https://doi.org/10.1017/jfm.2021.255 Published online by Cambridge University Press

J. Fluid Mech. (2021), vol. 918, A1, doi:10.1017/jfm.2021.255

Mean velocity and temperature profiles in
turbulent Rayleigh-Bénard convection at low
Prandtl numbers

Wei Xu!, Yin Wang?, Xiaozhou He3, Xiaoping Wang*, J6rg Schumacher’,
Shi-Di Huang® and Penger Tong?>{

INano Science and Technology Program, Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong

2Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong

3School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, PR China

4Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong

SInstitut fiir Thermo- und Fluiddynamik, Postfach 100565, Technische Universitit [lmenau, D-98684
Ilmenau, Germany

6Center for Complex Flows and Soft Matter Research and Department of Mechanics and Aerospace
Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China

(Received 26 November 2020; revised 27 February 2021; accepted 16 March 2021)

We report a direct numerical simulation (DNS) study of the mean velocity and temperature
profiles in turbulent Rayleigh—-Bénard convection (RBC) at low Prandtl numbers (Pr). The
numerical study is conducted in a vertical thin disk with Pr varied in the range 0.17 <
Pr < 4.4 and the Rayleigh number (Ra) varied in the range 5 x 108 < Ra < 1 x 10, By
varying Pr from 4.4 to 0.17, we find a sharp change of flow patterns for the large-scale
circulation (LSC) from a rigid-body rotation to a near-wall turbulent jet. We numerically
examine the mean velocity equation in the bulk region and find that the mean horizontal
velocity profile u(z) can be determined by a balance equation between the mean convection
and turbulent diffusion with a constant turbulent viscosity v;. This balance equation admits
a self-similarity jet solution, which fits the DNS data well. In the boundary-layer region,
we find that both the mean temperature profile 7(z) and u(z) can be determined by a
balance equation between the molecular diffusion and turbulent diffusion. Within the
viscous boundary layer, both u(z) and 7(z) can be solved analytically and the analytical
results agree well with the DNS data. Our careful characterisation of the mean velocity
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and temperature profiles in low-Pr RBC provides a further understanding of the intricate
interplay between the LSC, plume emission and boundary-layer dynamics, and pinpoints
the physical mechanism for the emergence of a pronounced LSC in low-Pr RBC.

Key words: Bénard convection, buoyant boundary layers, turbulent convection

1. Introduction

Thermal convection at low Prandtl numbers is a common phenomenon both in nature and
in many engineering applications. Here, the Prandtl number is defined as Pr = v/, it
represents the relative importance of the kinematic viscosity v to the thermal diffusivity
k of the convecting fluid. For example, astronomical observations showed that the Sun
has an outer convecting layer of low-density plasma, where the value of Pr is in the range

of 1077-10~% (Hanasoge, Gizon & Sreenivasan 2016; Schumacher & Sreenivasan 2020).
Seismology measurements showed that the outer core of the Earth is a fluid layer made
of a liquid iron—nickel alloy with Pr ~ 10~ (Stevenson 1981). The convection of the
Earth’s outer core is linked to the generation and reversal of the Earth’s magnetic field
(Glatzmaier & Roberts 1995). The convection of the Earth’s atmosphere with Pr >~ 0.7
drives the large-scale atmospheric circulation and plays a critical role in the global climate
and water balance (Hartmann, Moy & Fu 2001). Liquid-metal convection is also used in
material processing (Brodova, Popel & Eskin 2001), nuclear engineering (Ihli et al. 2008),
and liquid-metal batteries for renewable energy storage (Wang et al. 2014).

In the laboratory, controlled Rayleigh—-Bénard convection (RBC) experiments are
conducted in a closed cell, in which a fluid layer is heated from below and cooled from
above. In addition to the Prandtl number Pr, the Rayleigh number Ra is another control
parameter of thermal convection, which is defined as Ra = go ATH?/(vi), where g is the
gravitational acceleration, « is the thermal expansion coefficient of the fluid and AT is
the temperature difference across the fluid layer of height H. When the Rayleigh number
is sufficiently large (e.g. Ra > 10® for Pr ~ 4.4), the bulk fluid becomes turbulent and
a large-scale circulation (LSC) is formed across the convection cell (Krishnamurti &
Howard 1981; Zocchi, Moses & Libchaber 1990). The LSC is driven by the warm and
cold plumes emitted from the unstable thermal boundary layers near the bottom and top
conducting plates and is maintained in a turbulent environment. This large-scale flow with
Pr > 1 has been studied extensively in upright cylindrical cells of aspect ratio unity (Du
& Tong 2000; Qiu & Tong 2001; Xi, Lam & Xia 2004; Sun, Xia & Tong 2005), in which
the LSC has a single roll structure, with its size comparable to the cell height.

Another intriguing feature of turbulent RBC is that its thermal boundary layer has
significant fluctuations resulting from intermittent eruption of thermal plumes from the
boundary layer, even when the boundary layer is not fully turbulent (Du & Tong 2000;
du Puits, Resagk & Thess 2010; Zhou & Xia 2010). The structure and dynamics of
the thermal boundary layer and its interaction with the LSC are of great importance in
determining the global heat transport of the system (Kadanoff 2001; Ahlers, Grossmann
& Lohse 2009). For these reasons, the past decade has witnessed a continuing growth of
experimental and theoretical efforts aimed at understanding the boundary-layer dynamics
in turbulent RBC. Recent studies of the thermal boundary layer for Ra < 10'? and Pr > 1
(Belmonte, Tilgner & Libchaber 1993, 1994; Lui & Xia 1998; Du & Tong 2000; van
Reeuwijk, Jonker & Hanjali¢ 2008; Scheel, Kim & White 2012; Shi, Emran & Schumacher
2012; Stevens et al. 2012; Wagner, Shishkina & Wagner 2012; van der Poel, Stevens
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& Lohse 2013; du Puits, Resagk & Thess 2013; Shishkina, Horn & Wagner 2013;
Zhou & Xia 2013; Scheel & Schumacher 2014) showed that the measured (and numerically
calculated) normalised mean temperature profile 6(z) has a universal form 6(§), where
& = z/6r is the vertical distance from the conducting plate normalised by the thermal
boundary-layer thickness é7. The measured 6(£) was found to be invariant with Ra and
has the Prandtl-Blasius—Pohlhausen (PBP) form (Landau & Lifshitz 1987; Schlichting &
Gersten 2016) for a laminar boundary layer (Grossmann & Lohse 2000) only when £ is
in the region & < 0.6 (Zhou & Xia 2013). Deviations of 6 (&) from the PBP form were
found when 0.6 < & < 4 (Scheel et al. 2012; Shi ez al. 2012; Wagner et al. 2012; du Puits
et al. 2013). More recently, Shishkina et al. (2015) considered the effect of boundary-layer
fluctuations and obtained an analytical form of (&) for the thermal boundary layers
with Pr > 1, which explained the observed deviations of (&) from the PBP form. The
theoretical prediction made by Shishkina et al. (2015) was verified by the convection
experiments conducted in a quasi-two-dimensional (quasi-2-D) thin-disk cell (Wang, He
& Tong 2016). Wang et al. (2018) further extended the boundary-layer theory to the
temperature variance profile.

Compared with the large number of investigations on the dynamics of the LSC and
boundary layers for Pr 2 1, our understanding on the LSC and boundary-layer dynamics
for fluids with Pr < 1 is rather limited. This is partially caused by the fact that laboratory
experiments and numerical simulations of turbulent RBC at low Pr are quite challenging.
On the experimental side, liquid metals, which are often used as a working fluid to obtain
a sufficiently low value of Pr, are opaque and thus exclude optical imaging or particle
tracking of the velocity field. Owing to their high thermal conductivity, it is also quite
difficult to drive the low-Pr convection to reach sufficiently high Rayleigh numbers. On
the numerical simulation side, because the Kolmogorov scale in the low-Pr fluid is smaller
than the Batchelor scale by a factor of Prl/2 (Grotzbach 1983; Shishkina ef al. 2010), a
higher spatial resolution is needed to resolve the smaller Kolmogorov scale for low-Pr
convection at a comparable value of Ra.

Early low-Pr experiments using liquid mercury (Pr 2~ 0.024) (Takeshita et al. 1996;
Cioni, Ciliberto & Sommeria 1997; Mashiko et al. 2004; Tsuji et al. 2005) or gases (such
as nitrogen and sulfur hexafluoride) and gas mixtures (0.18 < Pr < 0.88) (Hogg & Ahlers
2013) studied the Nusselt number (normalised heat flux) scaling, thermal boundary-layer
profile, LSC dynamics and single-point velocity and temperature statistics in the bulk
region. Recent low-Pr experiments using liquid gallium and its alloys (Pr >~ 0.027) (Vogt
et al. 2018; Ziirner et al. 2019) investigated the three-dimensional (3-D) structure and

dynamics of LSC in the Ra range 10° < Ra < 6 x 107. These experiments found that
the LSC at low Pr is more coherent compared with that at high Pr (> 1). Recent advances
in computational power and numerical techniques allow the study of turbulent RBC at
low Pr by direct numerical simulation (DNS) (Schumacher, Gétzfried & Scheel 2015;
Scheel & Schumacher 2016, 2017; Schumacher et al. 2016). It was found that the mean
streamwise velocity is like a near-wall jet (Scheel & Schumacher 2017). Many of the
experimental and DNS studies were conducted in upright cylindrical cells with an aspect
ratio close to unity. In the cylindrical cells, the large-scale flow has several 3-D flow
modes, such as the torsional and sloshing modes (Funfschilling & Ahlers 2004; Brown
& Ahlers 2008, 2009; Xi et al. 2009; Ji & Brown 2020), which may cause additional
complications to the study of the LSC and boundary-layer dynamics. There are also corner
flows in the closed cylinder (Sun et al. 2005), which may destabilise the large-scale flow
(Sugiyama et al. 2010). The strong coupling between the boundary-layer dynamics and
complex 3-D large-scale flow in a closed cylinder, which has been studied in recent
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Figure 1. (a) Sketch of the convection cell used for numerical simulations. The convection cell is a vertical thin
disk of height H and thickness d. The bottom and top 1/3 of the curved sidewall are made of conducting plates
whose temperature is kept at constant with 7 and 7 — AT, respectively. All the other walls are thermally
insulating. The arrows indicate the direction of the LSC with a maximum velocity U,,. The local velocity
components and spatial coordinates used in the simulation and data analysis are shown at the bottom centre
of the convection cell. (b) A thin column surrounding the vertical z-axis of the cell is used to compute the
time-averaged properties of the flow as a function of z. The horizontal cross-section of the thin column has 4
primary elements and 256 nodes, which form a small area of 0.027 thickness square and are used to calculate
the time-averaged properties of the flow.

numerical simulations (van Reeuwijk et al. 2008; Scheel et al. 2012; Shi et al. 2012;
Stevens et al. 2012; Wagner et al. 2012; van der Poel et al. 2013; Shishkina et al. 2013;
Scheel & Schumacher 2014), makes a quantitative comparison between the experiment
and 2-D theory difficult.

In this paper, we report a systematic numerical study of the mean horizontal velocity
profile and mean temperature profile for turbulent RBC in the low-Pr regime. DNS runs
were performed in a vertical thin disk with its circular cross-section aligned parallel to
gravity (see figure 1 for details). This specially designed quasi-2-D convection cell has two
unique features for the DNS study attempted here. First, because the cell shape matches
the single-roll structure of the LSC perfectly, there is no corner flow inside the cell. The
LSC in the circular cross-section has a steady rotation along a fixed orientation. Owing to
the axial symmetry of the thin disk cell, the initial orientation of the LSC is random for
different initial conditions and different values of Ra. Second, because the flow is confined
in a thin circular disk, no 3-D flow modes can be excited in this system. The quasi-2-D
flow in the thin disk cell, therefore, has a better geometry satisfying the assumption of
the boundary-layer theory for a 2-D flow. Even with these simplifications, the quasi-2-D
system retains the key features of turbulent convection, which have been observed in the
upright cylinders, and has been used in recent experimental and numerical studies of the
LSC dynamics (Song & Tong 2010; Song, Villermaux & Tong 2011; Song et al. 2014) and
thermal boundary-layer profiles with Pr > 1 (Wang et al. 2016, 2018). This is a ‘simple
but not simpler’ convection system, which offers a natural platform to study the dynamics
of the LSC and boundary layers, and their interactions in the low-Pr regime, and to test
different theoretical ideas.

In this DNS study, we vary the Rayleigh number in the range 5 x 108 < Ra < 1 x 10'°
and focus our attention on Pr = 0.17. This is the lowest value of Pr that can be reached by
using a gas mixture of H and Xe (Bajaj, Ahlers & Pesch 2002), and we choose this value of
Pr so that the DNS results can be used for comparison with future experiment. This value
of Pr is small enough so that the viscous and thermal boundary layers are well separated
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with the viscous boundary layer being nested within the thermal boundary layer. In this
case, the LSC can produce a strong shear to the thermal boundary layer, which suppresses
the emission of thermal plumes from the thermal boundary layer. On the other hand, the
value of Pr used is not too small so that we can carry out the DNS study at high Rayleigh
numbers with an adequate spatial resolution using the available computational resources.

The remainder of the paper is organised as follows. We first present the numerical
method used and DNS set-up in § 2. A comparison of the temperature and velocity fields
between the low-Pr and high-Pr regimes is given in § 3. The DNS results of the mean
horizontal velocity and temperature profiles in the boundary-layer region are presented
in §4. The DNS results of the mean horizontal velocity profile in the bulk region are
presented in § 5. Finally, the findings of this study are summarised in § 6.

2. Direct numerical simulation

The governing equations for turbulent RBC are the incompressible Navier—Stokes
equations and the convective heat equation under the Boussinesq approximation. The
dimensionless forms of these equations are given by

V.i=0, 2.1)
~ ~ 1 ~ ~
4+ @-Vya=-Vp+ ——V2u+Te:, 2.2
t ( ) p \/m Z ( )
~ A A 1 A
s (- V)T = V2T, (2.3)

~/RaPr

The length, time, velocity, pressure and temperature are made dimensionless by the cell
height H, the free-fall time Ty = /H/(gaAT), the free-fall velocity Uy = /gaATH,
the free-fall pressure pr = pga ATH and the temperature difference AT across the cell,
respectively.

Figure 1(a) shows a sketch of the convection cell used for numerical simulations. The
dimensionless boundary conditions are given by

i)yan =0, (2.4)

n- 6%Inon-condmn'ng walls = 0, (2.5)
Tlbottom = 0.5, (2.6)

Tliop = —0.5. (2.7)

Another control parameter is the aspect ratio I" = d/H, where d is the thickness of the
thin disk cell.

The governing equations are solved numerically using the open-source code Nek5000
(Fischer 1997), which uses a spectral element method to accurately resolve the gradients in
the velocity field &(r, r) and temperature field f(r, t). In the simulation, the time-derivative
terms are discretised by backward-differentiation formula, the nonlinear convective
terms are treated explicitly and the linear diffusive terms are approximated implicitly.
This scheme leads to a Poisson equation for pressure and Helmholtz equations for
velocity components and temperature. These equations are written in a weak formulation
and discretised by the Galerkin method using the Nth-order Lagrangian interpolation
polynomials as the basis functions on Gauss—Lobatto-Legendre (GLL) collocation points
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(Deville, Fischer & Mund 2002). More details of the numerical scheme and mesh
resolution requirements can be found in Fischer (1997), Deville et al. (2002) and Scheel,
Emran & Schumacher (2013). All the gradients in the post-processing are also calculated
on the GLL collocation points with spectral accuracy.

The computational mesh is designed for the highest value of Ra =1 x 10! with
Pr = 0.17 and the minimal primary mesh size near the boundary is set at 1.944 x 1073H,
which is closed to the estimated viscous boundary-layer thickness. All the simulations

are performed with the polynomial order N = 7, so that we have 8 = 512 grid points
within each primary element. We verify that the mesh resolution at Ra = 1 x 10! and
Pr = 0.17 satisfies the Grotzbach’s criterion (Grotzbach 1983; Scheel er al. 2013). We
use the same mesh for other simulations at lower values of Ra and with Pr in the range
0.1-4.4. This is done to save the programming time during the post-processing of the
DNS results, and at the same time we have a sufficient mesh resolution for all simulations.
An adaptive time step is applied to ensure that the Courant number is always below 0.5
during the simulations. The viscous and thermal boundary layers are well resolved by
using the polynomial order N = 7. We run each simulation for at least 1007} to reach the
steady state, followed by a continuous running for at least another 2007 to conduct time
averaging. As shown in figure 1(b), the vertical profile of the local properties is computed
along a thin column surrounding the vertical z-axis of the cell with x =y =0 and is
averaged over the cross-section of the thin column with a small area of 0.027 thickness
square. Other details about the numerical simulations can be found in Wang et al. (2018).

Table 1 lists a summary of the parameters used for simulations at different Rayleigh
numbers and Prandtl numbers. In table 1, we also include the numerically calculated
values of the local Nusselt number Nu, the Reynolds number Re, the normalised viscous
boundary-layer thickness §,/H and the normalised thermal boundary-layer thickness
dr/H. Here the local Nusselt number is defined as Nu = —0,T|,—0H/AT and the
Reynolds number is defined as Re = U,,H/v. The definition of the viscous and thermal
boundary-layer thicknesses, &, and &7, are given in (4.4) and (4.18), respectively. For all
the DNS runs, we use the same aspect ratio I” = (.2 and the same total number of spectral
elements, N, = 96768.

3. Comparison of the temperature and velocity fields between the low- and high-Pr
fluids

Figure 2 shows the contour plots of the instantaneous 2-D temperature field on the middle
cross-section for two Prandtl numbers: Pr = 0.17 and Pr = 4.4. It is found that warm
rising plumes (in red) are generated from the bottom conducting plate and cold falling
plumes (in blue) are generated from the top plate. These plumes drive the LSC. Because
the low-Pr fluid has a relatively larger thermal diffusivity, the thermal plumes in the low-Pr
fluid have a shorter lifetime. As a result, they have a lower chance to move into the bulk
region and most of them are concentrated in the narrow region near the curved sidewall.
On the other hand, the thermal plumes in the high-Pr fluid have a longer lifetime and thus
they have a higher chance to be found in the bulk region.

The spatial distribution of the thermal plumes has a profound influence on the velocity
field. Figure 3 shows a comparison of the in-plane mean velocity field and corresponding
mean pressure field across the middle cross-section of the cell between two Prandtl
numbers: (a) Pr = 0.17 and (b) Pr = 4.4. It is seen that the mean flow field in the low-Pr
fluid is more coherent and has a mean flow concentrated mainly in the narrow region
near the circular sidewall. The pressure contour in the bulk region shows a homogeneous
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Run Ra Pr Nu Re(x10%)  8,/H(x1073) 87/H(x1073)  (Npp)y (NpL)r
1 1x10° 44 6584+1.05 1.53+0.01 13.44 7.64 44 26
2 1x10° 20 62884056 3.78+0.03 10.00 8.04 33 27
3 1x10° 1.0 66.714+0.68 7.54+0.02 7.09 7.71 25 26
4 1x10° 0.7 6623+0.03 10.3340.01 6.07 7.65 21 26
5 1x10° 0.7 58994029 32.66=+0.06 3.51 8.94 12 31
6 1x10° 0.1 53.024+0.67 48.64+0.22 2.87 9.93 11 33
7 5% 10%  0.17 48.58+0.19 23.01+0.01 425 10.82 16 36
8 5x10° 0.17 97.38+0.61 74.89+0.29 2.12 5.40 9 19
9 1x10° 0.17 119.840.20 105.640.33 1.69 4.24 6 16

Table 1. DNS runs at different Rayleigh numbers (Ra) and Prandtl numbers (Pr). The parameters used in
the DNS runs include the number (Npr), of grid points used to resolve the viscous boundary layer of
dimensionless thickness 6,/H and the number (Npz)r of grid points used to resolve the thermal boundary
layer of dimensionless thickness 7/H. Also included are the numerically calculated values of the local
Nusselt number Nu, the Reynolds number Re, the normalised viscous boundary-layer thickness §,/H, and
the normalised thermal boundary-layer thickness 87/H. For all the DNS runs, we used the same aspect ratio
I" = 0.2, the same number of spectral elements across the circular cross-sectional area (N,)y ; = 8064, the
same number of spectral elements along the thickness direction (N,), = 12, and the same total number of
spectral elements, N, = (Ne)y,;(Ne)y = 96768.

(@) 2 (b) 0.50
= I 0.25
= 0
I 025
\ ~0.50

\

&

Figure 2. Contour plots of the instantaneous temperature field across the middle cross-section of the cell
at (a) Pr = 0.17 and (b) Pr = 4.4. The simulations are conducted at Ra = 1 x 10° in a vertical thin disk with
I' = 0.2. The colour code is shown with dark red for the highest dimensionless temperature 0.5 (bottom heating
plate) and dark blue for the lowest dimensionless temperature —0.5 (top cooling plate). The data are shown in
a linear scale ranging from —0.5 to 0.5.

circular shape, which fits nicely to the circular sidewall. This pressure field provides a
long-range homogeneous shear flow along the conducting plates. Owing to the rotational
symmetry of the LSC, the pressure gradient along the conducting plates is negligibly
small. The thin disk cell thus offers a simple flow structure for the study of the intrinsic
properties of the LSC and boundary layers at low Pr. The mean flow field in the high-Pr
fluid, however, has more spatial variations and spreads deep inside the bulk region. The
pressure contour in the bulk region shows a slightly tilted elliptical shape, which is caused
by the accumulation of rising warm plumes on the lower right region and falling cold
plumes on the upper left region. On the other hand, the mean velocity and pressure fields
in convection cells of other shapes, such as thin square cells and cylinders of aspect
ratio unity, are very different from those shown in figure 3. Previous numerical studies
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0.025 (b)
0.0125

Figure 3. Vector plots of the in-plane mean velocity field and contour plots of the mean pressure field across
the middle cross-section of the cell at (a) Pr = 0.17 and (b) Pr = 4.4. The simulations are conducted at Ra =
1 x 10° in a vertical thin disk with I" = 0.2. The colour code is shown with dark red for the highest pressure

and dark blue for the lowest pressure in unit of ,oUJ?.

(Xu 2014; Chong et al. 2018) have revealed that the mean velocity field in thin square
cells has a large tilted LSC in the bulk region, which coexists with two small rolls of
opposite rotation located in two opposing corners of the cell. Similar corner flows were
also observed experimentally by particle image velocimetry in cylindrical cells (Sun et al.
2005). The interaction between the corner flow and LSC generates a complex structure
near the conducting plates, which is different from the simple shear flow assumed by most
boundary-layer theories. As shown in figure 3, no corner flow is observed in the thin disk
cell.

To describe the velocity field more quantitatively, we show, in figure 4, the normalised
mean horizontal velocity profile u(z) /Uy as a function of the normalised vertical distance
z/H for five different values of Pr. At Pr = 4.4, the bulk flow behaves like a rigid-body
rotation with a zero mean velocity at the cell centre. The mean velocity increases linearly
with the radial distance away from the cell centre. Similar single-roll structures of the LSC
were also observed in the upright cylindrical cells of aspect ratio unity (Du & Tong 2000;
Qiu & Tong 2001; Xi et al. 2004; Sun et al. 2005; Song & Tong 2010). As Pr decreases,
the effect of the fluid viscosity decreases and the rotation speed of the LSC increases.
The faster rotation of the LSC gives the thermal plumes less time to penetrate into the
bulk region. As a result, u(z) /Uy moves to the region near the circular sidewall. At Pr =
0.17, the obtained u(z) /Uy behaves like a near-wall jet with a sharp velocity peak near
the bottom plate. The strong near-wall flow, in turn, produces a large entrainment effect
carrying the thermal plumes in the narrow near-wall region. The strong coupling between
the LSC and thermal plumes is self-organised so that a continuous LSC is maintained even
when the thermal plumes have a short lifetime. The shape of the near-wall jet remains
approximately the same when Pr is further reduced to 0.1. This result suggests that the
flow has reached a new steady-state regime at low Pr.

In the following, we investigate the functional form of the normalised mean horizontal
velocity profile u(z) = u(z)/U,, and the normalised mean temperature profile 6(z) =
[T, — T(2)]/Ap, where T(z) is the actual mean temperature profile, T} is the bottom plate
temperature and Ay is the temperature difference across the bottom thermal boundary
layer. This study is carried out at a fixed Pr = 0.17 and a fixed aspect ratio I" = 0.2. As
mentioned previously, Pr = 0.17 is chosen because the flow has reached a new steady-state
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0.5

0 0.1 0.2 0.3 0.4 0.5
z/H

Figure 4. Normalised mean horizontal velocity profiles u(z)/Uy as a function of the normalised vertical
distance z/H away from the centre of the bottom conducting plate for five values of Pr: 0.1 (black circles),
0.17 (red up triangles), 0.7 (blue diamonds), 2.0 (green down triangles) and 4.4 (brown left triangles). The

simulations are conducted at Ra = 1 x 10° in a vertical thin disk with I = 0.2.

regime at low Pr and the DNS results can be obtained more efficiently and be used for
comparison with future experiments using a gas mixture of Hp and Xe (Bajaj et al. 2002).

4. Mean horizontal velocity and temperature profiles in the boundary-layer region

To find the functional form of the mean horizontal velocity and temperature profiles in
the boundary-layer region, we consider a 2-D convective flow over a long horizontal
heating plate with a constant horizontal mean velocity U,,. Using the coordinate system
shown in figure 1(a) and taking the Reynolds decomposition of the velocity field u(r, 1) =
(u)(r) + u/(r, 1) and temperature field T(r, t) = (T)(r) + T'(r, t), we obtain the viscous
and thermal boundary-layer equations

du 9
LIy, 4.1)
ox 0z
du du Lap  d%u W)
— et Ww— = yv— — , 4.2
u8x+w8z o vazz PR 4.2)
aT aT 2T aw'T)
It e U 43
“ox TV T2 9z 3

where all the time-average notation (-) on the first-order terms are omitted for conciseness.
These equations are obtained by applying the boundary-layer approximations |w| < |ul,
|0/0x|] < |d/0dz| and |82/8x2| < |82/8z2|, and a long time average to the dimensional
form of (2.2) and (2.3). Based on the boundary-layer approximations and dimensional
analysis, we find that the convection and diffusion terms in the vertical direction are
much smaller than those in the horizontal direction, as shown in (4.2). As a result, only
the pressure gradient and buoyancy terms remain in the viscous boundary-layer equation
in the vertical direction, namely, ,oflazp = ga(T — Tp) (Ching et al. 2019). As shown in
figure 3(a) and more quantitatively in figure 5(a), the pressure gradient term p~'d,p in
(4.2) is negligibly small, so that the vertical pressure—buoyancy balance equation does not
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Figure 5. (a) Contributions of the mean convection term udyu + wd.u, molecular momentum diffusion
components —vafu and —vazzu, Reynolds stress gradient components 9, {(u't’) and 9,(w'u/), and pressure
gradient 1/pd,p, as a function of the normalised vertical distance z/§,. The unit of the terms is U} /H. The

two solid lines show the calculated terms of the velocity equation using the analytical solution u(§) in (4.14)
with a = 1.19. (b) Contributions of the mean convection term ud,T + wd,T, molecular thermal diffusion
components —« 327 and —k 32T, and turbulent heat flux gradient components d(u'T’) and 9. (w'T"), as a
function of z/8,. The unit of the terms is UfAT/H. The DNS data used for the calculations shown in (a) and
(b) are obtained at Pr = 0.17 and Ra = 1 x 10° in a vertical thin disk with I" = 0.2.

affect the above viscous and thermal boundary-layer equations explicitly. For low-Pr RBC,
we still expect the classical boundary-layer assumptions to be valid for both the viscous
and thermal boundary layers. This is because the thicknesses of the two boundary layers
are comparable at Pr = 0.17, with the thickness ratio between the viscous and thermal
boundary layers being Pr!/? ~ 0.4.

With the DNS data, we numerically calculate the contributions of each term in the
mean velocity equation and the mean temperature equation. Figures 5(a) and 5(b) show,
respectively, the terms of the velocity and temperature equations as a function of the
normalised vertical distance z/8, away from the bottom conducting plate. Here the viscous
boundary-layer thickness §, is defined as a vertical distance, at which the tangent of the
mean velocity profile at the bottom plate (z = 0) intersects the maximum velocity Uy,
namely

oul!

- (4.4)

51): m

z=0

It can be seen from figure 5(a) that the boundary-layer approximations hold for the mean
velocity equations in the near-wall region. We verify numerically that the horizontal
pressure gradient p~!'d,p is negligible at low Pr so that the viscous boundary-layer
equation (4.2) is decoupled from the thermal boundary-layer equation (4.3) (Ching et al.
2019). In addition, we find numerically that the mean convection term, ud,u + wo,u, in
(4.2) is negligibly small for this low-Pr RBC system. As a result, only two dominant
terms remain in the mean velocity equation (4.2), namely, the molecular momentum
diffusion vazzu and turbulent momentum diffusion d,(w’«’), which balance each other in
the near-wall region,
Pu W)

v 3 = 9 4.5)
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Similarly, the mean temperature equation (4.3) also has two dominant terms, namely,
the molecular thermal diffusion KBZ?T and turbulent thermal diffusion 9,(w'T’). There

is a small contribution from the mean convection term, ud,T + wd,T, for Ra = 5 x 108,
From the DNS results, we find the contribution of the mean convection decreases with
increasing Ra. As shown in figure 5(b), the mean convection can be approximately ignored
for Ra = 1 x 10°. Therefore, in the Ra range 1 x 102 < Ra < 1 x 1019, we have

*T  d(W'T)

~

K— ™~ )
972 0z

(4.6)

4.1. Mean horizontal velocity profile in the boundary-layer region
With the turbulent viscosity v;(z) defined as

w') = _Vt(Z)¥» 4.7)
z

equation (4.5) becomes an ordinary differential equation
(1+v,)d2u+d<1+vt>du_0 4.8)
v/ d?2 o dz v/dz '
Integrating both sides and applying the definition (4.4) as the boundary condition, we
obtain

d Un/é
a _ ﬁ (4.9)
dz 1+ /v
The formal solution of (4.9) is given by
§ 1
il = _— ds, 410
u(t) /0 L+ v(s)/v +10)

where u = u/U,, and & = z7/§,.

With the no-slip boundary condition at the bottom conducting plate, we find the
Reynolds stress (w'u) and its derivatives satisfy the following boundary conditions at
z=0,

W'y =0,(wu')y = BZZ(W’L/) =0. (4.11)
From the definition of v; in (4.7) and the linear velocity profile at the wall, i.e. du/dz o z°,
we obtain the boundary conditions for v; at &£ = 0,

V1(0) = (v)e(0) = (v)e£(0) = 0. (4.12)
Therefore, the leading order of v, has the form
v /v~ a g, (4.13)

where a is a constant. A similar boundary condition was also obtained for «;/x in the
thermal boundary-layer equation (Shishkina et al. 2015). Substituting (4.13) into (4.10),
we obtain the analytical form of the normalised horizontal velocity profile

1. (1+at) V3 2a§—1+«/§ﬂ

&) = —In B0 L V2 o
u(&) 6an1—|—(a§)3+3a arctan 7 5

(4.14)
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Figure 6. (a) Log—log plots of the normalised turbulent viscosity v,/v as a function of z/8, for Ra = 5 x 108
(black circles), 1 x 107 (red triangles) and 1 x 10'° (blue diamonds). The green dashed line shows a fit to
(4.13) with a = 1.19. The vertical dashed line indicates the edge of the viscous boundary layer with z/§, = 1.
(b) Normalised mean horizontal velocity profile u/U,, as a function of z/8, for Ra = 5 x 103 (black circles),

1 x 10° (red triangles) and 1 x 10'° (blue diamonds). The green, blue and brown solid lines show, respectively,
the numerical solutions of (4.10) using the numerically calculated v, /v shown in (@) for Ra = 5 x 10%, 1 x 10°
and 1 x 10'°. The DNS data used for the calculations shown in (a) and (b) are obtained at Pr = 0.17 in a
vertical thin disk with I" = 0.2.

Figure 6(a) shows the normalised turbulent viscosity v;/v as a function of
the normalised vertical distance z/6,. Using (4.7), we numerically calculate v, =
—(w't')/(du/dz). For all three values of Ra, the obtained v;/v is well described by (4.13)
with a = 1.19 (green dashed line) for small values of z up to z/§, < 2. Deviations from
the green dashed line are observed when z/8, 2 2. These deviations exhibit an interesting
dependence on Ra, with the obtained v;/v at Ra = 1 x 10° as an exceptional case, which
has a wider power-law range up to z/6, >~ 6. With the obtained v,/v in figure 6(a),
we numerically compute the solution of (4.10), as shown by the three solid lines in
figure 6(b) for the three different values of Ra. It is seen that the agreement between the
numerical solutions of (4.10) and the DNS data (open symbols) improves significantly
with increasing Ra. A small deviation between the green solid line and black circles is
observed at larger values of z/8, for Ra = 5 x 10%. This is caused by the fact that for small
values of Ra, a small contribution from the mean convection term becomes noticeable,
which affects the accuracy of (4.5). Because the obtained v;/v at Ra = 1 x 107 is well
described by (4.13) with a = 1.19 over a wider range of z/§,, the corresponding velocity
profile u/U,, as a function of z/§, (red triangles in figure 6b) is equally well described by
(4.14) with the same fitting parameter a = 1.19. By assuming (4.13) holds for distances
far enough from the wall, one may use the asymptotic boundary condition, #(c0) = 1, to
determine the value of a = 24/37/9 ~ 1.2. The fitted value of a = 1.19 is very close to
this limiting value. Figure 6 thus confirms that the viscous boundary-layer model discussed
earlier captures the essential physics.

4.2. Mean temperature profile in the boundary-layer region

Using the turbulent thermal diffusivity «,(z) defined as

dr
WT) = —K,(z)d—z, (4.15)
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equation (4.6) becomes an ordinary differential equation
ke 4T d ke dT
(1+—)—+—(1+—)—:0. (4.16)
K 2 dg k/ dz

Integrating both sides and applying the relation at the boundary,

oT
or = Ap | — , (4.17)
9z z=0
which defines the thermal boundary-layer thickness §7, we obtain
dr Ap/S
__ A/ (4.18)

dz ~ 1+ki/c
The formal solution of (4.18) is given by

o )—S—U/S;d .19
©=5 ) THaor®™ 1)

where 0(z) = [T, — T(2)]/Ap and € = z/8,.

For high-Pr RBC, the thermal boundary layer is nested within the viscous boundary
layer, so that k;(z) obeys a cubic power law similar to (4.13) across the entire thermal
boundary layer. In this case, the mean temperature profile 6(£) takes the same functional
form as shown in (4.14). This was shown previously by Shishkina et al. (2015). For low-Pr
RBC, however, the thermal boundary layer is thicker than the viscous boundary layer, so
that the LSC may produce a strong shear on the outer portion of the thermal boundary
layer, as illustrated in figure 7(a). The numerically calculated «;(z) for Pr = 0.17 is found
to obey the cubic power law in (4.13) only up to z/8, =~ 1. This is shown in figure 7(b).
Outside the viscous boundary layer (but still within the thermal boundary layer), the
obtained k,(z) goes as z> with the power-law exponent being smaller than 3. In this case,
no analytical solution of (4.19) is available and one needs to numerically integrate (4.19).
The situation is somewhat similar to a boundary layer near a partial-slip wall, as illustrated
in figure 7(a). Owing to the large streamwise velocity at the edge of the viscous boundary
layer, E)Zz (W'T") is no longer guaranteed to be zero, so that the leading order of «; is reduced
from z3 to z> (authors” unpublished observations).

With the obtained «;/k in figure 7(b), we numerically compute the solution of (4.19),
as shown by the three solid lines in figure 8 for the three different values of Ra. It is seen
that the agreement between the numerical solutions of (4.19) and the DNS data (open
symbols) improves significantly with increasing Ra. Small deviations are observed at
larger values of z/§, for the two lower values of Ra. This is caused by the fact that for small
values of Ra, a small contribution from the mean convection term becomes noticeable (see
figure 5b), which affects the accuracy of (4.6). The good agreement between the calculated
solution of (4.19) and the DNS result at Ra = 1 x 10'© further confirms that the thermal
boundary-layer model discussed previously captures the essential physics.

5. Mean horizontal velocity profile in the bulk region

Figure 9(a) shows the terms of the velocity equation as a function of the normalised

vertical distance z/H. Compared with those terms in the boundary-layer region, all of
the terms are small in the bulk region. Among them, the mean convection and the vertical
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Figure 7. (a) Sketch of the viscous boundary layer and thermal boundary layer at low Pr, in which the viscous
boundary layer is nested within the thermal boundary layer. (b) Log—log plots of the normalised turbulent
diffusivity «,/k as a function of z/8, for Ra =5 x 108 (black circles), 1 x 10° (red triangles) and 1 x 1010
(blue diamonds). The green dashed line shows a cubic power law «;/k = 0.45(z/8,)>. The DNS data used for
the calculations are obtained at Pr = 0.17 in a vertical thin disk with " = 0.2.

1.0
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Figure 8. Normalised mean temperature profile 6(z) as a function of z/§, for Ra =5 x 108 (black circles),
1 x 10° (red triangles) and 1 x 10'0 (blue diamonds). The green, blue and brown solid lines show, respectively,
the numerical solutions of (4.19) using the numerically calculated «;/x shown in figure 7(b) for Ra = 5 x 108,
1 x 10% and 1 x 10'°. The DNS data used for the calculations are obtained at Pr = 0.17 in a vertical thin disk
with I" = 0.2.

Reynolds stress gradient decay with z/H much slower than the other terms. By balancing
the mean convection with the vertical Reynolds stress gradient, we have

ou u a(w'u')
— —_— = 5.1
”ax +W82 az -1

As shown in figure 9(b), the turbulent viscosity v;(x, z) in the bulk region is approximately
independent of z and, therefore, we have

, ou
wu') = —vt(x)a—. (5.2)
Z
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Figure 9. (a) Contributions of mean convection udu + wo,u (black circles), vertical molecular momentum
diffusion —vazzu (blue diamonds) and vertical Reynolds stress gradient 9,(w’«) (brown triangles) as a function
of the normalised vertical distance z/H for Ra = 1 x 10°. The unit of the terms is Uf2 /H. (b) Normalised
turbulent viscosity v;(z)/(UrH) as a function of z/H for three values of Ra: 5 x 108 (black circles), 1 x 10°

(red triangles) and 1 x 10'0 (blue diamonds). The DNS data used for the calculations shown in (a) and (b) are
obtained at Pr = 0.17 in a vertical thin disk with I" = 0.2.

Substituting (5.2) into (5.1), we obtain

ou n ou ( )8214
U— +w— =) —.
ox 0z T 922
Equation (5.3) admits a self-similarity solution for a free turbulent jet (Pope 2000). By
assuming the large-scale flow in the bulk region is a half turbulent jet, we find

(5.3)

ii = 1 — tanh? (Z — ZO) , (5.4)
n
where u = u/U,,, zo is the starting position of the half-jet, and 7 represents the jet width,
VX
=2 [—. 55
1 U, (5.5

Figure 10(a) shows the normalised mean horizontal velocity profile u(z)/Uy as a
function of z/H. It is seen that all of the numerically calculated u(z) /Uy for different values
of Ra collapse approximately on to a single master curve. This suggests that the obtained
u(z)/ Uy in the bulk region is approximately a scaling function of z/H, which is invariant
with Ra. From figures 9(b) and 10(a), we find v; >~ 1.0 x 10_4UfH and Uy, >~ 0.42Uy.
By assuming the streamwise length x scales with the circumference 7 H of the circular
disk, i.e.x >~ w H, we obtain the jet width n >~ 0.055H from (5.5). This result thus explains
why the numerically calculated u(z) /Uy in the bulk region is a scaling function of z/H. In
addition, figure 10(b) shows that the obtained u(z) /Uy is adequately described by (5.4) and
the fitted values of 7 is 0.08H, which also agrees with the estimated value of n >~ 0.055H
by (5.5). The good agreement between the DNS results and the analytical solution confirms
that the turbulent jet model discussed above captures the essential physics. We also
compute u(z)/Uy in the I" = 0.1 disk cell and the resulting u(z)/Uy exhibits a similar
shape of near-wall jet, as shown in figure 10(a). However, both the maximal value of the
jet and its width show a weak Ra-dependence. Because the jet width in the I = 0.1 cell
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Figure 10. (a) Normalised mean horizontal velocity profiles u(z)/ Uy as a function of the normalised vertical

distance z/H for three different values of Ra: 5 x 108 (black circles), 1 x 10° (red triangles) and 1 x 1010 (blue
diamonds). (b) Replot of the mean horizontal velocity profiles u/U,, normalised by its maximum value U,, as

a function of z/H for Ra = 5 x 108 (black circles), 1 x 10° (red triangles) and 1 x 1010 (blue diamonds). For
clarity, the origin of the red and blue curves is shift to the right by 0.1 and 0.2 normalised distances, respectively.
The green, blue and brown solid lines show the same plot of (5.4) with n = 0.08 H and zg = 0.02H. The DNS
data used for the calculations shown in (@) and (b) are obtained at Pr = 0.17 in a vertical thin disk with I" = 0.2.

is comparable to the disk thickness, we suspect that this weak Ra-dependence is caused
by the confinement effect of the thin disk. Indeed, when the disk thickness is increased to
I' = 0.2, the obtained u(z) /Uy is found to have an approximate universal form, as shown
in figure 10(a), which does not change significantly with Ra.

6. Summary

We have carried out a systematic numerical study of the mean velocity and temperature
profiles in turbulent Rayleigh—Bénard convection at low Prandtl numbers. The DNS runs
were conducted in a vertical thin disk with the Prandtl number (Pr) varied in the range
0.17 < Pr < 4.4 and the Rayleigh number (Ra) varied between 5 x 10% and 1 x 10'°. For
a fixed value of Ra =5 x 10° and with varying values of Pr from 4.4 to 0.17, we find
a sharp change of flow patterns for the LSC. For high-Pr RBC, the lifetime of thermal
plumes is longer so that they have a better chance to enter the bulk region and drive the
flow globally. As a result, the LSC in high-Pr RBC rotates like a rigid body. For low-Pr
RBC, however, the thermal plumes have a shorter lifetime so that they have less chance
of surviving in the bulk region. Consequently, the thermal plumes are concentrated in the
near-wall region and the LSC in low-Pr RBC behaves like a near-wall turbulent jet.

For low-Pr RBC, the viscous boundary layer is nested inside the thermal boundary
layer. Thus, the strong shearing effect by the viscous boundary layer causes the thermal
boundary layer to be separated into two sub-layers. This effect makes the thermal boundary
layer at low Pr more complicated than that at high Pr. We numerically examine the mean
velocity and temperature equations in the boundary-layer region and find that both the
mean horizontal velocity profile u(z) and temperature profile 7(z) can be determined by a
balance equation between the molecular diffusion and turbulent diffusion. Furthermore,
the no-slip boundary condition at the bottom conducting wall dictates that both the
turbulent viscosity v;(z) and turbulent thermal diffusivity «;(z) as a function of distance
z away from the bottom conducting wall obey a cubic power law (~ z°) for small values
of z within the viscous boundary layer. In this case, both u(z) and 7'(z) can be solved
analytically and the solutions agree well with the DNS data. Owing to the large streamwise
velocity at the edge of the viscous boundary layer, the leading order of the obtained «;(z) at
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larger values of z outside the viscous boundary layer (but still within the thermal boundary

layer) is reduced from z> to z2. In this case, the mean temperature profile 7'(z) can be solved
numerically using the calculated «;(z).

For a fixed value of Pr=0.17 and with varying Ra in the range 5 x 108 < Ra <
1 x 10'°, we find that the mean horizontal velocity profile u(z) can be determined by an
equation with the mean convection balanced by turbulent diffusion with a z-independent
turbulent viscosity v;. This balance equation admits a self-similarity jet solution, which
fits the DNS data well. The width 7 of the near-wall jet is determined by the diffusion
equation 1> = 4v,7, where T ~ wH/U,, is the turnover time of the LSC with 7 H being
the circumference of the circular disk and U, is the maximum velocity of the LSC. Our
DNS data also reveal that the azimuthal velocity profiles at different polar angles 6 have
a similar near-wall jet shape, as shown in figure 10. However, the peak velocity U, has
a weak angular dependence. We believe that this is caused by the angular dependence
of the buoyancy term, gsin6, where g is the gravitational acceleration. Owing to this
buoyancy term, the momentum equation is coupled to the thermal equation, which makes
the problem difficult to solve mathematically. Here we choose the vertical z-direction
with 6 = 0, so that the two equations are decoupled. In this case, we find a simple
mathematical solution to describe the vertical profile of the mean horizontal velocity u(z),
which captures the essential feature of the LSC in low-Pr RBC.

Our work thus provides a full characterisation of the mean velocity and temperature
profiles in low-Pr RBC. This characterisation allows us to further understand the intricate
interplay between the LSC, plume emission and boundary-layer dynamics, and pinpoint
the physical mechanism for the emergence of a pronounced LSC in low-Pr RBC. This
study lays down a foundation for further study of the effects of cell shape and confinement
by cell end walls, as reported by Chong et al. (2018) for a different cell geometry.

Acknowledgements. We would like to thank Prof. Emily S. C. Ching and Dr. G. Y. Cao for useful
discussions. This work was supported in part by the Hong Kong Research Grants Council under grant nos.
16301719 (P.T.), N_HKUST604/19 (P.T.) and 16305819 (X.W.) and by the National Natural Science Foundation
of China under grant nos. 11772111 (X.H.), 91952101 (X.H.), 11702128 (S.H.), 11961160719 (S.H.) and 91752201
(S.H.). J.S. acknowledges support by the Deutsche Forschungsgemeinschaft within the Priority Programme
DFG-SPP 1881 on Turbulent Superstructures.

Declaration of Interests. The authors report no conflict of interest.

Author ORCIDs.
Wei Xu https://orcid.org/0000-0003-1174-9175;

Yin Wang https://orcid.org/0000-0002-6572-4902;
Xiaozhou He https://orcid.org/0000-0001-8116-889X;
Xiaoping Wang https://orcid.org/0000-0002-8853-8926;
Jorg Schumacher https://orcid.org/0000-0002-1359-4536;
Shi-Di Huang https://orcid.org/0000-0001-5719-6428;
Penger Tong https://orcid.org/0000-0002-6340-8084.

REFERENCES

AHLERS, G., GROSSMANN, S. & LOHSE, D. 2009 Heat transfer and large scale dynamics in turbulent
Rayleigh—Bénard convection. Rev. Mod. Phys. 81, 503-537.

Bajas, K.M., AHLERS, G. & PEscH, W. 2002 Rayleigh-Bénard convection with rotation at small Prandtl
numbers. Phys. Rev. E 65, 056309.

BELMONTE, A., TILGNER, A. & LIBCHABER, A. 1993 Boundary layer length scales in thermal turbulence.
Phys. Rev. Lett. 70, 4067-4070.

918 Al-17


https://orcid.org/0000-0003-1174-9175
https://orcid.org/0000-0003-1174-9175
https://orcid.org/0000-0002-6572-4902
https://orcid.org/0000-0002-6572-4902
https://orcid.org/0000-0001-8116-889X
https://orcid.org/0000-0001-8116-889X
https://orcid.org/0000-0002-8853-8926
https://orcid.org/0000-0002-8853-8926
https://orcid.org/0000-0002-1359-4536
https://orcid.org/0000-0002-1359-4536
https://orcid.org/0000-0001-5719-6428
https://orcid.org/0000-0001-5719-6428
https://orcid.org/0000-0002-6340-8084
https://orcid.org/0000-0002-6340-8084
https://doi.org/10.1017/jfm.2021.255

https://doi.org/10.1017/jfm.2021.255 Published online by Cambridge University Press

W. Xu and others

BELMONTE, A., TILGNER, A. & LIBCHABER, A. 1994 Temperature and velocity boundary layers in turbulent
convection. Phys. Rev. E 50, 269-279.

BRoODOVA, I.G., POPEL, P.S. & ESKIN, G.I. 2001 Liquid Metal Processing: Applications to Aluminium Alloy
Production. CRC Press.

BRrROWN, E. & AHLERS, G. 2008 Azimuthal asymmetries of the large-scale circulation in turbulent
Rayleigh—Bénard convection. Phys. Fluids 20, 105105.

BROWN, E. & AHLERS, G. 2009 The origin of oscillations of the large-scale circulation of turbulent
Rayleigh—Bénard convection. J. Fluid Mech. 638, 383—400.

CHING, E.S., LEUNG, H., ZWIRNER, L. & SHISHKINA, O. 2019 Velocity and thermal boundary layer
equations for turbulent Rayleigh—Bénard convection. Phys. Rev. Res. 1, 033037.

CHONG, K.L., WAGNER, S., KACZOROWSKI, M., SHISHKINA, O. & XIA, K.-Q. 2018 Effect of Prandtl
number on heat transport enhancement in Rayleigh—Bénard convection under geometrical confinement.
Phys. Rev. Fluids 3, 013501.

CIONI, S., CILIBERTO, S. & SOMMERIA, J. 1997 Strongly turbulent Rayleigh—Bénard convection in mercury:
comparison with results at moderate Prandtl number. J. Fluid Mech. 335, 111-140.

DEVILLE, M.O., FISCHER, P.F. & MUND, E.H. 2002 High-order Methods for Incompressible Fluid Flow.
Cambridge University Press.

Du, Y.-B. & ToNG, P. 2000 Turbulent thermal convection in a cell with ordered rough boundaries. J. Fluid
Mech. 407, 57-84.

FISCHER, P.F. 1997 An overlapping Schwarz method for spectral element solution of the incompressible
Navier—Stokes equations. J. Comput. Phys. 133, 84—101.

FUNFSCHILLING, D. & AHLERS, G. 2004 Plume motion and large-scale circulation in a cylindrical
Rayleigh—Bénard cell. Phys. Rev. Lett. 92, 194502.

GLATZMAIER, G.A. & ROBERTS, P.H. 1995 A three-dimensional self-consistent computer simulation of a
geomagnetic field reversal. Nature 377, 203-209.

GROSSMANN, S. & LOHSE, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407,
27-56.

GROTZBACH, G. 1983 Spatial resolution requirements for direct numerical simulation of the Rayleigh-Bénard
convection. J. Comput. Phys. 49, 241-264.

HANASOGE, S., GIZON, L. & SREENIVASAN, K.R. 2016 Seismic sounding of convection in the Sun. Annu.
Rev. Fluid Mech. 48, 191-217.

HARTMANN, D.L., Moy, L.A. & Fu, Q. 2001 Tropical convection and the energy balance at the top of the
atmosphere. J. Clim. 14, 4495-4511.

HOGG, J. & AHLERS, G. 2013 Reynolds-number measurements for low-Prandtl-number turbulent convection
of large-aspect-ratio samples. J. Fluid Mech. 725, 664—680.

IHLI, T., et al. 2008 Review of blanket designs for advanced fusion reactors. Fusion Engng Des. 83, 912-919.

J1, D. & BROWN, E. 2020 Low-dimensional model of the large-scale circulation of turbulent Rayleigh—Bénard
convection in a cubic container. Phys. Rev. Fluids 5, 064606.

KADANOFF, L.P. 2001 Turbulent heat flow: structures and scaling. Phys. Today 54, 34-39.

KRISHNAMURTI, R. & HOWARD, L.N. 1981 Large-scale flow generation in turbulent convection. Proc. Natl
Acad. Sci. USA 78, 1981-1985.

LANDAU, L. & LIFSHITZ, E. 1987 Fluid mechanics. In Course of Theoretical Physics, 2nd English edn, vol.
6. Pergamon Press (translated from the Russian by JB Sykes and WH Reid).

Lul, S.-L. & X14, K.-Q. 1998 Spatial structure of the thermal boundary layer in turbulent convection. Phys.
Rev. E 57, 5494-5503.

MASsHIKO, T., TsuJl, Y., MizuNo, T. & SANO, M. 2004 Instantaneous measurement of velocity fields in
developed thermal turbulence in mercury. Phys. Rev. E 69, 036306.

VAN DER POEL, E.P., STEVENS, R.J. & LOHSE, D. 2013 Comparison between two-and three-dimensional
Rayleigh—Bénard convection. J. Fluid Mech. 736, 177-194.

PoPE, S.B. 2000 Turbulent Flows. Cambridge University Press.

DU PUITS, R., RESAGK, C. & THESS, A. 2010 Measurements of the instantaneous local heat flux in turbulent
Rayleigh—Bénard convection. New J. Phys. 12, 075023.

DU PuITS, R., RESAGK, C. & THESS, A. 2013 Thermal boundary layers in turbulent Rayleigh—Bénard
convection at aspect ratios between 1 and 9. New J. Phys. 15, 013040.

QIu, X.-L. & TONG, P. 2001 Large-scale velocity structures in turbulent thermal convection. Phys. Rev. E 64,
036304.

VAN REEUWIIK, M., JONKER, H.J. & HANJALIC, K. 2008 Wind and boundary layers in Rayleigh-Bénard
convection. II. Boundary layer character and scaling. Phys. Rev. E 77, 036312.

918 A1-18


https://doi.org/10.1017/jfm.2021.255

https://doi.org/10.1017/jfm.2021.255 Published online by Cambridge University Press

Mean velocity and temperature profiles at low Prandtl numbers

SCHEEL, J., KM, E. & WHITE, K. 2012 Thermal and viscous boundary layers in turbulent Rayleigh—Bénard
convection. J. Fluid Mech. 711, 281-305.

SCHEEL, J.D., EMRAN, M.S. & SCHUMACHER, J. 2013 Resolving the fine-scale structure in turbulent
Rayleigh—Bénard convection. New J. Phys. 15, 113063.

SCHEEL, J.D. & SCHUMACHER, J. 2014 Local boundary layer scales in turbulent Rayleigh-Bénard
convection. J. Fluid Mech. 758, 344-373.

SCHEEL, J.D. & SCHUMACHER, J. 2016 Global and local statistics in turbulent convection at low Prandtl
numbers. J. Fluid Mech. 802, 147-173.

SCHEEL, J.D. & SCHUMACHER, J. 2017 Predicting transition ranges to fully turbulent viscous boundary layers
in low Prandtl number convection flows. Phys. Rev. Fluids 2, 123501.

SCHLICHTING, H. & GERSTEN, K. 2016 Boundary-layer Theory. Springer.

SCHUMACHER, J., BANDARU, V., PANDEY, A. & SCHEEL, J.D. 2016 Transitional boundary layers in
low-Prandtl-number convection. Phys. Rev. Fluids 1, 084402.

SCHUMACHER, J., GOTZFRIED, P. & SCHEEL, J.D. 2015 Enhanced enstrophy generation for turbulent
convection in low-Prandtl-number fluids. Proc. Natl Acad. Sci. USA 112, 9530-9535.

SCHUMACHER, J. & SREENIVASAN, K.R. 2020 Colloquium: unusual dynamics of convection in the Sun.
Rev. Mod. Phys. 92, 041001.

SHI, N., EMRAN, M.S. & SCHUMACHER, J. 2012 Boundary layer structure in turbulent Rayleigh-Bénard
convection. J. Fluid Mech. 706, 5-33.

SHISHKINA, O., HORN, S. & WAGNER, S. 2013 Falkner—Skan boundary layer approximation in
Rayleigh-Bénard convection. J. Fluid Mech. 730, 442-463.

SHISHKINA, O., HORN, S., WAGNER, S. & CHING, E.S. 2015 Thermal boundary layer equation for turbulent
Rayleigh—-Bénard convection. Phys. Rev. Lett. 114, 114302.

SHISHKINA, O., STEVENS, R.J., GROSSMANN, S. & LOHSE, D. 2010 Boundary layer structure in turbulent
thermal convection and its consequences for the required numerical resolution. New J. Phys. 12, 075022.

SONG, H., BROWN, E., HAWKINS, R. & TONG, P. 2014 Dynamics of large-scale circulation of turbulent
thermal convection in a horizontal cylinder. J. Fluid Mech. 740, 136—-167.

SONG, H. & TONG, P. 2010 Scaling laws in turbulent Rayleigh—Bénard convection under different geometry.
Europhys. Lett. 90, 44001.

SONG, H., VILLERMAUX, E. & TONG, P. 2011 Coherent oscillations of turbulent Rayleigh-Bénard convection
in a thin vertical disk. Phys. Rev. Lett. 106, 184504.

STEVENS, R.J., ZHOU, Q., GROSSMANN, S., VERZICCO, R., XIA, K. -Q. & LOHSE, D. 2012 Thermal
boundary layer profiles in turbulent Rayleigh—Bénard convection in a cylindrical sample. Phys. Rev. E 85,
027301.

STEVENSON, D. 1981 Models of the Earth’s core. Science 214, 611-619.

SUGIYAMA, K., et al. 2010 Flow reversals in thermally driven turbulence. Phys. Rev. Lett. 105, 034503.

SUN, C., XIA, K.-Q. & TONG, P. 2005 Three-dimensional flow structures and dynamics of turbulent thermal
convection in a cylindrical cell. Phys. Rev. E 72, 026302.

TAKESHITA, T., SEGAWA, T., GLAZIER, J.A. & SANO, M. 1996 Thermal turbulence in mercury. Phys. Rev.
Lett. 76, 1465-1468.

TsuJt, Y., MizuNo, T., MASHIKO, T. & SANO, M. 2005 Mean wind in convective turbulence of mercury.
Phys. Rev. Lett. 94, 034501.

VoGT, T., HORN, S., GRANNAN, A.M. & AURNOU, J.M. 2018 Jump rope vortex in liquid metal convection.
Proc. Natl Acad. Sci. USA 115, 12674—-12679.

WAGNER, S., SHISHKINA, O. & WAGNER, C. 2012 Boundary layers and wind in cylindrical Rayleigh-Bénard
cells. J. Fluid Mech. 697, 336-366.

WANG, K., et al. 2014 Lithium—antimony—lead liquid metal battery for grid-level energy storage. Nature 514,
348-350.

WANG, Y., HE, X. & TONG, P. 2016 Boundary layer fluctuations and their effects on mean and variance
temperature profiles in turbulent Rayleigh-Bénard convection. Phys. Rev. Fluids 1, 082301.

WANG, Y., XU, W., HE, X., YIK, H., WANG, X., SCHUMACHER, J. & TONG, P. 2018 Boundary layer
fluctuations in turbulent Rayleigh—-Bénard convection. J. Fluid Mech. 840, 408—431.

X1, H.-D., LAM, S. & XIA, K.-Q. 2004 From laminar plumes to organized flows: the onset of large-scale
circulation in turbulent thermal convection. J. Fluid Mech. 503, 47-56.

X1, H.-D., ZHOU, S.-Q., ZHOU, Q., CHAN, T.-S. & X1A, K.-Q. 2009 Origin of the temperature oscillation
in turbulent thermal convection. Phys. Rev. Lett. 102, 044503.

XU, W. 2014 Numerical simulation of thermal convection in three-dimensional confined rectangular cell and
characteristics of flow pattern and heat transfer. MSc thesis, Sun Yat-sen University, China.

ZHOU, Q. & X1A, K.-Q. 2010 Measured instantaneous viscous boundary layer in turbulent Rayleigh—Bénard
convection. Phys. Rev. Lett. 104, 104301.

918 A1-19


https://doi.org/10.1017/jfm.2021.255

https://doi.org/10.1017/jfm.2021.255 Published online by Cambridge University Press

W. Xu and others

ZHOU, Q. & XIA, K.-Q. 2013 Thermal boundary layer structure in turbulent Rayleigh—-Bénard convection in
arectangular cell. J. Fluid Mech. 721, 199-224.

ZoccHI, G., MoOSES, E. & LIBCHABER, A. 1990 Coherent structures in turbulent convection, an
experimentalstudy. Physica A (Amsterdam) 166, 387-407.

ZURNER, T., SCHINDLER, F., VOGT, T., ECKERT, S. & SCHUMACHER, J. 2019 Combined measurement of
velocity and temperature in liquid metal convection. J. Fluid Mech. 876, 1108—1128.

918 A1-20


https://doi.org/10.1017/jfm.2021.255

	1 Introduction
	2 Direct numerical simulation
	3 Comparison of the temperature and velocity fields between the low- and high-Pr fluids
	4 Mean horizontal velocity and temperature profiles in the boundary-layer region
	4.1 Mean horizontal velocity profile in the boundary-layer region
	4.2 Mean temperature profile in the boundary-layer region

	5 Mean horizontal velocity profile in the bulk region
	6 Summary
	References

