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COMPLIANCE AND COMMAND III: CONDITIONAL
IMPERATIVES

KIT FINE

Department of Philosophy, New York University

Abstract. I apply truthmaker semantics to the logic of conditional imperatives.

In the two previous parts of this paper [8, 9], I developed a truthmaker semantics for
the logic of categorical imperatives and for the logic of categorical obligation. In the
present part, I wish to extend the previous accounts to allow for the introduction of
conditional imperatives, of the form ‘if S then do X’. Conditional locutions of this form
are clearly of great importance since, in telling someone what to do, we will often want
to make what we prescribe conditional on how things are or on how else the agent has
acted. In the present part, I shall be almost exclusively concerned with the question of
equivalence—of when two imperatives can be taken, on logical grounds alone, to have
the same content. This means that one can also extract an account of validity in the
sense of containment, since one imperative Y can be said to contain another X when
it is of the form X ∧ Z for some imperative Z. However, it is not possible in the same
way to extract an account of the validity of ‘mixed’ inferences, as when one argues
from the indicative S and the conditional imperative ‘if S then X’ to X; and it is only
in the fourth, and final, part of this series that I will consider such inferences and an
extension of the account to the logic of conditional obligation and permission.1

Of especial importance to the whole project, as I conceive it, is that the language and
logic of imperative (or deontic) statements should provide a guide to action. We might
imagine that we wish to relay certain information to a robot in the form of indicative
sentences and to relay certain instructions to the robot in the form of imperative
sentences. The robot must then work out what to do on the basis of the information
and the instructions. And our aim is to construct a canonical form of expression for
relaying the information and the instructions to the robot and a canonical form of
inference by which the robot might then work out what to do.

There are two constraints which have shaped our overall approach and which I
have taken to form an important aspect of the account. The first is a requirement
of uniformity. The standard truthmaker clauses for the connectives and the standard
definition of validity should carry over to the conditional case. We therefore require

Received: August 25, 2022.
2020 Mathematics Subject Classification: Primary 03A05.
Key words and phrases: conditionals, imperatives, imperative logic, truthmakers, truthmaker semantics,

deontic logic.
1 Some of the philosophical issues connected to the concepts of conditional imperatives and

conditional obligation are discussed in Fine [11]

© The Author(s), 2024. Published by Cambridge University Press on behalf of The Association for Symbolic Logic.

1 doi:10.1017/S175502032300028X

https://doi.org/10.1017/S175502032300028X Published online by Cambridge University Press

http://dx.doi.org/10.1017/S175502032300028X
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S175502032300028X&domain=pdf
https://doi.org/10.1017/S175502032300028X


2 KIT FINE

something analogous to actions which might serve as the entities in compliance with
or in contravention to conditional imperatives. It turns out that we can think of
these entities as plans, which tell us what to do in each of a number of particular
circumstances. Thus in the case of the imperative ‘take an umbrella if it rains’, the plan
of taking an umbrella in the circumstance in which it rains will be in conformity with
the imperative, while the plan of not taking an umbrella in the circumstance in which
it rains will be in contravention to the imperative.

The second constraint is that the logic of imperatives should conform to a normal
form theorem. We are familiar with the disjunctive normal form theorem from classical
propositional logic, according to which any formula is equivalent to a disjunction of
state-descriptions. Given that the content of a truth-functional formula is given by a
truth-table, we naturally expect to be able to represent the truth-table by a disjunction
of state-descriptions, where each of the state-descriptions corresponds to an entry of
the truth-table in which the formula is true.

The content of an imperative sentence is similarly given by the plans in compliance
with the imperative. It is therefore to be expected, at least within a suitably expressive
language, that a formula of imperative logic will be equivalent to a disjunction of
plan descriptions, where each of the plan descriptions corresponds to a plan that is in
compliance with the formula.

This is not only to be expected, but it is also especially desirable if the logic of
imperatives is to serve as a guide to action. For the instructions presented to an agent,
or our robot, may be of arbitrary complexity. It may consist of the negations of
conditional imperatives, for example, as when we wish to reject some imperatives that
might already have been issued, or of conditional imperatives in which the consequent is
itself a conditional imperative, as when we wish to make some pre-existing imperatives
conditional upon some state of affairs. When presented with imperatives in these other
forms, it will not in general be evident what they require us to do in this or that
situation; and this difficulty may be removed by putting the imperatives in a normal
form from which can be read the specific plans that they prescribe. By not requiring
that formulas be written in normal form and yet having a normal form theorem, we
are able to combine flexibility in the expression of an imperative (or some other form
of expression) with the simplicity of its content.

It is important, in this regard, to bear in mind that the inferential demands that
we wish to place upon a set of instructions are very different from those that we wish
to place upon a body of information. For instructions are to be followed, and so our
principal interest is in putting them in such a form that it is then clear how they are to
be followed. But a body of information is to be believed, and our interest in the items
of information is not in how they are to believed but in what follows from them once
they are believed. The importance of a normal form theorem is therefore much greater
in the one sphere than in the other.

Our insistence upon being able to put imperatives into normal form has a couple
of significant consequences. One is that it seems almost to force upon us certain
controversial theses in the logic of conditionals. For consider the conditional imperative
‘if it rains then if there is no wind then take an umbrella’ (R → (N → T)). Then to
get it into the required form, it looks as if we should take it to be equivalent to ‘if
it rains and there is no wind then take an umbrella’ ((R ∧ N) → T))—the so-called
Import–Export rule. Or consider the conditional imperative ‘if it rains or is cold then
wear a coat’ ((R ∨ C) → W). Then to get the required form in this case, it looks as if
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COMPLIANCE AND COMMAND III: CONDITIONAL IMPERATIVES 3

we should take it to be equivalent to ‘if it rains then wear a coat and if it is cold then
wear a coat’ ((R → W) ∧ (C → W))—the so-called rule of Simplification. These rules
have usually been accepted on the basis of intuitive considerations. It is therefore of
interest that there is a deeper rationale for them in terms of the role they might play in
securing a reduction to normal form.

A further consequence is that the rules we require in order to put formulas into
normal form more or less force us into adopting a hyper-intensional approach to the
logic of imperatives. For one may well wish to endorse the imperative ‘if it rains then
take an umbrella’ (R → T) but not endorse the imperative ‘if it rains and there is a
strong wind then take an umbrella’ (R ∧ S → T). But R is classically equivalent to
R ∨ (R ∧ S) and so, if R ∨ (R ∧ S) were freely substitutable for R, we could go from
(R → T) to (R ∨ (R ∧ S)) → T and then, by Simplification, to (R → T) ∧ ((R ∧ S) →
T). Thus we cannot have Simplification without Antecedent Strengthening within an
intensional approach, and so if we want the one but not the other, then we are obliged to
adopt a hyper-intensional approach in which classically equivalent antecedents within
a conditional cannot be freely substituted for one another.

The present paper is long and so the reader may find it helpful to have a guide to its
various sections and sub-sections:

Sections 1 and 2 contain some preliminary material on conditional imperatives.
Section 1 considers various interpretations of imperatives that will be relevant to the
subsequent formal treatment, and Section 2 specifies the syntax for the language of
conditional imperatives. This will call for the use of indicative and imperative formulas
and for a certain correspondence between them.

Sections 3–6 outline the pre-conditional framework. Section 3 reviews some standard
material on truthmaker semantics, including the concepts of a state space and a
model, the evaluation of truth-functional formulas, and the definition of various
logical concepts; Section 4 presents the multi-set version of truthmaker semantics
for the indicatives which figure as the antecedents of conditional imperatives; Section 5
reviews some earlier results on the logic of exact equivalence and analytic entailment
for truth-functional formulas and it presents a result on normal forms for formulas
not containing the conditional imperative, which will later be extended to a result on
normal forms for formulas that do contain the conditional imperative; and Section 6
extends the basic semantic framework to one which allows for a distinction between
situations, which are meant to serve as truth-makers for indicatives, and actions, which
are meant to serve as the compliance-makers for imperatives.

One distinctive feature of our approach is that we adopt a multi-set semantics for
indicatives under which an indicative may be made true any number of times by a
given state (Section 4). It turns out that this generalization of the more usual form of
semantics is required in order to establish the extended version of the normal form
theorem. Thus the insistence of normal forms has significant consequences for the
general form of the semantics.

Sections 7–12 develop the abstract theory of plans by means of which the conditional
imperatives of our language are to be interpreted. Section 7 provides an informal
explanation of how plans relate to imperatives; Section 8 provides a formal treatment
of plans and explains how they may be subject to various constraints and various
closure operations; Section 9 deals with the relationship between partial plans (which
need not be defined on all situations) and total plans (which must be defined on all
situations) and shows how each action may be identified with a total plan; Section 10
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4 KIT FINE

explains how a plan may be conditionalized to a situation and establishes some of
the basic properties of this notion, while Section 11 does the same for plans that
are subject to various constraints or closure operations; Section 12 then extends the
operation of conditionalization in two directions, so that we may conditionalize by a
proposition, i.e., by a set of situations, rather than by a single situation, and so that
we may conditionalize on a prescription, i.e., on a set of plans, rather than on a single
plan. It is by means of this abstract notion of conditionalization, as it is defined on
propositions and prescriptions, that we interpret the conditional; and it is by means of
the formal properties of conditionalization that we establish the logical properties of
the conditional.

Sections 13–15 establish the extended normal form theorem. Section 13 provides the
positive reduction theses (not involving negation) upon which the positive reduction
to normal form rests; Section 14 introduces the negative semantics for conditional
imperatives and provides the negative reduction theses (involving negation) upon which
the negative reduction to normal form rests; and Section 15 puts the positive and
negative results together in establishing a general reduction to normal form and a
completeness theorem.

There has been a spate of recent literature on the semantics and logic of imperatives,2

but the present approach differs considerably from most of the recent literature both
in its goals and in its conclusions. I should remind the reader, in the first place,
that my aim throughout the different parts of this paper has been regimentation, not
description. I wish to provide, not a faithful description of how imperatives are used
in natural language, but a reasonably adequate and perspicuous representation of
imperative reasoning. But the focus in the literature has often been on description
rather than regimentation, and this means that a comparison on this score is not
altogether appropriate.

In the second place, the present approach to imperatives has been developed within
the framework of truthmaker semantics, with its ontology of states and ideology of
exact truthmaking, whereas most of the more recent approaches have been developed
within the possible worlds framework. This has meant that I have not felt obliged to
accept the preservation of content under the substitution of classical equivalents, and
it has also meant that I have been able to achieve a normal form theorem even though
this would not be possible, as we have seen, under any of the intensional approaches.
I consider this to be a major advantage of the approach.

There are some similarities, of course. In particular, some other authors have
appealed to the idea of a plan in developing a semantics for imperatives or deontic
modals. But their conception of a plan and its relationship to an imperative is very
different from my own. For me, a plan is a function from states to actions, whereas
Yalcin [18]—following Gibbard [13]—takes it to be a function from propositions (or
sets of worlds) to propositions. Thus the critical distinction between situations and
actions in my own account is ignored. Or again, a plan should be in exact compliance
with an imperative for me, whereas Charlow [2] in effect only requires it to be in inexact
compliance. The structural role of plans in my account, as items in a state space ordered
by a relation of part-whole, is also very different and plays an important part in the
determination of the logic.

2 As in [2, 14, 16, 17] for example.
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COMPLIANCE AND COMMAND III: CONDITIONAL IMPERATIVES 5

§1. The interpretation of conditional imperatives. There are a number of different
ways in which, at the purely informal level, a conditional imperative might be
understood. Some of them make a difference to the formal semantics and to the
logic, while others merely make a difference to how the formal semantics should
itself be construed. It will be helpful to make clear where I stand on these various
interpretations, and, although my focus is here on the case of imperatives, it should be
noted that the same distinctions (and some others) will also apply in the deontic case.

1.1. Single/multi-agent. Our concern will be with imperatives directed at a single
agent, whether it be an individual or group agent. We shall not be concerned with
imperatives directed at different agents or with the interaction between them, even
though this is clearly an important topic in its own right.

1.2. Specific/general. An imperative might concern a specific agent in a specific
situation. Thus as someone is preparing to go out, I might say ‘take an umbrella if it
is raining’ (or ‘you ought to take an umbrella if it is raining’), where my statement is
directed at the particular situation in which the agent finds herself. On the other hand,
an imperative might be more general in scope. Thus I might say ‘take an umbrella if it
rains’ by way of a piece of standing advice that is meant to apply generally to a range
of different agents or different situations.

The formal semantics I give below can be taken to have application in either case,
though the understanding of the truth- and compliance-makers will be different, with
token situations and actions as the truth- or compliance-makers in the first case and
with situation and action types as the truth- or compliance-makers in the second case.
In a more extended treatment in which predicates and quantifiers are allowed, it would
be possible to deal simultaneously with both kinds of cases by introducing predicates
for types of actions.

1.3. Subjective/objective. There is a familiar distinction between a subjective and
an objective understanding of deontic conditionals, which also has application to
imperative conditionals. Under the subjective interpretation, the antecedent of the
conditional is meant to relate to conditions of which the agent has knowledge or some
other form of cognitive awareness, whereas, under the objective interpretation, the
antecedent relates to the conditions that actually obtain, regardless of whether the
agent has any form of cognitive access to them.

There is a natural assumption under which the subjective and objective interpreta-
tions will coincide, and this is that the agent should always be aware of the circumstances
that are relevant to what she is to do. The situation the agent is in should be the situation
in which she ‘finds herself ’. Indeed, if a conditional imperative is to be helpful as a
guide to action, then the two had better be the same. Someone may tell me to thank
the gods if the Continuum Hypothesis is true, but this will be of little use to me if I
have no way of knowing whether the Continuum Hypothesis is in fact true.

1.4. Defeasible/indefeasible. This is by far the most important of the distinctions
and it has enormous consequences for the resulting semantics and logic.

Consider the conditional imperative ‘if it rains take an umbrella’. If someone is
willing to issue this imperative then should they also be willing to issue ‘if it rains and
there is a strong wind then take an umbrella’? Under a defeasible interpretation of
the conditional, we do not presuppose that the inference will go through while, under
the indefeasible interpretation, we do. Thus the antecedent of a conditional imperative
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6 KIT FINE

can always be conjunctively strengthened under the indefeasible interpretation but not
necessarily under the defeasible interpretation.

There are a number of ways in which one might understand the defeasible
conditional. But one natural line of thought is that in enjoining someone to take
an umbrella if it rains one is enjoining them to take an umbrella if it rains and there
are no countervailing circumstances (such as a strong wind). This is not necessarily
to presuppose that there are no countervailing circumstances but merely to enjoin
someone to do what is to be done under the assumption that such circumstances do
not in fact exist.

It is plausible to suppose that to each defeasible conditional of the form ‘if C then
doϕ’ there will correspond a range of indefeasible conditionals, ‘ifC1 then doϕ’, ‘ifC2

then do ϕ’, ..., where C1, C2 exhaust the different ‘propitious’ circumstances in which
C obtains. It might then be wondered why we do not use the indefeasible conditionals,
which have a relatively clear interpretation, in place of the defeasible conditional.
Now there may indeed be cases, especially when only actual circumstances are under
consideration, in which the propitious circumstances C1, C2, ... can be circumscribed
in advance. But this will not usually be possible, and hence the importance, in many
practical contexts, of being able to use the defeasible form of expression.

The defeasible interpretation meshes very well with the subjective interpretation.
The antecedent then relates to the information the agent has at a given time and the
conditional is telling the agent what to do in the absence of countervailing information.
As a special case, then, the conditional will tell the agent what to do when the
information embodied in the antecedent is the total (or the total relevant) information
available to the agent. The application of the conditional corresponds, in this case, to
the principle of total evidence of Carnap [1] (a point made by Sellars [15, p. 325]). Just
as the probability that you assign to a proposition should be based upon one’s total (or
one’s total relevant) evidence, so the application of a conditional imperative should be
based on one’s total (or one’s total relevant) information.

In what follows, the reader may find it helpful to regard the combination of the
defeasible and subjective interpretations as a paradigm of how the symbolism is to be
applied, although I would not wish to exclude other interpretations.

1.5. Inclusive imperatives. A less familiar issue concerns the prescription to do
something in a situation in which what is to be done, or part of what is to be done, is
itself part of the situation. How, for example, should we regard the imperative: go to
the meeting if one goes?

One natural point of view is that such imperatives are not well-formed and that
generally, in a well-formed conditional imperative, the action to be undertaken should
be disjoint from the situation upon which it is conditional. Unfortunately, this point
of view cannot very well be sustained quite apart from the logical difficulties in
implementing it. For consider the imperative analogue of the puzzle of the ‘gentle
murderer’ from Forrester [12]. I might enjoin my criminal buddy to kill his rival gently
if he kills her. But killing his rival gently entails killing her (and, indeed, has killing her
as a part). It therefore appears that in enjoining my buddy to kill his rival gently if he
kills her, I am enjoining him (in part) to kill her if he kills her.

One might try to evade this difficulty by reformulating the conditional imperative
as one in which, in the situation in which my buddy kills his rival, he should do what
in addition to the killing would make the killing gentle. But it is hard to say what this

https://doi.org/10.1017/S175502032300028X Published online by Cambridge University Press

https://doi.org/10.1017/S175502032300028X


COMPLIANCE AND COMMAND III: CONDITIONAL IMPERATIVES 7

additional thing would be without it also entailing or having as a part the killing. No
clean reformulation of the conditional imperative, in which the gentleness is detached
from the killing, would appear to be possible, and what I would like to propose instead
is that we allow the inference to go through and that we allow, in general, for the
imperative ‘do X if you do X ’ to be a consequence of any imperatives whatever.
I do not wish to claim that this is in conformity with our ordinary use of conditional
imperatives (the matter is far from clear). But no harm will arise from our allowing
such imperatives since, given that X is done, there is nothing else that they require
of the agent, and it considerably simplifies the formulation of imperatives once they
are allowed. This may not provide us with a solution to Forrester’s puzzle, which
may be taken to concern our ordinary understanding of conditional imperatives (or
conditional obligation), but, under our present understanding of these conditionals,
we achieve an admirable evasion of the puzzle.

§2. Syntax. We describe the language for the logic of imperatives that we shall be
adopting. The primitive vocabulary consists of the following symbols:

indicative atoms s1, s2, ...
imperative atoms p1, p2, ...
the verum constants � and �! ,
the connectives ¬,∨,∧, and →,
the parentheses (and).

The indicative atoms s1, s2, ... are meant to signify situations, i.e., to have situations
as their truth- and falsity-makers, while the imperative atoms p1, p2, ... are meant
to signify actions or plans, i.e., to have actions or plans as their compliance- and
contravention-makers.

The language contains two verum constants: � for the indicative made true by the
null situation and �! for the imperative with which the null action is in compliance. We
use ⊥ (the falsum constant) as an abbreviation for ¬� and ⊥! as an abbreviation for
¬�!.

Indicative and imperative formulas are defined by means of the following inductive
clauses:

IN1. � and any indicative atom is an indicative formula.
IN2. If S is an indicative formula, then so is ¬S.
IN3. If S and T are indicative formulas, then so are (S ∨ T) and (S ∧ T).
IM1. �! and any imperative atom is an imperative formula.
IM2. If P is an imperative formula, then so is ¬P.
IM3. If P and Q are imperative formulas, then so are (P ∨ Q) and (P ∧ Q).
IM4. If S is an indicative formula and P an imperative formula, then (S → P) is
an imperative formula.

A formula is any indicative or imperative formula. We use S,T, etc. for indicative
formulas and P,Q, etc. for imperative formulas, and we allow ourselves freely to put
‘!’ at the end of an imperative formula as a way of making clear that it is an imperative
rather than an indicative formula.

Note that clause IM4 is the only source of ‘hybrids’, in which indicative and
imperative formulas come together. It permits an indicative to appear to the left of
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8 KIT FINE

a conditional, though not to the right, and it permits an imperative to appear to the
right of a conditional, though not to the left.

We shall have occasion in part IV to distinguish an infinite subset a1!, a2!, ... of
the imperative atoms and a corresponding infinite subset of indicative atoms a1, a2,
.... We call them A-atoms and suppose that a1!, a2!, ... form a co-infinite subset of all
the imperative atoms and that a1, a2, ... form a co-infinite subset of all the indicative
atoms. These co-infinite subsets behave in exactly the same way, syntactically speaking,
as the regular imperative and indicative atoms, but the intention is that the imperative
A-atoms should designate actions (rather than plans) and that the indicative A-atoms
should designate corresponding states (to the effect that the given action is performed).
It is through the coordination of imperative and indicative atoms that we are able to
treat an action as itself part of a situation that may serve as the condition for other
actions to be performed.

§3. Background. I give a brief overview of standard truthmaker semantics for a
propositional language (the reader might like to consult [7] for a general introduction
to the topic).

A partial order (p.o.) on a set S is a reflexive, transitive, and anti-symmetric relation
on S. Given the p.o. � on S, we say:

s is null if s � s ′ for all s ′ ∈ S and otherwise is non-null;
s is an upper bound of T if t � s for each t ∈ T ;
s is a lower bound of T if s � t for each t ∈ T ;
s is a least upper bound (lub) of T if s is an upper bound of T and s � s ′ for
any upper bound s ′ of T ;
s is a greatest lower bound (glb) of T if s is a lower bound of T and s � s ′ for
any lower bound s ′ of T ;
s � t(s is a proper part of t) if s � t but not t � s ;
s overlaps t if for some non-null u, u � s and u � t;
s is disjoint from t if s does not overlap t.

The least upper bound of T ⊆ S if it exists is unique. We denote it by
⊔
T and call

it the fusion of T (or of the members of T ). When T = {t1, t2, ... }, we shall sometimes
write

⊔
T more perspicuously as t1 
 t2 
 ··· . Likewise, for the greatest lower bound

⊔T .
A state space S is a pair (S,�), where S (states) is a non-empty set and � (part) is

a partial order on S which is complete, i.e., any subset T of S has a least upper bound⊔
T . We use � (the null state) for the least state

⊔
∅ of S and � (the full state) for

the greatest state
⊔
S of S . In a state space, any subset T of S will also have a greatest

lower bound ⊔T . For now we are thinking of states in a generic way, which will be
compatible with thinking of them as either situations or actions or plans.

A state space S ′ = (S ′,�′) is said to be a subspace of the state space S = (S,�) if S ′

is a subset of S and �′ is the restriction �� S ′ of � to S ′. If S = (S,�) andT = (T,�′)
are two state-spaces, then their product S × T is the structure (S × T,�×), where

(s, s ′) �× (t, t′) iff s � t and s ′ � t′.

It is readily verified that S × T is also a state space.
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COMPLIANCE AND COMMAND III: CONDITIONAL IMPERATIVES 9

Let us now suppose that the formulas of our language are constructed from certain
atoms x1, x2, ... and the verum and falsum constants � and ⊥ by means of the usual
connectives, ∨,∧, and ¬ (for now we do not allow the conditional). Proceeding in this
way allows us to remain neutral as to the exact identity of the atoms. However, we
shall, in this and the next section, use X,Y,Z... for formulas of the present neutral
language rather than for the imperative formulas of the previous papers.

A state modelM over the state space S = (S,�) is a triple (S,�, | · |), where | · | (the
valuation) is a function taking each atom x into a pair of non-empty subsets |x|+ and
|x|– of S (the respective truth- and falsity-makers of x). Such a valuation is said to be
a bilateral valuation over S on the given atoms. It is to be contrasted with a unilateral
valuation which simply assigns a subset of states to each atom. We also allow a model,
both here and elsewhere, to be defined over a subset of the relevant atoms.

The atom x is said to be definite in a model if |x|+ is singleton, to be bi-definite if both
|x|+ and |x|– are singleton, and to be non-vacuous if neither |x|+ nor |x|– is empty. The
modelM itself is said to be definite (bi-definite, non-vacuous) if each atom is definite
(bi-definite, non-vacuous) in the model.

Given any modelM = (S,�, | · |), there is a standard way of extending the valuation
| · | to all other formulas. For subsetsT andU ofS, letT 
U = {t 
 u : t ∈ T and u ∈
U}. We then define | · | on all formulas by means of the following clauses:

|�|+ = {�}.
|�|– = ∅.
|¬X|+ = |X|–.
|¬X|– = |X|+.
|X ∧ Y|+ = |X|+ 
 |Y|+.
|X ∧ Y|– = |X|– ∪ |Y|–.
|X ∨ Y|+ = |X|+ ∪ |Y|+.
|X ∨ Y|– = |X|– 
 |Y|–.

The negative clause for the verum constant is somewhat different from that in [9].
We there took |�|– to be |�| rather than ∅. Each clause has its advantages and
disadvantages, but, in the case of conditionals, it will be convenient to adopt the
present clause. Note that we have required |x|+ and |x|–, for any atom x, to be non-
empty, whereas |�|– is empty. This means that we cannot think of an atom as standing
in for �.

The above clauses can be stated in more orthodox fashion by specifying when a state
s is a truth-maker (s ||- X) or a falsity-maker s -|| X for X. Thus the clauses for X ∧ Y
and ¬X now take the following form:

s ||- X ∧ Y iff for some t and u,t ||- X, u ||- Y and s = t 
 u.
s -|| X ∧ Y iff s -|| X or s -|| Y.
s ||- ¬X iff s -|| X.
s -|| ¬X iff s ||- X.

The two kinds of clauses will then be in conformity with one another, in that
|X|+ = {s : s ||- X} and |X|– = {s : s -|| X}.

We may define various logical notions. Let Δ be a well-ordered sequence X1,X2, ...
of formulas. Given a modelM , we say that:

Δ exactly entails the formula Y in M if s1 
 s2 
 ... ||- Y in M whenever
s1 ||- X1, s2 ||- X2, ... inM , and that:
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Δ contains Y inM—symbolically, Δ >MY—if (i) whenever s1 ||- X1, s2 ||- X2, ...
inM then for some t � s1 
 s2 
 ... , t ||- Y inM , and (ii) whenever t ||- Y inM
then for some s1, s2, ... , s1 ||- X1, s2 ||- X2, ... inM and t � s1 
 s2 
 ... .

Given formulas X and Y, we also say that:

X and Y are (positive) (exact) equivalents in M—in symbols, X ≈MY or
X ≈+

MY—if, for any state s, s � X inM iff s Y inM ;
X and Y are negative (exact) equivalents inM—in symbols, X ≈–

M Y—if, for
any state s , s -|| X inM iff s -|| Y inM ; and
X and Y are full (exact) equivalents inM—in symbols, X ≈±

M Y—if they are
both positive and negative exact equivalents.

We can also define non-relative analogues of these notions in the obvious way. For
example, X and Y will be (positive) exact equivalents—X ≈ Y—if X ≈±

M Y for any
modelM . We may also sometimes restrict these non-relative analogues to a sub-class
of models. (Note that this notation slightly departs from the notation of Fine [8], where
X ≈ Y is used as an abbreviation in the object language.)

Although we shall not give a precise statement or proof, we should mention that
full equivalents may be substituted for one another in any formula, preserving full
equivalence, while positive equivalents may be substituted within positive contexts (in
the usual sense of the term), thereby preserving positive equivalence.

§4. Multi-set semantics. For reasons that will later become clear, we shall find it
helpful to formulate a slightly more fine-grained form of the semantics. Suppose s is
the sole truth-maker for the atom x. Then we will want to say not merely that s is a
truth-maker for x ∨ x, but that it is a truth-maker twice, once via the left disjunct and
once via the right disjunct. To this end, we should take the content of a formula to be
a multi-set [s, s] in which the truth-maker s occurs twice.

I shall forgo a precise treatment of multi-sets, but the reader may find it helpful to
think of them in graphical terms. [1, 2, 2, 3, 3, 3], for example, is the multi-set in which
1 occurs once, 2 twice, and 3 thrice, [1, 2, 3] is the multi-set in which 1, 2, and 3 occur
only once, while [] is the empty multi-set. Given two multi-sets X = [x1, x2, ... ] and
Y = [y1, y2, ... ], their unionX ∪· Y is the multi-set [x1, x2, ... , y1, y2, ... ] and their fusion
X 
· Y is the multi-set [x1 
 y1, x1 
 y2, ... , x2 
 y1, x2 
 y2, ... , ... ]. So, for example,
[1, 2, 2, 3, 3, 3] ∪· [0, 1, 2, 2] is [0, 1, 1, 2, 2, 2, 2, 3, 3, 3].

We shall need to make use of multi-maps. SupposeX = [x1, x2, ... ] is a multi-set and
Y = {y1, y2, ... } is a set. Then a multi-map f from X into Y is a multi-set of ordered
pairs [<x1, y1>,<x2, y2>, ... ]. Thus identical members of X may be associated with
distinct members of Y .

A multi-set modelM = (S,�, | · |) over a state spaceS = (S,�) is the same as before,
except now the valuation | · | takes each atom x into a pair of non-empty multi-sets of
states (we might call this a multi-set valuation). The valuation | · | can then be extended
to all formulas by means of the following clauses:

|�|+ = [�].
|�|– = ∅(= [ ]).
|¬X|+ = |X|–.
|¬X|– = |X|+.
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|X ∧ Y|+ = |X|+ 
· |Y|+.
|X ∧ Y|– = |X| – ∪· |Y| –.
||X ∨ Y|+ = |X|+ ∪· |Y|+.
|X ∨ Y|– = |X|– 
· |Y|–.

Thus, the clauses are essentially the same as before, but the set-theoretic operations
have been converted into corresponding operations on multi-sets. We may write |X|�M ,
for � = + or –, to make explicit the relativization of |X| to the modelM .

Suppose X = [x1, x2, ... , y1, y2, ... , z1, z2, ... , ... ] is a multi-set, specified in such a
way that x1, x2, ... are the same element x, y1, y2, ... are the same element y, ....,
z1, z2, ... are the same element z, ..., and x, y, z, ... are pairwise distinct. We then let
{X} be the corresponding set {x, y, z, ...}. Thus {X} is like X but for the fact that
each element of X , which may occur many times in X , only occurs once in {X}.

Given a multi-set model M = (S,�, | · |M ), let {M} be the corresponding (set)
model (S,�, | · |{M}), where |x|�{M} = {|x|�M} for each atom x and where � = + or –.
Then {M} andM evaluate formulas in the same way but for a difference in the ‘count’:

Lemma. For any multi-set model M and formula X, |X|�{M} = {|X|�M} for � = +
or –.

Proof. A straightforward induction.

We might compare the present positive clause for disjunction with the conception of
intuitionistic disjunction as disjoint union, where the disjoint union X ·∪·Y of the sets
X and Y might be defined as {(x, 0) : x ∈ X} ∪ {(y, 1) : y ∈ Y}. In the intuitionistic
case, we distinguish between verification on the left and right (so that X ·∪·Y will not,
in general, be the same as Y ·∪·X ), whereas, in the present case, we make no such
distinction.

The similarity in the clauses for the two kinds of models belies a fundamental
difference. For whereas in the earlier case, we can restate the clauses relationally, in
terms of when a state is a truth-maker or falsity-maker for a given formula, this is
no longer possible in the present case, since it does not provide us with the means of
stating that a formula, such as α ∨ α, will be made true more than once by any given
truth-maker for α.

Although this is not a topic I shall pursue here, it is worth noting that the previous
order of explanation can be reversed and that, instead of explaining our symbolism
in terms of multi-sets, we can use our symbolism to provide a convenient way of
specifying multi-sets. Suppose, for example, that we wish to specify the multi-set [1, 1].
The usual set-theoretic formulation [x: x = 1] is not then appropriate. However, if we
subject the defining conditions to a multi-set semantics, then [1, 1] can be specified as
[x: x = 1 ∨ x = 1], which will be different from [x: x = 1] = [1] and, similarly, if f is
a function, then we might specify its multi-range as [y: for some x,f(x) = y], where
y now will occur as many times in the multi-set as there are arguments x for which
f(x) = y.

Indeed, for these purposes we can adopt a purely extensional quasi-classical version
of the multi-set semantics in which there is just one element �(= �) in the state
space, corresponding to the actual world. The pair of multi-sets ([�,�, ... ], [�,�, ... ])
assigned to a formula will then indicate how many times the formula is true and how
many times it is false. So, for example, the condition x = 1 ∨ x = 1, when 1 is assigned
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to x, will have ([�, �], []) as its bilateral content, thereby indicating that 1 is to occur
twice in the corresponding multi-set [x : x = 1 ∨ x = 1].

The semantics of each formula in this simple model is given, in effect, by a pair of
non-negative integers, where the first indicates how many times the formula is true and
the second how many times it is false. Supposing |X| = (m, n) and |Y| = (p, q), we will
then have the following clauses for the truth-functional connectives:

|¬X| = (n,m).
[(X ∨ Y)] = (m + p, n × q).
|(X ∧ Y)| = (m × p, n + q).

The notions of exact entailment and equivalence can be extended to the multi-set
semantics in the obvious way. Thus the formula X will exactly entail the formula Y if
whenever |X|+ = [s1, s2, ... ] in a modelM then |Y|+ is of the form [s1, s2, ... , ... ] inM
and X will be an exact equivalent of Y if the multi-sets |X|+ and ||Y|+ are the same. A
related definition of containment could also be given, although it will not be required.

§5. Logics. We briefly review some earlier findings concerning the logic of
equivalence and containment. Given two formulas X and Y, we use X ≡ Y to indicate
that they are exact equivalents and use X > Y to indicate that X contains Y.

We shall be interested in the following axioms and rules for ≡:

E1 X ≡ ¬¬X.
E2 X ∧ Y ≡ Y ∧ X.
E3 (X ∧ Y) ∧ Z ≡ X ∧ (Y ∧ Z).
E4 X ∨ Y ≡ Y ∨ X.
E5 (X ∨ Y) ∨ Z ≡ X ∨ (Y ∨ Z).
E6 ¬(X ∧ Y) ≡ (¬X ∨ ¬Y).
E7 ¬(X ∨ Y) ≡ (¬X ∧ ¬Y).
E8 X ∧ (Y ∨ Z) ≡ (X ∧ Y) ∨ (X ∧ Z).
E9 X ≡ Y/Y ≡ X.
E10 X ≡ Y,Y ≡ Z/X ≡ Z.
E11 X ≡ Y/X ∧ Z ≡ Y ∧ Z.
E12 X ≡ Y/X ∨ Z ≡ Y ∨ Z.
E13 X ∧ � ≡ X.
E14 X∧ ⊥≡⊥.
E15 X∨ ⊥≡ X.
E16 X ≡ X ∨ X.
E17 x ∧ x ≡ x x an atom.
E18 ¬x ∧ ¬x ≡ ¬x x an atom.

The core system CS is comprised of the axioms and rules E1–E15. A sequent of
the form X ≡ Y is said to hold in a model M if X and Y are exact equivalents in
M. A single sequent such as E1 is said to be valid if it is true in all models (or in all
models from a pre-designated subclass of models) and a rule such as E9 is said to be
valid if its conclusion holds in any model in which its premises hold. It may then be
shown that CS is sound and complete for the multi-set semantics, i.e., that the provable
sequents coincide with the valid sequents. CS is also sound and complete for the class
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of multi-set models M = (S,�, | · |) in which the state space S is singleton.3 This is
somewhat surprising, and no similar result holds for the set-theoretic semantics. Axiom
E16 corresponds to the adoption of a set-theoretic semantics, E17 to the restriction of
the semantics to definite models, and E17 and E18 to the restriction of the semantics to
bi-definite models. So, for example, the system CS + E16 will be sound and complete
for the class of all set-theoretic models, the system CS + E17 sound and complete for
the class of all definite multi-set models, and the system CS + E17 + E18 sound and
complete for the class of all bi-definite multi-set models.

Let me now state the normal form theorem, which will play an important role in
establishing the extended normal form theorem below. For this purpose, it will be
helpful to refer to conjunctions of formulas X1, X2, ..., Xn, where n is allowed to be
0 or 1. When n = 0, the conjunction is the verum constant �, and when n = 1, it is
the single formula X1. We shall refer similarly to disjunctions of formulas X1, X2, ...,
Xn, where n is again allowed to be 0 or 1. When n = 0, the disjunction is the falsum
constant ⊥, and when n = 1, it is the single formula X1.

A literal ±x is an atom x or its negation ¬x, a state description is a conjunction
(possibly empty) of literals, and a disjunctive normal form is a disjunction (possibly
empty) of state descriptions. Say that the formulas X and Y are provably equivalent in
a given system if X ≡ Y is a theorem of the system. Then we can establish along the
lines of Fine [5]:

Theorem 1 (Disjunctive Normal Form). Every formula is provably equivalent in CS to
a disjunctive normal form.

Let us note a couple of refinements of this result. We may suppose that the atoms of
our language occur in a fixed order x1, x2 ... . Let x1,¬x1, x2,¬x2, ... be a corresponding
order for the literals. Then a state description is said to be standard if its literals occur
in the fixed order with association from left to right and it is said to be non-repetitive
if no literal occurs more than once. Clearly, a standard state description is uniquely
determined by the multi-set of its literal conjuncts and a standard non-repetitive state
description is uniquely determined by the set of its literal conjuncts. The standard state
descriptions might also be given in a fixed order. A disjunctive normal form is then
said to be in standard form if it is a disjunction of standard state descriptions that
occur in the fixed order with association from left to right. It is said to be conjunctively
non-repetitive if each of its state descriptions is non-repetitive, to be disjunctively non-
repetitive if none of its state descriptions occurs more than once, and to be fully
non-repetitive if it is both conjunctively and disjunctively non-repetitive. Clearly, a
standard form is uniquely determined by the multi-set of all those multi-sets of literals
that correspond to an occurrence of one of its state descriptions, a fully non-repetitive
standard form by the set of all those sets of literals that correspond to one of its state
descriptions, and similarly for the other cases.

3 Sketch of a proof: We may suppose X and Y are in disjunctive normal form (as defined
below). With each atom xk occurring in the formulas X or Y, we associate a pair of prime
numbers pk and qk ,where all of the pk and qk are pairwise distinct and each pk and qk is
greater than the length of X or Y . We then construct a model in which each xk will be true
pk times and false qk times. In this model, |X|+ and |Y|+ are not the same if X and Y are
not the same (but for the ordering of the conjuncts and disjuncts).
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Corollary 2 (Standard Form). Every formula X is provably equivalent in CS to a
standard form Y. Moreover, Y can be taken to be disjunctively non-repetitive given axiom
E16 and conjunctively non-repetitive given axioms E17 and E18.

We turn to the second refinement of the result. Take a realization scheme Σ for a set
of atoms Δ to be a set of formulas of the form ¬x ≡ (y1 ∨ y2 ∨ ··· ∨ yn), one for each
atom x of Δ, where y1, y2, ... , yn for n > 0, are distinct atoms (though not necessarily
in Δ) and say that Σ is a realization scheme for a formula X if it is a realization scheme
for the set of atoms that occur in X. Intuitively, a realization scheme provides a positive
characterization of when the given atoms are false.

Say that a state description is positive if it is a conjunction of atoms and that a
disjunctive normal form is positive if it is a disjunction of positive state descriptions.
From Theorem 1, we easily derive:

Corollary 3 (Positive Disjunctive Normal Form). Let X be a formula and Σ a
realization scheme for X. Then X is provably equivalent in CS + Σ to a positive disjunctive
normal form.

Combining the previous results, we obtain:

Corollary 4 (Positive Standard Form). Let X be a formula and Σ a realization
scheme for X. Then X is provably equivalent in CS + Σ to a positive standard form
Y. Moreover, Y can be taken to be disjunctively non-repetitive given axiom E16 and
conjunctively non-repetitive given axioms E17 + E18.

I have stated these results using the notion of provable equivalence. But we should
note that by Soundness corresponding results will hold for the notion of semantic
equivalence. Thus in the case of Theorem 1, we will have that every formula is exactly
equivalent to a disjunction of state descriptions and, in the case of Corollary 3, we
will have that, given a realization scheme Σ, every formula X will be Σ-equivalent to
a positive disjunctive normal form Y, i.e., that |X| and |Y| will be the same in any
model in which the equivalences of Σ hold. I should also remark that in the subsequent
treatment we could dispense with realization schemes by taking the models to be bi-
definite (and adopting axioms E17 and E18). However, the present treatment is more
general in that it allows an atom to have any positive finite number of falsity-makers.

Related rules can be given for the logic of containment within the set-theoretic
semantics [8, Section 6]. An alternative approach, which we adopt here, builds the
logic of containment on top of the logic of equivalence. Using ‘X > Y’ as a symbolic
notation for the containment relation, this requires that the following rules be added
to the previous rules E1–E16:

C1. X > Y,X ≡ X′,Y ≡ Y′/X′ > Y′;
C2. X ∧ Y > X as long as Y does not contain a negative occurrence of �;
C3. X > X′,Y > Y′/X ∨ Y > X′ ∨ Y′.

Note the restriction on C2. This is required since X ∧ ⊥ > X, for example, is not
valid (for discussion, see the sub-section on partial content in [6]).

Using normal forms, we can also establish completeness for the various underlying
systems along the lines of Fine [5]. Thus in the case of the system CS, we have:

Theorem 5 (Soundness and Completeness of CS). The formula X ≡ Y is derivable in
CS iff X is exactly equivalent to Y.
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Or again, in the case of the system for the logic of equivalence and containment
described above, we can first use the original rules E1–E16 to put the formulas X and
Y into appropriate disjunctive normal form and then use the additional rules C1–C3
to establish X > Y when X semantically contains Y.

§6. Situations and actions. The semantics for conditional imperatives will involve
both situations and actions. Roughly, the idea is that a situation is a situation in which
one acts—as when one takes an umbrella in the situation in which it rains. Actions
may themselves be, or may constitute, situations—as when one puts on a rain coat
in a situation in which one has taken an umbrella. We accordingly take a situation–
action space (or S/A space) SI,A to be a structure (SI, SA,�), where SI = (SI,�) is
a state space and SA is a subset of SI closed under fusion (

⊔
B ∈ SA whenever B ⊆

SA). Intuitively, SI consists of states or situations and SA of actions. We have here
presupposed that each action is identical to a situation, but this constitutes no great
metaphysical commitment on our part. We could just as well have taken each action
to constitute the situation in which that action is performed.

We set SA = (SA,�� SA) and call it an action (or A-) space. It should be evident
that SA is a subspace of SI, and often we shall use � in place of �� SA when it is clear
that the relata are actions. The null action �A from SA is identical to the null situation
�I from SI (to do nothing and for nothing to be is one and the same)—for which
reason, we designate both as �. But although �A and �I are the same, the full action
�A (the fusion of all actions) will not, in general, be the same as the full situation �I

(the fusion of all situations) but merely a proper part of �I.
Given any situation s ∈ S, there will be a greatest action as that is a part of s , viz.⊔
{a ∈ SA : a � s}. Since SA is closed under arbitrary fusions, as is indeed an action.

However, we cannot in general assume that all parts of actions will also be actions.
Call a situation pure if it contains no non-null action (one might for this reason think

of it as a pure ‘state of nature’) and otherwise call it impure. We can plausibly assume:

Situation Decomposition: Any situation s is the fusion of a pure situation and an
action.

We might, similarly, call an action pure if it does not contain a pure situation (other
than the null situation). Although Situation Decomposition has some plausibility, it is
not so plausible to assume:

Action Decomposition: Any action is the fusion of a pure situation and a pure action.
Consider, for example, the action of raising my arm. This contains the situation

of my arm rising, which arguably is a pure situation, i.e., one that does not contain
a non-null action. However, it is far from clear that it fuses with any pure action to
form the action of raising my arm since this would appear to require an analysis of the
action of my raising my arm into a purely physical and a purely mental component.

There are three kinds of models, corresponding to the three kinds of state space. A
situation (or S-) modelM I over the situation spaceSI = (SI,�I) is a triple (SI,�I, | · |I),
where | · |I (the indicative valuation) is a function taking each indicative atom s into a
pair of multi-sets |s|+I and |s|–I of situations (the respective truth- and falsity-makers of
s). Relative to such a model, we can then assign a multi-set of truth-makers |S|+I and
a multi-set |S|–I of falsity-makers to each indicative sentence S in accordance with the
clauses given for the multi-set semantics in Section 4.
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For the purposes of the extended normal form theorem, we assume that the situation
models are definite, i.e., that |s|+I for each indicative atom s is singleton. This means
that we can take the underlying logic for indicative formulas to be given by CS + E17
and that we can assume that, for any realization scheme Σ for an indicative formula S,
S will be provably Σ-equivalent in CS + E17 to a standard conjunctively non-repetitive
normal form.

An action (A-) model MA over the action space SA = (SA,�A) is a triple
(SA,�A, | · |A), where | · |A (the imperative valuation) is a function taking each
imperative A-atom a! into a pair of sets |a! |+A and |a! |–A of actions (the respective
actions in compliance with or in contravention to a!). Relative to such a model, we can
then assign a set of compliance-makers |P|+A and a set |P|–A of contravention-makers
to each →-free imperative P constructed from the imperative A-atoms in accordance
with the clauses given for the standard set-theoretic semantics in Section 3. Since the
semantics is set-theoretic, we can take the underlying logic to be CS + E16 and any such
formula P will therefore be provably equivalent to a standard disjunctive non-repetitive
normal form.

Finally, a situation-action (S/A) model M I,A over the situation–action space
SI,A = (SI, SA,�) is a quintuple (SI, SA,�, | · |I, | · |A), where (SI, SA,�, | · |I) is a
situation model and (SI, SA,�, | · |A) is an action model. Thus a situation–action
model enables us, separately, to interpret indicative and imperative formulas, though
not the conditional imperatives in which the two kinds of formulas come together.
We shall make a critical assumption about any situation–action model. Suppose
|a! |+A = {a1, a2, ... } and |a! |–A = {b1, b2, ... }, where the a1, a2, ... and the b1, b2, ...
are chosen to be pairwise distinct. Then |a|+I = [a1, a2, ... ] and |a|–I = [b1, b2, ... ]. In
other words, the interpretation of the A-atom a! and the corresponding indicative
atom a should be coordinated so that the truth-makers for indicative a are the actions
in compliance with imperatival a! and the falsity makers for a are the actions in
contravention to a!.

This assumption gives rise to an issue. For whereas a state that is the truth-maker for
‘you shut the door’ may well be an action in compliance with ‘(you) shut the door’, it is
far from clear that any state that is a truth-maker for ‘you did not shut the door’ need
be an action in compliance with ‘do not shut the door’. For suppose, upon hearing
you command ‘do not shut the door’, that I race to the door with the intention of
shutting it but trip and end up leaving the door open. Then it is plausible to suppose
that what I do is not in compliance with the imperative ‘do not shut the door’. For this
would appear to require, not merely that I fail to shut the door, but that I refrain from
shutting the door.4

This means that in order to ensure that the truthmakers for ‘you do not shut the
door’ are the same as the ‘actions’ compliant with ‘do not shut the door’, we must
either adopt a narrower view of what the truth-makers might be or a broader view of
what the actions might be. I am inclined to think that for most purposes we should
adopt the former view. For we may suppose that under normal circumstances accidents
like the one above will not happen and that, given that a negative imperative has been
invoked, the agent will only fail to perform the required action by refraining from
performing that action.

4 The present discussion extends the discussion of negative imperatives in Section 2 of [8].
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§7. Plans. In extending the semantics that we earlier gave for categorical
imperatives in terms of compliance- and contravention-conditions to conditional
imperatives, we face a basic question. What should we take to be the nature of the
items or ‘states’ in compliance with or in contravention to a conditional imperative?
What, for example, should we take to be in compliance with the imperative ‘if it rains
then take an umbrella’?

One natural answer is that we should take it to be an action, as before, but one
whose compliance with the imperative is relative to a situation. Thus relative to the
situation in which it rains, the action of taking an umbrella will be in compliance with
the imperative, while, relative to a situation in which it is not rainy, the null action will
be in compliance with the imperative. The clauses for the various connectives will then
also be relativized to a situation. Thus relative to any given situation, we may take the
actions in compliance with a conjunctive imperative to be the fusions of those actions,
which, relative to the given situation, are in compliance with its respective conjuncts.

Unfortunately, this will not in general give us what we want. Consider the following
two imperatives:

(1) (if it rains take an umbrella and if it is sunny take a parasol) or (if it rains wear a
coat and if it is sunny wear a hat) ((R → U! ) ∧ (S → P! ) ∨ ((R → C! ) ∧ (S →
H! ));

(2) (if it rains take an umbrella and if it is sunny wear a hat) or (if it rains wear a coat
and if it is sunny take a parasol) ((R → U! ) ∧ (S → H! ) ∨ ((R → C! ) ∧ (S →
P! )).

The two imperatives are clearly different in their import. In preparing for the first,
one will have an umbrella and a parasol or a coat and a hat at hand, while, in preparing
for the second, one will have an umbrella and a hat or a coat and a parasol at hand.
But in any situation, the same actions will be in compliance with each of the two
imperatives. Thus in the situation in which it rains, the actions in compliance with
either imperative will be taking an umbrella or wearing a coat and, in the situation
in which it is sunny, the actions in compliance with either imperative will be taking a
parasol or wearing a hat. What the present semantics ignores is an interdependence
that may exist between what is required in different situations. Thus in the first case,
taking an umbrella in the situation in which it rains is to be paired with taking a parasol
in the situation in which it is sunny, while, in the second case, it is to be paired with
wearing a hat.

We may avoid this difficulty by packaging the situation s and the action a into a
single item, something which we might represent by the ordered pair (s, a). We might
think of (s, a) as a conditional action, the action of doing a conditional upon s , where
the performance of this action requires nothing in case s does not obtain and requires
the performance of a (or better: the performance of a in the situation s) in case s
does obtain.5 These conditional actions can then be fused in a natural way. Thus the
fusion of (s, a) and (t, b), for s �= t, will be a complex action, which we can represent
as {(s, a), (t, b)} and which will consist in doing a in situation s and b in situation t.

5 The reason for the qualification arises from the consideration of Chisholm’s puzzle, which
requires, in my opinion, that we take what is to be done to be relative to an actual situation
and not simply to a time [11].
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The previous problem then disappears for, using an obvious notation, {(r, u), (s, p)},
for example, will be in compliance with the first imperative but not the second.

A pleasing simplification to the present approach is available to us. For presumably,
we can identify the fusion of the states (s, a1), (s, a2), ... , where the first component s
is always the same, with (s, (a1 
 a2 
 ··· )), and presumably, we can identify the case in
which, relative to a situation s , nothing has been required of us, with the conditional
action (s,�) (where �, recall, is the null action). But this means that the items in
compliance with a conditional imperative or with a truth-functional compound of
conditional imperatives can be taken to be total plans, i.e., with functions which
associate each situation with a single action. We can, moreover, identify any action a in
compliance with a categorical imperative with the conditional action (�, a) of doing
a in the null situation. This then means that we can treat total plans, telling us what
is to be done in each situation, as the compliance- and contravention-makers for all
imperatives.

This plan-based semantics is suggestive of a richer, more subjective, understanding
of imperatives. It was perhaps true all along that we should think of the action in com-
pliance with an imperative, such as ‘shut the door’, not simply as the action of shutting
the door but as the action of shutting the door by way of conforming to the imperative
(or what it prescribes). But we can now think of an imperative as telling us, not simply
what to do, but what to plan on doing. Thus the item in conformity with the conditional
imperative ‘take an umbrella if it rains’ will now be the adoption of a plan to take an
umbrella if it rains (or perhaps we should say the effective adoption, so that the plan is
indeed acted upon should the occasion arise). Similarly, the item in conformity with the
positive categorical imperative ‘shut the door’ will be an (effective) decision to shut the
door and the item in conformity with the negative categorical imperative ‘do not shut
the door’ will be an effective decision not to shut the door. Thus from this perspective,
what an imperative most immediately requires is an internal change in our readiness to
act rather than an external change in how we actually do act. I am not saying that this
understanding of imperatives is forced upon us, but it is one that naturally arises when
conditional imperatives are in play and when the agent is indeed capable of making
decisions or of planning for future contingencies. In such a case, the imperative, if
successful, will serve to ‘prime’ the agent to do what the imperative requires.

Let us now make the previous informal discussion more precise. Suppose SI,A =
(SI, SA,�) is an S/A space. A plan p in SI,A is then a (total) function from SI into
SA. Intuitively, a plan tells the agent what to do in each situation s ∈ SI. We use S+

P to
denote the set of all plans in SI,A (the ‘+’ here indicates fullness not positivity), and,
given p, q ∈ S+

P , we define the relation �+
P of part on plans in usual point-wise fashion:

p �+
P q iff p[s] � q[s] for each s ∈ SI.

Thus one plan p is said to be part of another if what it enjoins in any situation is part
of what the other plan enjoins in that situation.

There are two variants on this notion of a plan that we should mention even though
they will not be pursued. Under the first, a plan p is a partial function from the set
of situations to the set of actions. With each partial plan p may be associated the
corresponding total plan p+, where:

p+[s] = p[s] when p[s] is defined,
= � otherwise.
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However, one cannot, conversely, recover p from p+ since it may be that p+ = q+

even though p, say, takes the value � for a specific situation s for which q takes no
value, and, on a certain highly fine-grained conceptions of content, this difference in
the situations on which a plan is defined may be regarded as relevant to the meaning
of an imperative.

The other variant is to allow a plan p to be indeterminate so that its value p[s] for a
given situation s can be a non-empty set of actions (or also the empty set if partiality
is also allowed). However, it may be argued that any indeterminate plan can just as
well be viewed as a disjunction of determinate plans (for which the value p[s] is always
a single action). Thus adopting the plan of doing a or b in situation s and c or d in
situation t can be viewed as adopting the plan to do a in s and c in t or the plan to
do a in s and d in t or the plan to do b in s and c in t or the plan to do b in s and d
in t. There would therefore appear to be no need to appeal to indeterminate plans in
developing a semantics for conditional imperatives.

However, there may well be a need to consider indeterminate transitions in the case of
counterfactuals and other conditional constructions. Thus even though the imperative
‘if it rains then take an umbrella or wear a coat’ can be taken to be equivalent to
‘if it rains then take an umbrella or if it rains then wear a coat’, it is not so clear
that the counterfactual ‘if it were to rain then you would take an umbrella or wear a
coat’ should be taken to be equivalent to ‘if it were to rain then you would take an
umbrella or if it were to rain then you would wear a coat’. Thus in a more general
theory of conditionals we should allow for the route from antecedent to consequent to
correspond to an indeterminate transition.

With each S/A space SI,A = (SI, SA,�) may be associated the full planning space
S+

I,A,P = (SI, SA, S
+
P ,�) and the full plan space S+

P = (S+
P ,�+

P ). S+
P is, of course, the

‘functional’ space from the situation space SI into the action space SA. It is readily
verified that S+

P is indeed a state space, whose bottom element �P is the function p on
SI whose value p(s) is always �A = � and whose top element �P is the function p on
SI whose value p(s) is always �A.

However, our interest will often not be in all of the plans of S+
P but only in a subset

of ‘admissible’ plans that are subject to certain constraints. Accordingly, a (closed)
planning space is taken to be a structure SI,A,P of the form (SI, SA, SP,�P), where the
plan space SP = (SP,�P) is a subspace of the full plan space S+

P = (S+
P ,�+

P ) subject to
the condition that for each plan p in S+

P there is a plan q �+
P p in SP. Thus, according

to this condition, any possible plan can always be extended to an admissible plan.
Where it is evident from the context, we may drop the subscript ‘P’ or ‘+P ’ from �.

Since the plan space SP is complete, it follows that there will be a least plan in SP

containing any given plan p of S+
P , which we dub the closure p∗ ofp. The operation:

p → p∗ has the standard features of a closure operation with respect to �P:

p �P p
∗

p �P q ⇒ p∗�P q
∗

p∗∗ �P p
∗

appeal to which will often be implicit in what follows. A plan p of S+
P is itself said to

be closed if p = p∗. Clearly, the closed plans of S+
P are simply the plans of SP.

We should note that the fusion of plans p1, p2, ... in SP will be p∗, where p =
p1 
 p2 
 ··· is the fusion of p1, p2, ... in S+

P . In other words, taking
⊔∗ to be the

https://doi.org/10.1017/S175502032300028X Published online by Cambridge University Press

https://doi.org/10.1017/S175502032300028X


20 KIT FINE

fusion operation for the closed subspace,
⊔∗
pk = (

⊔
pk)∗, and there is no reason why⊔∗

pk in general should be identical to
⊔
pk .

The closure operation:p → p∗ on plans could, in principle, obliterate all distinctions
between plans by making p∗ always equal to �P.6 We shall therefore sometimes find
it helpful to suppose that there is some constraint in how far p∗ can go in extending
a given plan p. Set p⊕[s] = (as


⊔
Rg(p)). Then the operation p → p∗ is said to

be bound if p∗ � p⊕. We might think of this condition as telling us that, in defining
p∗(s) � p(s), the only actions we can add to p(s) are those already in s or in the range
of p.

§8. Conditions on plans. There are a number of natural conditions one might wish
to impose on a plan space. They will not make a difference to the logics considered
below. However, they will make a significant difference to the logics considered in part
IV, once we allow for the coordination a ⇐⇒ a! between indicative and imperative
atoms, so that the indicative atom ak corresponding to an imperative atom ak ! is
allowed to occur in the antecedent of a conditional imperative.

One condition often introduced in the context of a functional space is

Monotonicity: s � t ⇒ p[s] � p[t].

From a technical point of view, this is a very desirable condition. However, under our
semantics, it would require us to accept Antecedent Strengthening (so that from ‘if it
rains then take an umbrella’ we can infer ‘if it rains and there is a strong wind then take
an umbrella’), and since we not wish in general to accept Antecedent Strengthening,
nor can we accept Monotonicity.

One condition I have previously suggested is

Semi-Inclusion: ifa � s then a � p[s].

In other words, when the situation on which a plan operates contains an action then
the plan can be taken to require that action. Since as is the maximal action to be
contained in the situation s, we can state the condition more simply in the form

Semi-Inclusion: as � p[s].

When s is an action a then as = a and, so in this special case, we get the more familiar

Action Inclusion: a � p[a].

However, we cannot in general assume:

s � p [s]

since p[s] will be an action of which the situation s might not be a part.
Another condition we wish to accept is

Follow-Through: p[s] � t ⇒ p[s] = p[s 
 t].

6 I have previously used → as a sentential connective, I here use it to indicate functionality,
and I shall later use it as an abstraction operation on prescriptions and plans—but always in
such a way, I hope, as to cause no confusion.
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This says that what we are to do under a given plan should be the same as what we are
to do under partial compliance with the plan. Thus we cannot evade or enhance the
demands of a plan through partial compliance. This condition will later be of critical
importance in establishing the validity of Imperative Detachment.

We may divide the condition into two parts

Follow-Up: p[s] � t ⇒ p[s] � p[s 
 t]
Follow-Down: p[s] � t ⇒ p[s 
 t] � p[s].

The first says that what we are to do under a given plan should contain (looking up)
what we are to do under partial compliance with the plan, while the second says that
what we are to do under partial compliance should contain (looking down) what we
are to do under the given plan.

In the special case in which t = p[s], we get:

p [p [s] 
 s] = p [s] .

What we are to do under a given plan should be the same as what we are to do under
complete compliance with the plan. When s is an action a, this becomes:

p[p[a] 
 a] = p[a].

Given Action Inclusion, a � p[a] and so this becomes the familiar closure condition:

p[p[a]] = p[a]

and so, in particular,

p[p[�]] = p[�].

To illustrate: perhaps in the null situation, I am (according to the plan) to turn on the
stove and, in a situation in which I turn on the stove, I am to light the stove; it then
follows, according to the condition, that in the null situation, I am (according to the
plan) to turn on the stove and light it. However, we do not in general have

p[p[s]] = p[s]

since p[s] may not contain s.
I wish now to introduce a general method for getting from a plan that may not

satisfy some of the above conditions to one that does. To this end, it will be helpful to
introduce some familiar material on fixed points, which will be presupposed in what
follows. (The less technically inclined reader may omit the rest of this section and the
related material in Section 11).

Suppose F is an inclusive operation on plans, i.e., p � F (p) for any plan p. Given a
plan p, define a (transfinite) sequence of plans p0, p1, ... by

p0 = p,
p�+1 = F(p�), and
p� =

⊔
{p� : � < �}.

We may then establish by induction thatpα � p� wheneverα < � ; forp� � F (p�) =
p�+1, given that F is inclusive, and, for � < �, p� �

⊔
{p� : � < �} = p�. It follows, by

considerations of cardinality, that there will be a least ordinalα for which pα = pα+1 =
F (pα). We dub pα the inclusive fixed point of F and, where α is this least ordinal, we
set pF = pα .
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When the operation F is also monotonic, then pF is the least fixed point of F
to contain p. For suppose q is a fixed point containing p, i.e., F(q) = q and q�p.
We may show by induction on α that pα � q. For: when α = 0, p0 = p � q by
supposition; when α = � + 1, then p� � q by IH, and so p�+1 = F(p�) � F(q�) = q
by the monotonicity of F ; and when α = �, p� � q for each � < � by IH and so
p� =

⊔
{p� : � < �}. Moreover, when F is monotonic, the operation p → pF is also

monotonic. For suppose p � q. Then pF is the least fixed point of F to contain p. But
qF is a fixed point of F that contains p and so pF � qF .

We shall later find it useful to consider a generalization of the above construction.
Suppose that<F α> is a sequence of inclusive operations on plans (theF α ’s may repeat
and, for simplicity, we have taken<F α> to be defined on all ordinals α). Given a plan
p, we define a corresponding sequence of plans <pα> by

p0 = p,
p�+1 = F �(p�), and
p� =

⊔
{p� : � < �}.

The only difference from the previous definition is that the operation applied at the
successor stage � + 1 is allowed to vary with � . Again, by considerations of cardinality,
there will be a least ordinal α for which pα = pα+� for all ordinals � . For this least
ordinal α, we may then set pF = pα. And again, we may show, in the same way as
before, that when each of the operations p → Fα(p) is monotonic then pF is the least
fixed point containing p for all of the Fα and that the operation: p → pF is monotonic.

I now wish to use the above constructions to show how any plan can be minimally
extended to a plan subject to the previous constraints.

Lemma 6 (Follow-Up). For any plan p there is a least plan p↑ � p conforming to the
condition:

p↑[s] � t ⇒ p↑[s] � p↑[s 
 t]

where the operation p → p↑ is monotonic.

Proof. Define the operation p → p ↑ on plans (to be distinguished from p → p↑)
by:

p ↑ [s] =
⊔

{p [s 
 t] : t � p [s]} .

(1) The operation: p → p ↑ is inclusive.

Pf: Since p[s] � �, p[s] = p[s 
�] �
⊔
{p[s 
 t] : t � p[s]} = p ↑ [s].

Define p↑ as the inclusive fixed point (with respect to the operation: p → p ↑).

(2) Suppose that p � q and that q[s] � q[s 
 t] whenever q[s] � t. Then p↑ � q.
Pf: We show by induction on α that pα � q, where the sequence of the pα is defined

as above by reference to the operation p → p ↑. Since p↑ is of the form pα for some α,
it will follow that p↑ � q.

(i) α = 0. By supposition.
(ii) α = � + 1. Then pα = p� ↑, where p� ↑ [s] =

⊔
{p� [s 
 t] : t � p� [s]}. So

we need to show p� [s 
 t] � q[s] whenever t � p� [s]. But p� � q by IH.
Hence p� [s] � q[s], and so, given t � p� [s], t � q[s]. So by the condition
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imposed upon q in (2), q[s 
 t] � q[s]. But by IH, p� [s 
 t] � q[s 
 t], and
so p� [s 
 t] � q[s].

(iii) α = �. Then pα =
⊔
{p� : � < α}. By IH, p� � q for each � < α, and so pα =⊔

{p� : � < α} � q.
(3) p↑[s] � t ⇒ p↑[s] � p↑[s 
 t].

Pf: Suppose p↑[s] � t. Then p↑[s] = p↑ ↑ [s] � p↑[s 
 t] by definition of p↑ and ↑.

(4) The operation: p → p ↑ is monotonic.

Pf: Suppose p � q. Then:

p ↑=
⊔
{p[s 
 t] : t � p[s]}

�
⊔
{q[s 
 t] : t � q[s]}

(since if t � p[s] then t � q[s] and p[s 
 t] � q[s 
 t])
= q ↑ .

From (2) and (3) it follows that p↑ is the least plan q � p conforming to Follow-Up
and from (4) it follows, from our earlier observation, that the operation p → p↑ is also
monotonic.

Lemma 7 (Follow-Down). For any plan p there is a least plan p↓ � p conforming to
the condition

p↓ [s] � t ⇒ p↓ [s 
 t] � p↓ [s] ,

where the operation p → p↓ is monotonic.

Pf: Note that the condition imposed on p↓ is equivalent to

u = s 
 t&p↓ [s] � t ⇒ p↓ [u] � p↓ [s] .

So let us define the operation p → p ↓ on plans by

p ↓ [u] =
⊔

{p [s] : u = s 
 t and p [s] � t} .

(1) The operation p → p ↓ is inclusive.

Pf: We set u = s and t = � in the definition of p ↓ [u]. Since u = u 
� and p[u] �
�, it follows thatp[u] =

⊔
{p[s] : u = s 
� andp[s] � �} �

⊔
{p[s] : u = s 
 t and

p[s] � t} = p ↓ [u].
Define p↓ as the inclusive fixed point (with respect to the operation: p → p ↓).

(2) Suppose that p � q and that q[u] � q[s] whenever u = s 
 t and q[s] � t.
Then p↓ � q.

Pf: It suffices to show pα � q, where the sequence of pα ’s is defined as before, but
by reference to the operation p → p ↓. The proof is by induction on α. The cases in
which α = 0 or α = � are straightforward, and so let us focus on the case in which
α = � + 1. Then pα = p�↓, where p� ↓ [u] =

⊔
{p� [s] : u = s 
 t and p� [s] � t}.

So we need to show that q[u] � p� [s] whenever u = s 
 t and p� [s] � t, i.e., that
q[s 
 t] � p� [s] whenever p� [s] � t. But p� � q by IH. Hence p� [s] � q[s], and so,
given t � p� [s],t � q[s]. By the condition imposed in (2) upon q, q[s] � q[s 
 t], and
so p� [s] � q[s 
 t].

(3) p↓[s] � t ⇒ p↓[s 
 t] � p↓[s].

Pf: Suppose p↓[s] � t. Then p↓[s 
 t] = p↓ ↓ [s 
 t] � p↓[s] by definition of ↓

and ↓.
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(4) The operation p → p ↓ is monotonic.

Pf: Suppose p � q. Then

p ↓ [u] =
⊔

{p [s] : u = s 
 t and p [s] � t}

�
⊔

{q[s] : u = s 
 t and q[s] � t}
(since if p[s] � t then q[s] � p[s] � t)

= q ↓ [u].

From (2) and (3) it follows that p↓ is the least plan q � p conforming to Follow-
Down and from (4) it follows that the operation p → p↓ is also monotonic.

Lemma 8 (Semi-Inclusion). For any plan p, there is a least plan p→ � p satisfying
the condition

as � p→ [s] ,

where the operation p → p→ is monotonic.

Proof. Given a plan p, define its expansion p→ by:

p→ [s] = p [s] 
 as .
Clearly, p→ � p and satisfies Semi-Inclusion. It is also the least plan containing p

to satisfy Semi-Inclusion. For if q � p and satisfies Semi-Inclusion, then p[s] � q[s]
and as � q[s] and so p→[s] = p[s] 
 as � q[s].

Also, if p � q then p→[s] = p[s] 
 as � q[s] 
 as = q→[s].

Lemma 9 (Monotonicity). For any plan p there is a least plan pˇ � p satisfying the
condition

s � t ⇒ pˇ [s] � pˇ [s] ,

where the operation p → pˇ is monotonic.

Proof. Set pˇ [s] =
⊔
{p[s ′] : s ′ � s}. Then the operation s → pˇ(s) is monotonic.

For suppose s � t. Then pˇ[s] =
⊔
{p[s ′] : s ′ � s} �

⊔
{p[s ′] : s ′ � t} = pˇ[t].

Now suppose q is a monotonic plan containing p. Then for s ′ � s, q[s] � q[s ′] since
q is monotonic and q[s ′] � p[s ′] since q � p. Consequently, qˇ [s] �

⊔
{p[s ′] : s ′ �

s} = pˇ[s].
Also, if p � q then pˇ [s] =

⊔
{p[s ′] : s ′ � s} �

⊔
{q[s ′] : s ′ � s} = qˇ [s] and so

the operation p → pˇ is monotonic.

We are now in a position to combine our various results. Let us call the various
conditions mentioned above the standard conditions. Then:

Theorem 10. Given any combination of the standard conditions, there is, for any plan p,
a least plan p∗ � p satisfying the combination of conditions.

Proof. Let us illustrate the method of proof for the case of Follow-Through (the
combination of Follow-Up and Follow-Down). We wish to show that, for any plan p,
there is a least plan p� � p satisfying Follow-Through, where the operation: p → p�
is monotonic. We therefore define a sequence <F α> of operations on plans by letting
F α be the operation: p → p↑ when α is of the form �+ 2n and letting F α be the
operation:p → p↓ whenα is of the form �+ 2n + 1. We then takep� to be the inclusive
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fixed point p� with respect to the sequence <F α>. p�↑ = p� and so p� conforms to
Follow-Up, and p�↓ = p� and so conforms to Follow-Down. Since the operations
p → p↑ and p → p↓ are monotonic, it follows that p� is the least fixed point of the
operations p → p↑ and p → p↓ to contain p and hence the least plan containing p to
conform to Follow-Up.

This result means that if we define the admissible plans SP of a plan space SP =
(SP,�+

P � SP) to be those conforming to a combination of standard conditions, then
SP will be a state space in which the restricted relation �+

P � SP of part-whole is indeed
complete. For given any set {p1, p2, ... } of admissible plans, there will be a least plan
conforming to the conditions that contains p1 
 p2 
 ··· . Let us also note that, by
examining how the standard operations p → p∗ have been defined, we may easily
verify that each of them is bound, i.e., that p∗ � p⊕.

§9. Plans, partial plans, and actions. In what follows, I assume given a situation–
action space SI,A = (SI, SA,�) and an associated plan space SP = (SP,�). Recall that,
for each plan p in S+

P , there will be a smallest plan p∗ � p in SP.
As already noted, there is a natural extension—the completion—p+ of a partial plan

p, which is a function from SI into SA, where, for any state s ,

p+[s] = p[s] when s ∈ Dm(p), and
p+[s] = � otherwise.

Thus p+ takes the null value � when p would otherwise be undefined. We may then
let the closure p∗ of a partial plan p be p+∗. This definition agrees, of course, with the
original definition of p∗ when p is itself a total function.

Given a situation s and an action a, let s ↪→ a be the plan {<s, a>}+ and let s → a
be the plan (s ↪→ a)∗. Thus s ↪→ a is the plan p such that

p[t] = a when t = s , and
= � otherwise

and s → a is its closure p∗. We should think of (s → a) as the singular plan from s to
a. It embodies the instruction to do a in situation s , but subject to closure.

Each closed plan is the fusion of its component singular plans:

Lemma 11. For any closed plan p, p =
⊔∗{(s → p[s]): s ∈ SI}.

Proof. Set q =
⊔∗{(s → p[s]): s ∈ SI}. Then q � p. For by the definition of ↪→, it

follows that, for any s ∈ SI, (s ↪→ p[s])[s] = p[s] and (s ↪→ p[s])[t] = � � p[s] when
t �= s . So (s ↪→ p[s]) � p; so (s → p[s]) = (s ↪→ p[s])∗ � p∗ = p (since p is closed);
so

⊔
{(s → p[s]): s ∈ SI} � p; and so q =

⊔∗{(s → p[s]): s ∈ SI} � p∗ = p.
Also, p � q. For given any s ∈ SI, p[s] = (s ↪→ p[s])[s] � (s ↪→ p[s])∗[s] = (s →

p[s])[s] �
⊔
{(s → p[s]): s ∈ SI} �

⊔∗{(s → p[s]): s ∈ SI} = q.

We may obtain a natural embedding of actions into plans by letting pa , for each
action a, be � ↪→ a and by letting p∗a be (pa)

∗ (= (� → a) = (� ↪→ a)∗). Thus each
action is identified with the plan of doing that action in the null situation. We might
think of p∗a as being reached in three steps: first, by identifying a with the partial
function {<�, a>}; then, by identifying the partial function with the total function
(� ↪→ a) = {<�, a>}+; and, finally, by taking the closure (� → a) = (� ↪→ a)∗ of
(� ↪→ a).
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The map: a → p∗a will normally constitute an embedding of the action space SA into
the plan space SP:

Lemma 12. Let SA
P = {p∗a : a ∈ SA} and let SA

P be the restriction of the plan space
SP to SA

P . Then, as long as the underlying closure operation p → p∗ is bound, the map
a → p∗a constitutes an isomorphism between SA and SA

P .

Proof. Recall that p⊕(s) = (as 

⊔
Rg(p)). Setting p = (� ↪→ a) and s = �, we

see that as = �, that Rg(p) = {�, a}, and hence that
⊔
Rg(p)) = a. So, given that

the closure operation p → p∗ is bound, a � (� ↪→ a)∗[�] = p∗a [�] � p⊕(s) = a, and
so p∗a [�] = a. It follows that the map a → p∗a is one–one. For if a �= b then p∗a [�] = a
and p∗b[�] = b and so p∗a �= p∗b .

It remain to establish that the map preserves �. So suppose a � b. Then � ↪→
a � � ↪→ b. Hence p∗a = (� ↪→ a)∗) � (� ↪→ b)∗ = p∗b . Now suppose aĹ b. Then
p∗a [�] = aĹ b = p∗b[�] and so p∗a Ĺp∗b .

This result tells us that we may identify an action a with the corresponding plan
p∗a and this will enable us to present the semantics for categorical and conditional
imperatives exclusively in terms of plans.

§10. Core conditionalization. We introduce the key operation of conditionalization
on plans—dealing with core non-closed plans in the present section and with closed
plans in the following section.

Given a situation s and a plan p, we let the (core) conditionalization (s ↪→ p) of p
on s be the plan

(s ↪→ p) =
⊔

{(s 
 t) ↪→ p [t] : t ∈ SI} .

Thus the conditional plan s ↪→ p is the fusion of the singular plans that send the
state s 
 t to the action p[t]. We might think of this definition in terms of resetting the
value of the default situation from � to s , so that (s ↪→ p) will take the same value
when s is the default as p takes when � is the default.

Say t ≡ u (mod s) if t 
 s = u 
 s . Clearly ≡ (mod s) is an equivalence relation. We
have the following alternative characterizations and elementary properties of (s ↪→ p):

Lemma 13. For any situations s , t, and u and plans p and p+:

(i) (s ↪→ p)[u] =
⊔
{p[t] : s 
 t = u}.

(ii) (s ↪→ p)[t] =
⊔
{p[t′] : t ≡ t′(mod s)} when t � s

= �otherwise.
(iii) (s ↪→ p)[t] � p[t] when t � s, and

(s ↪→ p)[t] � p[t] when tĽs.
(iv) For p � p+, (s ↪→ p) � (s ↪→ p+). (Right Monotonicity)
(v) For s � s+ � t, (s ↪→ p)[t] � (s+ ↪→ p)[t], and

for s � t, p[t] � (s ↪→ p)[t]. (Left Monotonicity)

Proof.

(i) (s ↪→ p)[u] =
⊔
{(s 
 t) ↪→ p[t] : t ∈ SI}[u]

=
⊔
{((s 
 t) ↪→ p[t])[u] : t ∈ SI}

=
⊔
{((s 
 t) ↪→ p[t])[u] : s 
 t = u} 


⊔
{((s 
 t) ↪→ p[t])[u] :

s 
 t �= u}
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=
⊔
{p[t] : s 
 t = u} 


⊔
{� : s 
 t �= u}

=
⊔
{p[t] : s 
 t = u}.

(ii) (s ↪→ p)[t] =
⊔
{p[t′] : s 
 t′ = t} by (i). But when t � s , s 
 t′ = t iff s 


t′ = s 
 t, i.e., iff t ≡ t′(mod s) and, when tĽs , there are no t′ such that
s 
 t′ = t and so

⊔
{p[t′] : s 
 t′ = t} = �.

(iii) From (ii).
(iv) From (i).
(v) Suppose s � s+ � t. By (ii), (s ↪→ p)[t] =

⊔
{p[t′] : t′ ≡ t (mod s)} and

(s+ ↪→ p)[t] =
⊔
{p[t′] : t′ ≡ t (mod s+)}. But t′ ≡ t (mod s) implies t′ ≡

t (mod s+) given s � s+ and so
⊔
{p[t′] : t′ ≡ t (mod s)} �

⊔
{p[t′] : t′ ≡

t (mod s+)}.
Also when s � t, (s ↪→ p)[t] =

⊔
{p[t′] : t′ ≡ t (mod s)} � p[t] since t ≡

t (mod s).

Use of these results, and of (i) in particular, will often be implicit.
These results shows that the conditional plan s ↪→ p only ‘kicks in’ within a situation

containing the antecedent situation s and that, when the plan does kick in, it assumes
a cumulative interpretation. The value of s ↪→ p at s 
 t in such a case is not merely
p[t] but the result of adding to p[t] any other values p[t′] for which s 
 t = s 
 t′. We
might justify the cumulative interpretation on the grounds that there is in general no
way to privilege any particular t′ for which s 
 t = s 
 t′, and so all such t′ should be
included.

The operation ↪→ has been used in the context s ↪→ a, for a an action, and also in
the context s ↪→ p, for p a plan. We may show that the two uses are in conformity with
one another:

Lemma 14. For any situation s and action a, s ↪→ pa = s ↪→ a.

Proof.

(s ↪→ pa)[t] = (s ↪→ (� ↪→ a))[t] by definition of pa

=
⊔

{(� ↪→ a)[t′]: s 
 t′ = t} by lemma 13(i).

For t = s :

(s ↪→ pa) [s] =
⊔{

(� ↪→ a)
[
t′

]
: s 
 t′ = s

}

=
⊔{

(� ↪→ a)
[
t′

]
: t′ � s

}

= (� ↪→ a) [�] 

⊔{

(� ↪→ a)
[
t′

]
: � � t′ � s

}

= a 

⊔

{�: � � t′ � s}
= a.

For t �= s :

(s ↪→ pa) [t] =
⊔{

(� ↪→ a)
[
t′

]
: s 
 t′ = t

}
.

But then the t′ �= � and so (� ↪→ a)[t′] = �. Hence:

(s ↪→ pa) [t] =
⊔

{�: s 
 t′ = t}
= �.

Thus, in either case (s ↪→ pa)[t] = (s ↪→ a)[t] and hence s ↪→ pa = s ↪→ a.
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We establish some basic algebraic properties of conditionalization:

Lemma 15. For situations s , s1, and s2 and plans p, p1, p2, ... :

(i) (� ↪→ p) = p.
(ii) s1 ↪→ (s2 ↪→ p) = (s1 
 s2) ↪→ p.
(iii) s ↪→ (p1 
 p2 
 ··· ) = (s ↪→ p1) 
 (s ↪→ p2) 
 ··· .
(iv) s ↪→ �P = �P.

Proof.

(i) (� ↪→ p)[t] =
⊔
{p[t′]: t′ 
� = t}

=
⊔
{p[t′]: t′ = t}

= p[t].
(ii) (s1 ↪→ (s2 ↪→ p))[t] =

⊔
{(s2 ↪→ p)[t′]: t′ 
 s1 = t}

=
⊔
{

⊔
{p[t′′]: t′′ 
 s2 = t′}: t′ 
 s1 = t}

=
⊔
{p[t′′]: t′′ 
 s2 = t′and t′ 
 s1 = t}

=
⊔
{p[t′′]: t′′ 
 s2 
 s1 = t}

= (s1 
 s2) ↪→ p.
(iii) (s ↪→ (p1 
 p2 
 ··· )[t] =

⊔
{(p1 
 p2 
 ··· )[t′]: t′ 
 s = t}

=
⊔
{(p1[t′] 
 p2[t′] 
 ··· ): t′ 
 s = t}

=
⊔

(p1[t′]: t′ � s = t} �
⊔
{(p2[t′]: t′ � s = t} � ···

= (s ↪→ p1)[t] 
 (s ↪→ p2)[t] 
 ···
= ((s ↪→ p1) 
 (s ↪→ p2) 
 ··· )[t].

(iv) (s ↪→ �P)[t] =
⊔
{�P[t′]: t′ 
 s = t}

=
⊔
{�: t′ 
 s = t}

= �
= �P[t].

§11. Closed conditionalization. We wish to extend the previous results for core
conditionalization to closed conditionalization. Recall that, given a closure operation
p → p∗ on plans, we define closed conditionalization by:

(s → p) =df (s ↪→ p)∗ .

Our aim is to extend the results on ↪→ in Lemmas 14 and 15 to →. To this end, we
assume that the closure operation ∗ satisfies the following condition7

Regularity: (s ↪→ p∗) � (s ↪→ p)∗.

In other words, the external closure of a conditional will contain the internal closure
of the conditional, in which we close on the consequent of the conditional rather than
on the conditional itself. (We shall later show that the standard closure operations on
plans conform to Regularity.)

We first note the analogue of Lemma 14:

Lemma 16. Suppose that ∗ is a closure operation conforming to Regularity. Then for
any situation s and action a,

(s → p∗a ) = (s → a).

7 This is reminiscent of the regularity condition that I have used in chapter 26 of [3] in
developing a more general form of the closure semantics.
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Proof. We need to show (s ↪→ p∗a )∗ = (s ↪→ a)∗. Now (s ↪→ p∗a ) � (s ↪→ pa)∗ by
Regularity. So: (s ↪→ p∗a )∗ � (s ↪→ pa) ∗∗ by Monotonicity of ∗

= (s ↪→ pa)∗
= (s ↪→ a)∗ by Lemma 14.

Also (s ↪→ a)∗ = (s ↪→ pa)∗ by Lemma 14
� (s ↪→ p∗a )∗ by Right Monotonicity of ↪→ (Lemma 13(iv)).

We also have the analogue of Lemma 15, with ↪→ replaced by → and with the
operation 
 on plans replaced by the operation 
∗ on closed plans:

Lemma 17. Suppose that the closure operation ∗ on plans conforms to Regularity. Then
for any situations s , s1, and s2 and closed plans p, p1, p2, ... :

(i) (� → p) = p;
(ii) s1 → (s2 → p) = (s1 
 s2) → p;
(iii) s → (p1 
∗ p2 
∗ ··· ) = (s → p1) 
∗ (s → p2) 
∗ ··· ;
(iv) s → �∗

P = �∗
P.

Proof.

(i) (� → p) = (� ↪→ p)∗
= p∗ by Lemma 15(i)
= p given that p is closed.

(ii) For the one direction, observe that:

(s1 
 s2) ↪→ p = s1 ↪→ (s2 ↪→ p) by Lemma 15(ii)

� s1 ↪→ (s2 ↪→ p) by Right Monotonicity of ↪→ .

Hence:

(s1 
 s2) → p = ((s1 
 s2) ↪→ p)∗ by the definition of →
� (s1 ↪→ (s2 ↪→ p)∗)∗ by the previous observation and the

Monotonicity of 

= s1 → (s2 → p) by the definition of →

For the other direction, observe that:

(s1 ↪→ (s2 ↪→ p)∗) � (s1 ↪→ (s2 ↪→ p))∗ by Regularity

� ((s1 
 s2) ↪→ p)∗ by Lemma 15(ii)

Hence:

(s1 → (s2 → p)) = (s1 ↪→ (s2 ↪→ p)∗)
∗

by definition

� ((s1 
 s2) ↪→ p)∗∗ by the previous observation and the

Monotonicity of ∗
= ((s1 
 s2) ↪→ p)∗

= (s1 
 s2) → p by definition.

https://doi.org/10.1017/S175502032300028X Published online by Cambridge University Press

https://doi.org/10.1017/S175502032300028X


30 KIT FINE

(iii) For the one direction, observe that:

s ↪→ (p1 
 p2 
 ··· )∗ � (s ↪→ (p1 
 p2 
 ··· ))∗ by Regularity

= ((s ↪→ p1) 
 (s ↪→ p2) 
 ··· )∗ by Lemma 15(iii) &

Monotonicity

� ((s ↪→ p1)∗ 
 (s ↪→ p2)∗ 
 ··· )
∗

= (s → p1) 
∗ (s → p2) 
 ∗ ··· .

Hence:

s → (p1 
∗ p2 
∗ ··· ) = (s ↪→ (p1 
∗ p2 
∗ ··· ))∗

= (s ↪→ (p1 
 p2 
 ··· ))∗)∗

� ((s → p1) 
∗ (s → p2) 
∗ ··· )∗ by the previous observation

= ((s → p1) 
∗ (s → p2) 
∗ ··· ).

For the other direction, observe that:

s ↪→ pk � s ↪→ (p1 
 p2 
 ··· ) by Right Monotonicity of ↪→
� s ↪→ (p1 
∗ p2 
∗ ··· )

and so (s ↪→ pk)∗ � (s ↪→ (p1 
∗ p2 
∗ ··· ))∗.
Hence:

(s → p1) 
∗ (s → p2) 
∗ ··· = (s ↪→ p1)∗ 
∗ (s → p2)∗ 
∗ ··· by definition

� (s ↪→ (p1 
∗ p2 
∗ ··· ))∗ by previous observation

= s → (p1 
∗ p2 
∗ ··· ).

(iv) For the one direction,

(s → �∗
P) = (s ↪→ (�P)∗)

∗

� (s ↪→ �P)∗∗ by Regularity

= (s ↪→ �P)∗

= �∗
P by Lemma 15(iv).

For the other direction, note that �∗
P � (s ↪→ �∗

P)∗ = (s → �∗
P) since �∗

P � q∗ for
any plan q.

We now develop a method by which we can show that an operation on plans satisfies
Regularity.

Lemma 18. Let <F α> be a sequence of inclusive monotonic operations on plans and,
relative to any given plan p, <pα> the corresponding sequence of plans defined by
reference to <F α> (as in Section 8). Suppose each Fα conforms to Regularity. Then for
each ordinal α:

(s ↪→ pα) � (s ↪→ p)α.
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Proof. By induction on α.

α = 0: (s ↪→ p0) = (s ↪→ p) = (s ↪→ p)0.

α = � + 1: (s ↪→ p�+1) = (s ↪→ F�(p�))

� F�(s ↪→ p�) since F� conforms to Regularity

� F�((s ↪→ p)�) by IH given that F� is monotonic

= (s ↪→ p)�+1

α = �: (s ↪→ p�) = (s ↪→
⊔

{p� : � < �})

=
⊔

(s ↪→ p�): � < �} by lemma 15(iii)

�
⊔

{(s ↪→ p)� : � < �} since, by IH, (s ↪→ p�) � (s ↪→ p)�

= (s ↪→ p)�

Lemma 19. (Regularity of Follow-Up). The operation p → p ↑ conforms to Regular-
ity.

Proof. We first show that for arbitrary plans p and q:
(∗) if p[t] � q[s 
 t] for all situations t then p ↑ [t] � q ↑ [s 
 t] for all situations t.
Pf: Suppose p[t] � q[s 
 t] for all situations t. Then u � p[t] implies u � q[s 
 t],

and so {u : u � p[t]} ⊆ {u : u � q[s 
 t]}. Also, given the supposition, p[t 
 u] �
q[s 
 t 
 u] for any situation u (setting t = t
u). Consequently, p ↑ [t] =

⊔
{p[t 
 u] :

u � p[t]} �
⊔
{q[s 
 t 
 u] : u � q[s 
 t]} = q ↑ [s 
 t].

We also have
(∗∗) p[t′] � (s ↪→ p)[s 
 t′] for all t′

since (s ↪→ p)[s 
 t′] =
⊔
{p[u] : s 
 u = s 
 t′}

�
⊔
{p[u] : u = t′}

= p[t′].
So applying (∗) to (∗∗), it follows that

(∗ ∗ ∗) (p ↑)[t′] � (s ↪→ p) ↑ [s 
 t′] for all t′.
But:

(s ↪→ (p ↑))[t] =
⊔
{(p ↑)[t′] : s 
 t′ = t}

�
⊔
{(s ↪→ p) ↑ [s 
 t′] : s 
 t′ = t} by (∗ ∗ ∗)

= (s ↪→ p) ↑ [t]
and hence ↑ conforms to Regularity.

Lemma 20. (Regularity of Follow-Down). The operation p → p ↓ conforms to
Regularity.

Proof. We compute (s ↪→ (p ↓))[t] and ((s ↪→ p) ↓)[t].

s ↪→ (p ↓))[t] =
⊔

{(p ↓)[u]: s 
 u = t}

=
⊔

{
⊔

{p[v]: u = v 
 w and w � p[v]}: s 
 u = t}

=
⊔

{p[v]: u = v 
 w,w � p[v] and s 
 u = t}

=
⊔

{p[v]: s 
 v 
 w = t and w � p[v]}.

((s ↪→ p) ↓)[t] =
⊔

{(s ↪→ p)[u]: t = u 
 w and w � (s ↪→ p)[u]}
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=
⊔

{
⊔

{p[v]: s 
 v = u}: t = u 
 w and w � (s ↪→ p)[u]}

=
⊔

{p[v]: s 
 v = u, t = u 
 w and w � (s ↪→ p)[u]}

=
⊔

{p[v]: t = s 
 v 
 w and w � (s ↪→ p)[s 
 v]}

=
⊔

{p[v]: t = s 
 v 
 w and w �
⊔

{p[x]: s 
 x = s 
 v}}.

But it is then clear that (s ↪→ (p ↓))[t] � ((s ↪→ p) ↓)[t]. For p[v] �
⊔
{p[x]: s 


x = s 
 v} and so, given that w � p[v], w �
⊔
{p[x]: s 
 x = s 
 v}}.

Lemma 21. (Regularity of Semi-Inclusion). The operation p → p→ conforms to
Regularity.

Proof.

(s ↪→ p→)[t] =
⊔

{p→[u]: s 
 u = t}

=
⊔

{p[u] 
 au : s 
 u = t}

=
⊔

{p[u]: s 
 u = t} 

⊔

{au : s 
 u = t}

= (s ↪→ p)[t] 

⊔

{au : s 
 u = t},

while (s ↪→ p)→[t] = (s ↪→ p)[t] 
 at .
But

⊔
{au : s 
 u = t} = � when tĽs and

⊔
{au : s 
 u = t} = at when t � s . Thus

in either case,

(s ↪→ p) [t] 

⊔

{au : s 
 u = t} � (s ↪→ p) [t] 
 at.

Theorem 22. The operations of Follow-Up, Follow-Down, and Semi-Inclusion conform
to Regularity.

Proof. By application of Lemma 18 to the respective Lemmas 19–21.

The case for Monotonicity is somewhat more straightforward since we can then
show:

Lemma 23. If the plan p is monotonic, then:

(s ↪→ p)[t] = � if s Ĺ t, and
(s ↪→ p)[t] = p[t] otherwise,

and the plan (s ↪→ p) is itself monotonic.

Proof. (s ↪→ p)[t] =
⊔
{p[u]: s 
 u = t}. If s Ĺ t then (s ↪→ p)[t] = �. So suppose

that s � t and s 
 u = t. Then u � t and so, given that p is monotonic, p[u] � p[t].
But s 
 t = t, and so (s ↪→ p)[t] =

⊔
{p[u]: s 
 u = t} = p[t].

Now suppose t � t′. If s Ĺ t then (s ↪→ p)[t] = � and so (s ↪→ p)[t] � (s ↪→ p)[t′].
So suppose s � t. Then s � t′ and so, by the first part, (s ↪→ p)[t] = p[t] � p[t′] =
(s ↪→ p)[t′].

We have so far distinguished between 
 and 
∗ and between �∗
P and �P, but from

now on, when only closed plans are under consideration, we shall use 
 in place of 
∗

and �∗
P in place of �P.

https://doi.org/10.1017/S175502032300028X Published online by Cambridge University Press

https://doi.org/10.1017/S175502032300028X


COMPLIANCE AND COMMAND III: CONDITIONAL IMPERATIVES 33

§12. Conditionalized prescriptions. By a proposition or propositional content is
meant a multi-set of situations (i.e., a multi-subset of SI) and by a prescription or
prescriptive content is meant a set of plans (i.e., a subset of SP). We understand
propositions and prescriptions disjunctively. Thus a proposition, qua multi-set of
situations, tells us that one of the situations in the multi-set obtains and a prescription,
qua set of plans, tells us that one of the plans in the set is to be adopted. We shall
use S,T,U and the like for propositions and P,Q,R and the like for prescriptions.
Propositions provide the unilateral content of indicative formulas, while prescriptions
provide the unilateral content of imperative formulas.

There is a condition on prescriptive content which we shall not accept but which is
worth mentioning, since it enables us greatly to simplify the semantics:

Mix and Match: The plan q ∈ P if for each situation s , q[s] = p[s] for some plan
p ∈ P.

This is a kind of independence condition: it tells us that what are to do in one
situation is independent of what we are to do in another situation. Imagine an iterated
prisoners’ dilemma with two players and consider a prescription for one of the players
that contains the choice of the plans: defect regardless of whether the other player
defects or cooperates; cooperate regardless of whether the other player defects or
cooperates. If this prescription satisfies Mix and Match, then it must also contain all
the other plans, such as defect if the other player cooperates and cooperate if the other
player defects.

With each prescription Q satisfying Mix and Match, we may associate the
indeterminate plan pQ, where pQ[s] = {q[s] : q ∈ Q}. Conversely, Q will consist of
the corresponding determinate plans, i.e., it will be the set {q ∈ SP : q[s] ∈ pQ[s]}.
Acceptance of Mix and Match enables us to simplify the semantics, since we may now
represent the content of an imperative as a single indeterminate plan, telling us which
actions will be in conformity with the imperative in any given situation. This notion of
content, which involves a severe restriction on the semantics, should not of course be
confused with the expansion of the semantics, in which the content of a conditional is
represented as a set of indeterminate transitions.

We turn to the question of specifying the content of a conditional imperative. We
had previously defined a conditionalized plan s → p,where → was an operation taking
a situation s and a plan p into the plan s → p. We now wish to extend this operation
to one that applies to a proposition S in place of the situation s and to a prescription
P in place of the plan p and which delivers as output another prescription. This will
then enable us to define the content of a conditional S → P as S → P, where S is the
indicative content of S and P the prescriptive content of P.

We do this by means of the following two rules, the first ‘lifting’ to prescriptions on
the right and the second to propositions on the left:

(s → P) = {s → p: p ∈ P};
(S → P) =

⊔
[s → P: s ∈ S].

Some comments are in order:

(1) Note that s → p is a plan, while s → P andS → P are prescriptions—with s →
P = {s → p: p ∈ P} a set of plans and S → P =

⊔
{s → P: s ∈ S} a fusion

of prescriptions. (s → P) = {s → p: p ∈ P} is understood disjunctively, i.e.,
as the ‘disjunction’ of the plans s → p for p ∈ P, while (S → P) =

⊔
[s →

P: s ∈ S] is understood conjunctively, as the ‘conjunction’ of the plans s → P
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for s ∈ S. Despite our more expansive employment of →, it should always be
clear which particular use we have in mind.

(2) S is a multi-set of situations, while [s → P: s ∈ S] is a corresponding multi-set
of prescriptions (hence the use of the square brackets). Thus if S = [s0, s0] then
[s → P: s ∈ S] = [s0 → P, s0 → P] and so (S → P) =

⊔
[s0 → P, s0 → P] =

(s0 → P) 
 (s0 → P), which may not be the same as (s0 → P) (which is what
we get when S = [s0]), since it will allow the choice of (s0 → p) 
 (s0 → p′)
for distinct plans p, p′ ∈ P.

(3) Note the order of the definitions; we first lift to prescriptions and then to
propositions. As we shall see, the reverse order can lead to different, and
sometimes incorrect results.

(4) The three forms of conditionalization—(s → p), (s → P), and (S → P)—are
in conformity with one another. For:

(s→{p}) = {(s→p)}, since (s→{p}) = {s→ q: q ∈ {p}}= {(s→p)};
and

[s]→P = (s→P), since ([s] → P) =
⊔
{t → P: t ∈ [s]} =

⊔
{s → P}

= s → P.

(5) WhenP = ∅, (s → P) = {s → p:p ∈ ∅} = ∅ and so, whenS �= [] (the empty
multi-set) and P = ∅, then (S → P) =

⊔
[∅: s ∈ S] = ∅. However, when

S = [], (S → P) =
⊔

[s → P: s ∈ []] = �P.
(6) The second of the two extensions is in line with the truthmaker semantics for

the intuitionistic conditional given in [4].

We wish to show that conditional prescriptions (S → P) have some basic properties,
more or less analogous to those under Lemma 17. This could be done algebraically, as
before, but, it will turn out to be easier on the eye and something that will in any case
be required to establish these results indirectly via their symbolic counterparts over a
certain positive fragment of the language of imperatives.

So suppose we are given a (closed) planning space S = (SI, SA, SP,�). A positive
prescriptive modelM overS is then an ordered sextuple (SI, SA, SP,�, | · |I | · |P), where
| · |I is a definite unilateral multi-set valuation over SI for the indicative atoms and | · |P
is a unilateral set-theoretic valuation over SP (not SA) for the imperative atoms. In
the results that follows, we shall find it convenient to adopt the notational convention
under which the indicative atom s ∈ SI signifies the situation s (i.e., |s|I = [s]) and
the imperative atom p signifies the plan p ∈ SP (i.e., |p|P = {p}) (this restriction on
the imperative atoms will later be relaxed). We shall assume in what follows that the
closure operation ∗ ofM is subject to Regularity.

We define the positive indicative and imperative formulas by means of the following
clauses:

IN1. � and ⊥ and any indicative atom is a positive indicative formula.
IN2. If S1, S2, ... are two or more positive indicative formulas, then so are
(S1 ∨ S2 ∨ ··· ) and (S1 ∧ S2 ∧ ··· ).
PP1. �! and ⊥! and any imperative atom is a positive imperative formula.
PP2. If P1,P2, ... are two or more positive imperative formulas, then so are
(P1 ∨ P2 ∨ ··· ) and (P1 ∧ P2 ∧ ··· ).
PP3. If S is a positive indicative formula and P a positive imperative formula,
then (S → P) is a positive imperative formula.
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Note that we are not allowed to use ¬ in the formation of a positive indicative
or prescriptive formula, although we do allow ⊥ to be a positive indicative formula
and ⊥! to be a positive prescriptive formula. Note also that we allow disjunctions
and conjunctions of arbitrary length, in contrast to our previous definition. The exact
identity of these disjunctions and conjunctions is not too important as long as we allow
for the repetition of disjuncts and conjuncts.

Given a positive prescriptive modelM, we may then:

(a) use the obvious extension of the multi-set semantics to define the unilateral
content of the indicative formulas �, ⊥, (S1 ∨ S2 ∨ ··· ) and (S1 ∧ S2 ∧ ··· );

(b) use the obvious extension of the standard set semantics to define the unilateral
content of the prescriptive formulas �!, ⊥!, (P1 ∨ P2 ∨ ··· ) and (P1 ∧ P2 ∧ ··· )
(where |�! | is now the null plan �P); and

(c) set |S → P| = |S| → |P| for any positive indicative formula S and positive
prescriptive formula P.

We extend the previous notational convention by taking S to be |S| and P to be |P|.
Suppose that S = [s1, s2, ... ] is a proposition within the modelM . Then under our

convention for designating situations and plans, it should be clear that |s1 ∨ s1 ∨ ··· | =
[s1, s2, ... ], since |s1 ∨ s1 ∨ ··· | = |s1| ∪· |s2| ∪· ··· = [s1] ∪· [s2] ∪· ··· = [s1, s2, ... ] and, sim-
ilarly, that |p1 ∨ p2 ∨ ··· | = |p1| ∪ |p2| ∪ ··· = {p1, p2, ... }. It also follows directly from
the clause for conjunction that |P1 ∧ P2 ∧ ··· | = P1 
 P2 
 ··· .

Recall that ≈ is used for identity in (unilateral) content. We can now establish almost
directly from the definition of (S → P) that:

Lemma 24. Relative to any positive prescriptive modelM :

(i) s → (p1 ∨ p2 ∨ ··· ) ≈ (s → p1) ∨ (s → p2) ∨ ··· .
(ii) (s1 ∨ s1 ∨ ··· ) → P ≈ (s1 → P) ∧ (s1 → P) ∧ ··· .

Proof.

(i) |s → (p1 ∨ p2 ∨ ··· )| = |s| → |p1 ∨ p2 ∨ ··· )|
= [s] → (|p1| ∪ |p2| ∪ ··· )
= [s] → ({p1} ∪ {p2} ∪ ··· )
= [s] → {p1, p2, ... }
= s → {p1, p2, ... }
= {s → p1, s → p2, ... } by definition of s → P
= {s → p1} ∪ {s → p2} ∪ ···
= ([s] → {p1}) ∪ ([s] → {p2}) ∪ ···
= |(s → p1) ∨ (s → p2) ∨ ··· |.

(ii) |(s1 ∨ s1 ∨ ··· ) → P| = |((s1 ∨ s1 ∨ ··· ))| → |P|
= [s1, s1, ... ] → |P|
=

⊔
[s1 → |P|, s1 → |P|, ... ] by definition of S → P

=
⊔

[[s1] → |P|, [s2] → |P|, ... ]
= |(s1 → P) ∧ (s2 → P) ∧ ··· |.

We can, in a similar way, establish semantic counterparts to the results under
Lemma 17.

Lemma 35. Relative to any positive prescriptive modelM :

(i) (� → p) ≈ p.
(ii) s1 → (s2 → p) ≈ (s1 ∧ s2) → p.
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(iii) s → (p1 ∧ p2 ∧ ··· ) ≈ (s → p1) ∧ (s → p2) ∧ ··· .
(iv) s → �! = �!.

Proof. Straightforward, given the corresponding results under Lemma 17.

We shall call the equivalences under the two previous lemmas the basic reductions.
In the next section, we shall use them to derive other reductions, with a view to
establishing a normal form theorem, but for now we shall use them to provide a more
direct definition of conditionalization.

Call p a hyper-plan if it is a multi-map from a multi-set of situations S into a set of
plans P. Hyper-plans differ from straight plans in two significant respects: first, their
range is a set of plans rather than a set of actions, and, second, their domain is a
multi-subset of situations rather than the total set of all situations.

Given a hyper-plan p, its collapse p ⇓ (which we also denote by p) is
⊔

[s → p[s] :
s ∈ Dm(p)]. Note that each s → p[s] is a plan and so p =

⊔
[s → p[s] : s ∈ Dm(p)]

is also a plan. Since Dm(p) is a multi-set, we may, for fixed s ∈ Dm(p), have different
s → p[s] in [s → p[s]: s ∈ Dm(p)]. These must then all be fused in forming

⊔
[s →

p[s] : s ∈ Dm(p)]. We might think of a hyper-plan as a higher-order plan, the plan
of performing the first-order plan p[s] in situation s. The collapsing function ⇓ then
enables us to regard this higher plan p as a first-order plan p, obtained by fusing all
of the plans s → p[s], where each s → p[s] is the result of conditionalizing the plan
recommended by the hyper-plan in the given situation to that very situation.

Lemma 36 (Collapse of the Hyper-Plan). For any proposition S and prescription
P, (S → P) = {p⇓ : p a multi – map from S to P}.

Proof. Let us suppose S = [s1, s2, ... ] and P = {p1, p2, ... }. Then:
|S → P| = |

∨
msm →

∨
npn |

= |
∧
m(sm →

∨
npn )| Basic Reduction

= |
∧
m

∨
n(sm → pn)| Basic Reduction

= |
∨
p,m(sm → p
(m)): 
 a map from m = 1, 2, ... to n = 1, 2, ...}| Distribution

= {|
∧
m(sm → p
(m) )|: 
 a map from m = 1, 2, ... to n = 1, 2, ...}

= {|
∧

[(s → �(s)) : s = s1, s2, ... ]|: � a multi-map from [s1, s2, ...] to {p1, p2, ...}}
= {

⊔
[|s → �(s)| : s = s1, s2, ... ] : � a multi – map from[s1, s2, ...] to {p1, p2, ...}}

= {
⊔

[s → p(s) : s = s1, s2, ... ] : p a multi-map from [s1, s2, ...] to {p1, p2, ...}}
= {p ⇓: p a multi – map from S = [s1, s2, ... ] into P = {p1, p2, ... }}.

This lemma provides us with an alternative clause for the evaluation of the
conditional S → P, which is somewhat analogous to the treatment of the conditional
as a functional type. However, instead of using the function p itself as the ‘verifier’ of
the conditional, we use its collapsed form p⇓. This is in line with the semantics for
the conditional of intuitionistic logic adopted in [4]. However, instead of pushing the
verifiers of conditionals all the way down to the level of states, we now only push them
down to the level of first-order functions (taking states into actions).

In the standard treatment of formulas as ‘types’, the formula S → (T → U) will
denote functions that take elements of S into functions taking elements of T into
elements ofU , while the formula (S ∧ T) → U will denote functions that take ordered
pairs of elements from S and T into elements of U . Under our approach, by contrast,
(S ∧ T) will denote fusions of elements of S and T and S → (T → P) is so defined
that it no longer denotes higher-order functions but certain first-order functions—
indeed, the very same functions as those denoted by (S ∧ T) → P. Thus it is through
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this reinterpretation of formulas as types that we are able to retain the treatment of
the conditional as a functional type while still being able to preserve some significant
logical identities between different complex types.

§13. Positive reduction. We present the reduction theses that will later be used in
establishing the extended normal form theorem. We state these at the level of syntax,
although each will have an abstract counterpart at the level of content. In stating the
theses, we shall assume given a positive prescriptive modelM conforming to Regularity
in which |S| = [s1, s2, ... ] and |P| is {p1, p2, ... } (and similarly for variants of S and P).
Thus it will be automatic that S ≈ (s1 ∨ s2 ∨ ··· ) and that P ≈ (p1 ∨ p2 ∨ ··· ) inM .

Left Vacuity:

(i) (� → P) ≈ P.
(ii) (⊥→ P) ≈ �!

Proof.

(i) (� → P) ≈ � → (p1 ∨ p2 ∨ ··· ) Stipulation
≈ (� → p1) ∨ (� → p2) ∨ ··· Basic Reduction
≈ p1 ∨ p2 ∨ ··· Basic Reduction
≈ P.

(ii) (⊥→ P) ≈ (
∨

∅ → P)

≈
∧

∅

≈ �!.

Right Vacuity:

(i) S → �! ≈ �!.
(ii) S →⊥! ≈ ⊥! for |S| �= [].

Proof.

(i) S → �!≈ ((s1 ∨ s2 ∨ ··· ) → �! )
≈ (s1 → �! ) ∧ (s2 → �! ) ∧ ··· Basic Reduction
≈ �!∧�!∧ ··· Basic Reduction
≈ �!.

(ii) Let us first note that
|s →⊥! | = |s| → | ⊥! |
= [s] → ∅

=
⊔

[s → ∅]
=

⊔
[{s → p : p ∈ ∅}]

=
⊔

[∅]
= ∅.

In the general case,
S →⊥! ≈ (s1 ∨ s2 ∨ ··· ) →⊥!
≈ (s1 →⊥! ) ∧ (s2 →⊥! ) ∧ ···
≈ ⊥!∧ ⊥!∧ ··· by the special case above
≈ ⊥! since, given that |S| �= [], the conjunction is non-empty.
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We should note that (ii) will not hold when |S| = []. In that case, (ii) of Left Vacuity
takes precedence and has the consequence that (⊥→⊥! ) ≈ �!.

Disjunctive Simplification on the Left:

((S1 ∨ S2 ∨ ··· ) → P) ≈ ((S1 → P) ∧ (S2 → P) ∧ ··· ) .

Proof. ((S1 ∨ S2 ∨ ··· ) → P) ≈ ((s11 ∨ s12 ∨ ··· ) ∨ (s21 ∨ s22 ∨ ··· ) ∨ ··· ) → P
≈ (s11 ∨ s12 ∨ ··· ∨ s21 ∨ s22 ∨ ··· ∨ ··· ) → P
≈ (s11 → P) ∧ (s12 → P) ∧ ··· ∧ (s21 → P)∧

(s22 → P) ∧ ··· ∧ ··· Basic Reduction
≈ ((s11 → P) ∧ (s12 → P) ∧ ··· ) ∧ ((s21 → P)∧

(s22 → P) ∧ ··· ) ∧ ···
≈ ((s11 ∨ s12 ∨ ··· ) → P) ∧ ((s21 ∨ s22 ∨ ··· )

→ P) ∧ ··· Basic Reduction≈ (S1 → P) ∧ (S2 → P) ∧ ··· .

It is important to note that this result will not hold without adopting the multi-
set semantics for disjunction. For under the regular set semantics, (� ∨�) → P, for
example, is equivalent to � → P and hence to P, but it is also equivalent by Disjunctive
Simplification to (� → P) ∧ (� → P) and hence to P ∧ P, which is not in general
equivalent to P. It is for precisely this reason that we have felt compelled to adopt the
multi-set semantics for the indicative antecedents of conditional imperatives.

Disjunctive Simplification on the Right:

s → (P1 ∨ P2 ∨ ··· ) ≈ (s → P1) ∨ (s → P2) ∨ ··· .

Proof. s → (P1 ∨ P2 ∨ ··· ) ≈ (s → ((p11 ∨ p12 ∨ ··· ) ∨ (p21 ∨ p22 ∨ ··· ) ∨ ··· )
≈ (s → (p11 ∨ p12 ∨ ··· ∨ p21 ∨ p22 ∨ ··· ∨ ··· ))
≈ (s → p11) ∨ (s → p12) ∨ ··· ∨ (s → p21) ∨ (s → p22)

∨ ··· ∨ ··· Basic Reduction
≈ ((s → p11) ∨ (s → p12) ∨ ··· ) ∨ ((s → p21)∨

(s → p22) ··· ) ∨ ···
≈ (s → (p11 ∨ p12 ∨ ··· )) ∨ (s → (p21 ∨ p22 ∨ ··· )) ∨ ···

Basic Reduction
≈ (s → P1) ∨ (s → P2) ∨ ··· .

This result will not hold for arbitrary antecedents. Suppose S = [s1, s2], P1 = {p1},
and P2 = {p2}. Then:

(s1 ∨ s2) → (p1 ∨ p2) ≈ (s1 → (p1 ∨ p2)) ∧ (s2 → (p1 ∨ p2))
≈ ((s1 → p1) ∨ (s1 → p2)) ∧ ((s2 → p1) ∨ (s2 → p2))
≈ ((s1 → p1) ∧ (s2 → p1)) ∨ ((s1 → p1) ∧ (s2 → p2))∨

((s1 → p2) ∧ (s2 → p1)) ∨ ((s1 → p2) ∧ (s2 → p2)) ,

whereas if we first apply Disjunctive Simplification on the Right to obtain ((s1 ∨ s2) →
p1) ∨ ((s1 ∨ s2) → p2), we then get

((s1 ∨ s2) → p1) ∨ ((s1 ∨ s2) → p2) ≈ ((s1 → p1) ∧ (s2 → p1)) ∨ ((s1 → p2) ∧ (s2 → p2)) ,

which limits the choice to doing p1 regardless or p2 regardless. However, under Mix-
and-Match semantics, the result will hold for arbitrary antecedents. It is for this reason
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that the order in which we reduce S → P to s → p is important—with Simplification
on the Left applied first, followed by Simplification on the Right.

Conjunctive Simplification on the Right:

S → (P1 ∧ P2 ∧ ··· ) ≈ (S → P1) ∧ (S → P2) ∧ ··· .

Proof. We first establish the result for the case in which S is the definite formula s
and for simplicity, though without any essential loss of generality, we consider the case
in which there are two conjuncts P and Q on the right.

s → (P ∧ Q) ≈ (s → (
∨
kpk ∧

∨
lql ))

≈ (s →
∨
k,l (pk ∧ ql )) Distribution

≈
∨
k,l (s → ((pk ∧ ql ))) Basic Reduction

≈
∨
k,l ((s → pk) ∧ (s → ql )) Basic Reduction

≈ (
∨
k(s → pk) ∧

∨
l (s → pl )) Distribution

≈ (s →
∨
kpk) ∧ (s →

∨
lql )) Basic Reduction

≈ (s → P) ∧ (s → Q).
We turn to the general case:
S → (P1 ∧ P2 ∧ ··· ) ≈ (

∨
ksk → (P1 ∧ P2 ∧ ··· ))

≈
∧
k(sk → (P1 ∧ P2 ∧ ··· )) Disj. Simplification on the

Left
≈

∧
k((sk → P1) ∧ (sk → P2) ∧ ··· )) Previous Case

≈
∧
k(sk → P1) ∧

∧
k(sk → P2) ∧ ···

≈ (
∨
ksk → P1) ∧ (

∨
ksk → P1) ∧ ··· Disj. Simplification on the

Left
≈ (S → P1) ∧ (S → P2) ∧ ··· .

Conditional Import-Export:

S → (T → P) ≈ (S ∧ T) → P.

Proof. We first establish the result for the case in which S and T are the definite
formulas s and t:

s → (t → P) ≈ (s → (t →
∨
mpm)

≈ (s →
∨
m(t → pm)) Basic Reduction

≈
∨
m(s → (t → pm)) Basic Reduction

≈
∨
m(s ∧ t → pm) Basic Reduction

≈ (s ∧ t →
∨
mpm) Basic Reduction

≈ (s ∧ t → P).
We turn to the general case:
S → (T → P) ≈

∨
ksk → (

∨
l tl → P)

≈
∨
ksk →

∧
l (tl → P) Disjunctive Simplification on the Left

≈
∧
k(sk →

∧
l (tl → P)) Disjunctive Simplification on the Left

≈
∧
k,l (sk → (tl → P)) Basic Reduction

≈
∧
k,l (sk ∧ tl → P)) Previous Case

≈ (
∨
k,l (sk ∧ tl ) → P) Disjunctive Simplification on the Left

≈ ((
∨
ksk ∧

∨
l tl ) → P) Distribution

≈ (S ∧ T) → P.
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§14. Negative reduction. We have not, up to now, stated a clause for when a plan
is in contravention to a conditional imperative. To this end, we stipulate

|S → P|– =
{
s → p : s ∈ |S|+ and p ∈ |P|–

}
.

A plan is in contravention to the conditional S → P if it is of the form s → p′ with
s a truth-maker for the antecedent S and p′ in contravention to the consequent P.

The clause may be motivated as follows. Suppose that S ≈ s1 ∨ s2 ∨ ··· . Then (S →
P) ≈ (s1 → P) ∧ (s2 → P) ∧ ··· , and so a plan in contravention to S → P will be a plan
in contravention to one of (s1 → P), (s2 → P), ... . Now suppose that P ≈ p1 ∨ p2 ∨ ··· .
Then (sk → P) ≈ (sk → (p1 ∨ p2 ∨ ··· )) ≈ (sk → p1) ∨ (sk → p2) ∨ ··· , and so a plan
in contravention to (sk → P) will be a plan qk that is the fusion qk1 
 qk2 
 ··· of plans
qk1, qk2, ... , respectively, in contravention to (sk → p1), (sk → p2), .... We now make the
assumption that a plan q will be in contravention to s → p if it is of the form s → p′ for
some plan p′ in contravention to p. Thus each plan qkm will be of the form sk → p′m,
where p′m is a plan in contravention to pm, and so qk = (sk → p′1) 
 (sk → p′2) 
 ··· =
sk → (p′1 
 p′2 
 ··· ). But the plans p′ in contravention to P ≈ (p1 ∨ p2 ∨ ··· ) will be
those of the form (p′1 
 p′2 
 ··· ) for p′1, p

′
2, ... plans, respectively, in contravention to

p1, p2, ... , and so a plan in contravention to S → P will be of the form sk → p′, as
required.

Given these new clauses, the semantics can be extended to the full language,
with the unrestricted application of negation and the formation of disjunctions and
conjunctions of arbitrary length. A prescriptive model M over S is now an ordered
sextuple (SI, SA, SP,�, | · |I, | · |P), where | · |I is a definite bi-lateral multi-set valuation
overSI for the indicative atoms and | · |P is a bi-lateral set-theoretic valuation overSP for
the imperative atoms. We may then use the standard clauses for negation, disjunction,
and conjunction and the previous positive and negative clauses for the conditional
imperative to assign a positive and negative content to each imperative formula of the
language. Within this semantics, exact equivalence and the like are defined in the usual
way.

We have the following reduction thesis for negative imperatives:

Negative Import:

¬ (s → P) ≈ (s → ¬P) .

Proof. |¬(s → P)|+ = |(s → P)|–
= {s → p′: p′ ∈ |P|–}
= {s → p′: p′ ∈ |¬P|+}
= |(s → ¬P)|+. �

This result (which is sometimes associated with connexive logic) does not hold
generally for disjunctive antecedents. Thus we do not want to say ¬((S1 ∨ S2) → P)
≈ ((S1 ∨ S2) → ¬P). For the left-hand side would then be equivalent to ¬((S1 → P) ∧
(S2 → P)), hence to ¬(S1 → P) ∨ ¬(S2 → P), and hence to (S1 → ¬P) ∨ (S2 → ¬P),
while the right-hand side is equivalent to (S1 → ¬P) ∧ (S2 → ¬P).

A possible problem can arise even when the antecedent is not disjunctive. For given
Semi-Inclusion, the null plan � will be in compliance with both (a ∧ ¬a) → a and
(a ∧ ¬a) → ¬a and yet, by the above rule, ¬((a ∧ ¬a) → a) ≈ (a ∧ ¬a) → ¬a, and so
the null plan will be both in compliance with and in contravention to (a ∧ ¬a) → a.

https://doi.org/10.1017/S175502032300028X Published online by Cambridge University Press

https://doi.org/10.1017/S175502032300028X


COMPLIANCE AND COMMAND III: CONDITIONAL IMPERATIVES 41

You are, as a matter of logic, damned if you do and damned if you don’t. I will discuss
in part IV how this problem might be circumvented.

We have so far established results on positive equivalence (i.e., on identity of positive
content). But positive equivalence only allows us to substitute in positive contexts
(preserving positive equivalence) even though, for the purposes of the normal form
theorem, we will sometimes need to substitute in negative contexts as well. It will
therefore be helpful to see when our previous results on positive equivalence can be
extended to full equivalence.

In regard to the core system CS, all of the axioms and rules E1–E15 hold for
full equivalence with the exception of E8 (Distribution). The additional axiom E16
((X ∨ X) ≈ X) will not hold for full equivalence even under the set-theoretic semantics
(since, in general, we do not have (¬X ∧ ¬X) ≈ ¬X), while the additional axiom E17
(x ∧ x ≈ x) will hold for full equivalence under the definite set-semantics although not
under the definite multi-set semantics (since, in general, we do not have (¬x ∨ ¬x) ≈
¬x).

We turn to the principles of full equivalence governing the conditional:

Lemma 37.

(i) (� → P) ≈±P.
(ii) (S1 ∨ S2 ∨ ··· ) → P ≈± (S1 → P) ∧ (S2 → P) ∧ ··· .
(iii) s → (P1 ∨ P2 ∨ ··· ) ≈± (s → P1) ∨ (s → P2) ∨ ··· .
(iv) S → (P1 ∧ P2 ∧ ··· ) ≈± (S → P1) ∧ (S → P2) ∧ ··· .
(v) S → (T → P) ≈± (S ∧ T) → P.
(vi) ¬(s → P) ≈± (s → ¬P).
(vii) (⊥→ P) ≈± �!.
(viii) S → �!≈± �!.
(ix) S →⊥!≈±⊥! for |S| �= [].
(x) S ≈+ T ⇒ (S → P) ≈± (T → P).

Proof. Since we have previously established the positive equivalences for the cases
(i)–(vii), we need only establish the corresponding negative equivalences in these cases
(or, equivalently, the corresponding positive equivalences for the negations).

(i) ¬(� → P) ≈ � → ¬P Negative Import
≈ ¬P Left Vacuity.

(ii) q -|| (S1 ∨ S2 ∨ ··· ) → P iff q = s → p′ for some s ∈ | S1|+ ∪ | S2|+ ∪ ··· and
for some p′ ∈ |P|–

iff q = s → p′ for some k, some s ∈ |Sk |+ and some p′ ∈ |P|–
iff q -|| (Sk → P) for some k
iff q -|| (S1 → P) ∧ (S2 → P) ∧ ··· .

(iii)¬(s → (P1 ∨ P2 ∨ ··· )) ≈ (s → ¬(P1 ∨ P2 ∨ ··· )) Negative Import
≈ (s → ¬P1 ∧ ¬P2 ∧ ··· )
≈ (s → ¬P1) ∧ (s → ¬P2) ∧ ··· Conj. Simpl. on the Right
≈ ¬(s → P1) ∧ ¬(s → P2) ∧ ··· Negative Import
≈ ¬((s → P1) ∨ (s → P2) ∨ ··· ).

(iv) We first consider the case in which S = s. We then have
¬(s → (P2 ∧ P2 ∧ ··· )) ≈ s → ¬(P1 ∧ P2 ∧ ··· ) Negative Import
≈ s → (¬P1 ∨ ¬P2 ∨ ··· )
≈ (s → ¬P1) ∨ (s → ¬P2) ∨ ··· Disj. Simplification

on the Right
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≈ ¬(s → P1) ∨ ¬(s → P2) ∨ ··· Negative Import
≈ ¬((s → P1) ∧ (s → P2) ∧ ··· ).

We now consider the general case:
¬(S → (P1 ∧ P2 ∧ ··· )) ≈ ¬((s1 ∨ s2 ∨ ··· ) → (P1 ∧ P2 ∧ ··· ))
≈ ¬((s1 → (P1 ∧ P2 ∧ ··· )) ∧ (s2 → (P1 ∧ P2 ∧ ··· )) ∧ ··· )
≈ ¬(s1 → (P1 ∧ P2 ∧ ··· )) ∨ ¬(s2 → (P1 ∧ P2 ∧ ··· )) ∨ ··· )
≈ (s1 → ¬(P1 ∧ P2 ∧ ··· )) ∨ ¬(s2 → ¬(P1 ∧ P2 ∧ ··· )) ∨ ··· ) Neg. Import
≈ ((s1 → (¬P1 ∨ ¬P2 ∨ ··· )) ∨ (s2 → (¬P1 ∨ ¬P2 ∨ ··· )) ∨ ··· )
≈ (((s1 → ¬P1) ∨ (s1 → ¬P2) ∨ ··· )) ∨ ((s2 → ¬P1)

∨(s2 → ¬P2) ∨ ··· )) ∨ ··· Disj. Simpl. on the Right
≈ (¬(s1 → P1) ∨ ¬(s1 → P2) ∨ ··· ∨ ¬(s2 → P1) ∨ (¬s2 → P2) ∨ ··· ∨ ···

Neg. Import
≈ (¬((s1 → P1) ∧ (s2 → P1) ∧ ··· ) ∨ ¬((s1 → P2) ∧ (s2 → P2) ∧ ··· )) ∨ ···
≈ ¬((s1 ∨ s2 ∨ ··· ) → P1) ∨ ¬((s1 ∨ s2 ∨ ··· ) → P2) ∨ ··· by (ii) above
≈ ¬(S → P1) ∨ ¬(S → P2) ∨ ···
≈ ¬((S → P1) ∧ (S → P2) ∧ ··· ).

(v) q -|| S → (T → P) iff q = s → r for some s ||- S and r -|| (T → P)
iff q = s → (t → p′) for some s ||- S, t ||- T and p′ -|| P
iff q = (s 
 t → p′) for some s ||- S, t ||- T and p′ -|| P Lemma 17(ii)
iff q = (u → p′) for some u ||- S ∧ T and p′ -|| P
iff q -|| (S ∧ T) → P.

(vi)¬¬(s → P) ≈ (s → P)
≈ (s → ¬¬P)
≈ ¬(s → ¬P) Negative Import.

(vii)¬(⊥→ P) ≈ ¬(∨∅ → P)
≈ ¬ ∧∅ by (ii) above
≈ ¬�!.

(viii) First note that ¬(s → �! ) ≈ (s → ¬�! ) by Negative Import. But (s →
¬�! ) = (s →⊥! ) ≈ ⊥! = ¬�! by Right Vacuity. Thus the result holds when
S = s.

In the general case, we have:
¬(S → �! ) ≈ ¬( (s1 ∨ s2 ∨ ··· ) → �! )

≈ ¬( (s1 → �! ) ∧ (s2 → �! ) ∧ ··· ) by (ii) above
≈ ¬(�!∧�!∧ ··· ) by the special case above
≈ ¬�!.

(ix) First note that ¬(s →⊥! ) ≈ (s → ¬ ⊥! ) by Negative Import. But (s → ¬ ⊥
! ) = (s → �! ) ≈ �! = ¬ ⊥! by Right Vacuity. Thus the result holds when
S = s.
In the general case in which |S| �= [] we have:

¬(S →⊥! ) ≈ ¬( (s1 ∨ s2 ∨ ··· ) →⊥! )
≈ ¬( (s1 →⊥! ) ∧ (s2 →⊥! ) ∧ ··· ) by (ii) above
≈ ¬(⊥!∧ ⊥!∧ ··· ) by the special case above
≈ ¬ ⊥! since the conjunction is non-empty.

(x) Since |S → P|+ and |S → P |– depend only upon |S|+, not upon |S|–.

§15. Normal forms. We establish the central result of the paper, that each
imperative formula is equivalent to one in normal form. This may then be used as
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a basis for constructing a complete set of axioms and rules for demonstrating the
equivalence of imperative formulas.

We first extend the terminology for normal forms from Section 5. An indicative
description is a standard conjunctively non-repetitive state description formed from
indicative atoms and an imperative description is a standard conjunctively non-
repetitive state description formed from imperative atoms (where the null indicative
state description is taken to be � and the null imperative state description is taken to be
�!). A component plan description is a formula of the form S → P where S is a positive
(i.e., negation-free) indicative description and P is an imperative description. A plan
description is a conjunction of component plan descriptions, and it is said to be full in
the set of indicative atoms Δ if it is of the form (S1 → P1) ∧ (S2 → P2) ∧ ··· ∧ (Sn →
Pn), n ≥ 0, where S1, S2, ..., Sn are all of the positive indicative descriptions formed
from the atoms of Δ (which we may suppose to be given in a pre-determined order).
Thus a full plan will tell one what to do in each positive scenario that might be specified
by a conjunction of atoms from Δ.

We understand (exact) equivalence by reference to the class of definite models, i.e.,
those in which each indicative atom is definite. Thus each positive indicative description
S will also be definite.

Theorem 38 (Semantical Normal Form). Let P be an imperative formula and Σ a
realization scheme for the indicative atoms of P. Then P is Σ-equivalent to a disjunction
of full plan descriptions in the atoms of Σ.

Proof. We obtain the required normal form in a number of steps.
Step 1: By Lemma 37(i), each imperative atom p is fully equivalent to � → p and,

likewise, �! is fully equivalent to � → �!. So each occurrence of an imperative atom p
or of the constant �! in P which does not occur within the scope of → may be replaced,
respectively, with � → p or � → �!, preserving full equivalence, and we may therefore
suppose that P is a truth-functional compound of conditional imperatives.

Step 2: By Corollary 3 (and Soundness), any indicative formula S is positively Σ-
equivalent to a positive disjunctive normal form S′ = (S1 ∨ S2 ∨ ··· ∨ Sn), n ≥ 0. By
Lemma 37(x), if S and S′ are positively equivalent then S → Q and S′ → Q are fully
equivalent. So each antecedent S of a conditional subformula S → Q of P may be
replaced with S′ → Q, preserving full equivalence, and we may therefore suppose that
the conditional subformulas of P are of the form S′ → Q with S′ a positive disjunctive
normal form (S1 ∨ S2 ∨ ··· ∨ Sn), n ≥ 0.

Step 3: By Lemma 37(ii), each subformula (S1 ∨ S2 ∨ ··· ∨ Sn) → Q may be replaced,
preserving full equivalence, by (S1 → Q) ∧ (S2 → Q) ∧ ··· ∧ (Sn → Q). In order to do
this in an orderly manner, we might first make the replacement in the innermost
subformulas S′ → Q in which S′ is not already an indicative description. Should S′

be the null disjunction ⊥ then S′ → Q will be fully equivalent to �! and thence to
� → �!. Thus in each case we may replace S′ → Q with a conditional whose antecedent
is a positive indicative description, and proceeding in this way, we end up with a
formula in which the antecedent of every conditional subformula is a positive indicative
description.

Step 4: We now drive negations inwards, thereby preserving full equivalence. Thus
¬¬P is replaced with P,¬(P ∧ Q) with (¬P ∨ ¬Q),¬(P ∨ Q) with (¬P ∧ ¬Q), and
¬(S → Q) with (S → ¬Q). The last step is legitimated by Lemma 37(vi), since S is
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a positive indicative description, which is definite. Thus we end up with a formula in
which the negation operator only governs imperative atoms or the constant �!.

Step 5: Each conditional subformula of the resulting formula P is therefore of the
form (S → Q), where Q is either a (i) conditional formula or (ii) a conjunction of two
imperatives or (iii) the disjunction of two imperatives or (iv) an imperative literal or
(v) one of the constants �! or ⊥!. We deal with each case in turn:

(i) By Lemma 37(v), we may replace S → (Q → R) with (S ∧ Q) → R.
(ii) By Lemma 37(iv), we may replace S → (Q1 ∧ Q2) with (S → Q1) ∧ (S → Q2).
(iii) By Lemma 37(iii), we may replace S → (Q1 ∨ Q2) with (S → Q1) ∨ (S → Q2),

bearing in mind that S is definite.
(iv) In this case, leave the formula alone.
(v) We leave S → �! alone and, by Lemma 37(ix), we may replace S →⊥! with ⊥!.

We perform these replacements, starting with the innermost subformulas of the
form S → Q. Proceeding in this way, the procedure will terminate in a positive truth-
functional compound of the constant ⊥! and component plan descriptions of the form
S → ±p where ±p is an imperative atom or its negation.

Step 6: Put the resulting formula P in standard disjunctive normal form in which the
‘atoms’ are now taken to be the conditional imperatives (S → ±p). Thus each ‘state
description’ in the normal form will be a conjunction of component plan descriptions
(and when the normal form contains no disjuncts it will be identical to ⊥!). If one
of the component plan descriptions contains several conjuncts of the form S → ±p1,
S → ±p2, ..., S → ±pm, in which the antecedent S is the same, then, by ∗, we may replace
them with S → (p1 ∧ p2 ∧ ··· ∧ pm). Also, if one of the component plan description
omits any conditionals of the form S → Q whose antecedent is a positive indicative
description in the atoms of Σ then, by Lemma 37(xiii), we may add S → �! as a
conjunct. We thereby obtain a formula of the required form.

The above proof establishes a semantic equivalence between an imperative formula
and its normal form. We may also establish a corresponding proof-theoretic equiva-
lence. To this end, we adopt CS + E17 for indicative formulas and CS + E16 + E17 for
imperative formulas. To these subsystems, we then add the following axioms and rules
governing the conditional (where P ≡ ±Q is used to indicate the pair of equivalences
P ≡ Q and ¬P ≡ ¬Q and S+ is used to indicate a positive indicative description, i.e., a
conjunction of indicative atoms of arbitrary finite length):

ES1 (� → P) ≡ P.
ES2 (S1 ∨ S2) → P ≡± (S1 → P) ∧ (S2 → P).
ES2′ (⊥→ P) ≡± �!.
ES3 S → (P1 ∧ P2) ≡ (S → P1) ∧ (S → P2).
ES3′ (S → �! ) ≡ �!.
ES4 S+ → (P1 ∨ P2) ≡ (S+ → P1) ∨ (S+ → P2).
ES4′ S+ → ⊥ ≡ ⊥!.
ES5 S → (T → P) ≡ (S ∧ T) → P.
ES6 ¬(S+ → P) ≡ (S+ → ¬P).
ES7 S ≡ S′/(S → P) ≡± (S′ → P).
ES8 P ≡ P′/(S → P) ≡ (S → P′).

The idea behind the paired axioms ES2–ES4 to ES2–ES4′ is that the primed axiom
represents the vacuous case of the logical operation involved in the unprimed axiom.
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Thus ES3′ corresponds to the case in which the conjunctive consequent in ES3 is
empty.

Although we have only stated the axioms ES1 and ES3–ES6 as positive equivalences,
they can also be shown to be derivable as negative equivalences. There is a certain
inelegance in regard to the pair ES2 and ES2′ since we seem to need to postulate
full equivalence in these cases and not just positive equivalence. We could remove the
disparity in the case of ES2 by combining it with ES6 and having in their place the
single axiom

¬
((

S+ ∨ S
)
→ P

)
≡

(
S+ → ¬P

)
∨ ¬ (S → P) .

And we might remove the disparity in the case of ES2′ by adopting the rule

P ≡ �! /¬P ≡⊥! .

This rule says, in effect, that there is only one proposition whose sole truthmaker
is �, and the rule and the corresponding constraint on models are not unreasonable
since if they hold for some given propositions they will hold for all propositions that
might be formed from them by means of disjunction and conjunction. Given such a
rule, the negative form of ES2′ can then be derived from the positive form.

Let us call the resulting system CS→. Then in analogy to Theorem 38, we have:

Theorem 39 (Provable Normal Form). Let P be an imperative formula and Σ a
realization scheme for the indicative atoms of P. Then P is provably Σ-equivalent in
CS→ to a disjunction of full plan descriptions in the atoms of Σ.

The proof is essentially the same as for the previous theorem, the main difference
being that we must now derive the various reduction theses that are required to obtain
the normal form.

We can, as before, use the reduction to normal form to establish completeness:

Theorem 40 (Soundness and Completeness for CS→). Let P and Q be two imperative
formulas and let Σ be a realization scheme for the indicative atoms of P and Q. Then
P ≡ Q is derivable in CS→ + Σ iff P and Q are Σ-equivalent in any prescriptive model.

Proof (Sketch). Soundness is straightforward and largely follows from previously
established results.

For the purposes of establishing completeness, we first write P and Q in positive
standard form, as P′ and Q′. We then show that if P′ and Q′ are not the same then there
is a Σ- model in which |P′|+ and |Q′|+ are also not the same. This is done by appeal to
a canonical model.

Suppose that s1, s2, ..., sm are the indicative atoms occurring in P′ or Q′ and that
p1, p2, ..., pn are the imperative atoms occurring in P′ or Q′, m, n ≥ 0, and for each
indicative atom sk , k = 1, ..., m, suppose that the realization scheme Σ contains the
formula ¬sk ≡ (sk1 ∨ sk2 ∨ ··· ∨ sknk ). We then let the canonical planning space be
S+
I,A,P = (SI, SA, S

+
P ,�), where:

(i) SI = ℘({s: s is an indicative atom that occurs in P′ or Q′ or Σ ∪ {±p: p is an
imperative atom that occurs in P′ or Q′});

(ii) SA = ℘({±p : p is an imperative at into SA};
(iii) S+

P = {p: p is a function from SI into SA}; and
(iv) � = {(s, t) ∈ SI × SI : s ⊆ t}.
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Note that we have treated the imperative literals ±p as actions rather than plans.
The canonical model over S+

I,A,P is then taken to be the structure (SI, SA, S
+
P ,�,

| · |I, | · |P)), where:

(v) |s|+I = [{s}] for each indicative atom s in P′ or Q′ or Σ,
|sk |–I = [{sk1}, {sk2}, ... , {sknk}] for k = 1, 2, ... , m, and
|s|–I = [∅] for any indicative atom s of Σ that does not occur in P′ or Q′;

(vi) |p|+P = {pa ∈ S+
P : a = {p}}

|p|–P = {pa ∈ S+
P : a = {¬p}}.

Note that we have set |s|–I = [∅], since for the purposes of evaluating P′ or Q′ we do
not care what |s|–I is for s neither in P′ nor Q′.

If two plan descriptions P# and Q# that occur respectively in P′ and Q′ are not the
same then they will have definite prescriptive contents |P#|= {p} and |Q#|= {q}which
are also not the same, and so when P′ and Q′ are not the same, the prescriptive content
of one will contain a plan not contained in the prescriptive content of the other.

Imposing the conditions of Semi-Inclusion and Follow-Through makes no difference
to the result, since the imposition of these conditions leaves intact the behavior of
plans on the ‘pure’ states that do not contain acts as parts. However, the result will
fail once coordination between indicative and imperative atoms is allowed. Given
Semi-Inclusion, for example, the two imperatives a → �! and a → a! would be exactly
equivalent.

We should also note the role played by realizations in the above results. We are, in
effect, taking the indicative atoms to have a single truth-maker and a finitely number of
specifiable falsity makers. Without this assumption, the proposed reduction to normal
form would no longer go through and it no longer seems clear whether a reduction to
normal form might still be achieved or what a complete set of axioms and rules might
reasonably be taken to be.

§16. Conclusion. Of primary importance in this paper has been the reduction of
truth-functional compounds of conditional imperatives to normal form—one which
states the content of the compound formula in terms of a choice between different
plans. A secondary aim has been to establish a theory of plans as a basis for a
truthmaker semantics in which the plans are the items in exact compliance with or
in exact contravention to a given imperative. The reduction calls for a hyperintensional
logic in which the import of classically equivalent indicatives needs to be distinguished
and, in the absence of such a logic, it is hard to see how the desired reduction is to be
achieved.
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529–572.

[18] Yalcin, S. (2012). Bayesian expressivism. Proceedings of the Aristotelian Society,
112(2), 126–160.

DEPARTMENT OF PHILOSOPHY
NEW YORK UNIVERSITY

NEW YORK, NY, USA
E-mail: kf14@nyu.edu

https://doi.org/10.1017/S175502032300028X Published online by Cambridge University Press

https://doi.org/10.3765/sp.13.6
mailto:kf14@nyu.edu
https://doi.org/10.1017/S175502032300028X

	1 The interpretation of conditional imperatives
	1.1 Single/multi-agent
	1.2 Specific/general
	1.3 Subjective/objective
	1.4 Defeasible/indefeasible
	1.5 Inclusive imperatives

	2 Syntax
	3 Background
	4 Multi-set semantics
	5 Logics
	6 Situations and actions
	7 Plans
	8 Conditions on plans
	9 Plans, partial plans, and actions
	10 Core conditionalization
	11 Closed conditionalization
	12 Conditionalized prescriptions
	13 Positive reduction
	14 Negative reduction
	15 Normal forms
	16 Conclusion

