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Abstract

The infinite source Poisson arrival model with heavy-tailed workload distributions
has attracted much attention, especially in the modeling of data packet traffic in
communication networks. In particular, it is well known that under suitable assumptions
on the source arrival rate, the centered and scaled cumulative workload input process for
the underlying processing system can be approximated by fractional Brownian motion.
In many applications one is interested in the stabilization of the work inflow to the
system by modifying the net input rate, using an appropriate admission control policy.
In this paper we study a natural family of admission control policies which keep the
associated scaled cumulative workload input asymptotically close to a prespecified linear
trajectory, uniformly over time. Under such admission control policies and with natural
assumptions on arrival distributions, suitably scaled and centered cumulative workload
input processes are shown to converge weakly in the path space to the solution of a
d-dimensional stochastic differential equation driven by a Gaussian process. It is shown
that the admission control policy achieves moment stabilization in that the second moment
of the solution to the stochastic differential equation (averaged over the d-stations)
is bounded uniformly for all times. In one special case of control policies, as time
approaches oo, we obtain a fractional version of a stationary Ornstein—Uhlfl:nbeck process

that is driven by fractional Brownian motion with Hurst parameter H > 3.
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1. Introduction

This paper is motivated by an arrival model for data traffic in communication networks
considered by Kurtz [6]. We will introduce the model in a more accessible form in the special,
though quite general, case of interest here. Let Ny be a counting process where No(¢), t > 0,
represents the number of source activations by time ¢. The jth source activated at time U;
brings a unit rate workload into the system which lasts for a random length of time t;, where
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{t;}j>1 are independent and identically distributed (i.i.d.) with distribution v on [0, c0). At
time ¢, the cumulative work input in the system from the source j is, thus, 7; A (t — Uj)4,
where a A b = min{a, b} and x4 = max{x, 0}. The rate at which jumps of Ny () occur is given
as A(t, Wo()), where Wy(¢) is the total cumulative work input in the system at time ¢ from all
the sources and A is a strictly positive function on Ry x Ry.

A precise mathematical definition of the coupled stochastic processes Ng, Wy is given as
follows. Let0 < §1 < $» < --- be the jump times of unit-rate Poisson process N and {7;}>1
be ani.i.d. sequence, independent of {S} ;>1, with common distribution v. Let A: Ry xRy —
(0, 00) be a continuous function. Let & be the Poisson random measure on Ry x R4 with
intensity measure n = m x v, where m denotes the Lebesgue measure on [0, c0), defined as
&= Z?oz] 8(51.,,].). Define Ny, Wy through the system of equations

No(1) = N(Ao(1)), (1.1)
Wo(t) = Z T A —n(S))) = / rA(t—y(s)éWds,dr), (1.2)
jiSj<Ao(t) [0, Ao()]x[0,00)

t
Ao(t) = /O A, Wo(s) ds.  y0(t) = A (o).

Note that the above set of equations recursively defines the stochastic processes (No, Wp) from
one jump instant yo(S;) of No() to the next.

Setting the filtration ¥, = o {S;, 7;: §; < u}, itis easy to see that {yo(u)},>0 is an {F, }-
adapted process and, thus, for any # > 0, Ag(t) = )/0_1 (t) is a bounded { ¥, }-stopping time. In
particular, No(¢) — Ao(?) is {§,}-martingale, where §; = Fay(), t = 0. Thus, Ny is a counting
process with {§, }-stochastic intensity A(f, Wy(?)).

The key results of [6] are the law of large numbers and the central limit theorem for the
scaled system (X, ¥,,), where

1 1
Xn(t) = r—an(t), Y, (1) = ;Wn(t)’ (1.3)

and (N,;, W,,) are defined as in (1.1) and (1.2) except on replacing No with a Poisson process
with rate n and A with the function A, (¢, w(¢)) = nA(z, n~ w(¢)). Under suitable assumptions,
(Xy, Y,) converges in probability to (X, Y), satisfying

¢ t
X)) = / A(s, Y(s))ds, Y(t) = / u( —s)A(s, Y(s))ds,

where u(1) = E{r; At} (Theorem 2.1 of [6]). Also, under suitable assumptions (that include
the differentiability of the function y + A(¢, y)), the scaled and centered process (Xn, Yy) =
(X, — X, Y, —Y) converges in distribution to (X , Y), satisfying

t
X(1) = 2(BO) + / hy(s, Y ()T (s) ds,
0

t
f(r):[ (r/\(t—y(s)))E(ds,dr)+f 1t — $)Ay(s, Y ()Y (s) ds, (1.4)
B(1t) 0

where B(1) = [0, A(D)] x [0,00), A1) = [y Az Y(@)dz, y(1) = A~ (1), Ay(t,y) =
(0/0y)A(t, ¥), and E is a Gaussian random measure with the control measure

E{|E(ds, dr)|2} = dsv(dr), (1.5)
where v is the distribution of 7; (Theorem 2.2 of [6]).

https://doi.org/10.1239/aap/1435236984 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1435236984

478 A. BUDHIRAJA ET AL.

One special case of 7; is particularly interesting in the context of modeling data traffic in
modern communication networks. Thisis the case where t; are heavy-tailed with the distribution

v(dr) = (B — DOOr + 1)~ Pdr, r>0, (1.6)

where 8 € (2, 3) is the tail index and 6 € (0, co) is a scale parameter. When X is the
constant function and (1.6) is assumed, it is well known that, under suitable assumptions and
proper scaling, the cuamulative workload input process converges to fractional Brownian motion.
A version of this fact appears in Section 4 of [6], see also [3]-[5], [7], [8], and [10].

For the convergence to fractional Brownian motion, in a scaled system, it is also necessary
to rescale t;s or the measure v(dr) in (1.6). One way to see this is to observe that without
rescaling, the Gaussian random measure E in (1.4) and (1.5) is not self-similar in the variable r.
For this reason (see, e.g. Section 4 of [6] for the case when A is constant), it is natural to scale
the measures as

v (dr) = (B — DnO(ndr + 1)7‘9 dr (1.7)

or, equivalently, replace t; by 7;/n.

This case is not included in Theorems 2.1 and 2.2 of [6] which, although allowing for state
dependent A, treat the scaled system (1.3) that has no scaling in the intensity measure v, and,
hence, the key convergence results of [6] for nonconstant A cannot be applied with (1.7). In
fact, as already suggested by the result in Section 4 of [6] for the constant A case, dealing with
(1.7) for nonconstant A is expected to be more involved. For example, a natural normalization
in this case is no longer /7.

Models where A is a function of the state process are natural when one considers control
mechanisms for regulating the amount of work input in the system. A common form of a control
policy that aims to appropriately balance long processing delays with low processor utilization
consists of suitably decreasing the input rate when the workload input in the system is very
high and increasing the rate when it drops too low. Study of the asymptotic behavior of the
workload input process with heavy-tailed session length distributions under such state feedback
control mechanisms is the subject of this paper. We will consider a scaled multidimensional
system where the session lengths are distributed according to v, as in (1.7), and establish limit
theorems for settings where A is state dependent. We are particularly interested in the design of
control policies that keep the net workload input (asymptotically) close to a prespecified linear
trajectory such that the variability (suitably scaled) is bounded uniformly in time. The slope of
the linear trajectory represents the system processing rate and, thus, such control policies yield
uniform in time reliability bounds on probabilities of processor underutilization and overload.

Let us now describe briefly our model and the results we have established. We suppose that
a system consists of d-processing stations, and that work arrives to each station (independently
of others) as before. The function A controlling the arrival rate, however, now depends on
the average total workload input across all the stations. More specifically, denoting the total
cumulative workload input at the ith station by y; (t) and their average y(t) = (1/d))_; yi (),
we suppose that A = f(¢, y(¢)). Even more specifically, we will work with a special A having
the form

A= [, y@) =exp{—g(y(t) — br)} (1.8)

for some b > 0 and function g. The constant b represents the processing rate at each station,
although processing of work is not explicitly included in our model and plays no role in the
analysis. The function g will satisfy the following assumption.
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Assumption 1.1. If holds that g(0) = 0. The function g is twice differentiable and its first and
second derivatives g’ and g satisfy

0<t<gx <L forallx eR

and
lg”(x)| <L forallx eR

for some £, L € (0, 00).

The above assumption will be taken to hold throughout this work and will not be explicitly
noted in the statements of various results. Note that under this assumption, g is a strictly
increasing function, and g(u) > O if u > 0 and g(u) < 0 if u < 0. From the properties of
g, we see that the function A in (1.8) has a natural physical interpretation: the rate of session
arrivals at the ith station increases when y(¢) drops below bf, while it decreases when y(¢)
exceeds bt. We will refer to g as an admission control policy.

Our scaled system will be characterized by independent Poisson random measures &, ; having
common intensity measure n%m X v, where vy, is as in (1.7) and the cumulative workload input
process Y, ;(¢), unlike (1.3) will now be normalized by a factor of n®~!, rather than n (see
(2.4)). We will assume that

a e (B—1,mn{38—-5,5—-8). (1.9

The reason for such choice of « and for the normalization n*~! will be given below (see
Remark 2.2).

Precise evolution equations for Y, ; are given in Section 2. We now give a brief description
of our main results. In Theorem 2.1 we prove a law of large numbers result stating that, as
n — 0o,

Yo=ntsoo Yoa)

converges in probability in Dpa [0, 00) to a continuous (nonrandom) trajectory U = (U, ...,
U) T, where U is characterized as the unique solution of an ordinary differential equation (ODE)
(see (2.6)), and a rate of convergence is given as well. The solution U has the property that
sup;~q U () — bt| < oo. In fact, with a particular choice of b, namely b = 1/6(8 — 2), we
have U () = bt for all .

Next, we study the fluctuations of Y,,. In Theorem 2.2 we show that a suitably centered
and normalized form of ¥,,, denoted as Z,, (see (2.10)), converges in distribution in D4 [0, 00)
to the solution Z = (Z1, ..., Zq) " of a d-dimensional stochastic differential equation (SDE)
(see (2.11)), driven by d independent Gaussian processes R;, i = 1,...,d. The moment
stabilization property of the admission control policy is demonstrated in Theorem 2.3, which
states that sup;~.q E|Z(t)|> < oo, where Z = (1/d) Z?:l Zi.

We remark that in the b = 1/6(8 — 2) case, one can achieve the law of large number limit
of bt by simply taking the admission control policy to be g = O (this function obviously does
not satisfy Assumption 1.1). However, in the g = 0 case, the limit process obtained from the
fluctuation central limit theorem will have variance that increases to co as t — 0.

Finally, we show that in one particular case, the average of the limit process Z is driven
by a Gaussian H -self-similar process R with H = (4 — §)/2 > % The driving process R is
not fractional Brownian motion since it does not have stationary increments. This is directly
related to the fact that the limit process 7 satisfies Z (0) = 0 and, hence, is not stationary. The
process Z(T + ) is expected to become stationary as T — oo. Similarly, the driving process
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Ris expected to have stationary increments in the long run (i.e. R(T +-) — R(T) approaches
a process with stationary increments, as T — 00). We study the asymptotic behavior of the
process Z(T 4 -) as T — oo in Theorem 2.4. For simplicity we restrict ourselves here to
the b = 1/6(B —2) case. It is shown that, as T — oo, the process Z(T + ) converges
in distribution in Cgr[0, 00) to a stationary Ornstein—Uhlenbeck process driven by fractional
Brownian motion with Hurst parameter H = (4 — 8)/2 > %

The paper is organized as follows. We state all the results in Section 2. Section 3 contains
the proofs of Proposition 2.1 and Theorem 2.1. The proof of the central limit theorem will be
provided in Section 4. In Section 5 we represent the limit (centered) station average process Z
as an integral with respect to a Gaussian process and provide the proof of Theorem 2.3 on the
moment stabilization property of the admission control policy g. Section 6 is devoted to the
study of the asymptotic behavior, as T — o0, of the process Z obtained from the central limit
theorem, and the proof of Theorem 2.4 is given.

The following notation will be used. We denote the set of nonnegative integers by N
and nonnegative reals by R. For a Polish space S, Cs[0, oo) (respectively Dg[0, co)) will
denote the space of continuous (respectively right-continuous with left limits (RCLL)) functions
endowed with the local uniform (respectively Skorokhod) topology. We denote C by the generic
constants in (0, co) whose value may change from one proof to the next.

2. Model formulation and main results
We begin in this section with the evolution equations for the unscaled system.

2.1. Unscaled system

Let&p;,i = 1,...,d, be independent Poisson random measures on [0, co) x [0, co) with
common intensity measure n = m x v, where m denotes the Lebesgue measure on [0, co) and
v is given in (1.6). Then, &y ; can be represented as

oo
éo,i = Z S(S,-_j,r,-,j)a
j=1

where 0 < S; 1 < S;2 < --- are the jump times of independent unit rate Poisson processes for
i=1,...,d,and 7; ; are i.i.d. with distribution v. These Poisson random measures will be the
building blocks for our counting processes N; with desired stochastic intensities.

Let f: Ry x R — R, be a function of the form

f,y) =exp{—g(y — b1)},

where g: R — R is a function satisfying Assumption 1.1. Let Xo = (Xo.1, .- -, Xo,d)—r and
Yo = Yo1,..., Yo,d)T be N9- and Ri-valued RCLL processes given through the following
system of equations:

o
Xo.i(t) = Noi(t) =&, (Bo(1)) = Y (s, ;<a0(0))-
j=1

Yo,i(1) = /B ()r A (t — yo(s))éo,i(ds, dr) = Z Ti,j A= (S ), 2.1
ot

J:Sij<Ao()
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where
t _ _ 1 d
Ao(t) = /O f(s, Yo(s)) ds, Yo(r) = J;Yo,im, wn =AM 0 22

and
Bo(t) = [0, Ap(1)] x [0, 00).

Note that from Assumption 1.1, A is continuous and strictly increasing. Therefore, yy is well
defined and continuous as well. Here, y0(S;, ;) is the jth activation time at the ith station, that
is, the jth jump time of N ;(#). For y(S; ;) < t,t — yo(S; ;) is the amount of time up to ¢
since the jth session activation at the ith station and 7; ; = y0(S;, ;) + 7; j is the end time of the
Jjth session at the ith station. Thus, 7; ; A (t — y0(S;,)) is the work input by the jth activated
source at the ith station, up to time ¢.

From Assumption 1.1 it follows that

f(@,y) =exp{—g(y — br)} < exp{—g(—br)} forally > 0. (2.3)
In particular, f is a strictly positive function that is locally bounded, namely

sup f@,y) <oo foral T > 0.
1€[0,T],yeRy

From this it follows that there is a unique solution to the system of equations (2.1) and (2.2).
Furthermore, yy is a {F, }-adapted process, where

Fu=0{&A): Ae B(0,u] x[0,00)),i =1,...,d}.
Consequently, for any ¢ > 0, Ao(¥) = yo_l () is a bounded { ¥, }-stopping time and, therefore,
No.i(1) = Ao(t) = &0, ([0, Ag(1)] x [0, 00))

is a {$:} = {Fay()}-martingale, where éO,i = &p; — n is the compensated Poisson random
measure associated with &y ;,i = 1,...,d.

2.2. Scaled workload and main results
We now introduce the scaled system. Roughly speaking, the scaling corresponds to replacing
7;,; with 7; j/n, S; ; with §; ;/n® and dividing the cumulative workload input processes by
n?=!, More precisely, for each fixedn € N, let &, 1, ..., &, 4 be independent Poisson random
measures on [0, co) x [0, co) with common intensity measure
Nn(ds, dr) = n* dsv, (dr),

where v, is introduced in (1.7). Define, fori =1, ...,d,
1 1
Xi(8) = — Ny i (1) = —£n,i (B (1)),
n n

na—l

Ypi(t) = ;/B ()V At = ¥n($))En.i(ds, dr), 2.4
(¢
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where
‘ d
_ - 1 _1
Ap(t) = / S (s, Yu(s))ds, Y, (1) = 7 Z Y,i(0), vu() = A, (1), (2.5)
0 i=1

and
B, (1) = [0, Ayu(2)] x [0, 00).

As for the unscaled system, we see that the solution (X, Y,) " of the system (2.4) exists and
is unique on [0, oco) for each n, where X, = (X1, ..., X,wl)—r andY, = Yu.1,..., Yn,d)T;
and, moreover, X, ¥, € Dpa [0, 00).

Consider the ODE "

U =af@t,U@), UO) =0, >0, (2.6)
where

a=(B-10 /Ooor(er + D Pdr=(-10 fooo n’r(nfr + 1)~ dr = 0B —2)

The following proposition will be proved in Section 3.

Proposition 2.1. There is a unique continuous function U that solves (2.6). The solution
satisfies
sup U (t) — bt| < o0.

>0
In the b = a case, we have U (t) = bt, forall t > 0.

Remark 2.1. Asanimmediate consequence of the above proposition we have that f (¢, U (t)) =
exp{—g(U(t) — bt)} is bounded above and bounded below away from 0, namely,

0< lin(f){f(t, U@)} < sup{f(t, U(r))} < oo.
= t>0

Denote 5
f,y) = 5}‘0, y) = —exp{—g(y — b1)}g'(y — br).
Since g’ is bounded from below and above, it follows from the above proposition that @, U@))
is also bounded below and bounded above away from 0.
Let
X=X ....Xo)"'=a ', U,....,U)7, Y=(,....Y) =W, U,... 0"

2.7
The following is the first main result of this paper.

Theorem 2.1. Asn — o0, (X,,Yy)! — (X, Y)" in D]R?ﬁ [0, 00), in probability. Further-
more, for anyt > 0 and any q € [0, B — 2),

sup n?|Y,(s) — U(s)| = O, 2.8)

0<s<t

in probability, as n — oo.
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Let V € Cr[0, c0) be given as the solution of

13 t
,U
V() = a/ £, UV () ds —ag?F [ LT84 2.9)
0 0 (1—9)F"
From Remark 2.1 the solution V of the above linear equation exists and is unique.
Define
Vit
Zni(t) = n<“+ﬁ3>/2<yn,,-(t) —Yi(t) — %_i) i=1,...,d. (2.10)
n
Our next result provides the limiting behavior of the processes Z, = (Z, 1, . . ., Z,,,d)T. Note

that Y;(¢) + V (¢) /nﬂ’2 is not the expectation of Y, ;, and, hence, Z, ; in the above equation is
not the conventional centered process of Y, ;. However, from Proposition 2.1 and Theorem 2.1,
one can show Y;(t) = lim,_ E{Y, ;(¢)}. Also, as n increases to oo, the term V(t)/nﬁ_2
tends to zero. Thus, the next result can be regarded as a central limit theorem for the scaled and
(nearly) centered process Y.

Theorem 2.2. Asn — oo, Z,, converges in distribution in Dpa[0, 00) to Z = (Zy, . . ., z7,
where Z satisfies

t
Zi (1) :/ r/\(t—y(s))Ei(ds,dr)+a/ fy(s, U(s))Z(s)ds, i=1,...,d, (2.11)
B(t) 0

where
t
A= / fG UG,y =A""0), (2.12)
0
d
B0 =10, A0 x 0,00, Z() =~ 3 Z0)
’ ’ ’ d 1 i s
1=
and X1, ..., Xq are independent Gaussian random measures on [0, 00) x [0, 00) with common

control measure ds(f — 1)0'~Pr=F dr.

Integrals with respect to Gaussian random measures characterized by a control measure are
defined, for example, in Chapter 3 of [12].

Remark 2.2. When A = 1 (constant) or f = 1, note that A,(¢) = ¢ and y,(t) = ¢ in (2.5),
B, (t) = [0, t] x [0, co) and, hence,

t o0
Vyilt) = —— /O fo F A = )6 (ds, dr)

nC{

in (2.4). After the change of variables s — s/n and r — r/n, this can be written as

1 nt o0 s r
Yn,,-(t):n—o[/0 fo r/\(nt—s)én,i<d(;>,d(;))

nt oo
La/ f r A (nt —s)g,,i(ds, dr), (2.13)
n 0 0

where ¢, ; is a Poisson random measure with intensity measure n*lds (B—1@Or+1)"Fdr.
Written as (2.13), n®Y,; can be interpreted as the cumulative workload input in the system
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scaled in time by n and where heavy-tailed workloads are associated with sources arriving at
Poisson rate A, = n®~!. This is the view taken, for example, in [4] and [8]. It is well known
that, after proper normalization and centering, the total workload input converges to fractional
Brownian motion in the so-called fast regime, that is, when

An _ n(x—l _ n(x—ﬂ+1
WB—D-1 — 2 =

—> OQ.

This holds when « — 8 + 1 > 0, which is a part of our assumption (1.9). It is also known that
the normalization of the right-hand side of (2.13) (to the central limit theorem) is

o o

n " — platp=3)/2
O3 -B—D)I2 =~ pa—fp+3)/2 ’
which coincides with that used in (2.10).
Remark 2.3. Let Z* = (Z7, ..., Zj)T be given as the solution of
t -
ZXt) = RfF(t) + a/ fy(s, U(s)Z*(s) ds, (2.14)
0
where
t o0
Rﬂw=/ /(ﬂaU@»WOAa—wnMMAn, i=1,....d,
0 JO
and
i} 1 ¢
Z5(t) = i > zio.
i=1
One can check that R* = (RT, ..., R;;)T and R = (Ry, ..., Ry) " have the same distribution,
where

R,~(t)=/ rA(t—y(s)Xi(ds,dr), i=1,...,d.

B(1)

Consequently, Z and Z* are equal in law and, thus, (2.14) gives an alternative representation
for the weak limit of Z,, as n — oo.

The following result shows the moment stabilization property of the admission control
policy g.

Theorem 2.3. The following uniform moment bound holds:

- 201-F
sup E{|Z(1)[*} <

=0 B =23 = BapmF =P

where . := inf>o{— fy (s, U(s))} € (0, 00) and I'(-) is the gamma function.

Remark 2.4. The case when there is no admission control corresponds to g = 0. Although
the function g = 0 does not satisfy Assumption 1.1, it can be shown along similar lines that in
this case Theorem 2.1 holds with U () = at, and, therefore, sup,.. |U (t) — bt| will be finite if
and only if b = a. Furthermore, Theorem 2.2 will hold as well (v_vhen b = a), but the moment
stabilization property in Theorem 2.3 fails.

https://doi.org/10.1239/aap/1435236984 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1435236984

Admission control 485

Finally, we consider the asymptotic behavior of Z(T 4 -) as T — oo. Here, we restrict
ourselves to the b = a case. Then from Proposition 2.1, (2.11), and (2.12), the limit process in
Theorem 2.2 can be written as

t o0 t
zm:// r/\(t—s)Zi(ds,dr)—K/ Z(s)ds, i=1,....d,
0 JO 0

where k = ag’(0) € (0, c0).
Let By = {Bp(t), t > 0} be a standard fractional Brownian motion with Hurst parameter
=@4-p)/2¢ (%, 1), namely, By is a mean zero Gaussian process with covariance

E(Bu () Bu(s)} = 3" + 57 — |1 — s ).
Let Z(0) be a normal random variable with mean zero and variance
917;3 oo
of = E{|Zoo(0)*} = —f / e Ve Uy — v)> P dudv < oo,
dB-=2)Jo Jo
and let (By, Zoo(0)) be jointly Gaussian, and the covariance function of By and Z4,(0) be
coV(B (1), Zoo(0)) = ot / / U+ )P dud
) u—+v u,
I e od (B-2)

where o = /201-8/d (B —2)(3 — B)(4 — B). Let Z, be the fractional Ornstein—Uhlenbeck
process given as the unique solution of

t
Zoo(t) = Zoo(0) — K/ Zoo(s)ds + o By (1). (2.15)
0

Theorem 2.4. Letb = a and let Z be as in Theorem 2.2. Then, as T — oo, Z(T +-) converges
in distribution in Cr[0, 00) to Zso, given by (2.15). Moreover, the process Z, is stationary.

3. Law of large numbers
In this section we will prove Proposition 2.1 and Theorem 2.1.

Proof of Proposition 2.1. Consider the ODE
u(r) = aexp{—gu)} —b, u(0) =0, t>0. (3.1

Clearly, a differentiable function u solves (3.1) if and only if U (¢) = u(t) + bt solves (2.6).
From Assumption 1.1, the function 4 (x) = aexp{—g(x)} — b, x € R, is locally Lipschitz. For
each n € N, define h,(x) = h((x An) VvV (—n)), x € R. Since h,, is a Lipschitz function, for
any n € N, the ODE

u(t) = hn(u(1)), u(0) =0, >0 (3.2
has a unique solution u,,. Let K be the unique solution of the equation
aexp{—g(K)} —b =0,

That is, g(K) = log (a/b).
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Then, for alln > |K|,if b > a, u,(t) < 0 for all ¢, and u,,(¢) decreases to K € (—o0, 0); if
b < a, u,(t) > 0forall ¢, and u, (¢) increases to K € (0, co); and, finally, if b = a, u,(¢) =0
for all t. Consequently, for any n > | K|,

sup [un (1)] < |K| (3.3)
t>0
and u, solves (3.1). This proves the existence of solutions.

Now consider uniqueness. Let i be another solution of (3.1). Let t = inf{¢: |u(z)| >
|K| 4+ 1}. From the unique solvability of (3.2) for any n > |K| + 1, u(t) = u,(¢t) for all
t € [0, t). From (3.3) we now see that T = co. This proves the unique solvability of (3.1) and,
consequently, that of (2.6). Also, as noted above,

sup |U(¢) — bt| = sup |u(®)] < |K]|

>0 >0
and U(t) — bt = u(t) = 0 for all 7 if b = a. The result follows.
Next, we present the proof of Theorem 2.1.
Proof of Theorem 2.1. Let §n,,- = &,.; — n, be the compensated Poisson random measure

associated with &, ;,i =1, ..., d. Rewrite X,, and Y}, as

I - 1 1.
Xn,i(t) = n_aé:n,i(Bn (t)) + Enn(Bn(t)) = n_agn‘i(Bn(t)) + An(t)a

Yai0) =~

1

no—1

/ FA (= ya($)Ea i (ds, dr)
By (1)

/ FA (= Ya()n%(B — DnOnbr + 1) P ds dr. (3.4)
By (1)

By the change of variables s = fov f(u, Y, (u)) du = A, (v), the second term on the right-hand
side of (3.4) equals

t oo
n%0(B — 1)/ / F, Yo () (r A (t —v)(br + 1) P dr dv. (3.5)
0 JOo

Consider the inner integral in (3.5). For 0 < v < t, by simple calculation, we see that

6(B — n? /Oo(r At —v)nor + 1) Pdr
0

r—v o
=08 — 1)n2[/ r(nor + D~ Pdr + / (t —v)(nbr +1)7P dr:|
0 t—v

1 1
T OB -2 6(B-2)nb(r —v) + HF2

1
:a(l T Wb —v) + 1)/3—2)‘

Therefore, foreachi =1, ...,d,

Yn,i(t) =

/ A = Ya(5)Eni(ds, dr)
B, (1)

nozfl

! - 1
—I—/O af (s, Yn(s))(l — 0 =+ l)/32>ds.
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Recall the definition of X; and ¥; from (2.7). Then

1 - t _ t
Xn,i(1) — Xi(1) = n—aén,i(Bn(t))Jr[O f (s, Yu(s))ds —/O f (s, U(s))ds,

Ypi(t) —Yi(1) = o

/ rA(t = Yu(8))Eni (ds, dr)
By (1)

t
+ /O alf (s, Fu(s)) — £(s, U(s)]ds

/t £ (s, Yu(s)
—a S.
o (bt —s)+ 1Hp—2

Let us first show (2.8). Summing over i and normalizing by d, we have

487

(3.6)

(3.7)

d

i 1 t i,

Yu() =U@) = 7 Z(Yn,i(t) -Yi(0) = afo Lf (s, Yu($)) — f(s, U(s)]ds + 8,(1), (3.8)
i=1

where

! F(s, Y (s))
o (Ot —s) + 1)F2

s L (s, V()
0= “/o w0t —) + p 2

ds

d
1
() = ; Ani(t) —a

andfori=1,...,d,
1 -
Ani() = —— / r A= Ya($)Eni(ds., dr).
n By (1)

We will now argue that

n?8, — 0 in probability in Dg«[0, 00) forall g € [0, 8 — 2).

3.9

(3.10)

Consider first the second term on the right-hand side of (3.9). Since Y, () > 0 forall > 0 and

B € (2, 3), from (2.3), we have
/' f(s,Yn(s) 1 /’ exp{—g(—bs)}
s < ds
0o O —s)+1)2 nf=208-2 J, (t —s5)B2

- (Supg<y< exp{—g(—bs)})t3*5
- nf=208-2(3 — B) '

Consequently, for every ¢t > 0,

q /t f(s’ Y_vn(s))
o (Ot —s) + 12

lim n
n—>oo

Thus, in order to prove (3.10), it suffices to show that

sup n?|A,(s)| — 0 in probability, asn — oo,
0<s<t
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for every g € [0, B — 2) and for every t > 0, where A, = (A1, ..., An,d)T. The proof of
(3.12) can be found below, following the proof of this theorem.

From Assumption 1.1, we have that y — f(¢, y) is a Lipschitz function on R, uniformly
in t on compact intervals, since

sup | fy(z, )| = sup | —exp{—g(y — bt)}g'(y — bt)| < L exp{—g(—b1)} (3.13)
yeRy yeRL

for all ¢+ € [0, 00). The convergence in (2.8) now follows by an application of Gronwall’s
lemma to (3.8).
Finally, we argue that

X, Yo" —> X, Y) in D20, 00),  in probability, asn — oo. (3.14)
For n € N, define the filtration {¥'} as

Fr=o{E(A): A e B(0,u] x [0,00)),i =1,....d).

u

Then, foreachi =1, ...,d, én,,-([O, u] x [0, 00)) is an { ¥, }-martingale. As an analogue of the
unscaled process in Section 2.1, y, is a continuous, strictly increasing {¥,}-adapted process.
Consequently, for every t > 0, A,(t) =y, ' (¢) is a {F,"}-stopping time. Therefore,

M (6) = &, ([0, An()] x [0, 00)) = &yi (Ba (1)) (3.15)

is a {§}}-martingale, where §} = F}

A, BY Doob’s maximal inequality, for some C > 0,

1 CEIM ") (1)[2
IP’{ sup n—a|M,§f3<t)| ze} < mirl

0<s<t n2a62
_ CE{fy f(s, Ya(5)) ds}
N n%e?
C [i exp{—g(—bs)}d
< Cloexel RiSalioy (3.16)
n%e
Combining (3.15) and (3.16) we have, as n — oo,
1 -
IF’{ sup —|&,i (Bn(1))| = e} — 0. (3.17)
O<s<t N

Thus, the first term on the right-hand side of (3.6) converges to the zero process, uniformly on
compacts, in probability, as n — co. Now (3.14) follows on combining (3.13), (3.17), (3.11),
and (3.12) (with g = 0), and applying Gronwall’s lemma to (3.6) and (3.7).

Proof of (3.12). Recall that, for each i = 1,...,d, é,,,,'([O, u] x [0,00)) is an {F'}-
martingale and for every t > 0, A, (¢) = yn_l(t) is a {¥,'}-stopping time. Observe that

Ani(0) = UL (A (1)),

where, fori = 1,...,d,

1 -
UL ) = —— / P A = Y (s)) 4B (ds, dr).
’ n* [0,u]x[0,00)
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Note that ‘ufjf (u) is a {F,'}-martingale with predictable quadratic variation process
1 2
S (r At = yu($)+) nu(ds, dr).
n [0,u]x[0,00)

Using the change of variables s = fov f(u, Y, () du = A, (v), we have, foreach t > 0,

d
QEJU$mamF}
i=1

] d
- nza—zE{Z/[
i=1

0,A,(1)]%x[0,00)
0B —1
nb (B )dIE
na—2

E{|A,(1)*}

UAU—m@m%Mmdﬂ}

t o0
{/ / F@, Y, A —v)2mbr + 1) P dr ds}.
0 JO
(3.18)

Splitting the integral over [0, 0o) as [0, t — v]U (f — v, 00) and making the substitution nr +— r,
(3.18) can be bounded by

t n(t—v)
n~%9(B — 1)d sup {exp{—g(—bs)}}[/ / r2Or + 1)"Pdrds
0 JO

0<s<t

t [e9]
+/ / (n(t —v)*@r+ 1) Pdr ds] (3.19)
0 Jn(—v)

Integrating the first term on the right-hand side of (3.19), we see that

1 /-t /n(t—v) 5 B p3—B—a 4B
— r2Or+ 1) Pdrds < )
n* Jo Jo 083 — B4 —B)

Since § — 2 < (B + a — 3)/2 (or, equivalently, « > B — 1), we obtain, for all # > 0,

2q t pn(t—v)
—a/ / r2@r+1)"Pdrds — 0 forallg € [0, 8 —2). (3.20)
n 0 JO

Also, the integration of the second term on the right-hand side of (3.19) shows that

1 [t [ ) 8 p3—B—apd—p
n_"‘/o /n(t_v)(n(t —v)“@r+1)"Fdrds < FE-DE—p)

Thus, we have
n2q t poo
—f / (n(t —v)?@r+1)"Pdrds > 0 forallg € [0, B —2). (3.21)
n* Jo Jug—v

Combining (3.18)—(3.21) we conclude that

lim n??E{|A,(1)|*} =0 forallq € [0, B —2). (3.22)
n—00
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We argue nextthatn? A, =n?(A, 1, ..., AMI)T converges to the zero process in Dya[0,00),
in probability. In view of (3.22), it suffices to check that {n9 A, } is tight. To prove tightness we
will use a standard tightness criterion. Namely, we will show that, for each fixed T > O there
exists Ct > OsuchthatforO <h <landh <t <T,

nYMME{|A,(t +h) — Ap(D?|An (1) — An(t — h)[*} < Crh?>. (3.23)

The above inequality, together with the relative compactness of n? A, (¢) for each ¢ > 0 (which
follows from (3.22)), yields tightness of {n? A, } (cf. Theorems 3.8.6 and 3.8.8 of [2]).
Now fix T > 0. In order to show (3.23), it is sufficient to prove that, forany 0 < h < 1 and
0<tr<T,
nME{|A, (1 + h) — A, (DI*) < Crh?. (3.24)

In the following, we use C7 > 0 to denote a generic constant depending on 7', 6, and 8 whose
value may vary from line to line. For 7, s, i, t € R, denote

Opt(r$) =1 At +h = Ya($))y =1 A= Ya($)+
Define, fori =1,...,d,

o) 1 hiy. NE
‘un’i(u) =— v, (1, $)8,,i(ds, dr). (3.25)
[0,u]x[0,00)

Observe that ‘uffl? (u) is a {F,'}-martingale with quadratic variation process

2(a—1 / ( nh‘ ( ’ S)) ( S, )‘
15 / Sn d d)
( ) Oau X[0,00)

Since y,(s) < tif and only if s < A, (), we have
Ani(t+h) = Api (@) = UL (An(t + h)).

Recalling that A, (t + h) is a {F,)'}-stopping time, we have by the Burkholder—Davis—Gundy
inequality (cf. Theorem IV.3.46 of [11]) that for some C > O,

E{|Ani(t +h) — Ani (') = EQULT (An (e + )|}

c / ; 2 2
. g [0 (r, $)1&n.i (ds, dr)) -
nia—1) { ( [0, A, (+h)]1%[0,00) " "

Writing &, ; = 5,, i + 1, the above can be bounded by
2C Ap(t+h) poo
———E [0 (r, $)1*n%0(B — Dnnbr + 1)"# dr ds
n (a—1) 0 0 n

2C Ap(t+h) poo 2
+ ﬂE{ </ / " (r, )12n%0(8 — n(nor + 1)~# dr ds> } (3.26)
neT 0 0

Denote, forr, s, h,t € R,

O (rs) =r At +h—s)p —r Al =9
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By a change of variables, the first term on the right-hand side of (3.26) equals

2C t+h [e'e) _ -
WE{/ / F (s, YN (r, $)1*n%0(B — Dn(nor + 1)~ dr ds}.
0 0

Using the estimate f (s, Y, (s))) < supg<s<7+11€xp{—g(—bs)}} < oo and (A.1) from Lemma
A.1 in Appendix A, the above can be bounded by

Crn>P=3ep6=F, (3.27)
For the second term on the right-hand side of (3.26), by a change of variables once more, equals

2C t+h oo - ~ 2
WE{ (/ / F (s, VN (r, )1Pn%0 (B — Dn(nbr + 1)~P dr ds) }
0 0

which can similarly be bounded by
Crnb= 2720 p2G=hH) (3.28)
using (A.2) in Lemma A.1. Observing that
B—2< %min{ﬂ—|—3a—5,2ﬂ+2a—6} and min{6 — B3,2(4 — B)} > 2,
and combining (3.27) and (3.28), we conclude that (3.24) holds for every g € [0, 8 — 2). This
completes the proof of (3.12).
4. Central limit theorem

In this section we prove Theorem 2.2. From (2.9) and (3.7), we can write (2.10) as

Zni(t) = / (F A (1 = 70(5)))Zs (ds, dr)
B, (1)

' (a+B-3)/2 % V(s)
+ afo n [f(s, Yau(s)) — f(s,U(s)) — fiy(s, U“”W} ds
—n(“+ﬁ_3)/2/t af(s, Yu(s)) ds +n<a—,e+1)/z/’ ab? P f(s, U(s)) ds
0 (I’l@(l — S) + l)ﬂ_2 0 (l — S)ﬁ_z ’
“4.1)

where, with o, = n@=#+1/2,
nlet+B=3)/2 -
2:n,i(A) = Téﬂ,i(A) =0, %—n,i(A)
is a random signed measure on [0, c0) x [0, 00),i = 1, ..., d. Note that
var(Z,.i(A) = n?~'m x v, (A), i=1,....d, for A e B(R%)
with m x v, (A) < co. Note also that

- V(s)
[ Yu(9)) = f(5,U)) = f3(5, U()) 5=
n

1
= (Yu(s) — U(S))/O [fy(s, U(s) +x(Yn(s) — U()) — fy(s, U(s)]dx

- |4
+ (Yn(s) —U@) - nﬁ—(sbfy(s, Us).
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Thus, the middle term on the right-hand side of (4.1) equals
t _ 1 B
af n@HF=3/2(y (s) — U(s))/ [fy(s, U(s) +x(Yu(s) — U(s))) — fy(s, U(s))]dxds
0 0
t
+ a/ Sfy(s, U(s))Zy(s) ds,
0
where, recall, Z,(s) = (1/d) Y%, Z,,.i(s). Let
Ryi (1) =f (r At = yn())Zp,i (ds, dr), i=1,...,d, 4.2)
Bu(1)
t
Co(t) =a / n@HE=I2(Y,(s) — U(s))
0

1
X fo [fy(s, U(s) + x(Yu(s) = U(9))) = fy(s, U(s))] dx ds, 4.3)

t . n2—p 1 v
_(@=B+D))2 abd~ P f(s,U(s))ds _ (a+573)/2/ af (s, Y,(s))ds
D, () =n A (t—s)ﬁ_2 " 0 (n9(t—s)+1)/5—2' “.4)

Letting R, (1) = (Rn.1(£), ..., Ru.a(®) T, where R, () = Ry,.i(t) + Cu(t) + D, (1), we can
rewrite equation (4.1) as

t
zn,i(t)zﬁn,i(mra/ (s UGN Zu(s)ds, i=1,....d. (4.5)
0

Proof of Theorem 2.2. Define ¥ : Dpa[0, 00) — Dpa[0, 00) by

t
[ ()i () :xi(t)+a/0 fy(s, U P (x)(s) ds, i=1,...,d, x € Dpa[0, 00),

where ¥ (x) = (1/d) Zf=1[1//(x)]i. Then, ¥ is a continuous mapping from Dp«[0, 00) to
Dral0, 00). Also, from (4.5) we see that Z,, = (Z, 1, .. ., Z,,,d)T =Y (R,).

Combining Lemmas 4.2, 4.3, and 4.1 below, we see that R, convergesto R=(Ry, ..., Rd)T
in distribution in Dga[0, 00), where

Ri(t) = / rA@—y(s)Xi(ds,dr), i=1,...,d, (4.6)
B(t)

and ¥;,i = 1,...,d, is as in Theorem 2.2. The result now follows from the continuous
mapping theorem.

The next three lemmas were used in the proof of Theorem 2.2 above.

Lemma4.1. Let R, = (Ry1, ..., Rn’d)T and R = (R, ..., Ry) " be as given by (4.2) and
(4.6), respectively. As n — oo, R, converges to R in distribution in Dya[0, 00).

Proof. Let Ii,, = (Ié,,,l, e, Ién,d)T, where

Roi(t) = /l; Ay @I s, 20
t

https://doi.org/10.1239/aap/1435236984 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1435236984

Admission control 493

Since A,(t) is an {F,'}-stopping time for each t > 0, 1o, A, ) 1()[r A (& — yu(s))] is F,'-
predictable. Thus, applying the isometry property of the stochastic integral and recalling the
definition of v, in (1.7), we obtain
E{Rn,i (1) = Rui ()
o o0
5[ [ Qonoi©lr A =)

— Lo, a1 ) A (¢ — y()D*nP v, (dr) ds

00 00 0 -1 B
< 215{ /0 fO Lo, 1) A (= ya(s)) =7 A 1 — y(s))]Z% ar ds}
+ 2E{|An(r) — A(1)|} /Oo(r AD20B — DnP (mor + )P dr. .7
0

Now we consider the first term on the right-hand side of (4.7). From the definitions of y,
and y we see, for any s > 0,

Yn(s) _ y(s)
s =/ f(z, Yu(2)dz =/ [z, U(2) dz.
0 0
Consequently,

y(s) Y (s)
/ f(z,U(z))dz — f [z, U(2))dz
0 0

Yn(s) _ Vn(s)
= / f(z, Y (2))dz — / f(z,U(z))dz. 4.8)
0 0

Since f(z, U(z)) is bounded below away from O (see Remark 2.1), there exists a ¢ > 0 such
that

y(s) Y ($)
‘/o f(z,U(2))dz —/0 f(z, U(2)dz| = cly(s) — ya(s)]. 4.9)

On the other hand, from (3.13), we obtain, for any s < A, (¢) (equivalently, y,,(s) < 1),

Yn(s) _ Vn(S)
‘/ f(z, Yn(z))dz—/ f(z, U()dz
0 0

_ Yn(S)
<L sup |Y,(2)— U(z)lf exp{—g(—bu)}du
0<z<yn(s) 0

t
<L sup |17n(s)—U(s)|/O exp{—g(—bu)}du. (4.10)

0<s<t

Combining (4.8)—(4.10) we have

L _ t
Loa, 1) 7a(8) — ¥ ()] < 2 sup [Tals) = UGs)| /0 exp{—g(—bu)} du.

C 0<s<t

Using (2.8) we now obtain

10,0, Vn(s) —y ()] — 0
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in probability, as n — oo. An application of the dominated convergence theorem now shows
that

_ B
206 =n” 4 }
(nfr + 1P

n—oo

oo o
lim JE{ | st A€ = ymen =raw =y
0 0
=0.

Thus, the first term on the right-hand side of (4.7) converges to 0 as n — oo.

Next, we consider the second term on the right-hand side of (4.7). By the dominated
convergence theorem, we have by using the fact that 8 € (2, 3),

lim oo(r/\z)ze(,s— Dnfmor+ 1)~ Pdr = /Oo(r/\t)ZQI_ﬂ(,B—l)r_ﬂ dr < co. (4.11)
n—oo 0 0
Note that
t
()SlﬁhﬂA(ﬂ,AnU)}ElnwdAlﬂ,AnO)}St/’eﬂﬁ—g(—bﬂ}d&
0

Consequently,
t
1800 = 801 <2 [ expl—g(—bs))ds.

Also, from (3.13) we have

t
An() = AW < L sup [Tu(s) = U] /0 exp{—g(—bs)} ds.

0<s<t
Thus, (2.8) and the dominated convergence theorem yield

Jim E{jA, (@) — ADN} = 0. (4.12)

Combining (4.11) and (4.12) it follows that the second term on the right-hand side of (4.7)
converges to 0 as n — oo.

Combining the above observations it follows that, foreachi =1,...,d and ¢ > 0,
lim E{R,;(t) — R,;(1)}* =0. (4.13)
n—>oo
Note that

Rui(t) = / n B0 10y (s, 1) (r A (E = ())&, (ds, dr).
[0,00) x[0,00)

For each fixed i = 1,...,d, we will now show the weak convergence of the finite-
dimensional distribution of ﬁn,i. Forany 0 < #; < -+ < ff < 00, denote f"(s,r) =
1,y ey )T where f1(s,r) = nB=* D2 1065, A (4 — v (5)), Jj =
1,..., k. Then

Ry i(1j) = f [} (s, )& i(ds, dr).
[0,00) x[0,00)
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One can show by a change of variables that

lim f;‘(s, r) fi' (s, r)n,(ds, dr)
=00 J10,00) x [0,00)
LNy [ee]
= nlggo A [0 S, UG A —)]r A — )P B —1)

x O(nor + 1)"P drds

tint; OO

Z/ 1/ FG,UGHIFA @ — ) A — 18— DO Fr=Pdrds
0 0

= E{R;(¢;)R;: (t))}.

Since | "] < n#=*=D/2 and lim,—, oo n#~%7D/2 = 0, we deduce that 1{ |~y = 0 for large
enough n, and, hence, for each ¢ > 0 and j, if n is large enough,

/ L pnse) | f7 (5, r) P (ds, dr) = 0.
[0,00) x[0,00)

From Theorem 6.1 of [6] it now follows that
R i (1), - Rui ()T = (Ri(1). ... Ri(w) "

as n increases to oo, foreachi =1, ..., d. Since ﬁn has independent components, it follows
that the finite-dimensional distributions of Ii,, converge to those of R. Using (4.13), we then
obtain that the finite-dimensional distributions of R,, converge to those of R.

Thus, in order to prove the lemma it suffices to show that {R,} is tight in Da[0, 00), for
which, it suffices to prove the following estimate: for each fixed T > 0 there exists a constant
Cr >OsuchthatforO<h <land0<:t<T

E{|Ru(t + ) — R,()|*} < Crh®.
Recall the definition of ‘uffl’ in (3.25). Then

Rui(t +h) — Ryi(6) = n@tP=I2YD (N, (1 + h)) = n P24, +h) — Ai (1)),

n,i
From (3.26), (3.27), and (3.28), we now have
E{|Rq(t + ) — Ry (0"} = n*TPIPE(A, (1 + h) — A0

< Cn2ot2B=6(,5—B=3up 6= | 62620} 2(4=p))

_ C(n—(a—ﬁ+1)h6—ﬁ + h2(4—ﬁ))

<Chr,
where the last inequality follows from o > B — 1 and 2 < § < 3. This proves the desired
tightness and the result follows.

Lemma 4.2. Let C,, be as given in (4.3). Asn — 00, supg<;<, |Cu(s)| — 0, in probability,
for everyt > 0.
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Proof. From Assumption 1.1, we have
| fyy (. 9)| = lexp{—g(y — bt)}g' (v — b1))* — exp{—g(y — b1)}g" (y — bt)|
< (L + L) exp{—g(y — b1)}
< (L* + L) exp{—g(—bt)}
=:c(t)

for all y € [0, 00). Consequently, y — fy (¢, y) is a Lipschitz function on R4, uniformly in ¢
in compact intervals. Therefore,

t
1Calt)] < a / () HBIAT (5) — U(s)])? ds.
0

The result now follows by noting that (o« + 8 — 3)/4 < B — 2 (see (1.9)) and using (2.8).
Lemma 4.3. Let D, be as given in (4.4). Asn — 00, Supg<s<, |Dn(s)| — O, in probability,
foreveryt > 0.

Proof. Note that

t 2—8 t
_ _(a—B+D)2 at Sf(s,U(s)) _ ﬁ_zf af (s, U(s)) )
Dy(t) =n (fo STET = ds —n 000 —) 1 P2 ds

t
@—p0/2( 82 af (s, Ue)
o (” /0 Wit =) + 1P 2 &

, N
_ B2 af (s, Yu(s)) )
! /0 (nO(t —s) + 1)B=2 ds ). (4.14)

For the first term, note that

0~ f a0’ Pf(s, UG g /’ af(s. U(s))
o (t—s)p2 0 (n8(t—s5)+1)F2

t 1 1
I SR -
= /o atd="P f (s, U(S))<(t P2 r—s+ l/nﬁ)ﬁ‘z) &

ad? P 1\>#
< sup {eXP{—g(—bS)}}<—> . (4.15)
B né

3 0<s<t

For the second term, from the Lipschitz property of f (see (3.13)), we have

t t %
52 af (s, U(s)) s / af (s, u(s)) ‘
‘” /0 W=+ P2 Gt =+ p2

" af?PBLe=809) | y,(s) — U(s)|
< ds
0 (t —s+1/no)p~2
ab*PL3=F i,
< ——=—— sup {exp{—g(=bs)}} sup {[Yn(s) —U(s)|}. (4.16)
3-8 O=ss=t O<s<t

Combining (4.14)—(4.16), we have
sup |Dy(s)| < Cn@ =972 4 y@=F+D2 1y, (5) — U ()]

0<s<t

From (1.9) we see that (@ + 8 —5)/2 < Oand (0« — B+ 1)/2 < B — 2. The result follows
using (2.8).
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5. The moment stabilization property

In this section, we will prove Theorem 2.3. Let Z be as in Theorem 2.2 and let R =
(R1, ..., Ry)" be the Gaussian process introduced in (4.6). Then Z = (1/d) Z?Zl Z; satisfies

t
Z(t) = R(@t) +a/ fy(s, U(s)Z(s)ds, (5.1
0

where R = (1/d) Z?:l R;. Note that R is a zero mean Gaussian process. We begin by
computing the covariance functions of R;,i = 1, ...,d, and R. The proof is omitted due to
space constraints.

Lemma 5.1. The covariance functions of the Gaussian processes R;, i = 1, ..., d, and R are
given respectively by

cov(R;(s), Ri (1)) = E{R;(s)R; ()}

s t UAV
291_'3/ // exp{—g(U(z) — b)}(u v v —2)' P dz du dv,
0 JO JO
(5.2)
and cov(R(s), R(t)) = cov(R;(s), R;())/d, for any s, t > 0.

In the next lemma, we provide a bounc_l on the second moments of the increment of the
Gaussian processes R;,i = 1,...,d, and R.

Lemma 5.2. For any s, t > 0, the following bound holds:

2K0' P
Ri(9)*} <
B=2)3-pE-p)
m_}here Ky = supgol{exp{—g(U(s) — bs)}}. The bound (5.3) also holds with R; replaced by
R when its right-hand side is divided by d.

Consequently, the Gaussian processes Ry, . .., Ry, R have versions that are Holder contin-
uous of any order p € (0, (4 — B)/2) on [0, T] forall T > O.

E{|R; (1) — (t —)* P, (5.3)

Proof. Fix(0 <s <t < oco. From Lemma 5.1, foreachi =1, ...,d,
t t UANV
E{|R; (t) — Ri(s)*} = el—ﬁ/ / / exp{—g(U(z) — b2)}(u v v —2)' P dzdudv

K@l p
] // |u—v|2ﬂ (u\/v)2 ﬂ]dudv

2K91 B
51—/ [(u—v)Hdudv
:3_2 s v

_ 2K,01-F
T (B-2B3-pE-B)

This completes the proof of (5.3). The result for R is now immediate. The last statement in the
lemma now follows from Kolmogorov’s continuity criterion.

(t —s5)4 P, (5.4)

The proof of Theorem 2.3 relies on an explicit representation for the solution of (5.1). For
that we begin with an indefinite integral of a deterministic function with respect to the Gaussian
process R.
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Denote by & the linear span of indicator functions of the form 1¢;: Ry — R, 0 < s <
t < oo. Consider the inner product on & given by

s pt
(L.s1: L0,11) 55 =COV(R(S),R(I))=/O /(; p(u,v)dudo,

where, by (5.2),

gl-A

— - _ _\1-B .
ou, v) = d /() exp{—g(U () —b)}uvv—z)"Fdz ifu#v,

0 ifu=wv.

We denote by J¢ the Hilbert space obtained as the closure of € with respect to this inner product.
Define R: & — L*(Q, F,P) as

R(I(OJ])) = R(@), 0<t<oo,

where the definition is extended to all & by linearity. Clearly, E{|R(9)|*} = (¢, ®) 3, for all
¢ € & We can now extend the definition of R to all # » by isometry. Occasionally, we will
use the notation

R@) =f0 $()dR(), ¢ € Hg.

For any ¢, ¢ € &, it holds that

(6. )3ty = fo /O ¢ u)$@)p(u, v) du dv. (5.5)

It can be shown that #5 contains all measurable functions ¢ on R satisfying

/o /o lp ()¢ W)]p(u, v)dudv < oo, (5.6)

and that equality (5.5) holds for ¢, q~5 that satisfy (5.6).
This type of isometry is considered in [9] (see Chapter 5) and [1] with respect to fractional
Brownian motion and general Gaussian processes respectively.

Remark 5.1. If ¢: [0, oc0) — R is continuous, then, for any ¢ > 0, the function ¢, defined by
@1 () = 110,11 (1)@ (-) satisfies (5.6). Consequently, ¢, is in F; and we write, formally,

t
R(9)(@) :== R(¢r) = /0 ¢ (s) dR(s). (5.7

Remark 5.2. If ¢(-) is Holder continuous of order p; > 1 — (4 — 8)/2 on [0, t], for every
t > 0, as a result of Young’s integration theory [13], the pathwise Riemann—Stieltjes integral
fo ¢ (s) dR(s) exists, since R is Holder continuous of any order p € (0, (4 — B)/2). Zéhle [14]
showed (see Proposition 4.4.1 therein) that R(¢)(t) is Holder continuous of the same order as
R on [0, T, for every T > 0. The indefinite integral R(¢)(-) on the right-hand side of (5.7)
coincides with the pathwise Riemann—Stieltjes integral.

We now proceed to the proof of Theorem 2.3.
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Proof of Theorem 2.3. Define

t - t
(1) = GXP{—Q/O Iy(z, U(Z))dZ}, @) = exp{afo fy(z, U(Z))dZ}~
Then, the derivatives of ¢ and ¢ are

') = —afy(t, UG 1),  ¢'(t) = afy(t, U1)(1).

Remark 2.1 implies that ¢’ and ¢’ are bounded on any compact interval and, hence, ¢ and ¢
are locally Lipschitz continuous. From Remark 5.2, the indefinite integral

t t s
R(9)(1) =/0 @ (s)dR(s) =/(; exp{—a/O fy(z,U(z))dZ}dR(S)
is well defined as a Riemann—Stieltjes integral, and, for every T > 0, R(¢)(r) is Holder

continuous on [0, T'] of any order p € (0, (4 — B)/2).
It follows from Theorems 3.1 and 4.4.2 of [14] that

t t
SRS (1) = /0 ()6 (5) dR(s) +a /0 £y (5. U)Bs) R()(s) ds

t
= R(t)+a/() [y, U(s)p(s)R(@)(s) ds,

which implies that &R (¢)(¢) solves (5.1). Thus, the solution Z to (5.1) can be written
explicitly as

Z(t) = $OR@$)(1)
t t N
= exp{af fr(z, U) dz} / exp{—a/ f(z, U@) dz} dR(s).
0 0 0
By the isometry of the mapping R, we have, on letting ¢; (u) = ¢ (u) 1jo,11(u),

E(Z0)1) = 1)1 /0 /0 61 (10)bs (v)p (1, v) dut v

t t
=|q3(t)|2fo fo & w)d(v)p(u, v) du dv

t t t t
=[ / exp{a/ fy(Z,U(z))dz}exp{a/ fy(z,U(z))dz}p(u,v)dudv.
0 JO u v

Recall the definition of u from the statement of Theorem 2.3. From Remark 2.1, 1 € (0, 00).
Then, by a calculation similar to (5.4), we have, for all > 0,

t t
0P 'E(1Z(1)]%} sf / et g=ant=v) 4 v du dv
0 JoO

2 13 t
< — eV — )2 B dudu
diB—2) /0 /u

2
I'4 — B).
S 1B -G —paptr 4P

The result follows.
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6. Fractional Ornstein—-Uhlenbeck process

‘We now proceed to the proof of Theorem 2.4. Throughout this section we take b = a. From
Proposition 2.1 it follows that

U) = bt, f@,Uu@) =1, L@, U@®) =-¢'(0)

for all + > 0. For notational simplicity, we will only present the proof for the & = 1 case.
In this special case, the SDE (5.1) can be written as

t

t
Z(t) = R(t) —a/ g (0)Z(s)ds = R(t) —Kf Z(s)ds, (6.1)
0 0

where k = au = ag’(0) > 0, and

d t poo
R(r):éi;/()/o rA(t—s)2;(ds, dr)

for any r > 0. )
From Lemma 5.1, it follows that the covariance of R is given by

S t UNV
cov(R(s), R(t)) = E{R(s)R(1)} = %/0 /0 /O uvv—z'Pdzdudv

s t
- mfo /0 (Ju—v)>? = v v)>P)dudv,

and, from Lemma 5.2, we recall that the sample paths of the process R are Holder continuous
on [0, T'] of order p, for any p € (0, (4 — B)/2).

Recalling the definition of the indefinite integrals with respect to the Gaussian process R,
the solution of the SDE in (6.1) can be explicitly written as

t
Z(t) :e_’“/ e dR(s).
0

V_Ve now cc_)nsider the a_symptotic behavior of the process V4 (t)ast - oo. ForT, t > 0, let
R7(t) = R(T +1t) — R(T). From (6.1), we can write

t
Z(T +1) = Z(T)+1§T(z)—/</ Z(T + s) ds.
0

Recall the parameters 002 and o (also recall that & = 1). The proof of the following lemma is
omitted due to space constraints.
Lemma 6.1. We have
(@) lim E{|Z(T)]*} = 0.
T—o0
(b) Foranyt > s >0,

2
lim E(Rr()Rr(5)) = %[t4_ﬂ 57—t — 5P,
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(c) Foranyt > 0,

#hn cov(Z(T), Ry (1)) #hn E{Z(T)Rr (1)}

1 t o0 ) [3
_— e “(u+v)y " Fdvdu.
dB—-2) /o /0
Proof of Theorem 2.4. Define ¢: Cr[0, co) — Cr[0, co) by

t
o)1) = x(t) — « /0 [o()](s) ds.

Then, ¢ is a continuous mapping from Cg[0, co) to Cr[0, 00).

For any ¢, T > 0, denote Ry (1) = Z(T) + Rr(t). Then K7 is a Gaussian process with
continuous trajectories and Z(T + -) = @(R7)(-). Therefore, in order to prove that Z(T + -)
converges in distribution in Cr[0, 00) to Z, it suffices to show the convergence of Rr to
Zoo(0) + 0 By (), where Z,(0), By, and o are as defined earlier. From Lemmas 6.1, it
follows that the finite-dimensional distributions of Rt converge to those of Z,(0) + o By (+).
It thus suffices to verify that {,R_T(-)}T>0 is tight in CRr[0, co). By the Cauchy-Schwartz
inequality and (5.3) for R, it follows that, for anyh >0,t > h,and T > 0,

E{|R7(t +h) = Rr(O||Rr (1) — Rr(t — )]}
< BIR(T +1+h) = R(T + D) 2EIRT +1) = R(T +1 - n))'?
2n4=P
< .
d(B—-2)3-p“—-B)
Note that 4 — 8 > 1, since 8 < 3. The desired tightness now follows from standard results

(cf. Theorems 3.8.6 and 3.8.8 of [2]). This proves the convergence of Z(T + ) t0 Zoo(). The
stationarity of Z, is now immediate. The result follows.

7. Conclusions

An infinite source Poisson arrival model with heavy-tailed workload input distributions has
been extensively used for modeling data packet traffic in communication networks. In this paper
we introduce, in the context of such a model, a natural family of admission control policies that
keep the associated scaled cumulative workload asymptotically close to a prespecified linear
trajectory, uniformly over time. A law of large numbers for the scaled workload is proved
and fluctuations studied by establishing a functional central limit theorem for suitable scaled
and centered workload processes. The moment stabilization property of the control policy is
demonstrated by establishing that the asymptotic second moment of the scaled and centered
workload process is uniformly bounded in time. The slope of the linear trajectory represents the
system processing rate and, thus, such control policies yield, uniform in time, reliability bounds
on probabilities of processor underutilization and overload. Finally, a stationary Ornstein—
Uhlenbeck process driven by a fractional Brownian motion with Hurst parameter H > % is
obtained as the large time limit of the asymptotic scaled and centered workload process.

Appendix A. Auxiliary results

Recall that 2 < 8 < 3 and o > B8 — 1. Also, recall the notation 192”(;’, s) and 15,}[’t(r, s)
introduced in the proof of Theorem 2.1. The following lemma provides a key estimate for the
proof of the theorem.
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Lemma A.1. There exists a constant C > 0 depending only on B and 0, such that, for any
0<h<landh <t < 00, we have the following estimates:

1 t+h 0o
— [ (r, )1 T (n6r + 1P drds < Cn® P73 poF A1)
nte=1 [, 0 n

and
t+h 5
4(0( 1) (/ / [ﬂh l‘(r S)]2 a+1 (ner + 1)_19 dr dS) < Cl’l6_2ﬂ_2ah2(4_ﬁ). (A2)
Proof. We first prove (A.1). We can write the left-hand side of (A.1) as
t+h poo
4@-D / / [r A+ =)' nfr +1)7F dr ds
n t 0
+ 1 /t /OO[FA(t+h_s)_r/\(t_s)]4na+l(n6r+1)_ﬂ dr ds (A3)
4(a—1) ‘ '
n 0 Jo

‘We now bound the two terms in (A.3) separately. In the following, we use C > 0 to denote a
generic constant depending only on 8 and 6; the value of C may change from one line to the
next. Using (n6r 4+ 1)™# < (n@r)~F, we have, on splitting the inner integral in the first term
in(A3)as[0,t+h—s]U (@ +h —s, 00),

t+h
4(a 5 / / [rAG+h =) mor + D"Pdrds
n

ne— B+1 t+h pt+h—s 4 p ne— B+1 t+h s
nia— 1)[ / drds + = 4= 1)f /+h S(H‘h—S) r~7drds

= CpdP3e f (t+h—s)>Pds < cn>P32p5 8, (A4)
t

For the second term in (A.3), we have, on splitting the inner integral as [0, —s]U (t — s, ¢ +
h —s]U( + h — s, 00), noting that the contribution from the first summand is zero and the
changing of variables, that

A 1>f/ FAG+h—s)—r A=) mor + )P drds
h+s
m// (r = )*n (n0r + 1)7P dr ds
n 0 Js

1 t o0
+ o / / Rt (n6r + 1)7P dr ds. (A.5)
nte=1 0 Jt+h—s
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For the first term on the right-hand side of (A.5), we change the order of integration and obtain

h+s
T 1)/ / ) nor + 17 dr ds
n

4 +1 B
T 1)/ /(r n“ " (mlr + 1) Fdsdr

1 t+h
+ —/ / r — s)4n°‘+1(n9r + 1)_'6 dsdr
h r—h

n4(a—1)
Cne—hB+1 rh s Cno—B+1 rt+h 1\ 7#
- -B - 5 _
< A /0 r dr + aaD /h h (r + n@) dr
< CnS—/S—3<xh6—/3’ (A.6)

since (h + 1/n)'F — @t +h + 1/n)'F < (h+ 1/n6)'=# < h'=P for all n € N and
6 € (0, 00).
For the second term on the right-hand side of (A.5), we have

1 t poo 4 atl p ne— B+1 p
—_— h'n* (nOr + 1) Pdrds < / / ~Pdrds

< Cn5 p=3ap6=F (A7)

Combining (A.3)—(A.7), the bound (A.1) follows.
Next, we show (A.2). The left-hand side of (A.2) is bounded by

2 t+h oo 2
Ha—1) (/ / [r A (t+h— )P mor +1)"F dr ds)
n

2
+ - 1)(// [rAG+h—s5)—rAG—s1n a“(n@r—i—l)ﬂdrds). (A.8)
n

‘We bound the first term in (A.8) by splitting the inner integral as [0, t + h — s]U (t + h — 5, 00),

as
2 t+h 00 2
m(/ / rAG+h =) mor +1)7° drds)
n
2 +1 +h +h—
<Cn(aﬂ : t t Y2ﬂdrds
= pie-D

CnZ(O{ B+1) </t+h f 2
+ — (t+h—s)’rPdr ds)
ni@=D 1 t+h—s

t+h 2
< Cpb2p2¢ < / (t+h—s>" ds) < Cnb7220p2G=5) (A.9)
t

For the second term in (A.8), by a change of variables, we obtain, on splitting the inner integral
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as [0,t —s]U(t —s,t+h—s]U@E +h —s,00),

2
X 1)<// FAG+h—s)—rA@—s)’n °‘+](n0r+1)’3drds)
na

It 2 atl B ’
o _
4(0[ ) (/ / (r—s)n (nor +1)"7dr ds)

2
+ m(/o / . Rt nor +1)7P dr ds) . (A.10)
t+h—s

By changing the order of integration, the first term on the right-hand side of (A.10) is bounded

as
h+s 2
4(a 5 (/ / $)2n T (mor + 1)~ ﬂdrds)
2
—4(a1)</ /(r )2 nt (nor +1)” ﬂdsdr)
n
8 rh 2 a1 B ’
—— - “ Or+1)""dsd
+n4("_1)</h /r_h(r ) n" T (nor +1)"Fds r)

< b2 2B p2G-P) (A.11)

The second term on the right-hand side of (A.10) can be bounded as

4p2l@—pB+1) 2 ' 2
—aT (/ / 2P ar ds) < Ccnb2«28 (/ W@t +h—s) P ds)
n (e—1) th—s 0

< Cnb722Bp2G=h) (A.12)
The bound in (A.2) now follows from (A.8)—(A.12).

Acknowledgements

We thank the referee for many helpful comments that led to several improvements in the
paper. This research is partially supported by the National Science Foundation (DMS-1004418,
DMS-1016441), the Army Research Office (W91 1NF-10-1-0158) and the US-Israel Binational
Science Foundation (Grant no. 2008466). The research work of V. Pipiras was supported in
part by NSA (Grant no. H98230-13-1-0220).

References

[1] Avr0s, E., MAZET, O. AND NUALART, D. (2001). Stochastic calculus with respect to Gaussian processes. Ann.
Prob. 29, 766-801.

[2] ETHIER, S. N. AND KuUrTZ, T. G. (1986). Markov Processes: Characterization and Convergence. John Wiley,
New York.

[3] HEATH, D., RESNICK, S. AND SAMORODNITSKY, G. (1998). Heavy tails and long range dependence in ON/OFF
processes and associated fluid models. Math. Operat. Res. 23, 145-165.

[4] Kar, I. AND TAQQU, M. S. (2008). Convergence to fractional Brownian motion and to the Telecom process:
the integral representation approach. In In and out of Equilibrium, 2 (Progress. Prob. 60), Birkhéuser, Basel,
pp. 383-427.

[5] KonstanTOPOULOS, T. AND LIN, S.-J. (1998). Macroscopic models for long-range dependent network traffic.
Queueing Systems Theory Appl. 28, 215-243.

https://doi.org/10.1239/aap/1435236984 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1435236984

Admission control 505

(6]
(71
(8]

[9]
[10]

[11]
[12]
[13]

[14]

Kurtz, T. G., KELLY, F. P,, ZACHARY, S. AND ZIEDINS, 1. (1996). Limit theorems for workload input models.
In Stochastic Networks, Clarendon Press, Oxford, pp. 119-140.

LELAND, W. E., TAQQU, M. S., WILLINGER, W. AND WILSON, D. V. (1994). On the self-similar nature of Ethernet
traffic (extended version). IEEE/ACM Trans. Networking 2, 1-15.

MikoscH, T., RESNICK, S., ROOTZEN, H. AND STEGEMAN, A. (2002). Is network traffic approximated by stable
Lévy motion or fractional Brownian motion. Ann. Appl. Prob. 12, 23-68.

NUALART, D. (2006). The Malliavin Calculus and Related Topics, 2nd edn. Springer, Berlin.

PrpIrAS, V., TAQQU, M. S. AND LEVY, J. B. (2004). Slow, fast and arbitrary growth conditions for renewal-reward
processes when both the renewals and the rewards are heavy-tailed. Bernoulli 10, 121-163.

PROTTER, P. E. (2004). Stochastic Integration and Differential Equations (Appl. Math. (New York) 21). Springer,
Berlin.

SAMORODNITSKY, G. AND TAQQU, M. S. (1994). Stable Non-Gaussian Random Processes: Stochastic Models
with Infinite Variance. Chapman & Hall, New York.

YouNg, L. C. (1936). An inequality of the Holder type, connected with Stieltjes integration. Acta Math. 67,
251-282.

ZAHLE, M. (1998). Integration with respect to fractal functions and stochastic calculus. I. Prob. Theory Relat.
Fields 111, 333-374.

https://doi.org/10.1239/aap/1435236984 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1435236984

	1 Introduction
	2 Model formulation and main results
	2.1 Unscaled system
	2.2 Scaled workload and main results

	3 Law of large numbers
	4 Central limit theorem
	5 The moment stabilization property 
	6 Fractional Ornstein--Uhlenbeck process
	7 Conclusions
	A Auxiliary results
	Acknowledgements
	References

