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I. Introduction. The subsemigroups of the projective group on the line 
that are described in this paper are those that can be generated by a pair of 
infinitesimal transformations. One denotes by G the connected component of 
the identity of this group; Theorem 1 gives a necessary and sufficient condi­
tion for a pair of infinitesimal transformations to generate a subsemigroup 
which is equal to G (and hence is actually a group). This condition is refor­
mulated in a geometric manner in Theorem 1*. In Theorem 2 a description 
is given of all possible subsemigroups of G that can be generated by a pair 
of infinitesimal transformations with no common root. These proper sub-
semigroups turn out to be, in fact, uniformly finitely generated. Finally, 
Theorem 3 classifies the subsemigroups generated in the "dégénérate" case 
where the two infinitesimal transformations do have a common root. 

The infinitesimal transformations of the projective group on the real line 
are quadratic functions with real constant coefficients a, 2b, c. This implies 
that a one-parameter subsemigroup of this group is given by the solution of 
the ordinary differential equation: 

(1) dy/dt = ay2 + 2by + c 

with the initial condition y(0, x) = x for all non-negative (or non-positive) 
values of the parameter t. Thus, for fixed value of t the solution y = y(t, x) 
of the initial value x represents a projective transformation and the family 
of these transformations for non-negative / defines the one-parameter semi­
group generated by the infinitesimal transformation e = ay2 + 2by + c. 

One defines the subsemigroup generated by a pair of infinitesimal trans­
formations to be the smallest subsemigroup topologically closed with respect 
to the whole group which contains the one-parameter subsemigroups gener­
ated by the two infinitesimal transformations; thus it consists of all finite 
products of elements of the two one-parameter subsemigroups together with 
all non-singular limits. I t is clear that the generated subsemigroup is con­
tained in or equal to G. 

Suppose that e and 77 are two infinitesimal transformations; since it is well 
known that the collection of infinitesimal transformations of a closed sub-
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semigroup of a Lie group forms a convex cone in the Lie algebra, it follows 
that for all s ^ 0, t ^ 0, the one-parameter semigroup generated by se + trj 
is contained in the subsemigroup generated by e and t). 

An infinitesimal transformation e = ay2 + 2by + c is said to be elliptic, 
hyperbolic, or parabolic depending upon whether its discriminant b2 — ac 
is negative, positive or zero. If an inner automorphism is applied to a one-
parameter semigroup, then the corresponding infinitesimal generator is trans­
formed into another generator with the same discriminant. Using an appro­
priate inner automorphism one can always transform an elliptic generator into 
the form: 

-j- = y2 + 1; solution that satisfies y(0, x) = x is1: 
(2) M . 

y + i x + i 

a hyperbolic generator into the form: 

-Jj = y2 — l ; solution that satisfies y(0, x) = x is: 

<3) 3 ^ 1 . . . i ^ l , f e 0 ; 

y + 1 x + 1 
and a parabolic generator into the form: 

, . — = 1; solution that satisfies 3/(0, x) = x is: 

? = * + /, * è 0. 
One observes that a one-parameter semigroup is in fact a one-parameter 
subgroup if and only if the generator is elliptic. In this case, no point on the 
projective line remains fixed. In the hyperbolic case there are two fixed 
points; —1 is called the attractive fixed point as y (x, t) —> — 1 as / - > + œ 
for all x 9^ 1; similarly, + 1 is called the repulsive fixed point. In the para­
bolic case, there is only one fixed point which is both attractive and repulsive; 
by convention, one considers " - œ " as the repulsive point and " + 00" as 
the attractive point in this case. For other hyperbolic and parabolic generators, 
one can make similar definitions and, clearly, under inner automorphisms, 
attractive fixed points go into attractive fixed points and, similarly, for 
repulsive fixed points. 

I I . Using the fact that one can always find a projective transformation 
that takes any three points on the projective line into any three points, one 
can establish the following lemma. 

^ n (2), the solution can be put into the form y = (ax + b)/(cx + d), where a, b, c, and d 
are all real and ad — be > 0. 
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L E M M A 1. Any pair e and rj of infinitesimal transformations with no common 
fixed point can always be simultaneously transformed into one and only one 
of the following normal forms: 

(1) « = 1, r? = rby2, 
(2) e = 1, ij = ± ( y 2 - 1), 
(3) e = 1, »? = y2 + 1, 

(4) e = y» + 1, 1J = y2 + C2, C > 1, 
(5) « = y> + 1, r] = y2 — c2, c èî 1, 

(6) e = y + a, 77 = ±(ay2 + y), 0 < a < 1, 
(7) e = y2 - 1, r/ = ± (y 2 - c2),c > 1. 

One denotes by S(e, 77) the semigroup generated by e and 77 and, as men­
tioned previously, one is interested for which e and 77, S(e, 77) = G. As a 
preliminary to answering this, one first proves the following lemma. 

L E M M A 2. 77^ subgroup generated by the infinitesimal transformations e and 
rj is equal to G if and only if e and 77 have no common roots. 

Proof. Necessity is obvious. In order to prove the sufficiency, one shows 
t h a t if e and 77 have no common roots, then e, 77, and [e, 77] ([ , ] is the usual 
bracket operation in the Lie algebra, given here by (de/dy)rj — e d-q/dy) are 
linearly independent over the reals. 

Lemma 2 gives a necessary condition for the generated semigroup to equal 
G; if it is satisfied, the next theorem gives a necessary and sufficient condition 
for it to be t rue. 

T H E O R E M 1. Let e, 77 have no common roots. Then the semigroup S(e, 77) 
generated by e and 77 is equal to G if and only if for some s ^ Q, t ^ 0, se -\- trj 
is elliptic. 

Proof. Since the semigroup generated by an elliptic transformation is in 
fact a subgroup, one sees t h a t if e and 77 are both elliptic with no common 
roots, then the generated semigroup S(e, rj) mus t indeed be G itself. Now 
suppose e is elliptic, 77 arbi t rary. Then there are real numbers s* ^ 0, t* > 0 
such t h a t s*e + /*77 is elliptic, since if one considers se + t-q, 5, t real, one 
notes t h a t the discriminant is a continuous function of 5 and t and for s — 1, 
t — 0 i t is negative. Clearly, if e and 77 have no common roots, neither do 
e and s*e + t*rj. Since the semigroup generated by e and 5*e + ^77 is con­
tained in t h a t generated by e and 77, one concludes t h a t if a t least one generator 
is elliptic and there are no common roots, then 5(e, 77) = G. 

This proves the sufficiency, for if 7 = se + trj, s ^ 0, t ^ 0, 7 elliptic, 
then if 5 > 0, 7 and 77 have no common root, and if t > 0, 7 and e have no 
common root, provided e and 77 had no common roots. B u t the semigroup 
generated by e, 77, and 7 is contained in t h a t generated by e and 77. 

Before proving the necessity of the condition, it is useful to examine which 
pairs of infinitesimal transformations transformed into the normal form of 
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Lemma 1 satisfy the condition of the theorem. One easily verifies that in 
cases (3), (4), and (5) it is always satisfied; in case (1) it is satisfied by 
€ = 1, 7] = y2; in case (2) by e = 1, rj = y2 — 1, and in case (7) by e=y2 — 1, 
T] = —(y2 — c2). To prove the necessity, it suffices to show that in all other 
cases the generated semigroup S(e, 77) is a proper subsemigroup of G; a com­
plete description of these proper subsemigroups will be given in Theorem 2 
and, in the process, the proof of Theorem 1 will be completed. 

First, a geometric reformulation of Theorem 1 will be stated; the proof 
is left to the reader. 

THEOREM 1*. If at least one of the infinitesimal transformations e, rj is elliptic, 
then S(e, 77) equals G. In all other cases G is generated if and only if the attractive 
fixed points interlace with the repulsive fixed points. 

Remarks. Observe that if neither generator is elliptic, one can consider 
each generator to have a repulsive and an attractive fixed point. In the case 
where both generators are hyperbolic and the fixed points interlace, then 
the attractive fixed points can never interlace with the repulsive ones and 
thus in this case, S(e, 77) is never equal to G. 

I I I . In this section, one is concerned with the case where the attractive 
fixed points separate the repulsive fixed points; one defines in this case a 
source and a sink interval of e and 77 as follows: If z0, Z\ are the repulsive 
and attractive fixed points of e, w0, Wi those of 77, the source interval / con­
sists of all z such that (s0, ^0; 21, z) < 0 and the sink interval / consists of 
all z such that (zi, Wi, z0, z) < 0. 

ZQ I Wo Z\ J W\ 

FIGURE 1 

The generated semigroup is said to be uniformly finitely generated if there 
exists an integer n such that any element of the generated semigroup is 
expressible as a product of at most n transformations of the two one-para­
meter semigroups. Clearly, such a semigroup is closed. 

THEOREM 2. The subsemigroup S(e, 77) generated by a pair of infinitesimal 
transformations e, 77 with no common root such that for all s ^ 0, / ^ 0, se + £77 
has at least one real root, is uniformly finitely generated; any transformation 
of the generated subsemigroup can be written as a product of length at most 
three. The subsemigroup S(e, 77) consists precisely of: 

(a) the two one-parameter semigroups generated by e and 77, 
(b) for each v in the source interval, each w in the sink interval, there exists a 

function \(v, w) determined by e and 77 such that z\ ^ \(vt w) < w and for 
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any point x on the projective line,2 X(v,w) ^ x < w, there is a transformation 
in the semigroup S(e, rj) that leaves v and w fixed and takes Z\ into x. 

Remark \.\{v,w) = Z\ if and only if v and w are the roots of some generator 
se + trj, s = 0, * = 0. 

Remark 2. If \(v, w) < x, then the corresponding transformation cannot 
be obtained as a product of length 2 bu t can be obtained from 2 different 
products of length 3, one involving e twice and r\ once, the other e once and 
T) twice. If x = \(v, w) > zi, the transformation is obtained as a product of 
length two; if x = \(y, w) = Z\, then the transformation is jus t the identi ty. 

Remark 3. If s = 0, ^ ^ 0, the one-parameter semigroup generated by 
se + trj is contained in S(e, 77), in agreement with the above remarks; accord­
ing to the theorem, all the transformations of these one-parameter semi­
groups can be obtained as products of length 3. 

T h e case e = y + a, rj — —ay2 — y, 0 < a < 1, will be considered in 
detail . Exact ly the same technique and proofs work in the other cases. In 
fact, one can derive the result t h a t S(e, 77) is uniformly finitely generated 
in all the cases from this case. For the case where the roots of two hyperbolic 
generators separate, and if the a t t rac t ive and repulsive fixed points separate, 
the generators may be brought into the form e = y + a, rj = —ay2 — y, 
where a > 1, or equivalently, e = ay + 1, TJ = —y2— ay, 0 < a < 1. Thus , 
one obtains the transformations of one semigroup from the transformations 
of the other by replacing a by a~l\ so clearly, if any transformation in one 
semigroup is a product of length a t most 3, the same is t rue for the o ther 
semigroup. If a —> 0 in the above, one obtains e = 1, rj = —y2, the case of 
two parabolic generators and clearly here every transformation must again 
be a product of length a t most 3. Also, one can obtain the semigroup generated 
by € = 7 3 7 + 1 , rj = —y2 — fiy, —y-1 < — /3 < 0 from an inner automor­
phism of the one generated by e = ay + 1, rj = —y2 — ay, for some a, 
0 < a < 1, and thus this is also uniformly finitely generated; let t ing 7—>0 
one obtains the result for a hyperbolic and parabolic generator with a t t rac t ive 
and repulsive fixed points t h a t separate. 

IV. T h e proof of Theorem 2 in the case where e = y + a, 77 = —ay2 — y, 
0 < a < 1, will be broken up into several lemmas. T h e main idea of the 
proof is to first describe the most general element of S(e, rj), t h a t is, a pro­
duc t of length 2 in terms of its fixed points, denoted by v and w. Le t / denote 
the interval (0, «5); J denotes the interval (—a*1, —a). For each w G I, 
there is a unique v G J t h a t is the solution of 1 + a(v + w) + vw = 0; 
denote this v by v = F(w). One finds t h a t for any w £ I and for any v, 

2Assume, for definiteness, that the sink interval is just (zi, W\) which can be achieved by 
inner automorphism if necessary. 
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F(w) < v < —a, there is a unique product of length 2, formed by applying 
first e and then 77, that has v and w as its only fixed points; one denotes this 
transformation by y = Av

w(x). Further, for any w £ / and for any v, 
—a~l < v < F{w), there is also a unique product of length 2, formed by 
applying first rj and then e, that has v and w as its only fixed points; one 
denotes this transformation by y = Bv

w(x). If v = ^(w), then there is no 
product of length 2 that keeps v and w fixed except the identity; it is con­
venient to adopt the convention that AF{w)

w(x) = BF(w)
w(x) = x. The trans­

formations Av
w{x) and Bv

w(x) turn out to have a crucial role in the proof 
of the theorem because, by appropriately choosing w, Vi, and v2, one can 
express any element of 5(e, 77) that is a product of length 3 in the form3 

A V1
W (B V2

W (x)) and also, by appropriately choosing w, vz, and viy one can 
express this same element in the form Bn

w AVi
w(x). But these products are 

particularly simple to study because the same w € / is held fixed by both 
An

w(x) and BV2
w(x), and, further, the fact that any product of length 3 has 

the two alternate possible representations above enables one to show that 
any product of length 4 can in fact be written as a product of length 3. Thus 
the proof really has two parts, first describing the elements of 5(e, 77) which 
can be expressed in the form AV1

W BV2
w(x) and then proving S(e, rj) is minimal 

in the sense t h a t all elements of S(e, 77) have this form. 

LEMMA 1. If y = T(x) G S(e, 77), T(x) not the identity, then T has two dis­
tinct real fixed points v and w, v Ç J, w G / . For all x, x 9^ v, limn^co Tn(x) =w. 

Proof. One observes that T transforms [0, 00 ] properly into itself and T~l 

does the same to [—a~1
y —a]. 

Let y = Tt(x) denote the elements of the one-parameter semigroup gene­
rated by 6 (/ è 0), and let y = Ss(x) be the one generated by 77 (s ^ 0). 

LEMMA 2. If y = T(x) = S8Tt(x), s > 0, / > 0, then the fixed points of T 
satisfy: 1 + a(v + w) + vw > 0; conversely, if v G J and w G / satisfy this 
inequality, there exist unique positive numbers s > 0, t > 0 such that y = SsTt(x) 
has v and w as its fixed points. 

Proof. One finds that 

7V(s) = e*'x + (e1' - l )a, Ss>(x) = x/{{es' - l)ax + es'), 

and one changes parameters to t = e* , s = es ; hence4/ ^ 1,5 ^ 1. If 71 =SsTt, 
w Ç / is a fixed point of T, then 

(r\ — tW + & ~ 1)Q? + atw<1 + ofivit — 1) 
w + atw2 + a2w(t — 1) 

3Observe that this is clearly a product of length 3. As the order of applying transformations 
always begins at the right, parentheses will be omitted subsequently. 

4The parameters t, s will be used from now on. 
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so that 5 = s(t, w)\ clearly, w > 0, t > 1 imply 5 > 1. If v 6 / is also a 
fixed point of T, then it must be possible to solve for t the equation: 

(6) s(t,w) = s(t,v), t > 1. 

This becomes a quadratic equation for / with solutions 

t — 1, / = (a2 — 1 )/(?;«; + a2 + a(fl + w)) 

and the latter is greater than 1 precisely if the condition of the lemma holds. 
Conversely, if this condition holds, choose t as above and 5 by (5) ; then 
SsTt(x) has v and w as its fixed points. 

Remark 1. Let F(w) = — (1 + aw)/{a + w); then the set of v satisfying 
the condition of the lemma that belong to / is the set of all v: F(w) < v < —a. 
If 

2 i 

vw + a + a(v + w) 
then 

(g) ^1 = -t*2 ~ l )(^ + «) > Q 
dfl [(zw + a2 + a(v + w)]2 ' 

thus T increases monotonically as y increases; as v —*.—a, r —•> œ. 

Remark 2. Similar results hold for products TtS<r(x) provided we reverse 
the inequality in the lemma. Here the set of all v in J that satisfy the in­
equality for fixed w is the set of all v such that: 

(9) -a-1 < v < F(w) 

as v decreases, a increases and as v —> —a"1, a —> a>. 

Remark 3. If 1 + a(z> + «0 + *>w = 0, then v G J", w £ I are not the 
fixed points of any element of 5(e, rç) which is a product of length 2. 

Now, recalling the definitions of Av
w(x) and Bv

w(x), one defines 

X(v, w) = Av
w(0) if F(w) g i> < - a , 

(10) 
XO, w) = 5 / ( 0 ) if - o r 1 < ^ ^ F(w). 

(Observe that \(F(w), w) = 0 by either definition.) X is a continuous func­
tion of v and w and, for fixed w, 

(11) lim \(v,w) = w, lim \(v,w) = w; 

as dr/dy > 0 by (8), one can solve (7) for z/asa function of T\V{T) is defined 
for all r ^ 1 and increases continuously and monotonically from F(w) to 
—a as r increases from 1 to °°. Define the function of two variables: 

(12) G ( 7 , r ) = i4 f ( T ) "( T ) , T U , 
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where y is any point on the projective line. In fact, G(w1 r) = w and 
l im^^ G(y, T) = W for all 7 ^ —a. The reason for introducing G(y, r) and 
studying its behaviour for fixed 7 as a function of r is that a knowledge of 
this becomes crucial when we compose an Avl

w(x) with a BV2
w(x) and then 

let vi and fl2 vary. 

LEMMA 3. The equation dG/dr = 0 is for fixed r quadratic in 7, one solution 
always being 7 = w. If the other solution is denoted by 7 = 7(7), this is a 
continuous function of r such that 7(1) = F(w) and 7(7) increases mono­
tonically5 to —a as r —» 00 and for fixed 7, v(7) < 7(7). 

Proof. That the equation dG/dr = 0 is a quadratic in 7 follows from a simple 
calculation and clearly, 7 = w must be one root for all 7. If v = v(t*) corres­
ponds to 7 = /*, then G(v(t*), t*) = v{f) and for 7 < /*, G(v(t*), 7) > v(t*)\ 
hence one concludes that (dG/dr) (v(/*),/*)< 0. But one finds that 
(dG/dr) ( — a, 7) > 0 for all 7 as —a is a fixed point of e and hence it follows 
that G(— a, 7) = 55(T)(—a), and from (5) one sees that ds/dr > 0. Thus, 
one concludes that v(t*) < y(t*) < —a and since as t* —> <x>,v(t*) —• —a, 
the lemma is proved. 

Remark 1. Hence if —a ^ 7 < «;, (7(7, 7) is an increasing function of r; 
if 7 ^ ^(w) or if 7 > Î£/, or if 7 = 00 t G(yy r) is a decreasing function of 7. 
All points on (F(w), —a) may be written as v — v(ro) and G(v, r) increases 
for 1 ^ 7 ^ 7* and then decreases for all 7 ^ 7*, where 7* < 70 (i.e., by 
the time v has returned to its original position, the function is decreasing 
and remains decreasing). 

Remark 2. If one defines H(y, a) = BvM
w(y), analogous results are ob­

tained. 

LEMMA 4. For each w £ / , eachv, F(w) S v < —a, and each b, \(v,w) ^ <5 < w, 
there are v2, v S v2 < —a, and Vi, —a -1 < v± ^ F(w), such that the trans­
formation BV1

W AV2
w(x) leaves v and w fixed and transforms 0 onto 8; hence 

there exist numbers t ^ 1, s ^ 1, and u ^ 1 such that TuSsTt(x) takes v into 
v, w into w, and 0 into d. 

Proof. Suppose that v = v(r0); define 7* = (a — a~l)/(v + a) so that 

A,tr*)w(v) = - a " 1 . 

Then for 7, 70 S r ^ 7*, ,4P(T)w(i;) decreases monotonically from z; to —a-1. 
But for each ;y, —or1 < ŷ ^ z/, there is a unique »i(y), —or1 < Vi ^ T 7^) , 
such that 5C1(„)"(y) = v. Further, Vi(y) is a continuous function of y,Vi(v) = F(w) 
and since z>i(;y) < y, 

5In fact, 7 W = V(T2), r ^ l , but this is not needed. I t shows that 7(7-) is monotonically 
increasing, a fact which subsequently is not used. 
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(13) lim i/i(y) = -a~\ 
y-ï-a-l 

Hence for each T, T0 ^ r < r*, there are points vi(r) and v2(r) such that: 

(14) v = V(T0) S V2(T) < V(T*) < - a , - a " 1 < ^ ( r ) ^ F(w)f 

and 
(15) Sw«Mw»(iO =v. 

It is obvious that BV1
W AV2

w(w) = w and that BV1
W AV2

w(fi) ^ X, since 
y2 ^ y implies AV2

W(0) è -4 / (0) = X and 5 w
w ^ w

t t ( 0 ) è 4,2"(0). Clearly, 
F ( T ) = BV1(T)W AV2(T)W(0) is a monotonically increasing function of r for 
r0 ^ r < r* such that F(ro) = X and since as r —•> r*, fli(r) —> —a-1, it follows 
that 

(16) lim F(T) = w, 

which proves the lemma. 

Remark 1. Suppose that Bvl
wAV2

w(v) = v. Then BV1
WAV2

W(0) ^ X; indeed, 
V(TQ) ^ v2 ^ V(T*), since otherwise, AV2

w(v) would either be less than or 
equal to —or1 or greater than v and in neither case is there a Bvl

w which 
could transform An

w{v) into v. 

Remark 2. Given any transformation described in Lemma 4, there are 
z>3, v(a*) < Vz S F(w) (where a* = v(a2 — l ) / a ( l + aw)) and v4, v ^ v±<— a, 
such that AV4i

w BV3
W equals this transformation. Here one remarks that <r* 

was chosen so that Bv(a*)w(v) = —a. The proof is completely analogous to 
the proof of Lemma 4. 

Remark 3. If AV2
W Bvl

w(v) = v, then AV2
wBvl

w(0) ^ X. 

Remark 4. Similar results hold if —a-1 < v ^ F(w). 

The transformations studied in Lemma 4 are, as has already been men­
tioned, products of length 3, and thus it has been established that, given 
any v G J, any w G / , and any 5, \(v,w) ^ ô < w, there are numbers /i, slf 

and U\ such that 3; = TtlSslTul(x) transforms 0 into ô and leaves v and w 
fixed (/1 ^ 1, 5i è 1, Wi ^ 1), and, further, there are also numbers t2, s2l 

and u2 such that r f l5 s irM 1(x) = St2T,2SU2(x) (t2 ^ 1, s2 ^ 1, w2 à 1). Next, 
it will be shown that there are no other elements of 5(e, rj) that are express­
ible as a product of length 3. 

LEMMA 5. If y = T(x) £ S(e, 77) is expressible as a product of length 3 and 
if w and v are the fixed points of T, w £ / , v 6 J, then \(v, w) S T(0) < w. 

Proof. The result is, of course, obvious if v = F(w) since \(w, F(w)) = 0. 
The proof will be given only in the case v > F(w) ; the other case is similar. 

Case 1. T(x) = TtSsTu(x) for some / ^ 1, 5 ^ 1, « ^ 1. Since 7"(w) = w 
and SsTu(w) > 0, it must be that 1 ^ / < 1 + w/a as r i+M, /a(0) = w. Now 
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for each r, r0 S r ^ r*, one can find, as before, 

VI(T), V2(T), —or1 < VI(T) ^ F(w), v g V2(T) ^ z/(r*) 

such that Bn
wA V2

w(x) also leaves z; and w fixed and 0 is transformed into a value 
greater than or equal to X but less than w. Bn

w(x) = Tt(<7)Sa(x) and as v± 
decreases monotonically from F(w) to —a-1, a increases monotonically from 
1 to oo and t(a) increases monotonically from 1 to 1 + w/a. Choose r so that 
t(a) equals the t which appears in the product for T(x) above. Then 

(17) R(x) = TtSs,Tu,(x), s' ^ 1, v! ^ 1, 

leaves w and v fixed and \(v, w) S R(0) < w. 
It remains to prove that s' = s, uf = u. 
Now choose w and v so that Tt(w) = w and Tt(v) = v. Then 

SsTu(v) = £, SsTu(w) = w, 
(18) 

Ss>Tu>(y) = v, Ss>Tu>(w) = w, 

where s M , ^ U ' è U ' è 1. 
If V(x) = 5 srw(x), F(w) = z#, F(z/) = #, then one finds that 

, v ? ^ + (^ — l)a _ 
( a ) a(^w + (« - 1 )<*)(* - 1) + 5 ~ W' 

(19) 
„ v UV + (^ — l ) q _ 
( b ; a(wz/ + (u - l)a)(s - 1) + s ~ V' 

Solving (a) for 5 in terms of u and substituting in (b) yields a quadratic equa­
tion for u; thus there are at most two distinct solutions, su U\ and s2, u2 of (19). 
But s = 1, u = t~l is a solution, for S\ is the identity and Tt-i(x) = Tt~

l(x) 
so that Tt~

l(v) = v, Tt-i(w) = w. If t = 1, T(x) is a product of length 2 
and hence 7\0) = \(v, w) so one may assume that t > 1 and hence t~l < 1. 
Thus there is at most one solution of (19) such that s ^ 1, u ^ 1 and hence 
s = s', u = w'. 

Case 2. T(x) = StTsSu(x). Here it is easily seen that I ^ ic < a* since 
5«r*(v) = —a. Now one can choose a transformation 4̂ ^ 5V3

w(x) — St'TS'Su(x) 
which also leaves w and v fixed and the remainder of the proof is as in Case 1. 

From Lemma 5 and the paragraph preceding it, it follows that, given any 
transformation T(x) of the form T(x) = TtSsTu(x), t ^ 1, s ^ 1, u ^ 1, 
there are numbers tf ^ 1, s' ^ 1, and w' ^ 1 such that 

T(x) = TtSsTu(x) = S*>7VSw'(:xO. 

Hence any product of length 4 can be expressed as a product of length 3 and 
this completes the proof of Theorem 2, at least in the case discussed in detail 
here. 

The other cases have analogous proofs with slightly different calculations. 
Observe that Lemma 3 did not give precise information on the function 
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7(7), apart from the fact that V(T) < 7(7) < —a. The property of the 
generators that insured the existence of fixed points in the intervals / and J 
was that the attractive and repulsive fixed points separated each other. In 
a sense, the fact that S(e, TJ) contained no elliptic transformations meant 
that it had to leave aside many other elements of G. 

V. There remain the proper subsemigroups generated by pairs of infini­
tesimal transformations with a common root, which one assumes to be at6 00. 
If € and 7} generate different one-parameter semigroups and yet have both 
roots in common, then e = — 77 so that the generated subsemigroups is just 
a one-parameter subgroup. 

THEOREM 3. The sub semigroup S(e, 77) generated by a pair of infinitesimal 
transformations e and 77 with a common root at 00 but such that e 7^ ±77 is uni­
formly finitely generated and consists of products of length 2. The sub semigroup 
5(e, 77) is precisely the union of the one-parameter subsemigroups generated by 
se -\- trj, s ^ 0, t ^ 0 and thus is minimal in the sense that these are always 
contained in the generated subsemigroup. 

Proof. One need only consider the cases: 

(20) 

(a) € = 1, v = y, 
(b) e = l, 77 = -y, 
(c) e = y, 77 = y - 1, 
(d) e = y, 7] = -(y - 1). 

The generated subsemigroups can directly be verified to be 

(a) y — ax + b, a ^ 1, b > 0, 

(9U (b) y = ax + b, 0< a g 1,6^0, 
{ } (c) y = ax + b, a ^ 1 - by b ^ 0, 

(d) y = ax + b, a ^ max{0, 1 - b], b è 0. 

The theorem follows by showing that any generated transformation can be 
obtained as a product of length two, and that its fixed points are identical 
to those of all the transformations of the one-parameter subsemigroup gene­
rated by se + tr\ for an appropriate choice of 5 ^ 0, t ^ 0, with the same 
attractive and repulsive fixed points. 

6If e is elliptic, and e and rj have a common root, then they generate the same subgroup. 
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