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Homogenizing fluid transport in stratified
porous media using an elastic flow instability
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Many key environmental, industrial and energy processes rely on controlling fluid
transport within subsurface porous media. These media are typically structurally
heterogeneous, often with vertically layered strata of distinct permeabilities – leading
to uneven partitioning of flow across strata, which can be undesirable. Here, using
direct in situ visualization, we demonstrate that polymer additives can homogenize this
flow by inducing a purely elastic flow instability that generates random spatio-temporal
fluctuations and excess flow resistance in individual strata. In particular, we find that this
instability arises at smaller imposed flow rates in higher-permeability strata, diverting
flow towards lower-permeability strata and helping to homogenize the flow. Guided by
the experiments, we develop a parallel-resistor model that quantitatively predicts the flow
rate at which this homogenization is optimized for a given stratified medium. Thus, our
work provides a new approach to homogenizing fluid and passive scalar transport in
heterogeneous porous media.

Key words: porous media, polymers, viscoelasticity

1. Introduction

Many key environmental, industrial and energy processes – such as remediation of
contaminated groundwater aquifers (Smith et al. 2008; Hartmann et al. 2021), recovery
of oil from subsurface reservoirs (Durst, Haas & Kaczmar 1981; Sorbie 2013) and
extraction of heat from geothermal reservoirs (Di Dato et al. 2021) – rely on the injection
of a fluid into a subsurface porous medium. Such media are formed by sedimentary
processes, often leading to vertically layered strata of distinct pore sizes oriented along the
direction of macroscopic flow (Freeze 1975; Dagan 2012). The permeability differences
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between these strata cause uneven fluid partitioning across them, with preferential flow
through higher-permeability regions and ‘bypassing’ of lower-permeability regions (Lake
& Hirasaki 1981; Di Dato et al. 2021). This flow heterogeneity reduces the efficacy
of contaminant remediation, oil recovery and heat extraction from bypassed regions –
necessitating the development of new ways to spatially homogenize the flow.

Polymer additives have a long history of use in such applications to increase the injected
fluid viscosity and thereby suppress instabilities, like viscous fingering, at immiscible
(e.g. water–oil) interfaces (Durst et al. 1981; Smith et al. 2008; Sorbie 2013). However,
for typically used polymer solutions that do not have appreciable elasticity, this process
of conformance control still suffers from the issue of uneven partitioning of flow
across different strata due to differences in permeability. Quantitatively, the superficial
velocity in a given stratum i is given by Darcy’s law, representing each stratum as a
homogeneous medium with uniformly disordered pores of a single mean size: Ui ≡
Qi/Ai = (�P/L)ki/ηapp, where Qi is the volumetric flow rate through the stratum, �P
is the pressure drop across a length L of the parallel strata, Ai and ki are the cross-sectional
area and permeability of the stratum, respectively, and ηapp is the ‘apparent viscosity’ of
the polymer solution quantifying the macroscopic resistance to flow through the tortuous
pore space. For non-elastic polymer solutions, ηapp is simply given by the dynamic shear
viscosity η of the solution, and is typically not strongly dependent on flow rate or porous
medium geometry. Therefore, differences in ki result in differences in Ui between strata –
leading to uneven partitioning of the flow across the entire stratified medium.

Conversely, the apparent viscosity of highly elastic polymer solutions (e.g. with
molecular weights �1 MDa) can depend on flow rate. For many such solutions, ηapp
strongly increases above a threshold flow rate in a homogeneous porous medium, even
though η of the bulk solution decreases with increasing shear rate (Marshall & Metzner
1967; James & McLaren 1975; Chauveteau & Moan 1981; Durst & Haas 1981; Durst
et al. 1981; Kauser et al. 1999; Haward & Odell 2003; Odell & Haward 2006; Zamani
et al. 2015; Clarke et al. 2016; Skauge et al. 2018; Ibezim, Poole & Dennis 2021). Direct
visualization of the flow in a homogeneous medium (Browne & Datta 2021) recently
established that this anomalous increase coincides with the onset of a purely elastic flow
instability arising from the buildup of polymer elastic stresses during transport (Larson,
Shaqfeh & Muller 1990; McKinley, Pakdel & Öztekin 1996; Pakdel & McKinley 1996;
Shaqfeh 1996; Burghelea et al. 2004; Rodd et al. 2007; Afonso, Alves & Pinho 2010;
Galindo-Rosales et al. 2012; Zilz et al. 2012; Ribeiro et al. 2014; Clarke et al. 2016;
Machado et al. 2016; Kawale et al. 2017; Sousa, Pinho & Alves 2018; Browne, Shih
& Datta 2019; Qin et al. 2019a; Browne, Shih & Datta 2020; Walkama, Waisbord &
Guasto 2020; Haward, Hopkins & Shen 2021). Such an instability gives rise to random
flow fluctuations that are, in some cases, reminiscent of inertial turbulence despite the
vanishingly small Reynolds numbers Re (Groisman & Steinberg 2000; Pan et al. 2013;
Qin et al. 2019a; Datta et al. 2022) – contributing added viscous dissipation that, at least
in some cases, primarily generates this anomalous increase in ηapp (Browne & Datta 2021).
In a stratified medium, this flow rate dependence of ηapp,i in each stratum may provide an
avenue to break the proportionality between ki and Ui, potentially mitigating the uneven
partitioning of the flow across strata. However, this possibility remains unexplored; indeed,
it is still unknown how exactly this elastic instability arises in each stratum.

Here, we demonstrate that this elastic flow instability can help homogenize flow in
stratified porous media. Using pore-scale confocal microscopy and macro-scale imaging
of passive scalar transport, we visualize the flow in a model porous medium with two
distinct parallel strata, imposing a constant flow rate Q through the entire medium. For
small Q, the flow in both strata is laminar, leading to the typical uneven partitioning of

963 A30-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

33
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.337


Homogenizing fluid transport via an elastic flow instability

flow across the strata. Strikingly, for Q above a threshold value, the instability arises solely
in the higher-permeability stratum and fluid is redirected to the lower-permeability stratum,
helping to homogenize the flow. Above an even larger threshold flow rate, the instability
also arises in this lower-permeability stratum, suppressing this flow redirection – leading
to a window of flow rates at which this homogenization arises. Guided by these findings,
we develop a parallel-resistor model that treats each stratum i as a homogeneous medium
with specified Ai, ki and, therefore, ηapp,i, all coupled at the inlet and outlet. This model
quantitatively captures the overall pressure drop across the stratified medium as well as the
observed flow redirection with varying flow rate. It also elucidates the underlying cause of
this redirection. In particular, above the first threshold flow rate, preferential flow causes
the elastic instability to arise solely in the higher-permeability stratum. The corresponding
increase in the resistance to flow, as quantified by ηapp,i, redirects flow towards the
lower-permeability stratum. Above the larger second threshold flow rate, the onset of the
instability and corresponding increase in ηapp,i in the lower-permeability stratum redirects
flow back towards the higher-permeability stratum – yielding the experimentally observed
optimum in flow homogenization. Finally, we generalize this model, establishing the
operating conditions at which this homogenization is optimized for porous media with
arbitrarily many strata. Thus, our work provides a new approach to homogenizing fluid and
passive scalar transport in heterogeneous porous media. Since many naturally occurring
media are stratified, we anticipate these findings to be broadly useful in environmental,
industrial and energy processes.

2. Materials and methods

To investigate the spatial distribution of flow in a stratified porous medium, we use imaging
at two different length scales: macro-scale (∼100 s of pores, figure 1a) and pore-scale
(∼1 pore, figure 1b). For clarity regarding nomenclature, we note that different forms
of elastic flow instability may arise in different geometries (e.g. those with curvilinear
vs parallel streamlines), possibly resulting in flows with distinct power spectra of flow
velocity fluctuations (Groisman & Steinberg 2000; Fouxon & Lebedev 2003; Steinberg
2021, 2022; Datta et al. 2022). Clarifying the different forms of elastic instability that can
arise, and the physics underlying the transition to and spectral features of each instability, is
an interesting question for future research. However, the work described in this manuscript
instead focuses on the flow resistance, and corresponding partitioning of flow across
strata, arising from an elastic instability in porous media – not on the exact nature of
the instability or the transition to unstable flow. We therefore use the term ‘elastic flow
instability’ to refer more generally to polymer elasticity-generated flow instabilities at low
Re � 1, independent of the specific details of the exact nature of the instability, but instead
dependent on the flow thickening it causes as shown by our experimental measurements.

2.1. Macro-scale experiments in a Hele-Shaw assembly
To characterize the macro-scale partitioning of flow, we fabricate an unconsolidated
stratified porous medium in a Hele-Shaw assembly (figure 1a). We 3-D print an open-faced
rectangular cell with spanwise (y–z-direction) cross-sectional area A = 3 cm × 0.4 cm
and streamwise (x-direction) length L = 5 cm using a clear methacrylate-based resin
(FLGPCL04, Formlabs Form3). To ensure an even distribution of flow at the boundaries,
both the inlet and outlet are split into three equally spaced streams ≈2 cm from the
entrance and exit of the porous medium, respectively, with the centre stream spanning
the streamwise interface between the parallel strata. We then fill the cell with spherical
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borosilicate glass beads of distinct diameters arranged in parallel strata using a temporary
partition, with bead diameters dp = 1000 to 1400 μm (Sigma Aldrich) and 212 to 255 μm
(Mo-Sci) for the higher-permeability coarse (subscript C) and lower-permeability fine
(subscript F) strata, respectively. The strata have equal cross-sectional areas AC ≈ AF ≈
A/2 and thus their area ratio Ã ≡ AC/AF ≈ 1. Steel mesh with a 150 μm pore size cutoff
placed over the inlet and outlet tubing prevents the beads from exiting the cell. We tamp
down the beads for 30 min to form a dense random packing with a porosity φV ∼ 0.4
(Onoda & Liniger 1990). We then screw the whole assembly shut with an overlying acrylic
sheet cut to size, sandwiching a thin sheet of polydimethylsiloxane to provide a watertight
seal. All experiments using this assembly are conducted at ≈21 ◦C.

For all macro-scale experiments, we use a Harvard Apparatus PHD 2000 syringe pump
to first introduce the test fluid – either the polymer solution or the polymer-free solvent,
which acts as a Newtonian control – at a constant flow rate Q for at least the duration
needed to fill the entire pore space volume tPV ≡ φVAL/Q before imaging to ensure an
equilibrated starting condition. We then visualize the macro-scale scalar transport by the
fluid by introducing a step change in the concentration of a dilute dye (0.1 wt.% green
food colouring, McCormick) and record the infiltration of the dye front using a DSLR
camera (Sony α6300), as shown in figure 1(a). To track the progression of the dye as it is
advected by the flow, we determine the ‘breakthrough’ curve half-way along the length of
the medium (x = L/2) by measuring the dye intensity C averaged across the entire medium
cross-section, normalized by the difference in intensities of the final dye-saturated and
initial dye-free medium, Cf and C0, respectively: C̃ ≡ (〈C〉y − 〈C0〉y)/(〈Cf 〉y − 〈C0〉y)
(figure 2b). This procedure averages out slight variations in the dye front along the
y- and z-directions, which inevitably arise due to grain-scale spatial fluctuations in
the pore geometry (Datta et al. 2013). For all breakthrough curves thereby measured,
time t is normalized using the time taken to reach this half-way point, t̃ ≡ t/(0.5tPV).
Repeating this procedure for individual strata (subscript i) and tracking the variation of the
streamwise position Xi at which C̃i = 0.5 with time provides a measure of the superficial
velocity Ui = dXi/dt in each stratum. In between tests at different flow rates, we flush the
assembly with the dye-free solution for at least ten pore volumes to remove any residual
dye.

2.2. Pore-scale experiments in microfluidic assemblies
To gain insight into the pore-scale physics, we use experiments in consolidated
microfluidic assemblies (figure 2b). We pack spherical borosilicate glass beads (Mo-Sci)
in square quartz capillaries (A = 3.2 mm × 3.2 mm; Vitrocom), densify them by tapping
and lightly sinter the beads – resulting in dense random packings again with φV ∼ 0.4
(Krummel et al. 2013). We use this protocol to fabricate three different microfluidic
media: a homogeneous higher-permeability coarse medium (dp = 300 to 355 μm), a
homogeneous lower-permeability fine medium (dp = 125 to 155 μm) and a stratified
medium with parallel higher-permeability coarse and lower-permeability fine strata, each
composed of the same beads used to make the homogeneous media, again with equal
cross-section areas, Ã ≈ 1 (Datta & Weitz 2013; Lu et al. 2020). We measure the fully
developed pressure drop �P across each medium using an Omega PX26 differential
pressure transducer. All experiments on the microfluidic assemblies are conducted at
≈21 ◦C.

For all pore-scale experiments, before each experiment, we infiltrate the medium to
be studied first with isopropyl alcohol (IPA) to prevent trapping of air bubbles and
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Figure 1. Macro-scale and pore-scale characterization of the flow of a highly elastic polymer solution
in stratified porous media. (a) Schematic of our Hele-Shaw assembly, with two parallel strata made of
close-packed glass beads of distinct sizes. We characterize the macro-scale flow by visualizing the transport
of an injected dye, which acts as a passive scalar. (b) Schematic of our microfluidic assembly, again with
two parallel strata made of close-packed glass beads of the same distinct sizes as in the Hele-Shaw assembly.
We characterize the flow through direct pore-scale visualization of fluorescent tracer particle transport using
confocal microscopy, combined with measurements of the pressure drop across the entire medium. (c) Shear
stress σ varies nearly linearly with the shear rate γ̇ , indicating that the solution approximates a Boger fluid; the
dashed line shows the power-law fit σ = Asγ̇

αs with As = 0.3428 ± 0.0002 Pa sαs and αs = 0.931 ± 0.001.
(d) First normal stress difference N1 also increases with increasing shear rate γ̇ ; the dashed line shows
the power-law fit N1 = Anγ̇

αn with An = 1.16 ± 0.03 Pa sαn and αn = 1.25 ± 0.02. Error bars represent one
standard deviation of three measurements.

then displace the IPA by flushing with water. We then displace the water with the
miscible polymer solution, seeded with 5 ppm of fluorescent carboxylated polystyrene
tracer particles (Invitrogen), Dt = 200 nm in diameter. This solution is injected into the
medium at a constant volumetric flow rate Q using Harvard Apparatus syringe pumps –
a PHD 2000 for Q > 1 ml h−1 or a Pico Elite for Q < 1 ml h−1 – for at least 3 h to reach
an equilibrated state before flow characterization. After each subsequent change in Q, the
flow is given 1 h to equilibrate before imaging. We monitor the flow in individual pores
using a Nikon A1R+ laser scanning confocal fluorescence microscope with a 488 nm
excitation laser and a 500–550 nm sensor detector; the tracer particles have excitation
between 480 and 510 nm with an excitation peak at 505 nm, and emission between 505
and 540 nm with an emission peak at 515 nm. These particles are faithful tracers of
the underlying flow field since the Péclet number Pe ≡ (Q/A)Dt/D > 105 	 1, where
D = kBT/(3πηDt) = 6 × 10−3 μm2 s−1 is the Stokes–Einstein particle diffusivity. We
then visualize the flow using a 10× objective lens with the confocal resonant scanner,
obtaining successive 8 μm-thick optical slices at a z depth hundreds of μm within
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Figure 2. Imaging reveals that an elastic polymer solution homogenizes the uneven flow between strata,
coincident with the onset of the elastic flow instability in the coarser stratum. (a) Visualization of passive
scalar transport by the polymer solution in a stratified Hele-Shaw assembly using a green dye. All images are
taken at the same t̃ ≡ t/(0.5tPV ) = 2.5, where time t has been normalized by the time to fill half of the entire
pore space volume. Due to the higher permeability of the coarse stratum (bottom), dye infiltrates faster than in
the fine stratum (top). However, at the intermediate WiI = 2.7, this uneven partitioning of the flow is reduced.
(b) Scalar breakthrough curves obtained by measuring the normalized dye concentration C̃ at the midpoint
x = L/2 over time. Uneven flow partitioning at WiI = 1.4 leads to distinct jumps and prolongs C̃ to long times;
by contrast, redirection of flow to the fine stratum at the intermediate WiI = 2.7 leads to more uniform and
rapid breakthrough, shown by the smoother and earlier rise in C̃(t̃). This homogenization is mitigated at the
even larger WiI = 3.3. (c) Streamline images of representative pores in a stratified microfluidic assembly; black
circles are sections through the beads making up the solid matrix, white lines are time projections of the tracer
particle pathlines that closely approximate the instantaneous flow streamlines. Imposed flow direction is from
left to right. The flow homogenization at the intermediate WiI = 2.7 (c i,c iii) coincides with the onset of the
elastic flow instability solely in the coarse stratum (bottom) – indicated by the emergence of spatio-temporal
fluctuations in the flow, shown by the red overlay whose intensity is given by the standard deviation in pixel
intensity over the course of the time series of images. The mitigation of this homogenization at the even larger
WiI = 3.3 (c ii,c iv) coincides with the additional onset of the instability in the fine stratum, as well (top).
(d) Map of the root mean square velocity fluctuations computed from PIV, which confirm that the flow becomes
unstable first in the coarse stratum at the intermediate WiI = 2.7 (d i,d iii), and then also in the fine stratum at
the even larger WiI = 3.3 (d ii,c iv). (e) Fraction of 10 randomly chosen pores observed in each stratum that
exhibit unstable flow, defined as such by identifying whether fluid streamlines cross over the imaging duration.
Only a small fraction of pores in the coarse stratum exhibit unstable flow at the intermediate WiI = 2.7, whereas
a greater fraction of pores in both strata exhibit unstable flow at the larger WiI = 3.3 – corroborating the results
shown in (c–d).

the medium. Our imaging probes an x–y field of view 159 μm × 159 μm at 60 frames
per second for pores with dp = 125 to 155 μm or 318 μm × 318 μm at 30 frames per
second for pores with dp = 300 to 355 μm.

To monitor the flow in the different pores over time, we use an ‘intermittent’ imaging
protocol. Specifically, we record the flow in multiple pores chosen randomly throughout
each medium (19 and 20 pores of the homogeneous coarse and fine media, respectively) for
2 s long intervals every 4 min over the course of 1 h. For the experiments in homogeneous
fine and stratified media, we also complement this protocol with ‘continuous’ imaging in
which we monitor the flow successively in 10 pores of the homogeneous fine medium for
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5 min long intervals each. For ease of visualization, we intensity average the successive
images thereby obtained over a time scale ≈ 2.5 μm/(Q/A) (figure 2c), producing movies
of the tracer particle pathlines that closely approximate the instantaneous flow streamlines.
We also measure the instantaneous x–y velocities u using particle image velocimetry (PIV)
(Thielicke & Stamhuis 2014). Subtracting off the temporal mean, indicated by 〈〉t, in each
pixel yields the velocity fluctuation u′ = u − 〈u〉t; we then define an unstable region of
the flow as one in which the root mean square velocity fluctuation

√
〈|u′|2〉t/〈|u|〉t > 0.3.

2.3. Permeability measurements
For each medium, we determine the permeability via Darcy’s law using experiments
with pure water. For the microfluidic assemblies, we obtain kC = 79 μm2 and kF =
8.6 μm2 for the homogeneous coarse and fine media, respectively – comparable to
our previously measured values on similar media (Krummel et al. 2013) and to the
prediction of the established Kozeny–Carman relation (Philipse & Pathmamanoharan
1993). The permeability ratio between the two strata is then k̃ ≡ kC/kF ≈ 9. The
measured permeability for the entire stratified porous medium is k = 32 μm2, in
reasonable agreement with the prediction obtained by considering the strata as separated
homogeneous media providing parallel resistance to flow, k ≈ ÃkC + (1 − Ã)kF ≈
44 μm2.

The permeability of an isolated stratum in a stratified medium varies as ∼ d2
p, similar

to a homogeneous porous medium. Hence, for the Hele-Shaw assembly, we estimate the
permeability of each stratum by scaling kC and kF with the differences in bead size. We
thereby estimate k ≈ 440 μm2 (k̃ ≈ 26) for the entire stratified medium, in reasonable
agreement with the measured k = 270 μm2.

For both assemblies, we define a characteristic shear rate of the entire medium γ̇I ≡
Q/(A

√
φVk) as the ratio between the characteristic pore flow speed Q/(φVA) and length

scale
√

k/φV (Zami-Pierre et al. 2016; Berg & van Wunnik 2017). Our experiments explore
the range γ̇I ≈ 0.2 to 26 s−1.

2.4. Polymer solution rheology
The polymer solution approximates a Boger fluid composed of dilute 300 ppm 18 MDa
partially hydrolysed polyacrylamide dissolved in a viscous aqueous solvent composed
of 6 wt.% ultrapure milliPore water, 82.6 wt.% glycerol (Sigma Aldrich), 10.4 wt.%
dimethylsulfoxide (Sigma Aldrich) and 1 wt.% NaCl. This solution is formulated to
precisely match its refractive index to that of the glass beads – thus rendering each
medium transparent when saturated. From intrinsic viscosity measurements the overlap
concentration is c∗ ≈ 0.77/[η] = 600 ± 300 ppm (Browne & Datta 2021) and the radius
of gyration is Rg ≈ 220 nm (Rubinstein et al. 2003) and therefore our experiments use
a dilute polymer solution at ≈ 0.5 times the overlap concentration. The shear stress
σ(γ̇I) = Asγ̇

αs and first normal stress difference N1(γ̇I) = Anγ̇
αn are measured in an

Anton Paar MCR301 rheometer, using a 1◦ 5 cm diameter conical geometry set at a 50 μm
gap, yielding the best-fit power laws As = 0.3428 ± 0.0002 Pa sαs with αs = 0.931 ±
0.001 and An = 1.16 ± 0.03 Pa sαn with αn = 1.25 ± 0.02 (figure 1c,d). All rheological
measurements are temperature controlled with a Peltier plate at 20.0 ± 0.1 ◦C.

These measurements then enable us to calculate a characteristic interstitial Weissenberg
number, which characterizes the role of polymer elasticity in the flow by comparing the
magnitude of elastic and viscous stresses, WiI ≡ N1(γ̇I)/(2σ(γ̇I)), as commonly defined
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(Pan et al. 2013; Qin et al. 2019a,b; Browne et al. 2020; Browne & Datta 2021; Ibezim
et al. 2021; Datta et al. 2022). In our experiments this quantity exceeds unity, ranging
from 1 to 5.5, suggesting that elastic flow instabilities likely arise in the flow (Larson et al.
1990; Pakdel & McKinley 1996; Shaqfeh 1996; Rodd et al. 2007; Afonso et al. 2010;
Galindo-Rosales et al. 2012; Zilz et al. 2012; Pan et al. 2013; Ribeiro et al. 2014; Sousa
et al. 2018; Browne et al. 2019, 2020; Browne & Datta 2021) – as we directly verify using
flow visualization, detailed further below.

Polymer solutions such as that used here are typically characterized by a broad spectrum
of relaxation times, which can be challenging to fully characterize experimentally (Perkins,
Smith & Chu 1997; Liu, Jun & Steinberg 2007, 2009). For simplicity, we therefore follow
Shaqfeh (1996) and describe our solution using a single polymer relaxation time λ ≡
limγ̇→0 Ψ1/(2ηp), where Ψ1 ≡ N1/γ̇

2 is the first normal stress coefficient, ηp ≡ η − ηs
is the polymer contribution to the solution viscosity and ηs = 226.8 ± 0.3 mPa s is the
viscosity of the polymer-free solvent. Using the lowest shear rates where each value is
accessible on our rheometer, we estimate limγ̇→0Ψ1 ≈ 192 ± 7 mPa s2 and limγ̇→0η ≈
427 ± 4 mPa s, yielding λ ≈ 480 ± 30 ms. This value of a characteristic relaxation time
is in good agreement with previously reported relaxation times for similar polymer and
solvent compositions (Groisman & Steinberg 2000; Galindo-Rosales et al. 2012; Pan et al.
2013; Clarke et al. 2016; Walkama et al. 2020), although we expect the true longest
relaxation time of the solution to be larger than this value.

Finally, we also characterize the role of inertia with the Reynolds number Re =
ρUdp/η(γ̇I), which quantifies the ratio of inertial to viscous stresses for a fluid with
density ρ. In our experiments this quantity ranges from Re = 2 × 10−7 to 2 × 10−5 � 1,
indicating that inertial effects are negligible.

3. Results

3.1. Polymer solution homogenizes flow above a threshold Weissenberg number,
coinciding with the onset of the elastic flow instability

We use our stratified Hele-Shaw assembly to characterize the uneven partitioning of
flow between strata at the macro-scale. First, we impose a small flow rate Q = 3 ml h−1

corresponding to WiI = 1.4 – below the onset of the elastic flow instability at WiI ≈ 2.6
for homogeneous media (Browne & Datta 2021). As is the case with Newtonian fluids,
we observe preferential flow through the coarse stratum, indicated by the infiltrating dye
front in figure 2(a i) and in supplementary movie 1 available at https://doi.org/10.1017/jfm.
2023.337. The infiltration of dye at different rates through the strata produces two distinct
steps in the breakthrough curve (blue line in figure 2b): the first jump from C̃ ≈ 0 to 0.4
from 0 < t̃ � 3 corresponds to fluid infiltration of the coarse stratum, and the second jump
from C̃ ≈ 0.4 to 0.8 from 3 � t̃ � 6 corresponds to infiltration of the fine stratum. This
uneven partitioning of flow is also reflected in the difference between the magnitudes of the
superficial velocities UC = 130 μm s−1 and UF = 10 μm s−1 in the coarse and fine strata,
respectively, corresponding to a ratio of UF/UC = 0.075. We observe similar behaviour
with our Newtonian control, which produces a similar ratio of (UF/UC)0 = 0.063 even at
a larger imposed flow rate Q = 35 ml h−1 (movie 2). Hence, at low WiI , polymer solutions
recapitulate the uneven partitioning of flow across strata that is characteristic of Newtonian
fluids.

Next, we repeat the same experiment as in figure 2(a i) at a larger flow rate
of Q = 25 ml h−1 – corresponding to a larger WiI = 2.7. Surprisingly, under these
conditions, the partitioning of flow is markedly less uneven (figure 2(a ii), movie 3).
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Homogenizing fluid transport via an elastic flow instability

These observations are reflected in the dye breakthrough curve, as well: the previously
distinct jumps in the concentration C̃ begin to merge, as shown by comparing the blue
and green lines in figure 2(b). Indeed, the ratio between the superficial velocities in the
fine and coarse strata UF/UC = 0.16, is ∼3× larger than in the laminar baseline given
by the Newtonian control and the low WiI = 1.4 solution tests. Therefore, to quantify
this net improvement in flow homogenization, we normalize the velocity ratio by its
Newtonian value, ŨF/ŨC ≡ (UF/UC)/(UF/UC)0 = 2.6. This improvement in the flow
homogenization is weaker at an even larger flow rate Q = 45 ml h−1 (corresponding
to WiI = 3.3), as shown in figure 2(a iii), the red line in figure 2(b), and in movie 4;
the corresponding velocity ratio is ŨF/ŨC = 1.7. Taken together, our observations
demonstrate that polymer additives can help mitigate uneven partitioning of flow in a
stratified porous medium – but that this effect is optimized at intermediate WiI .

Why does this flow homogenization arise? As described in § 1, for the initially laminar
flow, the coarser stratum experiences a higher interstitial flow speed – and therefore
shear rate – as prescribed by the differential partitioning of flow across strata following
Darcy’s law. Thus, the locally defined Weissenberg number is larger in the coarse stratum,
which we expect leads to an earlier onset of the elastic instability in this stratum. The
corresponding increase in the resistance to flow through the coarse stratum would then
redirect fluid to the fine stratum, helping to homogenize the flow. We test this expectation
using our ‘continuous’ imaging protocol, which enables us to directly image the flow at
the pore scale within the stratified microfluidic assembly. At the intermediate WiI = 2.7 –
at which the flow homogenization is optimized – all pores observed in the fine stratum
exhibit laminar flow that is steady over time (movie 5; representative pore shown in
figure 2c i,d i). By contrast, 20 % of the pores observed in the coarse stratum exhibit
strong spatial and temporal fluctuations in the flow (figure 2e). The fluid streamlines
continually cross and vary over time, indicating the emergence of the elastic instability,
as shown in movie 5 and in figure 2(c iii,d iii) for a representative pore – consistent
with our expectation. These random streamline fluctuations are similar to those observed
for this instability in a homogeneous medium (Browne & Datta 2021). To highlight the
regions of unstable flow, figure 2(c) also includes an overlay in red showing the standard
deviation of the fluctuations in the fluorescent intensity over time; figure 2(d) shows
the corresponding root mean square velocity fluctuation, which confirms that the flow is
unstable in those same regions. At the even larger WiI = 3.3 – at which the improvement
in flow homogenization is weaker – a larger fraction of pores in both strata exhibit unstable
flow (movie 6; figure 2c ii,iv,d ii,iv, figure 2e). These results thus indicate that macroscopic
flow homogenization is indeed linked to the onset of the elastic flow instability in the
coarse stratum at sufficiently large WiI , but is mitigated by the additional onset of the
instability in the fine stratum at even larger WiI .

3.2. Flow velocity fluctuations generated by the elastic flow instability lead to an
increase in the apparent viscosity

To quantitatively understand the link between pore-scale differences in this flow instability
and macro-scale differences in superficial velocity between strata, we consider the
resistance to flow in the distinct strata at different WiI . In particular, we model the strata
as parallel fluidic ‘resistors’ – that is, we treat each stratum as a homogeneous porous
medium (e.g. coarse C or fine F), with the two hydraulically connected only at the inlet and
outlet with fully developed flow in each. Because the time-averaged pressure drop 〈�P〉t
is equal across both strata, the imposed constant volumetric flow rate Q must partition into
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Figure 3. The elastic flow instability produces a similar increase in the macroscopic flow resistance for
homogeneous porous media of different permeabilities. (a) Points show the apparent viscosity, normalized by
the shear viscosity of the bulk solution, obtained using macroscopic pressure drop measurements. The apparent
viscosity increases above a threshold WiI due to the onset of the elastic flow instability. Measurements for
two different homogeneous media with distinct bead sizes and permeabilities (different colours) show similar
behaviour. Grey line shows the predicted apparent viscosity using our power balance ((3.2), neglecting strain
history) and the measured power-law fit to 〈χ〉t,V shown in (b), with no fitting parameters; the uncertainty
associated with the fit yields an uncertainty in this prediction, indicated by the shaded region. At the largest
WiI , the apparent viscosity eventually converges back to the shear viscosity, reflecting the increased relative
influence of viscous dissipation from the base laminar flow. (b) Points show the rate of added viscous dissipation
due to unstable flow fluctuations averaged over the medium, 〈χ〉t,V , measured from flow visualization. The
dissipation sharply increases above the onset of the instability and is not sensitive to the bead size. Error bars
represent one standard deviation between pores. We fit the data using an empirical power-law relationship
∼(WiI/Wic − 1)2.4 above the macroscopic threshold Wic = 2.6, shown by the grey line; the shaded region
shows the error in the power-law fit.

the coarse and fine strata with flow rates QC and QF, respectively, in proportion to their
individual flow resistances via Darcy’s law

〈�P〉t

L
= ηapp,CQC

kCAC
= ηapp,FQF

kFAF
. (3.1)

Following our previous study of this elastic flow instability in a homogeneous porous
medium (Browne & Datta 2021), we combine macro-scale pressure drop measurements
with pore-scale flow visualization to determine and validate a model for the ηapp,i of each
stratum in isolation. We then use this model to deduce the apparent viscosity and uneven
partitioning of flow within a stratified medium.

To do so, we measure the time-averaged pressure drop 〈�P〉t at different volumetric
flow rates Q across each microfluidic assembly. We use Darcy’s law to determine the
corresponding ηapp, which we plot as a function of WiI in figure 3(a); the data for the
coarse medium are taken from Browne & Datta (2021). As expected, at small WiI � 2.6,
the apparent viscosity ηapp is given by the bulk solution shear viscosity η(γ̇I), indicated by
the red dashed line. However, above a threshold Wic = 2.6, ηapp rises sharply, paralleling
previous reports (Marshall & Metzner 1967; James & McLaren 1975; Durst et al. 1981;
Durst & Haas 1981; Kauser et al. 1999; Clarke et al. 2016). Both the homogeneous coarse
(dark blue circles) and fine (light blue circles) media exhibit a similar dependence of ηapp
on WiI – indicating that for our geometrically similar packings, ηapp(WiI) does not depend
on grain size dp.

To model this dependence of ηapp on WiI , we directly image the pore-scale flow in each
homogeneous microfluidic assembly with confocal microscopy using our ‘intermittent’
imaging protocol. We previously reported these measurements solely for the homogeneous
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coarse medium (Browne & Datta 2021); thus, we first summarize these results. At
small WiI < 2.6, the flow is laminar in all pores. Above the threshold Wic = 2.6, the
flow in some pores becomes unstable, exhibiting strong spatio-temporal fluctuations.
At progressively larger WiI , an increasing fraction of the pores becomes unstable. To
directly compute the added viscous dissipation arising from these flow fluctuations, we
use our PIV measurements to determine the fluctuating component of the strain rate tensor
s′ = (∇u′ + ∇u′T)/2. The rate of added viscous dissipation per unit volume arising from
these flow fluctuations is then given directly by 〈χ〉t = η〈s′ : s′〉t, which can be estimated
from the measured x–y velocity field (Sharp, Kim & Adrian 2000; Delafosse et al. 2011).
As anticipated, the overall rate of added dissipation per unit volume 〈χ〉t,V determined by
averaging 〈χ〉t across all imaged pores increases with WiI above the threshold Wic = 2.6
(figure 3(b), dark blue circles) as a greater fraction of pores becomes unstable.

Next, we repeat this procedure in the homogeneous fine medium (figure 3(b), light
blue circles). Intriguingly, the overall rate of added dissipation per unit volume 〈χ〉t,V
does not significantly vary between media. Additionally measuring 〈χ〉t,V using our
‘continuous’ imaging protocol in the homogeneous fine medium further corroborates this
agreement (figure 3(b), light blue squares). We speculate that this collapse reflects that
flow fluctuations do not have a characteristic length scale (Browne & Datta 2021); further
studies of the influence of confinement on 〈χ〉t,V will be a useful direction for future work.
Our data indicate that, for the experiments reported here, differences in grain size between
homogeneous porous media are well-captured by WiI . We therefore fit all the data by
the single empirical relationship 〈χ〉t,V = Ax(WiI/Wic − 1)αx , with Ax = 176 ± 1 W m−3,
αx = 2.4 ± 0.3, and Wic = 2.6, shown by the grey line in figure 3(b).

Finally, we follow our previous work (Browne & Datta 2021) to quantitatively link the
pore-scale flow fluctuations generated by the elastic flow instability to ηapp(WiI). The
power density balance for viscous-dominated flow relates the rate of work done by the fluid
pressure P to the rate of viscous energy dissipation per unit volume: −∇·Pu = τ : ∇u,
where τ and ∇u are the stress and velocity gradient tensors, respectively. Averaging this
equation over time t and the entire volume V of a given porous medium, and decomposing
the velocity field into the sum of a base temporal mean and an additional component due
to velocity fluctuations, then yields

〈�P〉t

�L
≡ ηapp(Q/A)

k
≈ η(γ̇I)(Q/A)

k︸ ︷︷ ︸
Darcy’s law

+ 〈χ〉t,V

(Q/A)︸ ︷︷ ︸
Fluctuations

+
⎧⎨
⎩

Strain
history
effects

⎫⎬
⎭ . (3.2)

The first term on the right-hand side of (3.2) represents Darcy’s law for the base
temporal mean of the flow. The second term reflects the added viscous dissipation by the
solvent induced by the unstable flow fluctuations; our previous measurements (Browne
& Datta 2021) indicate that this dissipation does not vary appreciably along the imposed
flow direction. The final term represents additional contributions arising from the full
dependence of stress τ on polymer strain history in three dimensions (Bird, Armstrong &
Hassager 1987), which is currently inaccessible in our experiments. However, our previous
measurements in the homogeneous course medium (Browne & Datta 2021) indicate that
this final term is relatively small for the range of WiI considered here, because the flow is
quasi-steady and polymers do not accumulate appreciable Hencky strain over a duration
of one polymer relaxation time λ. Therefore, for simplicity, we consider just the first
two terms, which yields the grey line in figure 3(a); the shaded region indicates the
uncertainty in this model arising from the empirical fit in figure 3(b). Our modelled
ηapp(WiI) thereby obtained from the pore-scale imaging shows excellent agreement
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Figure 4. Parallel-resistor model captures the key features of experimentally measured apparent viscosity and
uneven flow partitioning in stratified media. (a) Points show the normalized apparent viscosity measured for
a stratified microfluidic assembly, indicating that it shows a similar increase above the onset of the elastic
flow instability. Blue line shows the predicted apparent viscosity using our parallel-resistor model with no
fitting parameters. Grey line shows the corresponding prediction for a homogeneous medium. Left and right
arrows show WiI = 2.7 and 3.3, at which only the coarse stratum or both strata are unstable in figure 2(c,d),
respectively. The downward and upward triangles indicate the WiI at which each stratum becomes unstable.
(b) Points show the ratio of superficial velocities in each stratum, normalized by the Newtonian value, measured
for a stratified Hele-Shaw assembly; ŨF/ŨC increases above the onset of the instability in the coarse stratum,
indicating flow homogenization, and then decreases above the onset of the instability in the finer stratum as
well, indicating that flow homogenization is mitigated. Teal line shows the prediction from our parallel-resistor
model, which captures this non-monotonic behaviour.

with the ηapp obtained from the macro-scale pressure drop measurements (symbols) for
both homogeneous media, without using any fitting parameters, for WiI � 4. The slight
discrepancies at larger WiI suggest that strain history effects play a non-negligible role in
this regime. Nevertheless, as a first approximation, we use the ηapp(WiI) modelled using
(3.2) (neglecting the last term describing strain history) to deduce the apparent viscosity
ηapp,i within each stratum in (3.1).

3.3. Parallel-resistor model recapitulates experimental measurements of apparent
viscosity and uneven flow partitioning

We next incorporate our model for the apparent viscosity ηapp,i(WiI) in the parallel-resistor
model of a stratified medium described previously. Specifically, for a given imposed total
flow rate Q, which corresponds to a given WiI , we numerically solve (3.1) and (3.2)
(neglecting the last term) along with mass conservation (Q = QF + QC) to obtain the
apparent viscosity ηapp(WiI) for the entire stratified system.

To validate this approach, we first compute ηapp(WiI) for the case of k̃ = 9 and Ã = 1,
which describes the stratified microfluidic assembly used in our experiments. Notably,
the model shows a similar threshold Wic = 2.6 and overall shape of ηapp(WiI) as in
the homogeneous case, as shown by the blue line in figure 4(a) – suggesting that
stratification does not appreciably alter the macroscopic flow resistance. Indeed, we find
good agreement between this model prediction and our experimentally determined ηapp,
obtained from pressure drop measurements across the stratified microfluidic assembly, as
shown by the blue circles in figure 4(a).

This model also enables us to predict the onset of the elastic flow instability in
the different strata at different values of the macroscopic WiI . As demonstrated by the
experiments on homogeneous media (figure 3), a given stratum becomes unstable when
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the local Weissenberg number exceeds the threshold Wic = 2.6. However, because of
the difference in the permeabilities of the strata, flow partitions unevenly across them,
causing different strata to reach this threshold at different imposed macroscopic WiI . For
small WiI , the flow is slower in the fine stratum, with the ratio of superficial velocities
given by the Newtonian value (UF/UC)0 = 0.075. As a result, the model predicts that
the coarse stratum becomes unstable at a smaller value of the macroscopic Wic,C = 2.3
(downward triangles in figure 4), and that the fine stratum becomes unstable at an even
larger Wic,F = 2.8 (upward triangles). This prediction is in excellent agreement with
our experimental pore-scale observations (figure 2c–e) that at WiI = 2.7 (left arrow in
figure 4a), only the coarse stratum is unstable, while at a larger WiI = 3.3 (right arrow),
both strata are unstable.

The model also reproduces and sheds light on the physics underlying the flow
homogenization induced by the elastic flow instability, as we observed experimentally
in the stratified Hele-Shaw assembly (figure 2a,b). For this case of k̃ = 26 and Ã = 1,
we use the model to compute the normalized ratio of superficial velocities ŨF/ŨC ≡
(UF/UC)/(UF/UC)0 as a function of WiI . The model prediction is shown by the line
in figure 4(b). As expected, with increasing WiI , the onset of the instability in the
coarse stratum increases the resistance to flow in this stratum, redirecting fluid toward
the fine stratum and thereby homogenizing the uneven flow across the entire medium –
as indicated by the rapid increase in ŨF/ŨC above Wic,C = 2.3 (downward triangle).
However, this homogenization only arises in a window of flow rates: at even larger
WiI > WiI,F = 2.8 (upward triangle), ŨF/ŨC peaks and continually decreases, reflecting
the onset of the instability in the fine stratum as well. While we do not expect perfect
quantitative agreement with the experiments, given the assumptions and approximations
made in our model, the experimental measurements show similar behaviour: as shown by
the circles in figure 4(b), ŨF/ŨC initially rises for WiI > Wic,C = 2.3, and then continues
to decrease as WiI exceeds Wic,F = 2.8.

Thus, despite its simplicity, the parallel-resistor model of a stratified medium (3.1)
that explicitly incorporates the increase in flow resistance generated by the elastic flow
instability in each stratum (3.2) captures our key experimental findings: (i) the form of
the macroscopic ηapp(WiI) describing the entire medium, (ii) the differential onset of the
instability in the different strata at varying WiI and (iii) the corresponding window of
WiI within which the uneven flow across strata is homogenized. Having thereby validated
the model, we next use it to further examine how the instability may homogenize fluid
transport in stratified porous media having a broader range of permeability and area ratios,
k̃ ≡ kC/kF and Ã ≡ AC/AF, respectively, than currently accessible in the experiments.

3.4. Geometry dependence of flow homogenization
How do the onset of and extent of homogenization imparted by this elastic flow instability
depend on the geometric characteristics of a stratified porous medium? To address this
question, we use our model to probe how the overall apparent viscosity ηapp(WiI) and the
flow velocity ratio ŨF/ŨC(WiI) depend on k̃ and Ã.

The measurements shown in figure 4 indicate that, despite the structural heterogeneity
and uneven partitioning of the flow in a stratified medium, ηapp(WiI) is not strongly
sensitive to stratification; instead, it follows a similar trend to that of a homogeneous
medium (k̃ = 1). The model further supports this finding; with increasing k̃ (fixing Ã = 1),
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Ũ
F

/Ũ
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Figure 5. Geometry dependence of the apparent viscosity and uneven flow partitioning in a stratified medium,
as predicted by our parallel-resistor model. (a,b) Different colours show the predictions of the parallel-resistor
model for stratified media with varying ratios of the strata permeabilities, k̃, holding the area ratio fixed at
Ã = 1. The apparent viscosity (a) only shifts slightly to smaller WiI with increasing k̃, eventually converging
for k̃ 	 100. The extent of flow homogenization generated by the elastic flow instability, quantified by the ratio
of superficial velocities (b), does increase with increasing k̃. Optimal flow homogenization is indicated by the
open circles at WiI = Wipeak

I with a velocity ratio (ŨF/ŨC)peak. Inset to (a) shows the critical WiI at which
each stratum becomes unstable; the window between the two values increases with increasing k̃. (c,d) Similar
results to (a,b), but for stratified media with varying strata area ratios, Ã, holding the permeability ratio fixed
at k̃ = 9. Inset to (c) shows the critical WiI at which each stratum becomes unstable; the window between the
two values decreases with increasing Ã. Insets to (d) show the variation of the optimal Wipeak

I and (ŨF/ŨC)peak

with k̃, for different Ã. The data for different Ã trivially collapse due to the definition of the superficial velocity.

the profile of ηapp(WiI) shifts ever so slightly to smaller WiI , eventually converging to the
same final profile for k̃ 	 100, as shown in figure 5(a).

However, the onset of the elastic flow instability in the different strata does vary with
increasing k̃ (inset of figure 5a): Wic,C correspondingly shifts to slightly smaller WiI , while
Wic,F progressively shifts to larger WiI , reflecting the increasingly uneven partitioning
of the flow imparted by increasing permeability differences. As a result, the strength of
the flow homogenization generated by the instability, as well as the window of WiI at
which it occurs, increases with k̃ (figure 5b). This phenomenon is optimized at the peak
position indicated by the open circles, which occur at WiI = Wipeak

I with a flow velocity
ratio (ŨF/ŨC)peak. We therefore summarize our results by plotting both quantities as a
function of k̃ (dark blue lines, insets to figure 5d). Again, both increase until k̃ ≈ 400.
For even larger k̃, Wipeak

I plateaus at ≈ 3.7, while (ŨF/ŨC)peak plateaus at ≈ 5.5. This
behaviour reflects the non-monotonic nature of our model for ηapp,i(WiI); at such large
permeability ratios, the coarse stratum reaches its maximal value of ηapp,C at WiI < Wic,F,
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maximizing the extent of flow redirection to the fine stratum generated by the instability
in the coarse stratum. These physics are also reflected in the values of Wipeak

I and Wic,F
(open circles and filled upward triangles in figure 5b, respectively); while the two match
for small k̃, Wipeak

I becomes noticeably smaller than Wic,F for k̃ � 400.
Similar results arise with varying Ã (fixing k̃ = 9), as shown in figure 5(c,d). Here,

Ã < 1 and Ã > 1 describe the case in which a greater fraction of the medium cross-section
is occupied by the fine or coarse stratum, respectively; the limits of Ã → 0 and
→ ∞ therefore represent a non-stratified homogeneous medium. While stratification
again does not strongly alter ηapp(WiI), we find that Wic,C, Wic,F, and Wipeak

I increase
with Ã. Furthermore, (ŨF/ŨC)peak does not depend on Ã, since the superficial velocity
incorporates cross-sectional area by definition. Taken together, these results provide
quantitative guidelines by which the macroscopic flow resistance, as well as the onset and
extent of flow homogenization, can be predicted for a porous medium with two parallel
strata of a given geometry.

3.5. Extending the model to porous media with even more strata
As a final demonstration of the utility of our approach, we extend it to the case of a porous
medium with n parallel strata, each indexed by i. To do so, we again maintain the same
pressure drop across all the different strata (3.1), with the apparent viscosity ηapp,i in
each given by (3.2), and numerically solve these n − 1 equations constrained by mass
conservation, Q = Σn

i=1Qi.
As an illustrative example, we consider n = 5 with the different stratum permeabilities

chosen from a log-normal distribution, as is often the case in natural settings (Freeze
1975): ki ∈ {79, 51, 36, 26, 17} μm2. To characterize the flow redirection between strata at
varying overall WiI , we focus on the ratio of the superficial velocity Ui in each stratum
and the macroscopic superficial velocity U ≡ Q/A, normalized by the value of this ratio
for a Newtonian fluid: Ũi/Ũ ≡ (Ui/U)/(Ui/U)0. Hence, larger (smaller) values of Ũi/Ũ
indicate that fluid is being redirected to (from) a given stratum i. Consistent with our
previous results, the coarsest stratum becomes unstable at the smallest WiI (dark purple
line in figure 6a), redirecting fluid to the other strata – as indicated by the reduction in Ũi/Ũ
for ki = 79 μm2 as WiI increases above ≈ 2.4, and the concomitant increase in Ũi/Ũ for
the other strata (blue to light green lines). Each progressively finer stratum then becomes
unstable at progressively larger WiI , as indicated by the upward triangles, redirecting fluid
from it to the other strata. Thus, as with the case of n = 2 examined previously, the flow
homogenization generated by the elastic flow instability arises only in a window of WiI .

As a final illustration of this point, we compute the corresponding breakthrough curve of
a passive scalar, C̃(t), given that such curves are commonly used to characterize transport
in porous media for a broad range of applications. To do so, for a given stratum i with Ui
determined from our parallel-resistor model, we use the foundational model of Perkins &
Johnston (1963) as an example to compute

Ci(t) = 0.5

[
1 − erf

(
1 − t/tPV

2
√

Kl,i/UiL
√

t/tPV

)]
. (3.3)

This expression explicitly incorporates the dispersion of a passive scalar being advected
by the flow via the longitudinal dispersivity Kl,i, which depends on the scalar diffusion
coefficient D, the stratum tortuosity τ and the Péclet number characterizing scalar
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Figure 6. Model predictions for a porous medium with five distinct strata. (a) Different colours show the
predicted ratio between the superficial velocity in each stratum and the macroscopic superficial velocity,
normalized by the value of this ratio for a Newtonian polymer-free solvent. The coarsest stratum (dark purple)
becomes unstable at the smallest WiI , following by the next coarsest (dark blue) and so on – causing flow
to be redirected to the finer strata and the uneven flow across different strata to be homogenized. At even
larger WiI , all the strata become unstable and the resulting flow homogenization is mitigated. (b) Predicted
breakthrough curves for the polymer solution at WiI = 3.2 (light green) as well as the Newtonian polymer-free
solvent at the same flow rate (dark green). At this intermediate WiI , the elastic flow instability homogenizes
the uneven flow across strata; as a result, rapid breakthrough in the coarsest strata is slowed (left arrow), and
slow breakthrough in the finest strata is hastened (right arrow), smoothing the overall breakthrough curve.
Inset shows the macroscopic effective longitudinal dispersivity, normalized by its value for the Newtonian
polymer-free solvent at the same volumetric flow rate. Here, Kl and Kl,0 differ slightly at low WiI because of
the modest shear thinning in the polymer solution, which increases the uneven partitioning of flow uniformly
before the onset of unstable flow. For a window of 2.4 � WiI � 4.5, the normalized dispersivity is smaller than
one, indicating more uniform scalar transport due to the homogenized flow resulting from the instability.

transport in a pore Pe = Uidp,i/D; in particular, Kl,i = D(1/τ + 0.5Pe1.2) when Pe < 605
and Kl,i = D(1/τ + 1.8Pe) when Pe > 605 (Woods 2015). The overall breakthrough curve
is then given by C(t) = ∑n

i Ci(t)Ai/A, which we normalize by its maximal value at
t → ∞ to obtain C̃(t). For this illustrative example, we use values characteristic of
small molecule solutes in natural porous media: D = 10−6 cm2 s−1, τ = 2 (Datta et al.
2013), and estimate dp,i from the stratum permeability using the Kozeny–Carman relation
(Philipse & Pathmamanoharan 1993).

The resulting breakthrough curves C̃(t) are shown in figure 6(b) for a fixed flow
rate, chosen such that WiI = 3.2 for our polymer solution – just above the onset of the
elastic flow instability in the finest stratum, at which we expect flow homogenization
to be nearly optimized (figure 6a). For the case of the polymer-free Newtonian solvent,
the flow partitions unevenly across the strata, leading to highly heterogeneous scalar
breakthrough. As shown by the dark green line, coarser strata are infiltrated rapidly,
leading to the rise in C̃(t) at t/tPV ≈ 0.4. However, the considerably smaller flow speeds
in the bypassed finer strata give rise to far slower breakthrough, leading to the subsequent
jumps in C̃(t) at longer times; as a result, 90 % of scalar breakthrough only occurs after
t/tPV = 2.5 has elapsed. The polymer solution exhibits strikingly different behaviour: the
breakthrough curve shown by the light green line is noticeably smoother, reflecting the
flow homogenization imparted by the elastic flow instability. In this case, unstable flow
hinders rapid infiltration in the coarser strata (right-pointing arrow at t/tPV ≈ 0.6), instead
redirecting fluid to the finer strata (left-pointing arrow at t/tPV ≈ 2); as a result, 90 % of
scalar breakthrough occurs ≈ 1.4× faster, at t/tPV = 1.8.

This improvement in scalar breakthrough can also be described using an effective,
macroscopic, stratum-homogenized longitudinal dispersivity Kl. Despite the complex
shapes of breakthrough curves that commonly arise for stratified porous media due to
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uneven flow partitioning (e.g. dark green line in figure 6b), a standard practice is to fit the
entire breakthrough curve to a single error function (Lake & Hirasaki 1981) and thereby
extract Kl. The dispersivity thereby determined from our computed breakthrough curves is
shown in the inset to figure 6(b) for a broad range of WiI . At small WiI , Kl matches that of
a polymer-free Newtonian solvent Kl,0 at the same volumetric flow rate. Above WiI ≈ 2.4,
at which the coarsest stratum becomes unstable, Kl drops relative to the Newtonian value –
indicating more uniform scalar breakthrough due to flow homogenization. The effective
dispersivity continues to decrease as an increasing number of strata become unstable,
further homogenizing the flow and causing scalar breakthrough to become more uniform.
The effective dispersity is ultimately minimized at the optimal WiI ≈ 3.2. Increasing
WiI further causes Kl/Kl,0 to then increase, eventually reaching 1 at WiI ≈ 4.5 – again
reflecting the fact that the flow homogenization generated by the elastic flow instability
arises in the window of 2.4 � WiI � 4.5.

4. Conclusions

The work described here provides the first, to our knowledge, characterization of a
purely elastic flow instability in stratified porous media. Our experiments combining
flow visualization with pressure drop measurements revealed that the instability arises at
different flow rates, corresponding to different WiI , in different strata. Uneven partitioning
of flow into the higher-permeability strata causes them to become unstable at smaller WiI –
redirecting the flow towards the lower-permeability strata, thereby helping to homogenize
the flow across the entire medium. At even larger WiI , the lower-permeability strata
become unstable as well, suppressing this flow redirection – leading to a window of flow
rates at which this homogenization arises.

We elucidated the physics underlying this behaviour using a minimal parallel-resistor
model of a stratified medium that explicitly incorporates the increase in flow resistance
generated by the elastic flow instability in each stratum. Despite the simplicity of
the model, it captures the macroscopic resistance to flow through the entire medium,
the differential onset of the instability in the different strata at varying WiI , and the
corresponding window of WiI within which the uneven flow across strata is homogenized,
as found in the experiments. Taken together, our work thus establishes a new approach
to homogenizing fluid and passive scalar transport in stratified porous media – a critical
requirement in many environmental, industrial and energy processes.

This study focused on a single polymer solution formulation as an illustrative example.
However, the threshold Wic at which the instability arises, and the corresponding excess
flow resistance 〈χ〉t,V , likely depend on the solution rheology (through e.g. polymer
concentration, molecular weight and solvent composition). The relative importance of the
full polymer strain history in three dimensions, neglected here for simplicity, may also
play a non-negligible role for different formulations and at large WiI ; indeed, while we use
the specific functional form of ηapp given by (3.2), it is unclear how far this model can be
extrapolated past WiI � 4. Incorporating these additional complexities into our analysis
will be an important direction for future work.

Nevertheless, the theoretical framework established here provides a way to develop
quantitative guidelines for the design of polymeric solutions and fluid injection strategies,
given a stratified porous medium of a particular geometry. We therefore anticipate it will
find use in diverse applications – particularly those that seek to balance the competing
demands of minimizing the macroscopic resistance to flow (quantified by ηapp) and
maximizing flow homogenization (quantified by Ũi). Indeed, accomplishing this balance
is a critical challenge in subsurface processes such as pump-and-treat remediation of
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groundwater, in situ remediation of groundwater aquifers using injected chemical agents,
enhanced oil recovery and maximizing fluid–solid contact for heat transfer in geothermal
energy extraction – for which uneven flow across strata is highly undesirable. Moreover,
similar flows also play key roles in determining separation performance in filtration and
chromatography, and improving heat and mass transfer in microfluidic devices. Thus, by
deepening fundamental understanding of how the elastic flow instability can be harnessed
to homogenize flow in stratified media, we expect our results to inform a broader range of
applications.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.337.
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