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Symmetric and antisymmetric tensor
products for the function-theoretic
operator theorist
Stephan Ramon Garcia, Ryan O’Loughlin, and Jiahui Yu
Abstract. We study symmetric and antisymmetric tensor products of Hilbert-space operators,
focusing on norms and spectra for some well-known classes favored by function-theoretic operator
theorists. We pose many open questions that should interest the field.

1 Introduction

Tensor products and their symmetrization have appeared in the literature since
the mid-nineteenth century, such as in Riemann’s foundational work on differential
geometry [26, 27]. Tensors describe many-body quantum systems [24] and symmetric
tensors underpin the foundations of general relativity [3]. In a separate yet overlapping
vein, multilinear algebra [16] and representation theory [11] utilize symmetric tensor
product spaces.

Decomposing a symmetric tensor into a minimal linear combination of tensor
powers of the same vector arises in mobile communications, machine learning, factor
analysis of k-way arrays, biomedical engineering, psychometrics, and chemometrics
(see [4, 6, 9, 30, 33] and the references therein). We refer the reader to [5] for a study
of this decomposition problem. Symmetric tensors also arise in statistics [23].

In quantum mechanics, many-body systems are represented in terms of tensor
products of wave functions. In the simplest case, where the systems do not interact,
the Hamiltonian of the many-body system corresponds to a symmetric tensor product
of operators [20, Chapter 4, Section 9]. Recently, there has been an endeavor within
the physics community to study self-adjoint extensions of symmetric tensor products
of operators [18, 19, 22]. Furthermore, the symmetric part of a quantum geometric
tensor can be exploited as a tool to detect quantum phase transitions inPT-symmetric
quantum mechanics [34].

Unfortunately, there is little literature about symmetric tensor products of non-
normal operators. The purpose of this paper is to introduce the basic ideas to
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the function-theoretic operator theory community. We study some fundamental
operator-theoretic questions in this area, such as finding the norm and spectrum
of symmetric tensor products of operators. We work through some examples with
familiar operators, such as the unilateral shift, its adjoint, and diagonal operators.
Given the ramifications of symmetric tensor products in a broad spectrum of fields,
we hope that initiating this study will shed new light on classical problems and lead to
new directions of study for function-theoretic operator theorists.

The layout of this paper is as follows. Section 2 introduces symmetric and antisym-
metric tensor power spaces, the domains for the operators in Section 3. In Section 4,
we collect results on operator-theoretic properties of symmetric tensor products of
bounded operators. The materials in Sections 2–4 are known, but perhaps difficult for
the function-theoretic operator theorist to locate in one place. More novel material
occupies Sections 5–9, although it is possible that some of the contents of Section 5
have appeared before. Section 5 is devoted to the norms of symmetric tensor powers
of operators, while Section 6 focuses on the spectrum. We study symmetric tensor
products of diagonal operators in Section 7, the forward and backward shift operators
in Section 8, and the symmetric tensor product of shifts and diagonal operators in
Section 9. We conclude in Section 10 with a host of open questions that should appeal
to researchers in function-theoretic operator theory.

2 Symmetric and antisymmetric tensor power spaces

Symmetric and antisymmetric tensor powers are familiar in mathematical physics,
but less so in function-theoretic operator theory. We summarize the basics, with
abbreviated explanations or without proof (see [1, Section I.5] or [32, Section 3.8] for
the details).

Let H be a complex Hilbert space, in which the inner product ⟨⋅, ⋅⟩ is linear in the
first argument and conjugate linear in the second. We assume that H has a countable
orthonormal basis. A superscript − denotes the closure with respect to the norm of H.

Let B(H) denote the space of bounded linear operators on H. For
u1 , u2 . . . , un ∈H, the simple tensor u1 ⊗ u2 ⊗ ⋅ ⋅ ⋅ ⊗ un ∶Hn → C acts as follows:

(u1 ⊗ u2 ⊗ ⋅ ⋅ ⋅ ⊗ un)(v1 , v2 , . . . , vn) = ⟨u1 , v1⟩⟨u2 , v2⟩ ⋅ ⋅ ⋅ ⟨un , vn⟩.

A simple tensor is a conjugate-multilinear function of its arguments. The map taking
an n-tuple in Hn to the corresponding simple tensor is linear in each argument.

LetH⊗̂n denote theC-vector space spanned by the simple tensors. There is a unique
inner product on H⊗̂n such that

⟨u1 ⊗ u2 ⊗ ⋅ ⋅ ⋅ ⊗ un , v1 ⊗ v2 ⊗ ⋅ ⋅ ⋅ ⊗ vn⟩ ∶= ⟨u1 , v1⟩⟨u2 , v2⟩ ⋅ ⋅ ⋅ ⟨un , vn⟩(2.1)

for all u1 , u2 , . . . , un , v1 , v2 , . . . , vn ∈H [32, Proposition 3.8.2]. Moreover,

∥u1 ⊗ u2 ⊗ ⋅ ⋅ ⋅ ⊗ un∥ = ∥u1∥∥u2∥ ⋅ ⋅ ⋅ ∥un∥.

Definition 2.2 (Tensor powers of Hilbert spaces) Let H⊗0 ∶= C. For n = 1, 2, . . . , let
H⊗n denote the completion of H⊗̂n with respect to the inner product (2.1).
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Symmetric and antisymmetric tensor products 3

For n = 2, we may writeH ⊗H instead ofH⊗2. If e1 , e2 , . . . is an orthonormal basis
for H, then ei1 ⊗ ei2 ⊗ ⋅ ⋅ ⋅ ⊗ ein for (i1 , i2 , . . . , in) ∈ Nn is an orthonormal basis for
H⊗n . Here, N ∶= {1, 2, 3, . . .} denotes the set of natural numbers.

Let Σn be the group of permutations of [n] ∶= {1, 2, . . . , n}. For all π ∈ Σn and
u1 , u2 , . . . , un ∈H, define

π̂(u1 ⊗ u2 ⊗ ⋅ ⋅ ⋅ ⊗ un) ∶= uπ(1) ⊗ uπ(2) ⊗ ⋅ ⋅ ⋅ ⊗ uπ(n) .

The density of the span of the simple tensors ensures that π̂ extends to a bounded
linear map on H⊗n .

Proposition 2.3 Let π, τ ∈ Σn . (a) π̂τ = π̂τ̂. (b) The map π̂ on H⊗n is unitary.

Proof (a) Since the span of the simple tensors is dense in H⊗n , it suffices to observe
that

π̂τ(u1 ⊗ u2 ⊗ ⋅ ⋅ ⋅ ⊗ un) = u(πτ)(1) ⊗ u(πτ)(2) ⊗ ⋅ ⋅ ⋅ ⊗ u(πτ)(n)

= π̂(uτ(1) ⊗ uτ(2) ⊗ ⋅ ⋅ ⋅ ⊗ uτ(n))
= π̂(τ̂(u1 ⊗ u2 ⊗ ⋅ ⋅ ⋅ ⊗ un))

for any u1 , u2 , . . . , un ∈H.
(b) For any u1 , u2 , . . . , un , v1 , v2 , . . . , vn ∈H, (2.1) ensures that

⟨π̂(v1 ⊗ v2 ⊗ ⋅ ⋅ ⋅ ⊗ vn), u1 ⊗ u2 ⊗ ⋅ ⋅ ⋅ ⊗ un⟩
= ⟨vπ(1) ⊗ vπ(2) ⊗ ⋅ ⋅ ⋅ ⊗ vπ(n), u1 ⊗ u2 ⊗ ⋅ ⋅ ⋅ ⊗ un⟩

=
n
∏
i=1
⟨vπ(i) , ui⟩ =

n
∏
j=1
⟨v j , uπ−1( j)⟩

= ⟨v1 ⊗ v2 ⊗ ⋅ ⋅ ⋅ ⊗ vn , uπ−1(1) ⊗ uπ−1(2) ⊗ ⋅ ⋅ ⋅ ⊗ uπ−1(n)⟩
= ⟨v1 ⊗ v2 ⊗ ⋅ ⋅ ⋅ ⊗ vn , π̂−1(u1 ⊗ u2 ⊗ ⋅ ⋅ ⋅ ⊗ un)⟩.

Therefore, π̂∗ = π̂−1 and hence π̂−1 = π̂∗ by (a). ∎

We now define certain subspaces of H⊗n that respect the action of the operators π̂.

Definition 2.4 (Symmetric and antisymmetric tensor powers of Hilbert spaces). Let
sgn π denote the sign of a permutation π ∈ Σn .
(a) Let H⊙1 ∶=H and H⊙n ∶= {v ∈H⊗n ∶ π̂(v) = v for all π ∈ Σn} for n ⩾ 2.
(b) LetH∧1 ∶= {0} andH∧n ∶= {v ∈H⊗n ∶ π̂(v) = (−1)sgnπv for all π ∈ Σn} for n ⩾ 2.

We may write H ⊙H and H ∧H instead of H⊙2 and H∧2, respectively. In this
case, there is only one nonidentity π ∈ Σ2.

Example 2.5 Let H2(D) denote the Hardy space on the unit disk D. The monomials
1, z, z2 , . . . are an orthonormal basis for H2(D), so the simple tensors z i ⊗ z j for i , j =
0, 1, . . . are an orthonormal basis for H2(D) ⊗ H2(D). The unitary map z i ⊗ z j ↦
z iw j identifies H2(D) ⊗ H2(D) with H2(D2), the Hardy space on the bidisk D2 [10].
Thus, we identify H2(D) ⊙ H2(D) and H2(D) ∧ H2(D) with

H2
sym(D2) ∶= { f (z, w) ∈ H2(D2) ∶ f (z, w) = f (w , z) for all z, w ∈ D}(2.6)
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and

H2
asym(D2) ∶= { f (z, w) ∈ H2(D2) ∶ f (z, w) = − f (w , z) for all z, w ∈ D},(2.7)

respectively. We freely use these identifications in what follows.

Definition 2.8 (Symmetrization and antisymmetrization operators) Define An ∶
H⊗n →H⊗n and Sn ∶H⊗n →H⊗n by

Sn ∶=
1

n! ∑
π∈Σn

π̂ and An ∶=
1

n! ∑
π∈Σn

sgn(π)π̂.

Proposition 2.9 (a) Sn is the orthogonal projection from H⊗n onto H⊙n .
(b) An is the orthogonal projection from H⊗n onto H∧n .

In particular, H⊙n and H∧n are closed subspaces of H⊗n .

Proof (a) Use Proposition 2.3 and the fact that π̂Sn = Sn for all π ∈ Σn to show that
S2

n = Sn = S∗n and ran Sn =H⊙n . The proof of (b) is similar. ∎
Let v1 , v2 , . . . , vn ∈H and define the simple symmetric and antisymmetric tensors

v1 ⊙ v2 ⊙ ⋅ ⋅ ⋅ ⊙ vn ∶= Sn(v1 ⊗ v2 ⊗ ⋅ ⋅ ⋅ ⊗ vn) and
v1 ∧ v2 ∧ ⋅ ⋅ ⋅ ∧ vn ∶= An(v1 ⊗ v2 ⊗ ⋅ ⋅ ⋅ ⊗ vn).

A factor of 1/
√

n! is included in some sources [32, (3.8.33)] and ∨ is sometimes used
instead of ⊙. Note that v1 ∧ v2 ∧ ⋅ ⋅ ⋅ ∧ vn = 0 if vi = v j for some i ≠ j.

Proposition 2.10 Let e1 , e2 , e3 , . . . be an orthonormal basis for H.
(a) ei1⊙ ei2 ⊙ ⋅ ⋅ ⋅ ⊙ ein for 1⩽i1⩽i2⩽ ⋅ ⋅ ⋅ ⩽in form an orthogonal basis for H⊙n .
(b) ei1 ∧ ei2 ∧ ⋅ ⋅ ⋅ ∧ ein for 1 < i1 < i2 < ⋅ ⋅ ⋅ < in form an orthogonal basis for H∧n .

We say “orthogonal” instead of “orthonormal” because the vectors described in
the previous proposition need not be unit vectors. Let m� denote the number of
occurrences of � in (i1 , i2 , . . . , in) ∈ [d]n . Then there are m1!m2! ⋅ ⋅ ⋅md ! permutations
of ei1 ⊗ ei2 ⊗ ⋅ ⋅ ⋅ ⊗ ein that give rise to the same simple tensor. Thus,

∥ei1 ⊙ ei2 ⊙ ⋅ ⋅ ⋅ ⊙ ein∥ = (
m1!m2! ⋅ ⋅ ⋅mr !

n!
)

1/2

.

If dimH = d is finite, then (using the notation for binomial coefficients)

dimH⊙n = (d + n − 1
n

) and dimH∧n =
⎧⎪⎪⎨⎪⎪⎩

(d
n), if n ⩽ d ,

0, if n > d .

The case n = 2 is special since dimH⊗2 = d2 = (d+1
2 ) + (

d
2) = dimH⊙2 + dimH∧2,

which suggests Proposition 2.11. The simple symmetric and antisymmetric tensors are

u⊙ v = 1
2 (u⊗ v + v ⊗ u) ∈H⊙2 and u ∧ v = 1

2 (u⊗ v − v ⊗ u) ∈H∧2

for u, v ∈H. If e1 , e2 , e3 , . . . is an orthonormal basis for H, then
(a)

√
2(ei ⊙ e j) for i < j and ei ⊙ ei for i ⩾ 1 form an orthonormal basis forH⊙2, and

(b)
√

2(ei ∧ e j) for i < j form an orthonormal basis for H∧2.
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Proposition 2.11 H⊗2 =H⊙2 ⊕H∧2 is an orthogonal decomposition.

Proof Let π be the nonidentity permutation in Σ2. If x ∈H⊗2, then

x = 1
2 (x + π̂(x))
%&&&&&&&&&&&&&&&&&&&&&&&&&&'&&&&&&&&&&&&&&&&&&&&&&&&&&*

S2(x)∈H⊙2

+ 1
2 (x − π̂(x))
%&&&&&&&&&&&&&&&&&&&&&&&&&&'&&&&&&&&&&&&&&&&&&&&&&&&&&*

A2(x)∈H∧2

and hence H⊗2 =H⊙2 +H∧2. Since π̂ is unitary (Proposition 2.3) and invo-
lutive (since π̂2 = I), it is self-adjoint. Let u ∈H⊙2 and v ∈H∧2, then ⟨u, v⟩ =
⟨π̂u, v⟩ = ⟨u, π̂v⟩ = ⟨u,−v⟩ = −⟨u, v⟩, so ⟨u, v⟩ = 0. Thus, H⊙2 ∩H∧2 = {0}, and
H⊙2 ⊥H∧2. ∎

Example 2.12 Recall from Example 2.5 the identification of H2(D) ⊗ H2(D) with
H2(D2). The orthogonal decomposition of Proposition 2.11 becomes

H2(D2) = H2
sym(D2) ⊕ H2

asym(D2),(2.13)

where the direct summands are defined by (2.6) and (2.7), respectively. In this context,
z iw i and (z iw j + z jw i)/

√
2 for 0 ⩽ i < j form an orthonormal basis for H2

sym(D2) and
(z iw j − z jw i)/

√
2 for i < j form an orthonormal basis for H2

asym(D2).

Lemma 2.14 If ∑i⩽ j ∣a i j ∣2 < ∞, then ∑i⩽ j a i jei ⊙ e j ∈H⊙H.

Proof Proposition (2.10) ensures that

∥∑
i⩽ j

a i jei ⊙ e j∥
2
= ∥∑

i< j

a i j√
2

√
2ei ⊙ e j +

∞
∑
i=1

a i i ei ⊙ ei∥
2
⩽ ∑

i⩽ j
∣a i j ∣2 < ∞. ∎

Lemma 2.15 For u, v ∈H, we have 1√
2 ∥u∥∥v∥ ⩽ ∥u⊙ v∥ ⩽ ∥u∥∥v∥; both inequalities

are sharp. In particular, the symmetric tensor product of two nonzero vectors is nonzero.

Proof The Cauchy–Schwarz inequality provides the upper inequality since

∥u⊙ v∥2 = 1
4 ∥u⊗ v + v ⊗ u∥2 = 1

4 ⟨u⊗ v + v ⊗ u, u⊗ v + v ⊗ u⟩
= 1

4 (∥u⊗ v∥2 + ∥v ⊗ u∥2 + ∣⟨u⊗ v, v ⊗ u⟩∣2)
= 1

4 (2∥u∥2∥v∥2 + 2∣⟨u, v⟩∣2)(2.16)
⩽ 1

4 (2∥u∥2∥v∥2 + 2∥u∥2∥v∥2)
= ∥u∥2∥v∥2 .

In (2.16), ∣⟨u, v⟩∣2 is nonnegative, so we obtain the lower inequality. The upper
inequality is sharp if u = v and the lower inequality is sharp if u ⊥ v. ∎

3 Symmetric and antisymmetric tensor products of operators

For A1 , A2 , . . . , An ∈ B(H), define A1 ⊗ A2 ⊗ ⋅ ⋅ ⋅ ⊗ An on simple tensors by

(A1 ⊗ A2 ⊗ ⋅ ⋅ ⋅ ⊗ An)(v1 ⊗ v2 ⊗ ⋅ ⋅ ⋅ ⊗ vn) = A1v1 ⊗ A2v2 ⊗ ⋅ ⋅ ⋅ ⊗ Anvn .
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This extends by linearity to the linear span H⊗̂n of the simple tensors. The density
of H⊗̂n in H⊗n ensures that A1 ⊗ A2 ⊗ ⋅ ⋅ ⋅ ⊗ An has a unique bounded extension to
H⊗n , also denoted A1 ⊗ A2 ⊗ ⋅ ⋅ ⋅ ⊗ An , which satisfies [32, (3.8.17)]:

∥A1 ⊗ A2 ⊗ ⋅ ⋅ ⋅ ⊗ An∥ = ∥A1∥∥A2∥ ⋅ ⋅ ⋅ ∥An∥.(3.1)

We may write A⊗n instead of A⊗ A⊗ ⋅ ⋅ ⋅ ⊗ A (n times).

Proposition 3.2 Let A1 , A2 , . . . , An ∈ B(H). Then H⊙n and H∧n are invariant under

Sn(A1 , A2 , . . . , An) =
1

n! ∑
π∈Σn

(Aπ(1) ⊗ Aπ(2) ⊗ ⋅ ⋅ ⋅ ⊗ Aπ(n)) ∈ B(H⊗n).

Proof Let T = Sn(A1 , A2 , . . . , An). For v1 , v2 , . . . , vn ∈H,

T(v1 ⊙ v2 ⊙ ⋅ ⋅ ⋅ ⊙ vn) =
1

n! ∑
π∈Σn

(Aπ(1) ⊗ Aπ(2) ⋅ ⋅ ⋅ ⊗ Aπ(n))(v1 ⊙ v2 ⊙ ⋅ ⋅ ⋅ ⊙ vn)

= 1
n! ∑

π∈Σn

(Aπ(1) ⊗ Aπ(2) ⊗ ⋅ ⋅ ⋅ ⊗ Aπ(n))(
1

n! ∑τ∈Σn

vτ(1) ⊗ vτ(2) ⊗ ⋅ ⋅ ⋅ ⊗ vτ(n))

= 1
(n!)2 ∑

π∈Σn

∑
τ∈Σn

(Aπ(1)vτ(1) ⊗ Aπ(2)vτ(2) ⊗ ⋅ ⋅ ⋅ ⊗ Aπ(n)vτ(n))

= 1
n! ∑

σ∈Σn

Aσ(1)v1 ⊙ Aσ(2)v2 ⊙ ⋅ ⋅ ⋅ ⊙ Aσ(n)vn ,

a sum of elements inH⊙n . The density of the simple symmetric tensors inH⊙n ensures
that TH⊙n ⊆H⊙n . The proof that TH∧n ⊆H∧n is similar. ∎

The proposition above suggests the following definition.

Definition 3.3 (Symmetric tensor products of operators) Let A1 , A2 , . . . , An ∈
B(H). Then A1 ⊙ A2 ⊙ ⋅ ⋅ ⋅ ⊙ An and A1 ∧ A2 ∧ ⋅ ⋅ ⋅ ∧ An are the restrictions of

Sn(A1 , A2 , . . . , An) =
1

n! ∑
π∈Σn

(Aπ(1) ⊗ Aπ(2) ⊗ ⋅ ⋅ ⋅ ⊗ Aπ(n))

to H⊙n and H∧n , respectively. We may write A⊙n and A∧n instead of A⊙ A⊙ ⋅ ⋅ ⋅ ⊙ A
(n times) and A∧ A∧ ⋅ ⋅ ⋅ ∧ A (n times), respectively.

Symmetric tensor products are permutation invariant:

A1 ⊙ A2 ⊙ ⋅ ⋅ ⋅ ⊙ An = Aπ(1) ⊙ Aπ(2) ⊙ ⋅ ⋅ ⋅ ⊙ Aπ(n) for all π ∈ Σn .

If A, B, C ∈ B(H), then the domain of A⊙ B is H⊙H, which is not equal to H, the
domain of C. Thus, (A⊙ B) ⊙ C is not well defined. Note that I ⊙ I ⊙ ⋅ ⋅ ⋅ ⊙ I = I.

Proposition 3.4 (a) For all A1 , A2 , . . . , An ∈ B(H), we have ∥A1 ⊙ A2 ⊙ ⋅ ⋅ ⋅ ⊙ An∥ ⩽
∥A1∥∥A2∥ ⋅ ⋅ ⋅ ∥An∥. (b) For all A ∈ B(H), we have ∥A⊙n∥ = ∥A∥n .

Proof (a) Since A1 ⊙ A2 ⊙ ⋅ ⋅ ⋅ ⊙ An is the restriction of 1
n! ∑π∈Σn

(Aπ(1) ⊗ Aπ(2) ⊗
⋅ ⋅ ⋅ ⊗ Aπ(n)) to H⊙n , its norm is at most
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∥ 1
n! ∑

π∈Σn

(Aπ(1) ⊗ ⋅ ⋅ ⋅ ⊗ Aπ(n))∥ ⩽
1

n! ∑
π∈Σn

∥(Aπ(1) ⊗ Aπ(2) ⊗ ⋅ ⋅ ⋅ ⊗ Aπ(n))∥

= 1
n! ∑

π∈Σn

∥Aπ(1)∥∥Aπ(2)∥ ⋅ ⋅ ⋅ ∥Aπ(n)∥

= 1
n! ∑

π∈Σn

∥A1∥∥A2∥ . . . ∥An∥

= ∥A1∥∥A2∥ . . . ∥An∥.

(b) First, we have ∥A⊙n∥ ⩽ ∥A∥n from (a). Then

∥A∥n = sup
v∈H
∥v∥=1

∥Av∥n = sup
v∈H
∥v∥=1

∥A⊗n(v ⊗ v ⊗ ⋅ ⋅ ⋅ ⊗ v)∥ ⩽ ∥A⊙n∥. ∎

Example 3.5 If A, B ∈ B(H), then Propositions 2.11 and 3.2 ensure that

1
2
(A⊗ B + B ⊗ A) = [A⊙ B 0

0 A∧ B] ∶ [
H ⊙H

H ∧H
] → [H ⊙H

H ∧H
] .(3.6)

Example 3.7 Let H = H2(D) and let Tg ∶ H2(D) → H2(D) be the Toeplitz operator
with symbol g ∈ L∞(D). Then (3.1) ensures that Tg ⊗ Tg ∶ H2(D2) → H2(D2), the
linear extension of the map z iw j ↦ Tg(z i)Tg(w j), has norm ∥g∥2

∞. Proposition 3.4
says that Tg ⊙ Tg , the restriction of Tg ⊗ Tg to H2

sym(T2), also has norm ∥g∥2
∞.

4 Basic properties

In this section, we collect some results on the operator-theoretic properties of
symmetric tensor products of bounded Hilbert-space operators.

Lemma 4.1 (A⊙ B)(C ⊙ D) = 1
2 (AC ⊙ BD + AD ⊙ BC) for A, B, C , D ∈ B(H).

Proof Restrict 1
2 (A⊗ B + B ⊗ A) 1

2 (C ⊗ D + D ⊗ C) = 1
4 (AC ⊗ BD + BD ⊗ AC +

AD ⊗ BC + BC ⊗ AD) to H ⊙H and obtain the desired formula. ∎
Example 4.2 Equip C2 with the standard basis e1 , e2 and consider

A = [ a11 a12
a21 a22 ] and B = [ b11 b12

b21 b22
].(4.3)

With respect to the orthonormal basis e1 ⊗ e1 , e1 ⊗ e2 , e2 ⊗ e1 , e2 ⊗ e2 of H⊗H, we
see that 1

2 (A⊗ B + B ⊗ A) has the matrix representation

1
2

⎡⎢⎢⎢⎢⎢⎣

2a11b11 a11b12 + b11 a12 a12b11 + b12 a11 2a12b12
a11b21 + b11 a21 a11b22 + b11 a22 a12b21 + b12 a21 a12b22 + b12 a22
a21b11 + b21 a11 a21b12 + b21 a12 a22b11 + b22 a11 a22b12 + b22 a12

2a21b21 a21b22 + b21 a22 a22b21 + b22 a21 2a22b22

⎤⎥⎥⎥⎥⎥⎦
.

With respect to the orthonormal basis e1 ⊙ e1 ,
√

2(e1 ⊙ e2), e2 ⊙ e2 of H ⊙H, the
symmetric tensor product A⊙ B has the matrix representation

⎡⎢⎢⎢⎢⎢⎣

a11b11
a11 b12+b11 a12√

2
a12b12

a11 b21+b11 a21√
2

a11 b22+b11 a22+a12 b21+b12 a21
2

a12 b22+b12 a22√
2

a21b21
a21 b22+b21 a22√

2
a22b22

⎤⎥⎥⎥⎥⎥⎦
.(4.4)
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Proposition 4.5 If A1 , A2 , . . . , An ∈ B(H) have a common invariant subspaceV ⊆H,
then ⊙nV is invariant for A1 ⊙ A2 ⊙ ⋅ ⋅ ⋅ ⊙ An .

Proof This follows from Proposition 3.2. ∎

Proposition 4.6 Let A1 , A2 , . . . , An ∈ B(H). Then (A1 ⊙ A2 ⊙ ⋅ ⋅ ⋅ ⊙ An)∗ = A∗1 ⊙
A∗2 ⊙ ⋅ ⋅ ⋅ ⊙ A∗n and (A1 ∧ A2 ∧ ⋅ ⋅ ⋅ ∧ An)∗ = A∗1 ∧ A∗2 ∧ ⋅ ⋅ ⋅ ∧ A∗n .

Proof Recall that H⊙n and H∧n are invariant under Sn(A1 , A2 , . . . , An). Since
(A1 ⊗ A2 ⊗ ⋅ ⋅ ⋅ ⊗ An)∗ = A∗1 ⊗ A∗2 ⊗ ⋅ ⋅ ⋅ ⊗ A∗n , the result follows. ∎

Remark 4.7 Observe that (A⊙ A∗)∗ = A∗ ⊙ A = A⊙ A∗; that is, A⊙ A∗ is self-
adjoint. For example, for the 2 × 2 matrix A in (4.3), the formula (4.4) gives

A⊙ A∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∣a11∣2 a11 a21+a11 a12√
2 a12a21

a11 a12+a11 a21√
2

a11 a22+a11 a22+∣a12 ∣2+∣a21 ∣2
2

a12 a22+a21 a22√
2

a21a12
a21 a22+a12 a22√

2 ∣a22∣2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Theorem 4.8 Let A1 , A2 , . . . , An ∈ B(H).
(a) If A1 , A2 , . . . , An are self-adjoint, then A1 ⊙ A2 ⊙ ⋅ ⋅ ⋅ ⊙ An is self-adjoint.
(b) If A1 , A2 , . . . , An are normal and commute, then A1 ⊙ A2 ⊙ ⋅ ⋅ ⋅ ⊙ An is normal.
(c) If U ∈ B(H) is unitary, then U ⊙U ⊙ ⋅ ⋅ ⋅ ⊙U is unitary.

Proof (a) This follows from Proposition 4.6.
(b) The Fuglede–Putnam theorem [25] ensures that A i A∗j = A∗j A i for 1 ⩽ i , j ⩽ n.

Proposition 4.6 and a computation establish the normality of A1 ⊙ A2 ⊙ ⋅ ⋅ ⋅ ⊙ An .
(c) By Proposition 4.6, (U ⊙U ⊙ ⋅ ⋅ ⋅ ⊙U)∗(U ⊙U ⊙ ⋅ ⋅ ⋅ ⊙U) = I ⊙ I ⊙ ⋅ ⋅ ⋅ ⊙ I

and similarly (U ⊙U ⊙ ⋅ ⋅ ⋅ ⊙U)(U ⊙U ⊙ ⋅ ⋅ ⋅ ⊙U)∗ = I ⊙ I ⊙ ⋅ ⋅ ⋅ ⊙ I. ∎

Example 4.9 The normal matrices A = [1 i
i 1] and B = [1 −1

1 1 ] do not commute,

but A⊙ B =
⎡⎢⎢⎢⎢⎣

1 − 1−i√
2
−i

1+i√
2

1 − 1−i√
2

i 1+i√
2

1

⎤⎥⎥⎥⎥⎦
is not normal. Thus, the commutativity hypothesis is

necessary in (b).

Example 4.10 If A, B ∈ B(H) are self-adjoint and noncommuting, then A⊙ B is self-
adjoint, and hence normal. Thus, the converse of (b) is false.

Example 4.11 The matrices A = [1 0
0 1] and B = [0 −1

1 0 ] are unitary, but A⊙ B =
⎡⎢⎢⎢⎢⎣

0 −1/
√

2 0
1/
√

2 0 −1/
√

2
0 1/

√
2 0

⎤⎥⎥⎥⎥⎦
is not.

Proposition 4.12 For orthogonal projections P, Q, where P, Q ≠ 0, I and PQ =
QP = 0, the map 2P ⊙ Q is an orthogonal projection. Furthermore, 2P ⊙ Q ≠ I ⊙ I, 0.

Proof Since P and Q are self-adjoint, 2S2(P, Q) is self-adjoint. Since PQ=QP=0,
we have (2S2(P, Q))2 = 2S2(P, Q). Thus, 2S2(P, Q) is an orthogonal projection, so
2S2(P, Q)∣H⊙H = 2P ⊙ Q is an orthogonal projection. To show 2P ⊙ Q ≠ I ⊙ I, 0
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observe if x, y ∈H are nonzero, Px = x, and Qy = y, then (2P ⊙ Q)(x ⊙ y) = x ⊙ y
and (2P ⊙ Q)(x ⊙ x) = 0. ∎

One can define tensor powers of bounded conjugate-linear operators. An analogue
of Proposition 3.2 shows that H⊙n is invariant under Sn(C1 , C2 , . . . , Cn) for any
bounded conjugate-linear operators C1 , C2 , . . . , Cn . We say that C is a conjugation
on H if C is conjugate linear, isometric, and involutive. We say that T ∈ B(H) is
C-symmetric if T = CT∗C [13–15]. If C is a conjugation, let C⊙n denote the restriction
of C⊗n to H⊙n .

Proposition 4.13 Let C be a conjugation on H, and let A1 , A2 , . . . , An ∈ B(H) be
C-symmetric. (a) A1 ⊗ A2 ⊗ ⋅ ⋅ ⋅ ⊗ An is C⊗n-symmetric. (b) A1 ⊙ A2 ⊙ ⋅ ⋅ ⋅ ⊙ An is
C⊙n-symmetric.

Proof (a) Since (A1 ⊗ A2 ⊗ ⋅ ⋅ ⋅ ⊗ An)∗ = A∗1 ⊗ A∗2 ⊗ ⋅ ⋅ ⋅ ⊗ A∗n , the result follows.
(b) Since C⊗n(H⊙n) ⊆H⊙n , it follows that C⊙n is a well-defined conjugation on

H⊙n . The desired result follows from part (a) and Proposition 4.6. ∎

5 Norms and spectral radius

In this section, we provide various bounds for the norm of symmetric tensor products
of operators, as well as a spectral-radius formula for symmetric tensor powers. It may
be that (a) and (b) of Theorem 5.1 are already known, although we did not encounter
them before.

Theorem 5.1 Let A, B ∈ B(H).

(a) 1√
2 supx∈H,∥x∥=1 ∥Ax∥∥Bx∥ ⩽ ∥A⊙ B∥, and this is sharp.

(b) If A, B ≠ 0, then A⊙ B ≠ 0.
(c) ρ(A⊙n) = ρ(A)n , in which ρ(A) ∶= sup{∣λ∣ ∈ σ(A)} is the spectral radius

Proof (a) If ∥x∥ = 1, then x ⊗ x ∈H⊙H has norm one, so Lemma 2.15 ensures that

∥Ax∥∥Bx∥√
2

⩽ ∥Ax ⊙ Bx∥ = ∥(A⊗ B + B ⊗ A)(x ⊗ x)
2

∥ ⩽ ∥A⊙ B∥.

Equality is attained for A = [ 1 0
0 0 ], B = [ 0 0

1 0 ], and x = [ 1
0 ]. Indeed, (4.4) ensures that

A⊙ B = [
0 0 0
1√

2
0 0

0 0 0
], and hence ∥A⊙ B∥ = 1√

2
,

while x is of unit norm and ∥Ax∥ = ∥Bx∥ = 1, so ∥Ax∥∥Bx∥√
2 = 1√

2 = ∥A⊙ B∥.
(b) Let A, B ≠ 0. If there is a unit vector x such that Ax ≠ 0 and Bx ≠ 0, then (a)

ensures that 0 < 1√
2 ∥Ax∥∥Bx∥ ⩽ ∥A⊙ B∥. So suppose that Ax = 0 or Bx = 0 for all

x ∈H. Pick u such that Au ≠ 0 and v such that Bv ≠ 0. Then Bu = 0 and Av = 0;
moreover, u ≠ −v. Let x = u+v

∥u+v∥ , then (a) leads to the contradiction
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0 < 1√
2
∥Au∥∥Bv∥
∥u + v∥2 = 1√

2
∥Ax∥∥Bx∥ ⩽ ∥A⊙ B∥.

In both cases, A⊙ B ≠ 0 since it has positive norm.
(c) Since (A⊙n)k = (Ak)⊙n for each k ∈ N, Proposition 3.4 ensures that ∥(A⊙n)k∥ =

∥(Ak)⊙n∥ = ∥Ak∥n . Gelfand’s formula [7, Proposition 3.8, Chapter 5] yields

ρ(A⊙n) = inf
k∈N

∥(A⊙n)k∥ 1
k = inf

k∈N
∥Ak∥ n

k = ρ(A)n . ∎
In contrast to symmetric tensor products, the antisymmetric products of nonzero

operators may be 0. If P is a rank-one orthogonal projection, then P∧n = 0 for n ⩾ 2.

Theorem 5.2 (a) If A1 , A2 , . . . , An ∈ B(H) and the A i have orthogonal ranges, then
∥A1 ⊙ A2 ⊙ ⋅ ⋅ ⋅ ⊙ An∥ ⩽ 1√

n!
∥A1∥∥A2∥ ⋅ ⋅ ⋅ ∥An∥. For n = 2, the inequality is sharp.

(b) If (ker B)⊥ ⊆ ker A and ran B ⊆ (ran A)⊥, then 1
2∥A∥∥B∥ ⩽ ∥A⊙ B∥ ⩽ 1√

2∥A∥∥B∥.
The inequalities are sharp.

Proof (a) Recall that the set of finite sums ∑k
i=1 v1

i ⊗ v2
i ⊗ ⋅ ⋅ ⋅ ⊗ vn

i of simple tensors
are dense in H⊗n . Take the supremum over such vectors and observe that

∥ ∑
π∈Σn

Aπ(1) ⊗ Aπ(2) ⊗ ⋅ ⋅ ⋅ ⊗ Aπ(n)∥

= sup
∥(∑π∈Σn

Aπ(1) ⊗ Aπ(2) ⊗ ⋅ ⋅ ⋅ ⊗ Aπ(n))(∑k
i=1 v1

i ⊗ v2
i ⊗ ⋅ ⋅ ⋅ ⊗ vn

i )∥
∥∑k

i=1 v1
i ⊗ v2

i ⊗ ⋅ ⋅ ⋅ ⊗ vn
i ∥

= sup
∥(∑π∈Σn ∑

k
i=1(Aπ(1)v1

i ⊗ Aπ(2)v2
i ⊗ ⋅ ⋅ ⋅ ⊗ Aπ(n)vn

i )∥
∥∑k

i=1 v1
i ⊗ v2

i ⊗ ⋅ ⋅ ⋅ ⊗ vn
i ∥

= sup
(∑π∈Σn

∥∑k
i=1 Aπ(1)v1

i ⊗ Aπ(2)v2
i ⊗ ⋅ ⋅ ⋅ ⊗ Aπ(n)vn

i ∥2)1/2

∥∑k
i=1 v1

i ⊗ v2
i ⊗ ⋅ ⋅ ⋅ ⊗ vn

i ∥

= sup
x∈H⊗n

(∑π∈Σn
∥(Aπ(1) ⊗ Aπ(2) ⊗ ⋅ ⋅ ⋅ ⊗ Aπ(n))x∥2)1/2

∥x∥
⩽
√

n!∥A1∥∥A2∥ ⋅ ⋅ ⋅ ∥An∥.

The prepenultimate equality above follows because the A i have orthogonal ranges; the
final inequality is due to (3.1). For n = 2, the matrices from the proof of Theorem 5.1(a)
have orthogonal ranges and demonstrate that the inequality is sharp.

(b) Part (a) ensures that the desired upper inequality holds and is sharp. It suffices
to examine the lower inequality. For u ∈ (ker A)⊥ and v ∈ ker A,

∥(A⊗ B + B ⊗ A)(u⊗ v + v ⊗ u)∥ = ∥Au⊗ Bv + Bv ⊗ Au∥
= (∥Au⊗ Bv∥2 + ∥Bv ⊗ Au∥2)1/2

since (Au⊗ Bv) ⊥ (Bv ⊗ Au). Then
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∥A⊙ B∥ ⩾ sup
u∈ker A⊥
v∈ker A

∥(A⊙ B)(u⊗ v + v ⊗ u)∥
∥u⊗ v + v ⊗ u∥

= 1
2

sup
u∈ker A⊥
v∈ker A

(∥Au⊗ Bv∥2 + ∥Bv ⊗ Au∥2)1/2
√

2∥v∥∥u∥

= 1
2

sup
u∈ker A⊥
v∈ker A

∥Au∥∥Bv∥
∥u∥∥v∥ = 1

2
∥A∥∥B∥

since ∥A∥ = supu∈(ker A)⊥
∥Au∥
∥u∥ and (ker B)⊥ ⊆ ker A.

To see that the lower inequality is sharp, let A = [ 1 0
0 0 ]and B = I − A, so (ker B)⊥ ⊆

ker A and ran B ⊆ (ran A)⊥. Then Proposition 4.12 yields ∥A⊙ B∥ = 1
2 . ∎

6 Spectrum

Here, we present results on the spectrum of symmetric products of Hilbert-space
operators (the finite-dimensional case is simpler; see [1, p. 18]). We find a complete
description in some special cases. In what follows, σ(A), σp(A), and σap(A) denote
the spectrum, point spectrum, and approximate point spectrum of A, respectively [12,
Definition 2.4.5]. For X , Y ⊆ C, let X + Y ∶= {x + y ∶ x ∈ X , y ∈ Y} and XY ∶= {x y ∶
x ∈ X , y ∈ Y}.

Theorem 6.1 (Brown–Pearcy [2]) σ(A⊗ B) = σ(A)σ(B) for all A, B ∈ B(H).

Proposition 6.2 Let A, B ∈ B(H).
(a) σ( 1

2(A⊗ B + B ⊗ A)) = σ(A⊙ B) ∪ σ(A∧ B).
(b) σp( 1

2(A⊗ B + B ⊗ A)) = σp(A⊙ B) ∪ σp(A∧ B).

Proof This follows from the direct-sum decomposition (3.6). ∎
Theorem 6.3 Let A ∈ B(H).
(a) σ(A⊙ I) = 1

2(σ(A) + σ(A)).
(b) σ(A⊙ A) = σ(A)σ(A).

Proof (a) First, observe that

σ(A⊙ I) ⊆ σ( 1
2 (A⊗ I + I ⊗ A)) (Lemma 6.2)

= 1
2 (σ(A) + σ(A)) (by [29, Theorem 2.1]).

Let λ, μ ∈ σap(A). There are sequences {ui}∞i=1 and {vi}∞i=1 of unit vectors such that
∥(A− λI)ui∥ → 0 and ∥(A− μI)vi∥ → 0. Then Lemma 2.15 ensures that

∥(A⊙ I − ( λ
2
+ μ

2
)(I ⊙ I))( ui ⊙ vi

∥ui ⊙ vi∥
)∥

⩽
√

2∥(A⊙ I − ( λ
2
+ μ

2
)(I ⊙ I))(ui ⊙ vi)∥

= 1
2
√

2
∥(A⊗ I + I ⊗ A− (λ + μ)(I ⊗ I))(ui ⊗ vi + vi ⊗ ui)∥
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= 1
2
√

2
∥Aui ⊗ vi + ui ⊗ Avi − λui ⊗ vi − ui ⊗ μvi

+ Avi ⊗ ui + vi ⊗ Aui − vi ⊗ λui − μvi ⊗ ui∥

= 1
2
√

2
∥(A− λI)ui ⊗ vi + vi ⊗ (A− λI)ui

+ ui ⊗ (A− μI)vi + (A− μI)(vi ⊗ ui)∥

⩽ 1
2
√

2
(2∥(A− λI)ui∥∥vi∥ + 2∥(A− μI)vi∥∥ui∥)

= 1√
2
∥(A− λI)ui∥ +

1√
2
∥(A− μI)vi∥ → 0.

Thus, 1
2 (λ + μ) ∈ σap(A⊙ I) and hence

σap(A⊙ I) ⊇ 1
2 (σap(A) + σap(A)).(6.4)

Recall that Ω(A) = σ(A)/σap(A) is a bounded open set. Furthermore, [2, p. 164]
shows that λ ∈ Ω(A) implies λ ∈ σp(A∗). Since σ(A) is closed and Ω(A) ⊆ σ(A), the
boundary of Ω(A) is contained in σ(A)/Ω(A) = σap(A).

Let λ, μ ∈ σ(A). Following [2, Proof 2], we examine four special cases.
(i) If λ, μ ∈ σap(A), then (6.4) ensures that 1

2(λ + μ) ∈ σap(A⊙ I) ⊆ σ(A⊙ I).
(ii) If λ, μ ∈ Ω(A), then λ, μ ∈ σp(A∗) ⊆ σap(A∗). Then (i) ensures that

1
2(λ + μ) ∈ σap(A∗ ⊙ I) = σap((A⊙ I)∗) ⊆ σ((A⊙ I)∗),

so 1
2(λ + μ) ∈ σ(A⊙ I).

(iii) Suppose that λ ∈ σap(A) and μ ∈ Ω(A). Then λ ∈ σ(A∗) and μ ∈ σap(A∗). If λ ∈
σap(A∗), then (a) ensures that

1
2(λ + μ) ∈ σap(A∗ ⊙ I) ⊆ σ((A⊙ I)∗), so 1

2(λ + μ) ∈ σ(A⊙ I).

Suppose instead that λ ∈ Ω(A∗). The openness of Ω(A) and Ω(A∗)provide τ > 0
such that λ − t ∈ Ω(A∗) and μ + t ∈ Ω(A) for 0 ⩽ t < τ.
– If λ − τ ∈ Ω(A∗) and μ + τ ∈ σap(A), then λ − τ = λ − τ ∈ σap(A). Then (a)

ensures that
1
2(λ + μ) = 1

2(λ − τ + μ + τ) ∈ σap(A⊙ I) ⊆ σ(A⊙ I).

– If λ − τ ∈ σap(A∗) and μ + τ ∈ Ω(A), this case is analogous to the previous one.
– Suppose that λ − τ ∈ σap(A∗) and μ + τ ∈ σap(A). If tn → τ and 0 < tn < τ,

then λ − tn ∈ Ω(A∗) and hence λ − tn ∈ σap(A). Thus,
1
2(λ − tn + μ + τ) ∈ σ(A⊙ I).

Since σ(A⊙ I) is closed, 1
2(λ + μ) ∈ σ(A⊙ I).

(iv) The case λ ∈ Ω(A) and μ ∈ σap(A) is analogous to (iii).
In all cases 1

2 (λ + μ) ∈ σ(A⊙ I), so σ(A⊙ I) = 1
2 (σ(A) + σ(A)).
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(b) The proof is similar to that of (a), so we sketch the details. Lemma 6.2
and Theorem 6.1 yield σ(A⊙ A) ⊆ σ (A⊗ A) = σ(A)σ(A). If λ, μ ∈ σap(A), then an
argument similar to that of (a) ensures that λμ ∈ σap(A⊙ A). As above, we can follow
[2, Proof 2] and use a case-by-case analysis to show that λμ ∈ σ(A⊙ A), so that
σ(A)σ(A) ⊆ σ(A⊙ A). ∎

7 Diagonal operators

Since diagonal operators are among the most elementary operators one encounters
in the infinite-dimensional setting [12, Chapter 2], it makes sense to consider their
symmetric tensor products. Let e1 , e2 , . . . be an orthonormal basis for H and suppose
that L, M ∈ B(H) satisfy Lei = λ i ei and Mei = μ i ei for i ⩾ 1. For i , j ⩾ 1,

(L ⊙ M)(ei ⊙ e j) = 1
4 (L ⊗ M + M ⊗ L)(ei ⊗ e j + e j ⊗ ei)

= 1
4 (Lei ⊗ Me j + Mei ⊗ Le j + Le j ⊗ Mei + Me j ⊗ Lei)

= 1
4 (λ i ei ⊗ μ je j + μ i ei ⊗ λ je j + λ je j ⊗ μ i ei + μ je j ⊗ λ i ei)

= 1
2 (λ i μ j + λ j μ i)(ei ⊙ e j).(7.1)

Thus, L ⊙ M is a diagonal operator with

σp(L ⊙ M) = { 1
2 (λ i μ j + λ j μ i) ∶ i , j ⩾ 1} and σ(L ⊙ M) = σp(L ⊙ M)−.

For symmetric products of diagonal operators, we can improve upon Theorem
5.1(a).

Proposition 7.2 Let L, M be diagonal operators as above. Then ∥L∥∥M∥(
√

2 − 1) ⩽
∥L ⊙ M∥ ⩽ ∥L∥∥M∥ and these inequalities are sharp.

Proof The computation (7.1) shows that it suffices to prove the result for 2 × 2
diagonal matrices. Let L = diag(λ1 , λ2) and M = diag(μ1 , μ2). By linearity we may
assume ∥L∥ = max{∣λ1∣, ∣λ2∣} = 1 and ∥M∥ = max{∣μ1∣, ∣μ2∣} = 1, Consider L ⊙ M,
which by (4.4) we identify with diag(λ1 μ1 , λ1 μ2+λ2 μ1

2 , λ2 μ2). Then

∥L ⊙ M∥ = max{∣λ1 μ1∣, 1
2 ∣λ1 μ2 + λ2 μ1∣, ∣λ2 μ2∣}(7.3)

and one of the following holds:
(a) ∣λ1∣ = ∣μ1∣ = 1 or ∣λ2∣ = ∣μ2∣ = 1.
(b) ∣λ1∣ = ∣μ2∣ = 1 or ∣λ2∣ = ∣μ1∣ = 1.
If (a) holds, then ∥L ⊙ M∥ ⩾ max{∣λ1 μ1∣, ∣λ2 μ2∣} = 1. If (b) holds, then without loss of
generality assume that ∣λ1∣ = ∣μ2∣ = 1. From (7.3),

∥L ⊙ M∥ ⩾ inf
∣μ1 ∣,∣λ2 ∣⩽1

max{∣μ1∣, 1
2 ∣1 + λ2 μ1∣, ∣λ2∣}

⩾ inf
0⩽s⩽1

max{s, 1
2 (1 − s2)} =

√
2 − 1.

The lower bound is attained by L = [ 1 0
0
√

2−1 ] and M = [ −
√

2+1 0
0 1 ]. The upper bound is

attained by L = M = I. ∎
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Proposition 7.4 (a) There exists a self-adjoint diagonal operator D such that σ(D)
has measure zero in R and σ(D ⊙ D) has positive measure in R.

(b) There exists a diagonal operator D such that σ(D) has planar Lebesgue measure
zero and σ(D ⊙ D) has positive planar Lebesgue measure.

Proof (a) Let C denote the Cantor set, which has measure zero. The exponential
function is differentiable, so by [28, Lemma 7.25] {eμ ∶ μ ∈ C ∩Q}− = {ec ∶ c ∈ C }
has measure zero in R. Let D be a diagonal operator with point spectrum {eλ ∶
λ ∈ C ∩Q}, so that σ(D) = {ec ∶ c ∈ C } has measure zero. Since C +C = [0, 2],
Theorem 6.3(b) ensures that σ(D ⊙ D) = σ(D)σ(D) = {ec+d ∶ c, d ∈ C } = [1, e2] has
positive measure in R.

(b) Let D be a diagonal operator with point spectrum {eλ+i μ ∶ λ ∈ C ∩Q, μ ∈ Q ∩
[0, 2π)}. Then σ(D) has planar measure zero, but an argument similar to that in (a)
ensures that σ(D ⊙ D) is the annulus centered at 0 with radii 1 and e2, which has
positive measure. ∎

Below the brackets {{ and }} indicate a multiset; that is, a set that permits
multiplicity.

Proposition 7.5 Let A1 , A2 , . . . , An ∈ B(H) be commuting diagonal operators with
σp(A i) = {{λ(i)1 , λ(i)2 , . . .}} allowing for repetition. Then

σp(A1 ⊙ A2 ⊙ ⋅ ⋅ ⋅ ⊙ An) = {{
1

n! ∑
π∈Σn

λ(π(1))i1
λ(π(2))i2

⋅ ⋅ ⋅ λ(π(n))in
∶ i1 ⩽ i2 ⩽ ⋅ ⋅ ⋅ ⩽ in}}

and σ(A1 ⊙ A2 ⊙ ⋅ ⋅ ⋅ ⊙ An) = σp(A1 ⊙ A2 ⊙ ⋅ ⋅ ⋅ ⊙ An)−.

8 The shift operator and its adjoint

In this section, we find the spectrum of the symmetric tensor product of the unilateral
shift and its adjoint. Let (S f )(z) = z f (z) denote the unilateral shift on H2(D) [12,
Chapter 5]. Its adjoint is the backward shift (S∗ f )(z) = ( f (z) − f (0))/z.

Theorem 8.1 The self-adjoint operators S ⊙ S∗ and S ∧ S∗ satisfy

σp(S ⊙ S∗) = {{ cos( (2 j−1)π
k+2 ) ∶ k ⩾ 0 and 1 ⩽ j ⩽ ⌊ k+2

2 ⌋}}

and

σp(S ∧ S∗) = {{ cos( 2 jπ
k+2) ∶ k ⩾ 1 and 1 ⩽ j ⩽ ⌊ k+1

2 ⌋}},

with the eigenvalues in these multisets repeated by multiplicity. Moreover, σ(S ⊙ S∗) =
σap(S ⊙ S∗) = σ(S ∧ S∗) = σap(S ∧ S∗) = [−1, 1] and ∥S ⊙ S∗∥ = ∥S ∧ S∗∥ = 1.

Proof Identify H2(D) ⊗ H2(D) with H2(D2) as in Example 2.5 and consider
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T = 1
2
(S ⊗ S∗ + S∗ ⊗ S)(z iw j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 (z i+1w j−1 + z i−1w j+1), if i , j ⩾ 1,
1
2 z i+1w j−1 , if i = 0 and j ⩾ 1,
1
2 z i−1w j+1 , if i ⩾ 1 and j = 0,
0, if i = j = 0.

Define V0 = V+0 = span{1} and V−0 = {0}. For k ⩾ 1, let

Vk = span{z iwk−i ∶ 0 ⩽ i ⩽ k}, so dimVk = k + 1,

V+k = span{z iwk−i + zk−iw i ∶ 0 ⩽ i ⩽ ⌊ k
2 ⌋}, so dimV+k = ⌊ k

2 ⌋ + 1,

V−k = span{z iwk−i − zk−iw i ∶ 0 ⩽ i ⩽ ⌊ k−1
2 ⌋}, so dimV−k = ⌊ k−1

2 ⌋ + 1,

and note that dimVk = dimV+k + dimV−k for k ⩾ 1 by a parity argument (or Proposi-
tion 2.11). Recall from (2.13) that H2(D2) = H2

sym(D2) ⊕ H2
asym(D2) is an orthogonal

direct sum. We have Vk = V+k ⊕V−k for k ⩾ 1, in which each Vk ,V+k ,V−k is T-invariant,
and

H2(D2) =
∞
⊕
k=0

Vk , H2
sym(D2) =

∞
⊕
k=0

V+k , H2
asym(D2) =

∞
⊕
k=1

V−k .(8.2)

With respect to the orthonormal basis {zk−iw i}k
i=0 ofVk , we identify the restriction

T ∣Vk with the (k + 1) × (k + 1) matrix (by convention A0 = [0])

Ak =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
21

2 0 1
2

1
2 0 ⋱

⋱ 0 1
21

2 0 1
21

2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

From [21, Proposition 2.1], we have

σ(Ak) = { cos( jπ
k+2) ∶ j = 1, 2, . . . , k + 1}.(8.3)

For k odd, with respect to the orthonormal basis { 1√
2 (zk−iw i + z iwk−i)}

k−1
2

i=0 of V+k ,
we identify the restriction T ∣V+k with the k+1

2 × k+1
2 matrix

Bk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
21

2 0 1
2

1
2 0 ⋱

⋱ 0 1
21

2 0 1
2

1
2

1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

For k even, with respect to the orthonormal basis { 1√
2 (zk−iw i + z iwk−i)}

k
2 −1
i=0 ∪

{zk/2wk/2} of V+k , we identify the restriction T ∣V+k with the ( k
2 + 1) × ( k

2 + 1) matrix

Bk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
21

2 0 1
2

1
2 0 ⋱

⋱ 0 1
21

2 0 1√
2

1√
2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

with the convention B0 = [0]. We identify the spectrum of the Bk later.
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16 S. R. Garcia, R. O’Loughlin, and J. Yu

With respect to the orthonormal basis { 1√
2 (z iwk−i − zk−iw i)}⌊

k−1
2 ⌋

i=0 of V−k , we
identify the restriction T ∣V−k with the ⌊ k+1

2 ⌋ × ⌊ k+1
2 ⌋ matrix (note that C1 = [− 1

2 ] and
C2 = [0])

Ck =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
21

2 0 1
2

1
2 0 ⋱

⋱ 0 1
21

2 0 1
2

1
2

(−1)k−1
4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

For k ⩾ 2 even, σ(Ck) = {cos( 2 jπ
k+2 ) ∶ j = 1, 2, . . . , k

2 } [21, Proposition 2.1]. Suppose
k ⩾ 1 is odd. By [21, equation (11)], λ ∈ σ(2Ck) if and only if λ = −2x, where x ∈ [−1, 1]
solves

(−1 + 2x)
sin( 1

2 (k + 1) cos−1(x))
sin(cos−1(x)) −

sin( 1
2 (k − 1) cos−1(x))
sin(cos−1(x)) = 0.

Since cos( (2�−1)π
k+2 ) for � = 1, 2, . . . , k+1

2 are the distinct solutions to this equation,
σ(Ck) = {− cos( (2�−1)π

k+2 ) ∶ � = 1, 2, . . . , k+1
2 }. Since − cos (x) = cos (π − x), we can

reindex and rewrite this as σ(Ck) = {cos( 2 jπ
k+2 ) ∶ j = 1, 2, . . . , k+1

2 }. Regardless of the
parity of k,

σ(Ck) = { cos( 2 jπ
k+2) ∶ j = 1, 2, . . . , ⌊ k+1

2 ⌋}.

Since Vk = V+k ⊕V−k , up to unitary equivalence Ak = Bk ⊕ Ck . Thus,

σ(Ak) = σ(Bk) ∪ σ(Ck).(8.4)

From (8.3)–(8.4), we obtain

σ(Bk) = { cos( (2 j−1)π
k+2 ) ∶ j = 1, 2, . . . , ⌊ k+2

2 ⌋}.

Since S ⊙ S∗ and S ∧ S∗ are self-adjoint and have norm at most 1, their spectra are
contained in [−1, 1]. Up to unitary equivalence, (2.13) and (8.2) imply that

S ⊙ S∗ =
∞
⊕
k=0

Bk and S ∧ S∗ =
∞
⊕
k=1

Ck .

This yields the claimed point spectra of S ⊙ S∗ and S ∧ S∗. A density argument
reveals that [−1, 1] = σp(S ⊙ S∗)− ⊆ σap(S ⊙ S∗) ⊆ σ(S ⊙ S∗) ⊆ [−1, 1], so equality
holds throughout. A similar argument treats S ∧ S∗. ∎

9 Shifts and diagonal operators

We consider here the symmetric tensor product of shift operators and diagonal
operators. This setting suggests working on the sequence space �2 instead of H2(D)
[12, Section 1.2]. Let e0 , e1 , . . . be the standard basis of �2 and consider the unilateral
shift Sei = ei+1 [12, Chapter 3]. Its adjoint is given by S∗ei = ei−1 for i ⩾ 1 and S∗e0 = 0.
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Theorem 9.1 Let M = diag(μ0 , μ1 , . . .) be a bounded diagonal operator on �2.

(a) 1√
2∥M∥ ⩽ ∥S ⊙ M∥ ⩽ ∥M∥. Both inequalities are sharp.

(b) If some μ i = 0 or the set of nonzero μ i is bounded away from 0, then 0 ∈ σp(S ⊙ M).
(c) σp(S ⊙ M) ⊆ {0}.

Proof (a) Since M∗ = diag(μ0 , μ1 , . . .) is a diagonal operator and (S ⊙ M∗)∗ =
S∗ ⊙ M by Proposition 4.6, this follows from Theorem 9.2(a) below.

(b) Suppose that the set of nonzero μ i is bounded away from zero. Note that for all
i , j ⩾ 0,

(S ⊙ M)(ei ⊙ e j) =
μ j

2
ei+1 ⊙ e j +

μ i

2
ei ⊙ e j+1 .(9.2)

If some μ i = 0, then (9.2) ensures that 0 ∈ σp(S ⊙ M) since (S ⊙ M)(ei ⊙ ei) = 0.
Thus, we may assume that ∣μ i ∣ ⩾ δ > 0 for all i ⩾ 0. Define C =

√
∥M∥/δ.

Let ∑i⩽ j ∣a i j ∣2 < ∞ and let v = 2∑0⩽i⩽ j<∞ a i jei ⊙ e j , which is well defined by
Lemma 2.14. Then (9.2) ensures that

(S ⊙ M)v = ∑
0⩽i⩽ j<∞

a i j (μ jei+1 ⊙ e j + μ i ei ⊙ e j+1) .(9.3)

When (9.3) is expanded, the coefficient of ek ⊙ e� for k ⩽ � is

0, if k = � = 0,
2μ0a0,0 , if k = 0 and � = 1,
μ0a0,�−1 , if k = 0 and � ⩾ 2,(9.4)
μk ak−1,k , if 1 ⩽ k = �,(9.5)
2μk ak ,k + μk+1ak−1,k+1 , if k ⩾ 1 and � = k + 1,(9.6)
μk ak ,�−1 + μ�ak−1,� , if k ⩾ 1 and � ⩾ k + 2.(9.7)

Then (S ⊙ M)v = 0 if and only if the ak ,� are square summable and (9.4)–(9.7) vanish
for all � ⩾ k ⩾ 0. We define such ak ,�, not all zero, in four steps (see Figure 1).

(1) Let a0,0 = 0. For � ⩾ 1, let a0,�−1 = 0 so that (9.4) vanishes.
(2) For each k ⩾ 2, let ak−1,k = ak−1,k+2 = ak−1,k+4 = ⋅ ⋅ ⋅ = 0. Then (9.5) and (9.7)

vanish for k ⩾ 2 and even � ⩾ k + 2.
(3) Let a1,1 = 0 and, for each k ⩾ 2, let ak ,k and ak−1,k+1 be such that

[ 2ak ,k
ak−1,k+1

] ⊥ [ μk
μk+1

] and 0 < ∥[ 2ak ,k
ak−1,k+1

]∥ < 1
(k + 1)3/2 .(9.8)

Then (9.6) vanishes for k ⩾ 2 and � = k + 1.
(4) For k ⩾ 2, let

ak−1,k+3 = −ak ,k+2
μk

μk+3
, ak−1,k+5 = −ak ,k+4

μk

μk+5
, . . . .(9.9)

Then (9.7) vanishes for all k ⩾ 1 with odd � ⩾ k + 3.

https://doi.org/10.4153/S0008414X23000901 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000901


18 S. R. Garcia, R. O’Loughlin, and J. Yu

Figure 1: Colors denote the step where the ak ,� are fixed: Step (1) is in violet; (2) is in red; (3) is in
green; and (4) is in blue. The symmetry of symmetric tensors permits us to focus on � ⩾ k ⩾ 0.
The violet and red values are zero.

This completes the definition of the ak ,�. We must prove that they are square
summable.

For k ⩾ 1, (9.8) yields

∣ak ,k ∣2 <
1

(k + 1)3 and ∣ak−1,k+1∣2 <
1

(k + 1)3 .(9.10)

Then (9.9) and then (9.10) with k + 1 in place of k ensure that

∣ak−1,k+3∣2 = ∣ak ,k+2∣2 ∣
μk

μk+3
∣ 2 ⩽ C∣ak ,k+2∣2 ⩽

C
(k + 2)3(9.11)

for k ⩾ 1. Next (9.9) and then (9.11) with k + 1 in place of k imply that

∣ak−1,k+5∣2 = ∣ak ,k+4∣2 ∣
μk

μk+5
∣ 2 ⩽ C∣ak ,k+4∣2 ⩽

C
(k + 3)3 ,

so induction yields

∣ak ,k+2r ∣2 ⩽
C

(k + r)3 .(9.12)

Then Step 1, Step 2, and (9.12) ensure that

∑
0⩽k⩽�

∣ak ,�∣2 =
∞
∑
k=1

∑
�⩾k

∣ak ,�∣2 =
∞
∑
k=1

∞
∑
r=0

∣ak ,k+2r ∣2 ⩽ C
∞
∑
k=1

∞
∑
r=0

1
(k + r)3 ,

which is finite by a standard argument in the study of elliptic functions [31, Proposition
10.4.2].1 Thus, v is a well-defined vector in the kernel of S ⊙ M.

(c) Suppose that λ ≠ 0 and (S ⊙ M)v = λv, in which v = 2∑0⩽i⩽ j<∞ a i jei ⊙ e j and
∑0⩽i⩽ j<∞ ∣a i j ∣2 < ∞. Then (9.2) ensures that

1The double sum can be explicitly evaluated. Write the summands in an array with r indexing the
columns and k the rows. Sum each column and simplify to reduce the double sum to the well-known
∑∞k=1

1
k2 = π2

6 .
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0 = ((S ⊙ M) − λI)v = 2 ∑
0⩽i⩽ j<∞

a i , j((S ⊙ M) − λI)(ei ⊙ e j)

= ∑
0⩽i⩽ j<∞

a i , j μ jei+1 ⊙ e j + ∑
0⩽i⩽ j<∞

a i , j μ i ei ⊙ e j+1 − ∑
0⩽i⩽ j<∞

λa i , jei ⊙ e j .(9.13)

When (9.13) is expanded, the coefficient of ek ⊙ e� for k ⩽ � is

0 = −λa0,0 , if k = � = 0,(9.14)
0 = 2μ0a0,0 − λa0,1 , if k = 0 and � = 1,
0 = μ0a0,�−1 − λa0,� , if k = 0 and � ⩾ 2,(9.15)
0 = μk ak−1,k − λak ,k , if 1 ⩽ k = �,(9.16)
0 = 2μk ak ,k + μk+1ak−1,k+1 − λak ,k+1 , if k ⩾ 1 and � = k + 1,(9.17)
0 = μk ak ,�−1 + μ�ak−1,� − λak ,� , if k ⩾ 1 and � ⩾ k + 2.(9.18)

We use induction to prove that ak ,� = 0 for 0 ⩽ k ⩽ � < ∞. For k ⩾ 0, let P(k) be the
statement “ak ,k+i = 0 for all i ⩾ 0.” The truth ofP(0) follows from (9.14), which ensures
that a0,0 = 0, and induction on � using (9.15), which yields a0,� = 0 for � ⩾ 0.

Suppose P(k − 1) is true: ak−1,� = 0 for � ⩾ k − 1. Then (9.16) yields λak ,k =
μk ak−1,k = 0, so ak ,k = 0. Next, (9.17) ensures that λak ,k+1 = 2μk ak ,k + μk+1ak−1,k+1 =
0, so ak ,k+1 = 0. Finally, (9.18) and induction on � tell us that λak ,� = μk ak ,�−1 +
μ�ak−1,� = 0 for � ⩾ k + 2. Thus, P(k) is true, so v = 0 and λ ∉ σp(S ⊙ M). ∎

Theorem 9.2 Let M = diag(μ0 , μ1 , . . .) be a bounded diagonal operator on �2.

(a) 1√
2∥M∥ ⩽ ∥S∗ ⊙ M∥ ⩽ ∥M∥. Both inequalities are sharp.

(b) {∣z∣ < 1
2 ∣μ0∣} ∪ {0} ⊂ σp(S∗ ⊙ M).

Proof (a) Since ∥S∗∥ = 1, Theorem 3.4 yields ∥S∗ ⊙ M∥ ⩽ ∥M∥. Equality holds
for M = I because σ(S∗) = D− [12, Proposition 5.2.4.a] and σ(S∗ ⊙ I) = 1

2 (σ(S∗) +
σ(S∗)) ⊆ D− by Theorem 6.3. Thus, ∥S∗ ⊙ I∥ ⩾ 1 = ∥I∥.

Suppose that Mei = μ i ei for i ⩾ 0. Then

(S∗ ⊙ M)(ei ⊙ e j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 (μ jei−1 ⊙ e j + μ i ei ⊙ e j−1), if i , j ≠ 0,
1
2 (μ i ei ⊙ e j−1), if 0 = i < j,
1
2 (μ jei−1 ⊙ e j), if 0 = j < i ,

0, if i = j = 0.

(9.20)

For each ε > 0, there is a μ i such that ∥M∥ − ε ⩽ ∣μ i ∣. Then (9.20) ensures that

∥M∥ − ε√
2

⩽ ∣μ i ∣√
2
= ∥μ i ei−1 ⊙ ei∥ = ∥(S∗ ⊙ M)(ei ⊙ ei)∥ ⩽ ∥S∗ ⊙ M∥.

Let ε → 0 to obtain the desired lower bound.
If μ i = δ i0 for all i ⩾ 0, then ∥(S∗ ⊙ M)(

√
2e0 ⊙ e1)∥ = ∥ 1√

2 (e0 ⊙ e0)∥ = 1√
2 and

∥M∥ = 1, so the lower bound is sharp.
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(b) If μ0 = 0, the last line of (9.20) ensures that 0 ∈ σp(S∗ ⊙ M). Let μ0 ≠ 0 and
∣λ∣ < 1

2 ∣μ0∣. Lemma 2.14 permits us to define v = ∑∞j=0
(2λ) j

μ j
0

e0 ⊙ e j . Then (9.20) ensures
that λ ∈ σp(S∗ ⊙ M) since

(S∗ ⊙ M)v = (S∗ ⊙ M)(
∞
∑
j=0

(2λ) j

μ j
0

e0 ⊙ e j) =
∞
∑
j=0

(2λ) j

μ j
0
(S∗ ⊙ M)(e0 ⊙ e j)

= 1
2

∞
∑
j=0

(2λ) j

μ j
0

μ0e0 ⊙ e j−1 = λ
∞
∑
j=1

(2λ) j−1

μ j−1
0

e0 ⊙ e j−1 = λv. ∎

10 Questions for further research

We conclude with questions to spur future research. Some are general, others specific.
Perhaps the answers to a few are buried in the literature, although we did not find
them.

Lemma 2.15 prompts us to consider symmetric tensor products of more than two
vectors. If x1 , x2 , . . . , xn ∈H, then ∥x1 ⊙ x2 ⊙ ⋅ ⋅ ⋅ ⊙ xn∥ = ∥Sn(x1 ⊗ x2 ⊗ ⋅ ⋅ ⋅ ⊗ xn)∥ ⩽
∥x1 ⊗ x2 ⊗ ⋅ ⋅ ⋅ ⊗ xn∥ = ∥x1∥∥x2∥ ⋅ ⋅ ⋅ ∥xn∥. Equality occurs if x1 = x2 = ⋅ ⋅ ⋅ = xn . Thus,
only lower bounds on ∥x1 ⊙ x2 ⊙ ⋅ ⋅ ⋅ ⊙ xn∥ are of interest. Here is a partial answer.

Lemma 10.1 1√
6 ∥x1∥∥x2∥∥x3∥ ⩽ ∥x1 ⊙ x2 ⊙ x3∥ ⩽ ∥x1∥∥x2∥∥x3∥ for x1 , x2 , x3 ∈H.

These inequalities are sharp.

Proof The upper bound is discussed above. Without loss of generality, suppose
x1 , x2 , x3 have unit norm. Then

36∥x1 ⊙ x2 ⊙ x3∥2 = ∑
τ ,π∈Σ3

⟨xτ(1) ⊗ xτ(2) ⊗ xτ(3) , xπ(1) ⊗ xπ(2) ⊗ xπ(3)⟩

= 6 + ∑
τ≠π

⟨xτ(1) ⊗ xτ(2) ⊗ xτ(3) , xπ(1) ⊗ xπ(2) ⊗ xπ(3)

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&'&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*
c

⟩,(10.2)

in which c ∈ R is of the form

c = 6(∣⟨x2 , x3⟩∣2 + ∣⟨x1 , x2⟩∣2 + ∣⟨x1 , x3⟩∣2)
+ 6⟨x1 , x2⟩⟨x2 , x3⟩⟨x3 , x1⟩ + 6⟨x1 , x3⟩⟨x3 , x2⟩⟨x2 , x1⟩
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&'&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*

d

.

Muirhead’s inequality [17, Chapter 2, Section 18] shows that for x , y, z ∈ [0, 1],

x2 + y2 + z2 ⩾ 2x yz.(10.3)

Let x = ∣⟨x1 , x2⟩∣, y = ∣⟨x2 , x3⟩∣, and z = ∣⟨x3 , x1⟩∣ in (10.3) and get (since d ∈ R)

6(∣⟨x2 , x3⟩∣2 + ∣⟨x1 , x2⟩∣2 + ∣⟨x1 , x3⟩∣2) ⩾ 12∣⟨x1 , x2⟩∣∣⟨x2 , x3⟩∣∣⟨x3 , x1⟩∣ ⩾ −d .

Thus, c ⩾ 0 and we obtain the desired lower bound. If x1 , x2 , x3 are pairwise orthogo-
nal, then c = 0 in (10.2), so the lower bound is sharp. ∎
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Problem 1 Is 1√
n!
∥x1∥∥x2∥ ⋅ ⋅ ⋅ ∥xn∥ ⩽ ∥x1 ⊙ x2 ⊙ ⋅ ⋅ ⋅ ⊙ xn∥ for x1 , x2 , . . . , xn ∈H?

Lemma 10.1 leads to an analogue of Theorem 5.1(a) for three operators.

Theorem 10.4 1√
6

sup
x∈H
∥x∥=1

{∥Ax∥∥Bx∥∥Cx∥} ⩽ ∥A⊙ B ⊙ C∥ for A, B, C ∈ B(H).

Problem 2 For A1 , A2 , . . . , An ∈ B(H) is
1√
n!

sup
x∈H
∥x∥=1

{∥A1x∥∥A2x∥ ⋅ ⋅ ⋅ ∥Anx∥} ⩽ ∥A1 ⊙ A2 ⊙ ⋅ ⋅ ⋅ ⊙ An∥?

Proposition 7.2 provides the sharp inequalities ∥L∥∥M∥(
√

2 − 1) ⩽ ∥L ⊙ M∥ ⩽
∥L∥∥M∥ for diagonal operators L, M (with respect to the same orthonormal basis).
Since the upper bound easily generalizes, the lower bound is of greater interest.

Problem 3 Let A1 , A2 , . . . , An ∈ B(H) be diagonal operators (with respect to the same
orthonormal basis). Find a sharp lower bound, in the spirit of Proposition 7.2, on ∥A1 ⊙
A2 ⊙ ⋅ ⋅ ⋅ ⊙ An∥ in terms of ∥A1∥, ∥A2∥, . . . , ∥An∥.

The Weyl–von Neumann–Berg theorem asserts that every normal operator on a
separable Hilbert space is the sum of a diagonal operator and a compact operator
of arbitrarily small norm [8, Corollary II.4.2]. This suggests possible extensions to
normal operators.

Problem 4 Let A1 , A2 , . . . , An ∈ B(H) be commuting normal operators. Find a sharp
lower bound, in the spirit of Proposition 7.2, on ∥A1 ⊙ A2 ⊙ ⋅ ⋅ ⋅ ⊙ An∥ in terms of
∥A1∥, ∥A2∥, . . . , ∥An∥.

Proposition 7.5 suggests the following.

Problem 5 Let A1 , A2 , . . . , An ∈ B(H) be commuting normal operators. Describe
σ(A1 ⊙ A2 ⊙ ⋅ ⋅ ⋅ ⊙ An) (and its parts).

Let us now consider the unilateral shift S and its adjoint. Theorem 8.1 identified the
norm and spectrum of S ⊙ S∗ and S ∧ S∗. What can be said about other combinations?

Problem 6 Identify the norm and spectrum of arbitrary symmetric or antisymmetric
tensor products of S and S∗ (for example, consider S2 ⊙ S ⊙ S∗3 and S2 ∧ S ∧ S∗3).
Problem 7 Describe the norm and spectrum of Sα ⊙ S∗α and Sα ∧ S∗α , in which Sα is a
weighted shift operator. What can be said if more factors are included?

Theorems 9.1 and 9.2 answer some questions about S ⊙ M and S∗ ⊙ M, in which
M = diag(μ0 , μ1 , . . .) is a diagonal operator. However, a complete picture eludes us.

Problem 8 Identify the norm and spectrum (and its parts) for S ⊙ M and S∗ ⊙ M.
The general problem suggested by the previous questions is the following.

Problem 9 For A1 , A2 , . . . , An ∈ B(H), describe the norm and spectrum (and its
parts) of A1 ⊙ A2 ⊙ ⋅ ⋅ ⋅ ⊙ An and A1 ∧ A2 ∧ ⋅ ⋅ ⋅ ∧ An .

There are countless other questions that can be raised. For example, what can be
said about symmetric tensor products of composition operators?

https://doi.org/10.4153/S0008414X23000901 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000901


22 S. R. Garcia, R. O’Loughlin, and J. Yu

References

[1] R. Bhatia, Matrix analysis, Graduate Texts in Mathematics, 169, Springer, New York, 1997.
[2] A. Brown and C. Pearcy, Spectra of tensor products of operators. Proc. Amer. Math. Soc. 17(1966),

162–166.
[3] S. Carroll, Spacetime and geometry: an introduction to general relativity, Addison Wesley, San

Francisco, CA, 2004.
[4] P. Comon, Tensor decompositions. In: Mathematics in signal processing V, Clarendon Press,

Oxford, 2002, pp. 1–24.
[5] P. Comon, G. Golub, L. Lim, and B. Mourrain, Symmetric tensors and symmetric tensor rank.

SIAM J. Matrix Anal. Appl. 30(2008), no. 3, 1254–1279.
[6] P. Comon and M. Rajih, Blind identification of under-determined mixtures based on the

characteristic function. Signal Process. 86(2006), no. 9, 2271–2281.
[7] J. B. Conway, A course in functional analysis, 2nd ed., Graduate Texts in Mathematics, 96,

Springer, New York, 1990.
[8] K. R. Davidson, C*-algebras by example, Fields Institute Monographs, 6, American Mathematical

Society, Providence, RI, 1996.
[9] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value decomposition.

SIAM J. Matrix Anal. Appl. 21(2000), no. 4, 1253–1278.
[10] R. G. Douglas and R. Yang, Operator theory in the Hardy space over the bidisk. I. Integr. Equ.

Oper. Theory 38(2000), no. 2, 207–221.
[11] W. Fulton and J. Harris, Representation theory: a first course, Graduate Texts in Mathematics, 129

(Readings in Mathematics), Springer-Verlag, New York, 1991.
[12] S. R. Garcia, J. Mashreghi, and W. T. Ross, Operator theory by example, Oxford Graduate Texts in

Mathematics, 30, Oxford University Press, Oxford, 2023.
[13] S. R. Garcia, E. Prodan, and M. Putinar, Mathematical and physical aspects of complex symmetric

operators. J. Phys. A. 47(2014), no. 35, Article no. 353001, 54 pp.
[14] S. R. Garcia and M. Putinar, Complex symmetric operators and applications. Trans. Amer. Math.

Soc. 358(2006), no. 3, 1285–1315.
[15] S. R. Garcia and M. Putinar, Complex symmetric operators and applications. II. Trans. Amer.

Math. Soc. 359(2007), no. 8, 3913–3931.
[16] W. Greub, Multilinear algebra, 2nd ed., Universitext, Springer, New York–Heidelberg, 1978.
[17] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, 2nd ed., Cambridge University Press,

Cambridge, 1952.
[18] A. Ibort, G. Marmo, and J. M. Pérez-Pardo, Boundary dynamics driven entanglement. J. Phys. A

Math. Theor. 47(2014), no. 38, 385301.
[19] A. Ibort and J. M. Pérez-Pardo, On the theory of self-adjoint extensions of symmetric operators and

its applications to quantum physics. Int. J. Geom. Methods Mod. Physics 12(2015), no. 6, 1560005.
[20] A. I. Kostrikin and Y. I. Manin, Linear algebra and geometry, English ed., Algebra, Logic and

Applications, 1, Gordon and Breach Science, Amsterdam, 1997, Translated from the second
Russian (1986) edition by M. E. Alferieff.

[21] D. Kulkarni, D. Schmidt, and S. Tsui, Eigenvalues of tridiagonal pseudo-Toeplitz matrices. Linear
Algebra Appl. 297(1999), nos. 1–3, 63–80.

[22] D. Lenz, T. Weinmann, and M. Wirth, Self-adjoint extensions of bipartite Hamiltonians. Proc.
Edinb. Math. Soc. (2) 64(2021), no. 3, 433–447.

[23] P. McCullagh, Tensor methods in statistics, Monographs on Statistics and Applied Probability,
Chapman & Hall, London, 1987.

[24] G. L. Naber, Quantum mechanics: an introduction to the physical background and mathematical
structure, De Gruyter, Berlin, 2021.

[25] C. R. Putnam, On normal operators in Hilbert space. Amer. J. Math. 73(1951), 357–362.
[26] B. Riemann. Bernhard Riemann “Über die Hypothesen, welche der Geometrie zu Grunde liegen”,

Klassische Texte der Wissenschaft [Classical Texts of Science], Springer Spektrum, Berlin,
Heidelberg, 2013, Historical and mathematical commentary by Jürgen Jost.

[27] B. Riemann. On the hypotheses which lie at the bases of geometry, Classic Texts in the Sciences,
Birkhäuser/Springer, Cham, 2016, Edited and with commentary by Jürgen Jost, Expanded
English translation of the German original.

[28] W. Rudin, Real and complex analysis, 2nd ed., McGraw-Hill Series in Higher Mathematics,
McGraw-Hill, New York–Düsseldorf–Johannesburg, 1974.

[29] M. Schechter, On the spectra of operators on tensor products. J. Functional Analysis 4(1969),
95–99.

https://doi.org/10.4153/S0008414X23000901 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000901


Symmetric and antisymmetric tensor products 23

[30] N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, Parallel factor analysis in sensor array
processing. IEEE Trans. Signal Process. 48(2000), no. 8, 2377–2388.

[31] B. Simon, Basic complex analysis: a comprehensive course in analysis, part 2A, American
Mathematical Society, Providence, RI, 2015.

[32] Barry Simon. Real analysis: a comprehensive course in analysis, part 1, American Mathematical
Society, Providence, RI, 2015, With a 68 page companion booklet.

[33] A. K. Smilde, P. Geladi, and R. Bro, Multi-way analysis: applications in the chemical sciences, John
Wiley & Sons, Hoboken, NJ, 2005.

[34] D. Zhang, Q. Wang, and J. Gong, Quantum geometric tensor in PT-symmetric quantum
mechanics. Phys. Rev. A. 99(2019), no. 4, 042104.

Department of Mathematics and Statistics, Pomona College, 610 North College Avenue, Claremont, CA
91711, United States
e-mail: stephan.garcia@pomona.edu

School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
Current address: Département de mathématiques et de statistique, Université Laval, Québec City, QC G1V
0A6, Canada
e-mail: ryan.oloughlin.1@ulaval.ca R.OLoughlin@leeds.ac.uk

Department of Mathematics, Massachusetts Institute of Technology, Simons Building, 77 Massachusetts
Avenue, Cambridge, MA 02139-4307, United States
e-mail: jiahu878@mit.edu

https://doi.org/10.4153/S0008414X23000901 Published online by Cambridge University Press

mailto:stephan.garcia@pomona.edu
mailto:ryan.oloughlin.1@ulaval.ca
mailto:R.OLoughlin@leeds.ac.uk
mailto:jiahu878@mit.edu
https://doi.org/10.4153/S0008414X23000901

	1 Introduction
	2 Symmetric and antisymmetric tensor power spaces
	3 Symmetric and antisymmetric tensor products of operators
	4 Basic properties
	5 Norms and spectral radius
	6 Spectrum
	7 Diagonal operators
	8 The shift operator and its adjoint
	9 Shifts and diagonal operators
	10 Questions for further research

