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Abstract

In this paper we study polynomial and geometric (exponential) ergodicity for M/G/1-type
Markov chains and Markov processes. First, practical criteria for M/G/1-type Markov
chains are obtained by analyzing the generating function of the first return probability
to level 0. Then the corresponding criteria for M/G/1-type Markov processes are given,
using their h-approximation chains. Our method yields the radius of convergence of the
generating function of the first return probability, which is very important in obtaining
explicit bounds on geometric (exponential) convergence rates. Our results are illustrated,
in the final section, in some examples.
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1. Introduction

We consider homogeneous discrete-time Markov chains and continuous-time Markov pro-
cesses on a countable state space having an M/G/1-type structure, i.e. the transition matrix
of the chains and the infinitesimal generator of the processes are upper block Hessenberg
with a repetitive structure. For the M/G/1-type structure, some authors (see, e.g. [9]) have
coined the descriptive term skip-free to the left. M/G/1-type Markov chains, introduced
in [19, pp. 2–5] and [20, Chapter 2], model a very large variety of queueing problems.
Continuous-time M/G/1-type Markov processes have also been studied extensively (see,
e.g. [10, pp. 268–275] and [21]). Such processes are often the modeling tool of choice
for modern computer and communications systems [16, pp. 6–8], [24]. Because of their
special structure, it has been possible to derive many elegant results. The condition sufficient
and necessary for (ordinary) ergodicity (i.e. the existence of the invariant probability vector)
of the chains and processes has been found. Subsequently, based on (ordinary) ergodicity,
there appeared many research works devoted to the study of the computation of the invariant
probability vector (see, e.g. [14]) and the tail asymptotics of the stationary distribution (see,
e.g. [4]). Here, we investigate the rates of convergence of the transition functions to the
stationary distribution for M/G/1-type Markov chains and Markov processes.

The criteria of polynomial (see [6] and [25]), geometric, and strong (see [7, Chapter 1]
and [15, Chapters 15 and 16]) ergodicity for the embedded M/G/1 queue were given in [5] by
analyzing the generating function of the first hitting time, and later, in [12], the largest geometric
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142 Y. LIU AND Z. HOU

convergence rate was obtained. Note that the embedded chain is a typical numeric Markov chain
of M/G/1 type. Zeifman [27] studied the exponential ergodicity (see [1, Chapter 6] and [3,
Chapter 4]) and investigated the bounds on the convergence rates of birth–death processes,
including the random walk in continuous time. Note that the random walk is a numeric Markov
process of M/G/1 type. As the continuation of [5] and [12], this paper studies these ergodicities
for more extensive M/G/1-type Markov chains and Markov processes, respectively, using the
matrix-analytic method.

As a preliminary, we first review the definitions and criteria of the several types of
ergodicity. Lemmas 2.1, 2.2, and 2.3 reveal the relations between the ergodicity of a Markov
process and that of its h-approximation chain. By combining the matrix-analytic method
with the usual Foster–Lyapunov method, we obtain the criteria for polynomial and geometric
ergodicity in Section 3, mainly by directly analyzing the generating function of the first return
probability to level 0, using the matrix-analytic method. Moreover, the radius of convergence
of the generating function G̃(z) is derived in Theorem 3.2. This is of great importance when
investigating explicit geometric convergence rates. In Section 4 we obtain the corresponding
criteria for M/G/1-type processes, using their h-approximation chains. The results about strong
ergodicity are simple: none of the M/G/1-type Markov chains and Markov processes are
strongly ergodic. All the criteria are easy to check and widely applicable. To illustrate our
results, we present three examples in Section 5, and in each investigate the explicit bounds on
the geometric (exponential) convergence rates.

2. Preliminaries

First, we review the definitions of the several types of ergodicity. Let Z+ = {0, 1, 2, . . . }
be the set of nonnegative integers, let N+ = {1, 2, . . . } be the set of positive integers, and
let R+ = [0, ∞) be the set of nonnegative real numbers. In this paper we consider only the
usual total variation norm: for a signed measure µ, we write ‖µ‖ = sup|g|≤1 |µ(g)|. Let
{Xn, n ∈ Z+} be an irreducible aperiodic discrete-time Markov chain on a countable state
space (E, F ), with stochastic transition matrix P = (P (i, j), i, j ∈ E). Define τH =
inf{n ≥ 1 : Xn ∈ H } to be the first hitting time at a nonempty finite set H . Denote by Pi

the conditional probability of the chain Xn when starting from i, and by Ei the corresponding
conditional expectation. For n ≥ 1, define

P n(i, j) = P{X(n) = j | X(0) = i}.

The superscript will be omitted when n = 1. The chain Xn is said to be (ordinarily) ergodic if
there exists a probability measure π such that

‖P n(i, ·) − π(·)‖ =
∑
j∈E

|P n(i, j) − π(j)| → 0, n → ∞,

for all i ∈ E. An ergodic chain Xn is said to be geometrically ergodic if, for positive constants
ρG < 1 and Di < ∞,

‖P n(i, ·) − π(·)‖ ≤ Diρ
n
G

holds for all n ∈ Z+ and i ∈ E, and is said to be strongly ergodic if

sup
i∈E

‖P n(i, ·) − π(·)‖ → 0 as n → ∞.
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For l ∈ N+, the chain Xn is called l-ergodic if there exists some finite nonempty set H such
that Ei[(τH )l] < ∞ for all i ∈ H . If Xn is l-ergodic then it is ergodic and, for all i ∈ E,

nl−1‖P n(i, ·) − π(·)‖ → 0, n → ∞,

Now we review the criteria for exponential (geometric) and strong ergodicity for Markov
chains and Markov processes, which will be used to prove Lemmas 2.2 and 2.3. These criteria
are given by, for example, Theorems 4.31 and 4.45 of [3] with a slight change in form.

(i) Drift criterion for geometric ergodicity. There exists a finite vector V (with Vi ≥ 1 for all
i ∈ E), some finite set C, and positive constants βG < 1 and bG < ∞ such that

∞∑
j=0

P(i, j)Vj ≤ (1 − βG)Vi + bG1C(i), i ∈ E. (2.1)

Here 1C(i) is the indicator function for set C, which can in fact be any finite set.

(ii) Drift criterion for strong ergodicity. There exists a bounded, nonnegative vector V , a finite
set C, and a positive constant b < ∞ such that

∞∑
j=0

P(i, j)Vj ≤ Vi − 1 + b1C(i), i ∈ E. (2.2)

Let {Xt, t ∈ R+} be an irreducible continuous-time Markov process on a countable state space
(E, F ), with transition function P t(i, j) and regular intensity matrix Q = (qij). The process
Xt is said to be (ordinarily) ergodic if there exists a probability measure π such that

‖P t(i, ·) − π(·)‖ → 0, t → ∞,

for all i ∈ E. An ergodic Markov process is said to be exponentially ergodic if, for positive
constants ρE < 1 and Di < ∞,

‖P t(i, ·) − π(·)‖ ≤ Die
−ρEt

holds for all t ≥ 0 and i ∈ E, and is said to be strongly ergodic if

sup
i∈E

‖P t(i, ·) − π(·)‖ → 0 as t → ∞.

(iii) Drift criterion for exponential ergodicity. There exists a finite vector V (with Vi ≥ 1 for
all i ∈ E), some finite set C, and positive constants βE < inf i∈E qi and bE < ∞ such that

∞∑
j=0

qijVj ≤ −βEVi + bE1C(i), i ∈ E. (2.3)

Here, C can in fact be any finite set.

(iv) Drift criterion for strong ergodicity. There exists a bounded, nonnegative vector V , a finite
set C, and a positive constant b < ∞ such that

∞∑
j=0

qijVj ≤ −1 + b1C(i), i ∈ E. (2.4)
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Assume that Xt is uniformizable, i.e. that q̄ := supi∈E qi < ∞; then Q is regular. Let
h < q̄−1 be the length of the time-discretization interval. Then the transition probabilities
P h(i, j) have first-order approximations α(h)P (i, j) = (I + hQ)ij, i, j ∈ E. This first-order
approximation defines the h-approximation chain {Xα(h)(n), n ∈ Z+} of the process Xt . From
Proposition 2.10 of [1, Chapter 2], the following relation can be shown to hold:

P t(i, j) = (etQ)ij =
∞∑

n=0

α(h)P n(i, j)e−th−1 (th−1)n

n! .

In the following lemmas we derive the relations between these types of ergodicity for the
Markov process and its h-approximation chain. These lemmas will be used in Section 4.

Lemma 2.1. Let l ∈ N+. If, for the h-approximation chain,

nl‖α(h)P n(i, ·) − π(·)‖ → 0, n → ∞, (2.5)

for all i ∈ E, then, for the process Xt ,

t l‖P t(i, ·) − π(·)‖ → 0, t → ∞, (2.6)

for all i ∈ E.

Proof. From (2.5) we find that, for any ε > 0, there exists an N ∈ N+ such that

‖α(h)P n(i, ·) − π(·)‖ ≤ n−l ε

2[(1 + l)h]l
for all i ∈ E when n > N . Then

t l‖P t(i, ·) − π(·)‖ = t l
∥∥∥∥

∞∑
n=0

(α(h)P n(i, ·) − π(·))e−th−1 (th−1)n

n!
∥∥∥∥

≤ t l
∞∑

n=0

‖α(h)P n(i, ·) − π(·)‖e−th−1 (th−1)n

n!

= t l
N∑

n=0

‖α(h)P n(i, ·) − π(·)‖e−th−1 (th−1)n

n!

+ t l
∞∑

n=N+1

n−l ε

2[(1 + l)h]l e−th−1 (th−1)n

n!
=: I1(t) + I2(t). (2.7)

Since limt→∞ I1(t) = 0, there exists some T > 0 such that

I1(t) <
ε

2
(2.8)

for t > T . Obviously, we have

nln! ≤ (n + l)! ≤ (n + l)ln! ≤ (1 + l)lnln!
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for any n ∈ N+, which implies that

I2(t) ≤ t l
ε(1 + l)l

2[(1 + l)h]l
∞∑

n=N+1

e−th−1
(th−1)n

(n + l)! = εe−th−1

2

∞∑
n=N+1

(th−1)n+l

(n + l)! ≤ ε

2
. (2.9)

From (2.7)–(2.9) we see that, for all t > T and i ∈ E,

t l‖P t(i, ·) − π(·)‖ < ε.

Hence, (2.6) holds.

The following lemma is adapted from Lemma 2.7 and Theorem 2.2 of [23]. For the reader’s
convenience, we nevertheless give the proof.

Lemma 2.2. The h-approximation chain is geometrically ergodic if and only if the process Xt

is also. Furthermore, if ρG(h) is a feasible geometric convergence rate of the h-approximation
chain, then (1 − ρG(h))/h is a feasible exponential convergence rate of the process Xt .

Proof. Let V be a solution to (2.1) for a finite set C, a positive constant bG < ∞, and some
parameter βG < 1, for the h-approximation chain. Fix a positive number α < inf i∈E qi ; then V

is also the solution to (2.3) for the same set C, a positive constant bE = h−1bG, and a parameter
βE = αβG. Thus, if the h-approximation chain is geometrically ergodic then the process Xt is
exponentially ergodic. The converse statement follows along the same lines.

Furthermore, if ρG(h) is a feasible geometric convergence rate of the h-approximation chain,
i.e. if

‖α(h)P n(i, ·) − π(·)‖ ≤ DiρG(h)n,

then

‖P t(i, ·) − π(·)‖ ≤
∞∑

n=0

‖α(h)P n(i, ·) − π(·)‖e−th−1 (th−1)n

n!
≤ Di exp[−(1 − ρG(h))th−1],

implying that ‖P t(i, ·) − π(·)‖ ≤ Die−ρEt for ρE = (1 − ρG(h))h−1, i.e. that ρE is a feasible
exponential convergence rate for the process.

Lemma 2.3. The h-approximation chain is strongly ergodic if and only if the process Xt is
strongly ergodic.

Proof. Let V be a solution to (2.2) for a finite set C and a positive constant b < ∞, for the
h-approximation chain. It is then easy to check that hV is the solution to (2.4) for the same
C and b. Thus, if the h-approximation chain is strongly ergodic then so is the process. The
converse statement follows along the same lines.

3. M/G/1-type Markov chains

We consider an irreducible aperiodic M/G/1-type Markov chain Xn whose transition matrix
P is partitioned into block form:

P =

⎛
⎜⎜⎜⎜⎜⎝

B0 B1 B2 B3 · · ·
C0 A1 A2 A3 · · ·
0 A0 A1 A2 · · ·
0 0 A0 A1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ .
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Here, the matrices {An, n ∈ Z+} are square matrices of order m and the matrix B0 is a square
matrix of order m1. The matrices {Bn, n ∈ N+} and C0 are respectively of dimensions m1 ×m

and m × m1. We assume that P is a stochastic transition matrix, i.e. that

∞∑
n=0

Ane = e,

∞∑
n=0

Bne = e, C0e +
∞∑

n=1

Ane = e,

where e is a column vector of 1s. The state space of the above block-partitioned Markov
chain can be expressed as E = {⋃∞

i=0 Li}, where L0 = {(0, j), j = 1, 2, . . . , m1} and
Li = {(i, j), j = 1, 2, . . . , m} denote the level 0 and the level i, respectively.

Let Gjj′(k) be the conditional probability that the chain Xn, when starting in the state
(i + 1, j), i ≥ 1, 1 ≤ j ≤ m, first reaches the level i, after exactly k ∈ N+ transitions,
by hitting the state (i, j ′), i ≥ 1, 1 ≤ j ′ ≤ m. The matrices G(k) take the Gjj′(k) as entries
and are of order m. Define G̃(z) = ∑∞

k=1 G(k)zk , z ∈ R. The following proposition is just
a simple extension of Theorem 2.2.2 of [20]: we enlarge the range of z from −1 ≤ z ≤ 1 to
−∞ < z < ∞. It plays an important role in our analysis.

Proposition 3.1. For any z ∈ (−∞, ∞), G̃(z) satisfies the following equation:

G̃(z) =
∞∑

v=0

zAvG̃
v(z). (3.1)

Moreover, when z only takes values in the range [0, ∞), G̃(z) is the minimal nonnegative
solution to (3.1).

Let Ljj′(k) be the conditional probability that the chain Xn, when starting in the state
(1, j), 1 ≤ j ≤ m, first reaches the level 0, after exactly k ∈ N+ transitions, by hitting
the state (0, j ′), 1 ≤ j ′ ≤ m1. The matrices L(k) take the Ljj′(k) as entries and are of
dimensions m×m1. Let Kjj′(k) be the conditional probability that the chain Xn, when starting
in the state (0, j), 1 ≤ j ≤ m1, first returns to the level 0, after exactly k ∈ N+ transitions,
by hitting the state (0, j ′), 1 ≤ j ′ ≤ m1. The matrices K(k) take the Kjj′(k) as entries and
are of dimensions m1 × m1. Define L̃(z) = ∑∞

k=1 L(k)zk and K̃(z) = ∑∞
k=1 K(k)zk . In the

following proposition we derive important relations between G̃(z), L̃(z), and K̃(z); these are
the simple extensions of Equations (2.4.2) and (2.4.8) of [20, pp. 107–109] from the range
−1 ≤ z ≤ 1 to the range −∞ < z < ∞.

Proposition 3.2. For any z ∈ (−∞, ∞), we obtain

L̃(z) = zC0 +
∞∑

v=1

zAvG̃
v−1(z)L̃(z), (3.2)

K̃(z) = zB0 +
∞∑

v=1

zBvG̃
v−1(z)L̃(z). (3.3)

3.1. Polynomial ergodicity

In [20], a basic assumption is that G := ∑∞
k=1 G(k) is irreducible. The elements Gjj ′ ,

1 ≤ j, j ′ ≤ m, of the matrix G are the conditional probabilities that the chain Xn will
eventually hit the level i in the state (i, j ′), given that it starts in the state (i + 1, j), i ≥ 1. Let
β = ∑∞

v=0 vAve and let µ be the invariant probability vector of A := ∑∞
v=0 Av (i.e. µ = µA
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and µe = 1). Note that if G is irreducible, then so is A and that if A is irreducible, then G

is stochastic if and only if λ := µβ ≤ 1. When G is irreducible, Theorem 3.2.1 of [20] states
that Xn is ergodic if and only if λ < 1 and the matrix

∑∞
v=1 vBv is finite. In our approach, we

also assume that G is known and irreducible. This assumption is reasonable because G can be
computed by some efficient methods (see [2] and [14]).

For r ∈ N+, define M̃r = G̃(r)(z)|z=1 to be the value of the rth derivative of G̃(z) at z = 1.
Define the sequence {V 〈r〉

n (X), r ∈ N+, n ≥ r}, for any square matrix X of the same order as
G, as follows:

V 〈1〉
n (X) =

n−1∑
k=0

GkXGn−k−1, n ≥ 1,

V 〈2〉
n (X) =

n−2∑
k1=0

k1∑
k2=0

Gk2XGk1−k2XGn−2−k1 , n ≥ 2,

V 〈r〉
n (X) =

n−r∑
k1=0

k1∑
k2=0

· · ·
k1−∑r−1

i=2 ki∑
kr=0

Gk2XGk3X · · · Gkr XGk1−∑r
i=2 ki XGn−r−k1 , r ≥ 3, n ≥ r.

Lemma 3.1. Let r ∈ N+. If G is irreducible and λ < 1, then

lim
n→∞ n−rV 〈r〉

n (X) = (gXe)rĜ,

where the vector g is the invariant probability vector of G (i.e. g = gG and ge = 1) and Ĝ is
a square matrix whose rows are all equal to g. Furthermore,

∑∞
n=r DnV

〈r〉
n (M̃1) < ∞ if and

only if
∑∞

n=0 Dnn
r < ∞, for Dn = An, Bn.

Proof. By Theorem 6 of [17] we have limn→∞ n−1V
〈1〉
n (X) = (gXe)Ĝ, and by Lemma 1

of [18] we have limn→∞ n−2V
〈2〉
n (X) = (gXe)2Ĝ. In fact, when r = 3, by interchanging

the order of the three summations, we obtain limn→∞ n−3V
〈3〉
n (X) = (gXe)3Ĝ. Thus, by

induction on r , we obtain limn→∞ n−rV
〈r〉
n (X) = (gXe)rĜ. From Equation 11 of [18], we

have gM̃1e = 1/(1 − λ). Since

lim
n→∞ n−rV 〈r〉

n (M̃1) = (gM̃1e)
rĜ =

(
1

1 − λ

)r

Ĝ,

for any ε > 0 there exists some N ∈ N+ such that, for any n > N ,

∞∑
n=N

nrDn

[(
1

1 − λ

)r

Ĝ − ε̂

]
<

∞∑
n=N

DnV
〈r〉
n (M̃1) <

∞∑
n=N

nrDn

[(
1

1 − λ

)r

Ĝ + ε̂

]
,

where ε̂ is a square matrix in which each element equals ε. The second part of the assertion
follows.

Lemma 3.2. Let r ∈ N+. If G is irreducible and λ < 1, then M̃r < ∞ if and only if∑∞
v=0 vrAv < ∞. Here ∞ is a matrix all of whose entries are infinite, and matrix inequalities

apply componentwise.

Proof. By differentiating both sides of (2.2) r times and then taking z = 1, we have

M̃r = C1(r) +
∞∑

v=1

Av

v−1∑
k=0

GkM̃rG
v−k−1, (3.4)
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where C1(r) is a sum of finite items each involving the moment matrices M̃i of order i < r .
We can easily show, by induction on r , that the finiteness of C1(r) can be reduced to the
convergence of

∑∞
n=r AnV

〈r〉
n (M̃1). By taking Dn = An in Lemma 3.1, we know that C1(r)

is finite if and only if
∑∞

v=0 vrAv < ∞. Since λ < 1, it follows from Theorem 3.1.1 of [20]
that [I − ∑∞

v=1 Av

∑v−1
k=0 Gk]−1 exists. It then follows from (3.4) that

M̃re =
[
I −

∞∑
v=1

Av

v−1∑
k=0

Gk

]−1

C1(r)e.

Therefore, M̃r < ∞ if and only if C1(r) < ∞, and the assertion holds.

For r ∈ N+, define L̃r = L̃(r)(z)|z=1 to be the rth derivative of L̃(z) at z = 1 and
K̃r = K̃(r)(z)|z=1 to be the rth derivative of K̃(z) at z = 1.

Theorem 3.1. Let r ∈ N+. If G is irreducible and λ < 1, then Xn is r-ergodic if and only if∑∞
v=0 vrAv < ∞ and

∑∞
v=0 vrBv < ∞.

Proof. In analogy with the proof of Lemma 3.2, by differentiating both sides of (3.2) we
have L̃r < ∞ if and only if

∑∞
v=0 vrAv < ∞. By differentiating both sides of (3.3) r times

and then taking z = 1, we have

K̃r =
∞∑

v=1

BvG
v−1L̃r +

∞∑
v=2

Bv

v−2∑
k=0

GkM̃rG
v−k−2L̃1 + C2(r),

where C2(r) is a sum of finite items each involving the moment matrices M̃i and L̃i of order
i < r . Hence, K̃r < ∞ if and only if

∑∞
v=0 vrAv < ∞ and

∑∞
v=0 vrBv < ∞. Let H be the

level L0. It thus follows from K̃re < ∞ that E(0,j)[(τH )r ] < ∞ for all 1 ≤ j ≤ m1. Hence,
Xn is r-ergodic.

3.2. Geometric ergodicity

In this section we deal with geometric ergodicity. From Theorem 4.30 of [3], we know
that a Markov chain is geometrically ergodic if and only if there exists some γ > 1 such
that Ei[γ τH ] < ∞ for all i ∈ H . For H = L0, Xn is geometrically ergodic if and only if
K̃(z)e < ∞ for some z > 1. Let Ã(z) = ∑∞

k=0 Akz
k . Our idea is to analyze the radius of

convergence of K̃(z) via the Perron–Frobenius eigenvalues of G̃(z) and Ã(z), using the matrix-
analytic method. Furthermore, the radius of convergence of G̃(z) is given in computable form,
which is of great importance in finding the explicit geometric convergence rates.

Lemma 3.3. Suppose that G is irreducible and λ ≤ 1. Let χ(z) be the Perron–Frobenius
eigenvalue of G̃(z) and let ρ(z) be the Perron–Frobenius eigenvalue of Ã(z).

(i) If λ ≤ 1 and G̃(z̃) < ∞ for some z̃ > 1, then χ(z) is a continuously differentiable function
of z for 0 < z ≤ z̃, and the right eigenvector u(z) corresponding to χ(z) may be chosen to be
positive. Furthermore, χ(z) = 1 when z = 1 and χ(z) > 1 when 1 < z ≤ z̃.

(ii) If Ã(z̃) < ∞ for some z̃ > 1, then ρ(z) is a continuously differentiable function of z for
0 < z ≤ z̃, and the right eigenvector v(z) corresponding to ρ(z) may be chosen to be positive.
Furthermore, ρ(z) = 1 when z = 1 and ρ(z) > 1 when 1 < z ≤ z̃.
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Proof. Since G̃(1) = G is irreducible and G̃(z̃) < ∞, it follows that G̃(z̃) is also irreducible
and continuously differentiable, for 0 < z ≤ z̃. It has a uniquely defined Perron–Frobenius
eigenvalue χ(z), which is a continuously differentiable function of z for 0 < z ≤ z̃, since it
is a simple root of a polynomial equation with continuously differentiable coefficients. The
corresponding right eigenvector u(z) of χ(z) is strictly positive and can be chosen so that it is
also continuously differentiable for 0 < z < z̃. Since G is irreducible and λ ≤ 1, it follows
that G is stochastic. Hence, Ge = e and G̃(z)e > e for z > 1, and the second statement of
part (i) holds.

We know that A is stochastic. Since G is irreducible, it follows that A is also irreducible.
The proof of part (ii) is therefore similar to that of part (i).

To prove our next lemma, we first define the sequence {Tv(k), v, k ∈ N+}, introduced
in [20], by

T0(k) = 0, k ∈ N+, T1(1) = A0, T1(k) = 0, k ≥ 2,

Tv+1(k) =
∞∑

n=1

AnT
(n)
v (k − 1), v ∈ Z+,

where T
(n)
v (k) is the nth matrix convolution of Tv(k). It is known that Tv(k) is nondecreasing

and converges to G(k) when v tends to infinity. In the following lemma we derive a relation
between the Perron–Frobenius eigenvalues χ(z) and ρ(z).

For a sequence of square matrices {Dk, k ∈ N+}, we denote the radius of convergence of∑∞
k=1 zkDk by φD = sup{z ≥ 1 : ∑∞

k=1 zkDk < ∞}.
Lemma 3.4. If G is irreducible then the Perron–Frobenius eigenvalue χ(z) of G̃(z) is the
smallest positive root of the equation

s(z) = zρ(s(z)), (3.5)

for z ∈ {z : 0 < s(z) ≤ φA} (the equality holds only when Ã(φA) < ∞).

Proof. First, we prove that the Perron–Frobenius eigenvalue χ(z), z ∈ {z : 0 < χ(z) ≤ φA},
is a solution to (3.5). (As above, in the domain of z, equality holds only when Ã(φA) ≤ ∞.)
By postmultiplying by its positive eigenvector u(z) in (3.1), we have

G̃(z)u(z) =
∞∑

v=0

zAvG̃
v(z)u(z) = zÃ(χ(z))u(z) = χ(z)u(z).

It follows from Perron–Frobenius theory that χ(z) is the Perron–Frobenius eigenvalue of
zÃ(χ(z)), i.e. that χ(z) = zρ(χ(z)).

We now prove that χ(z) is the smallest root. Let β(z) be the smallest positive root of (3.5) and
denote by v(β(z)) the positive eigenvector of Ã(β(z)) corresponding to the Perron–Frobenius
eigenvalue ρ(β(z)). Let T̃v(z) = ∑∞

k=1 zkTv(k); then T̃0(z)v(β(z)) = 0 < β(z)v(β(z)).
Furthermore, suppose that T̃v(z)v(β(z)) ≤ β(z)v(β(z)); then

T̃v+1(z)v(β(z)) = z

∞∑
n=0

AnT̃
n
v (z)v(β(z)) ≤ zÃ(β(z))v(β(z)) = β(z)v(β(z)).

By induction, we see that T̃v(z)v(β(z)) ≤ β(z)v(β(z)) for any v ∈ Z+. The matrices T̃v(z)

converge monotonically to the matrix G̃(z), and therefore

G̃(z)v(β(z)) ≤ β(z)v(β(z)).
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Since v(β(z)) is positive, this implies that χ(z) ≤ β(z). That β(z) = χ(z) follows from the
fact that χ(z) is also a positive root of (3.5). Thus, we have finished the proof.

Theorem 3.2. Suppose that λ < 1 and G is irreducible. If φA > 1 then G̃(z) < ∞ for some
z > 1. Moreover, the radius of convergence of G̃(z) is z0 = s0/ρ(s0), where s0 is the unique
root of sρ′(s) = ρ(s).

Proof. Since φA > 1, it follows that Ã(s) < ∞ and ρ(s) < ∞ for 0 < s ≤ φA. Thus,
y = zρ(s) can be defined for 0 < z < ∞ and 0 < s ≤ φA. From Lemma 2.3.3 of [20], we see
that ρ′(1−) = λ < 1. Since ρ(1) = 1 and ρ′(1−) < 1, it follows that the curves y = ρ(s) and
y = s have only one intersection point, at s = 1, for 0 < s ≤ 1, and two intersection points
for 1 ≤ s ≤ φA. For some z-values greater than, but sufficiently close to, 1, we know that the
curves y = zρ(s) and y = s have two intersection points. The left-hand intersection point can
be written as (θ(z), θ(z)), where θ(z), 1 < θ(z) < φA, is the smallest positive root of (3.5).
From Lemma 3.4 we know that χ(z) = θ(z) < ∞; hence, G̃(z) < ∞.

When z increases gradually to its maximal value, denoted by z0, the curves y = zρ(s) and
y = s will have only one intersection point, which we write as (s0, s0) with s0 < φA. Hence,
(s = s0, z = z0) is the unique solution of the following system of equations:

zρ(s) = s, zρ′(s) = 1. (3.6)

In (3.6), the first equation guarantees that the curves y = s and y = zρ(s) have intersection
points. The second equation ensures that there is only one intersection point.

We now prove that z0 is the radius of convergence of G̃(z), i.e. that G̃(z) = ∞ when z > z0,
and G̃(z) < ∞ when z ≤ z0. When z ≤ z0, the curves y = s and y = zρ(s) have either one
or two intersection points, i.e. (3.5) has either one or two solutions. Then χ(z) < ∞ and, so
G(z) < ∞. Suppose that G(z) < ∞ for some z > z0; then χ(z) < ∞ for some z > z0. From
Lemma 3.4 we see that (3.5) has at least one solution, i.e. the curves y = s and y = zρ(s) have
at least one intersection point, which contradicts the fact that when z > z0 the curves have no
intersection points.

Remark 3.1. If a Markov chain is stochastically ordered, then, relative to those for general
Markov chains, it is possible to obtain much more explicit or even tighter convergence rates
(see [13] and [22]) in terms of the radius of convergence of the generating function of the first
hitting time of the state 0. Theorem 3.2 can thus be used to derive explicit convergence rates
for M/G/1-type Markov chains, as will be illustrated in Section 5.

For technical reasons, we introduce a simpler M/G/1-type Markov chain, {X′
n, n ∈ N+},

with transition matrix

P ′ =

⎛
⎜⎜⎜⎜⎜⎝

B ′
0 B1 B2 B3 · · ·

A0 A1 A2 A3 · · ·
0 A0 A1 A2 · · ·
0 0 A0 A1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ ;

P ′ is the same as P except for a change of two elements, B0 and C0, in the first column. Owing
to the relation between P and P ′, we may also make P ′ stochastic and X′

n irreducible and
aperiodic. For P ′, we have G̃(z) = L̃(z) and it follows from (3.1)–(3.3) that

G̃(z) =
∞∑

v=0

zAvG̃
v(z), K̃(z) = zB ′

0 +
∞∑

v=1

zBvG̃
v(z). (3.7)
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In the following, we first give the criterion for X′
n to be geometrically ergodic. Then we prove

that Xn is geometrically ergodic if and only if X′
n is also.

Theorem 3.3. If G is irreducible and λ < 1, then X′
n is geometrically ergodic if and only if

min{φA, φB} > 1.

Proof. First, we prove the necessity. If X′
n is geometrically ergodic then K̃(z) < ∞ and

G̃(z) < ∞ for some z > 1. Thus, from (3.7), we have

∞∑
v=1

BvG̃
v(z) < ∞,

∞∑
v=1

AvG̃
v(z) < ∞. (3.8)

From Lemma 3.3, we know that the Perron–Frobenius eigenvalue χ(z) of G(z) satisfies 1 <

χ(z) < ∞. By postmultiplying by the positive eigenvector u(z), corresponding to χ(z), in
both equations in (3.8), we obtain

∞∑
v=1

Bvχ
v(z)u(z) < ∞,

∞∑
v=1

Avχ
v(z)u(z) < ∞,

which implies that min{φA, φB} > 1.
We now prove the sufficiency. If min{φA, φB} > 1 then φA > 1 and φB > 1. Since φA > 1

and λ < 1, it follows from Theorem 3.2 that there exists some s > 1 such that G̃(s) < ∞.
By Lemma 3.3, we know that the Perron–Frobenius eigenvalue χ(z) of G̃(z) is continuously
differentiable when 0 < z ≤ s. We can thus choose an appropriate s1, with 1 < s1 ≤ s, such
that χ(s1) < φB . By postmultiplying by the eigenvector u(s1) in the second equation of (3.7),
we obtain

K̃(s1)u(s1) = s1B
′
0u(s1) + s1

∞∑
v=1

Bvχ
v(s1)u(s1) < ∞.

Since u(s1) is positive, it follows that K̃(s1)e < ∞; thus, the chain X′
n is geometrically ergodic.

Theorem 3.4. If G is irreducible and λ < 1, then Xn is geometrically ergodic if and only if
min{φA, φB} > 1.

Proof. Let C = L0 ∪L1. Suppose that Xn is geometrically ergodic; then there exists a finite
solution V with Vi ≥ 1, i ∈ E, to (2.1) for the set C, and some positive constant bG < ∞.
It is easy to check that, when P ′ is used in place of P , V is also a solution of (2.1) for the
same set C and some positive constant b′

G < ∞. Hence, X′
n is also geometrically ergodic.

Similarly, we can prove that if X′
n is geometrically ergodic, then Xn is also. Thus, it follows

from Theorem 3.3 that our assertion holds.

Remark 3.2. An M/G/1-type Markov chain is called a quasi-birth–death chain if Bk = 0 for
k ≥ 2 and Ak = 0 for k ≥ 3. Obviously min{φA, φB} > 1, so by Theorem 3.4 we can easily
show that if G is irreducible and λ < 1, the quasi-birth–death chain is geometrically ergodic.

Remark 3.3. From Propositions 2.2 and 2.3 of [5], we see that a Markov chain with the
transition matrix P = (P (i, j)) is not strongly ergodic if limi→∞ P(i, j) = 0 for each j .
According to this result, Xn is not strongly ergodic.

https://doi.org/10.1239/jap/1143936249 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1143936249


152 Y. LIU AND Z. HOU

4. M/G/1-type Markov processes

In this section, we consider an irreducible M/G/1-type Markov process Xt whose intensity
matrix Q = (qij) is partitioned into block form:

Q =

⎛
⎜⎜⎜⎜⎜⎝

L̂ F̂ (1) F̂ (2) F̂ (3) F̂ (4) · · ·
B̂ L F (1) F (2) F (3) · · ·
0 B L F (1) F (2) · · ·
0 0 B L F (1) · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ .

Here the matrices B, L, and {F (n), n ∈ N+} are square matrices of order m, the matrix L̂

is a square matrix of order m1, and the matrices {F̂ (n), n ∈ N+} and B̂ are respectively of
dimensions m1 × m and m × m1. We suppose that Q is both conservative, i.e. that

L̂e +
∞∑

n=1

F̂ (n)e = 0, B̂e + Le +
∞∑

n=1

F (n)e = 0, Be + Le +
∞∑

n=1

F (n)e = 0,

and totally stable, i.e. supi∈E qi < ∞. Thus, Q is regular. As above, the state space of the
process is E = {⋃∞

i=0 Li}, with L0 = {(0, j), j = 1, 2, . . . , m1} and Li = {(i, j), j =
1, 2, . . . , m}. Let P t(i, j) be the transition function of Xε. We investigate the rates of
convergence of P t(i, j) to the stationary distribution by comparing Xt with its h-approximation
chain.

The h-approximation chain of Xt is an irreducible, aperiodic M/G/1-type Markov chain with
the following transition matrix:

P =

⎛
⎜⎜⎜⎜⎜⎝

hL̂ + Im1 hF̂ (1) hF̂ (2) hF̂ (3) hF̂ (4) · · ·
hB̂ hL + Im hF (1) hF (2) hF (3) · · ·
0 hB hL + Im hF (1) hF (2) · · ·
0 0 hB hL + Im hF (1) · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ .

Here Im1 and Im are identity matrices of orders m1 and m, respectively.
Let Ĝ be the minimal nonnegative solution to the following equation:

B + LĜ +
∞∑

k=1

F (k)Ĝk+1 = 0.

The matrix Ĝ has the same probabilistic interpretation as G for the discrete-time chains: the
(k, l)th entry of Ĝ expresses the conditional probability of the process first entering Lj−1
through state l, given that it starts from state k of Lj . The auxiliary matrix can be computed by
an efficient iterative method, e.g. the cyclic reduction algorithm [2].

Let µ̂ be the invariant probability vector of the matrix B + L + ∑∞
k=1 F̂ (k), i.e.

µ̂

(
B + L +

∞∑
k=1

F (k)

)
= 0.
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Obviously, Ĝ is also the minimal nonnegative solution to

hB + (hL + Im)Ĝ + h

∞∑
k=1

F (k)Ĝk+1 = Ĝ, (4.1)

and µ̂ is also the invariant probability vector of hB + (hL + Im) + h
∑∞

k=1 F (k), i.e.

µ̂ = µ̂

[
hB + (hL + Im) + h

∞∑
k=1

F (k)

]
. (4.2)

Let β̂ = h[L + ∑∞
k=1(k + 1)F (k)]e + e and λ̂ = µ̂β̂.

Theorem 4.1. Let l ∈ N+. Suppose that Ĝ is irreducible and λ̂ < 1. If
∑∞

n=1 nlF̂ (n) < ∞
and

∑∞
n=1 nlF (n) < ∞, then

t l−1‖P t(i, ·) − π(·)‖ → 0, t → ∞, (4.3)

for all i ∈ E.

Proof. Since Ĝ is irreducible and λ̂ < 1, it follows from (4.1) and (4.2) that G = Ĝ is
irreducible and that λ = λ̂ < 1 for the h-approximation chain. From Theorem 3.1, we then
know that the h-approximation chain is l-ergodic, and thus that

nl−1‖P n(i, ·) − π(·)‖ → 0, n → ∞,

for all i ∈ E. Hence, by Lemma 2.1 we know that (4.3) holds.

Theorem 4.2. If Ĝ is irreducible and λ̂ < 1, then X(t) is geometrically ergodic if and only if
min{φF , φ

F̂
} > 1.

Proof. The assertion follows directly from Theorem 3.4 and Lemma 2.2.

Remark 4.1. An M/G/1-type Markov process is called a quasi-birth–death process if F̂ (k) = 0
and F (k) = 0 for k ≥ 2. Obviously min{φF , φ

F̂
} > 1, so by Theorem 4.2 we can easily see

that if Ĝ is irreducible and λ̂ < 1, the quasi-birth–death process is geometrically ergodic.

Remark 4.2. From Remark 3.3, we know that the h-approximation chain is not strongly
ergodic. It thus follows from Lemma 2.3 that X(t) is not strongly ergodic.

5. Applications: explicit geometric and exponential convergence rates

In this section, we give three examples to illustrate our results. In the first example, we obtain
the best possible geometric convergence rate for a strictly pathwise Markov chain. In the other
examples, we derive explicit lower bounds on the best possible exponential convergence rates
for two Markov processes whose h-approximation chains are all stochastically monotone.

We first state the definitions of stochastic ordering and pathwise ordering, taken from [13].
We say that a random variable Y1 is stochastically larger than a random variable Y2 if, for all
real x, P{Y1 ≤ x} ≤ P{Y2 ≤ x}. Let X1

n and X2
n be two copies of the chain Xn, with the

possibly random initial states X1
0 and X2

0. The chain Xn is said to be stochastically ordered if
X1

n is stochastically larger than X2
n for all n > 0, whenever X1

0 is stochastically larger than X2
0.

Obviously, if a Markov chain is stochastically monotone (i.e.
∑

j≥k P (i, j) ≤ ∑
j≥k P (m, j)
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for any i and m with i < m, and for every k), then it is stochastically ordered. It then
follows, from [11, pp. 132–136], that stochastic ordering can be extended to pathwise ordering:
X1

n ≥ X2
n for all n whenever X1

0 > X2
0. Suppose that the chain Xn is ergodic and has stationary

distribution π . The pathwise ordering is said to be strict if there exists some c > 0, with
π((c, ∞)) > 0, such that X1

n > X2
n whenever n ≤ inf{k > 0 : X2

k = 0} and x > y + c.
Generally speaking, the value of r in the generating function Ei[rτ0 ] fails to provide infor-

mation about the geometric convergence rate. For stochastically ordered Markov chains, we
know from [22] that if Ei[rτ0 ] < ∞ for some i > 0 and r > 1, then

∞∑
n=0

rn‖P n(i, ·) − π(·)‖ ≤ Di (5.1)

for every i, where

Di = 1

r − 1
Ei[rτ0 ] + r

(r − 1)2 (E0[rτ0 ] − 1) < ∞.

For stochastically monotone Markov chains, the value of r can thus provide a lower bound
for the maximal geometric convergence rate. Furthermore, if the ordering is still strict, from
Theorem 6.2 of [13] we have

lim sup
n→∞

rn‖P n(0, ·) − π(·)‖ = ∞

for r > r0, where r0 is the radius of convergence of E0[rτ0 ]. Hence, under the condition that
the chain Xn be strictly pathwise, the radius of convergence of Ei[rτ0 ] is the best possible
geometric convergence rate.

Example 5.1. Define a Markov chain Xn on a countable state space E = Z+ by

Xn+1 =
{

Xn − 1 + An, Xn ≥ 1,

An, Xn = 0,
(5.2)

where An is a sequence of independent, identically distributed discrete random variables
distributed according to P{A1 = i} = ai, i ∈ Z+, and whose transition matrix is

P =

⎛
⎜⎜⎜⎜⎜⎝

a0 a1 a2 a3 · · ·
a0 a1 a2 a3 · · ·
0 a0 a1 a2 · · ·
0 0 a0 a1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

where {an, n ∈ Z+} is a sequence of nonnegative real numbers such that
∑∞

k=0 ak = 1.
Suppose that Xn is irreducible and aperiodic. It is easy to show that Xn is ergodic if and only
if

∑∞
k=1 kak < 1; and if this holds it follows from Theorem 3.1 that, for some l with l ∈ N+,

Xn is l-ergodic if and only if
∑∞

n=0 ann
l < ∞.

Let X1
n and X2

n be two copies of the chain Xn driven by the same sequence {An}, with
the initial conditions X1

0 = x and X2
0 = y. Suppose that x > y. Then, from (5.2), we

know that X1
n ≥ X2

n for every n ≥ 0, and that the chain Xn is therefore pathwise ordered.
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Furthermore, suppose that x ≥ y + 2. Then, by again using (5.2), we have X1
n − X2

n ≥ 1 for
n ≤ inf{k > 0 : X2

k = 0}, so the ordering is still strict.
Now suppose that

∑∞
k=1 kak < 1 and φA > 1. It then follows from Theorem 3.4 that Xn is

geometrically ergodic. Because of the special structure of P , we have

E0[zτ0 ] = E1[zτ0 ] and Ei[zτ0 ] = (E0[zτ0 ])i .
By Theorem 3.2, we know that the radius of convergence of E0[zτ0 ] is z0, with z0 = s0/A(s0)

and E0[zτ0
0 ] = s0, where s0 is the unique root of sA′(s) = A(s). Thus, from the discussion

preceding the example, we know that (5.1) holds for positive constants

r = z0 and Di = 1

z0 − 1
si

0 + z0

(z0 − 1)2 (s0 − 1) < ∞,

and that z0 is the best possible geometric convergence rate.

Remark 5.1. For general Markov chains, it is difficult to give the best possible geometric
convergence rate. Owing to the facts that the chain is strictly pathwise and that the radius of
convergence of E0[rτ0 ] can be given explicitly, we obtain the sharpest geometric convergence
rate for the chain in Example 5.1. In particular, if we take

ak =
∫ ∞

0−
(λx)k

k! e−λx dB(x), k ∈ Z+,

in the example, then Xn becomes the embedded chain of the queue length of the classical M/G/1
queue. The best possible geometric convergence rate for the embedded chain was given in [12]
using the same method.

Example 5.2. Let Xt be an irreducible Markov process with intensity matrix Q = (qij), as
follows:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
∞∑

k=1

bk b1 b2 b3 · · ·

b0 −b0 −
∞∑

k=2

bk b2 b3 · · ·

0 b0 −b0 −
∞∑

k=2

bk b2 · · ·

0 0 b0 −b0 −
∞∑

k=2

bk · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here {bi, i ∈ Z+} is a sequence of nonnegative real numbers with
∑∞

k=0 bk < ∞. Since Q

is uniformly bounded, by Lemma 4.40 of [3] we know that Xt is ergodic if and only if its
embedding chain is also. The transition matrix P = (P (i, j)) of the embedding chain is

P(i, j) = qij (1 − δij )

qi

, δij =
{

1, i = j,

0, i �= j.
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The embedding chain is ergodic if and only if

∑∞
k=2 kbk

b0 + ∑∞
k=2 bk

< 1, i.e.
∞∑

k=1

kbk+1 < b0.

If
∑∞

k=1 kbk+1 < b0 and
∑∞

n=0 bnn
l < ∞, then it follows from Theorem 4.1 that, for every i,

t l−1‖P t(i, ·) − π(·)‖ → 0, t → ∞.

Let h = 1/
∑∞

k=0 bk . Then h < q̄−1 and the h-approximation chain is stochastically
monotone. Define

Bh(z) = hb0 +
(

1 − hb0 − h

∞∑
k=2

bk

)
z + h

∞∑
k=2

bkz
k.

Suppose that
∑∞

k=1 kbk+1 < b0 and that the radius of convergence of
∑∞

k=0 bkz
k is greater

than 1. Then the h-approximation chain is geometrically ergodic. From Example 5.1 and
Lemma 2.2, we know that, for every i,

‖P t(i, ·) − π(·)‖ ≤ Die
−ρEt

for positive constants

ρE = 1 − ρG(h)

h
=

(
1 − 1

z0

) ∞∑
k=0

bk and Di = 1

z0 − 1
si

0 + z0

(z0 − 1)2 (s0 − 1),

where z0 = s0/Bh(s0) and s0 is the unique root of the equation sB ′
h(s) = Bh(s).

Example 5.3. (Random walk in continuous time.) Let X(t) be an irreducible regular birth–
death process with birth rates λ0 = σ and λn = λ, n ≥ 1, and death rates µ0 = 0 and
µn = µ, n ≥ 1. Let h = 1/(µ + λ + σ). Then the process’s h-approximation chain is also
stochastically monotone. If λ/µ < 1 then we can easily show that the h-approximation chain
is geometrically ergodic and that

∞∑
n=0

zn
0‖P n(i, ·) − π(·)‖ ≤ Di

for every i, for positive constants z0 = 1/(1 − h(
√

λ − √
µ )2) and

Di =

⎧⎪⎪⎨
⎪⎪⎩

2z0 − 1

(z0 − 1)2 [z0(1 − hσ) + z0hσs0] − z0

(z0 − 1)2 , i = 0,

si
0

z0 − 1
+ z0

(z0 − 1)2 [z0(1 − hσ) + z0hσs0 − 1], i ≥ 1,

where s0 = √
µ/λ. Again by Lemma 2.2, we obtain

‖P t(i, ·) − π(·)‖ ≤ Die
−(

√
λ−√

µ)2t .
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Remark 5.2. For the processes in Examples 5.2 and 5.3, we can derive explicit lower bounds
on the best possible exponential convergence rate, but our methods fail to give corresponding
upper bounds. Fortunately, the explicit upper bound for a random walk in continuous time was
obtained in [27]; we introduce the result in the following remark.

Remark 5.3. Many authors (see, e.g. [8], [26], [27], and [28]) have investigated the exponential
convergence rates of birth–death processes. In [8] and [26], the conditions for exponential
ergodicity and bounds for the decay parameter were obtained by the method of spectral repre-
sentation. Explicit lower and upper bounds on exponential convergence rates for homogenous
and inhomogenous birth–death processes were respectively obtained in [27] and [28], using
methods from the theory of differential equations. Moreover, for a random walk in continuous
time, in [27] it was proved that the upper bound equals the lower bound, i.e. that the best possible
exponential convergence rate of the process is (

√
λ − √

µ)2.
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