster gas emission
properties. In particular, we have demonstrated that an analysis of
the cluster’s emission profiles, in an idealised framework – referred

to as the ideal baryonic cluster halos – can be used to place con-
straints on the cluster’s scaling relations with these observables.
These predictions are thus independent of any numerical models,
simulation calibrations or empirical best-fits.

As a fundamental component of this analysis, we have con-
structed a competitive tool-kit for modelling the density profile of
galaxy clusters. As entirely determined by a minimal set of phys-
ically grounded parameters – the dark matter halo inner slope,
α, the halo concentration parameter, c, the fraction of cosmo-
logical baryon content, η, the dilution parameter, d and the gas
inner slope, ε – this analytic model captures the expected struc-
tural properties of galaxy clusters, whilst modelling its dark matter
and intracluster gas structural profiles in a decoupled and scale-
free formalism. We hope this tool-kit can be applied to upcoming
X-ray and SZ surveys when modelling the radial profiles of clus-
ters, to better inform these fits in terms of physically understood
parameters.

As a result of this study, we demonstrated that the halo masses
M200 and M500 can be predicted with an uncertainty of 57.3%
and 41.6%, respectively, from the emission-weighted temperature
observable, TX, and that these uncertainties reduce by a factor of
approximately half, to 31.3% and 17.1%, respectively, when a cen-
tral core is excised from TX. Similarly, we predicted these halo
masses with a systematically tighter constraint of 25.7% and 7.0%,
respectively, when recovered from the mean gas mass-weighted
temperature observable, Tmg . Within the parameter space, we
demonstrated that the maximum value permitted for the halo
inner slope, taken as α = 1.5, as well as the maximum value per-
mitted for the gas inner slope, taken as ε = 1, impose the strongest
parameter dependencies for theM200 − TX andM500 − TX scaling
relations. These parameter dependencies are substantially reduced
after excising a central core from the temperature TX, verifying
the importance of this excision in constraining these relations. In
contrast, for theM200 − Tmg andM500 − Tmg scaling relations, this
sensitivity to the cluster’s underlying structure is minimal, produc-
ing the resulting stronger constraint on the halo mass. However,
for these latter relations, there is a strong dependence on the detec-
tion radius, rdet, within which Tmg is measured. As the observable
TX is essentially independent of rdet when taken at typical val-
ues, its scaling relations are correspondingly independent of this
measurement.

Moreover, we predicted the halo masses M200 and M500 from
the cluster’s SZ observables: recovered with uncertainties of 31.1%
and 17.7%, respectively, from the spherically integrated Compton
parameter, Ysph, and with uncertainties of 25.2% and 22.0%,
respectively, from the cylindrically integrated Compton param-
eter, Ycyl, such that both SZ observables produce comparable
constraints on the halo mass. Within the parameter space, we
showed that these scaling relations are insensitive to the form of
the gas profile, but instead are driven by the gas content: cap-
tured by the fraction of cosmological baryon content, η, with these
scaling relations strongly dependent on the minimum, η = 0.6,
and maximum, η = 1, values chosen in our model. Furthermore,
we demonstrated that these scaling relations implicate a strong
association with the measurement parameters, either the spheri-
cal detection radius, rdet, or the cylindrical aperture radius, Rap, as
both SZ observables are a strong function of increasing integration
volume.

In conclusion, comparing these predictions for the recovery of
the halo mass from a cluster’s emission observables, the mean gas
mass-weighted temperature, Tmg , and both integrated Compton
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parameters, Ysph and Ycyl, all provide the strongest constraints,
each recovering the halo mass within ∼ 20− 30%; comparable
constraints are also attained for the emission-weighted tempera-
ture, TX, only after excision of the central core. Furthermore, if the
detection radius can be accurately measured, Tmg is expected to
permit the strongest constraint on the halo mass, as exemplified
by an uncertainty of merely ∼ 7% when this observable is mea-
sured within rdet = r500. Whilst entailing a larger uncertainty, TX
evades a dependence on accurately knowing the detection radius,
which may be preferable observationally when such accuracy is
not available.

Whilst dark matter halos, galaxy clusters and their emission
properties remain the focus of increasingly resolved hydrody-
namic simulations, we have shown that an analytical framework
can be utilised to inform and complement observational con-
straints on the properties of these complex and dynamic struc-
tures. We hope that our predictions will contribute towards
improved halo mass estimates, exciting further constraints on the
Halo Mass Function and in turn the prospect of untangling the
nature of dark matter.

This paper is the second in a series of papers predicting the scal-
ing relations of dark matter halos. In future, we will endeavour to
analytically investigate the non-thermal pressure composition of
galaxy clusters, which was neglected in this study, to improve this
model and contribute towards better understanding the hydro-
static bias.
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