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Abstract

We consider two families of arithmetic divisors defined on integral models of Shimura
curves. The first was studied by Kudla, Rapoport and Yang, who proved that if one
assembles these divisors in a formal generating series, one obtains the q-expansion of a
modular form of weight 3/2. The present work concerns the Shimura lift of this modular
form: we identify the Shimura lift with a generating series comprising divisors arising
in the recent work of Kudla and Rapoport regarding cycles on Shimura varieties of
unitary type. In the prequel to this paper, the author considered the geometry of the
two families of cycles. These results are combined with the Archimedean calculations
found in this work in order to establish the theorem. In particular, we obtain new
examples of modular generating series whose coefficients lie in arithmetic Chow groups
of Shimura varieties.

1. Introduction

In this paper, which is the ‘global’ counterpart to [San13], we examine the relationship between
two families of arithmetic divisors defined on integral models of Shimura curves. The first of
these families, which we refer to as the orthogonal special cycles, has been studied extensively
by Kudla, Rapoport and Yang. One of their main results is that if one assembles these divisors
into a formal generating series, one obtains the q-expansion of a modular form of weight 3/2;
this remarkable fact is in some sense the most fully realized instantiation of Kudla’s programme,
a broad set of conjectures relating generating series of arithmetic special cycles on Shimura
varieties and the Fourier coefficients of modular forms, cf. the expository notes [Kud04] for a
survey.

Our main theorem is a geometric interpretation of the Shimura lift of this generating series.
More precisely, we identify the q-expansion of the Shimura lift with a generating series of
(arithmetic) unitary special cycles; these latter cycles are analogues of those constructed in more
recent work of Kudla and Rapoport [KR10, KR09], who studied the intersection behaviour of such
cycles in integral models of Shimura varieties attached to unitary groups of signature (n, 1). While
the theory for these cycles is not as fully developed as in the ‘orthogonal’ case above, the results
in the present work (which concerns the case n = 1) contribute to a growing body of evidence
relating these unitary generating series to modular forms, cf. e.g. [KR09, BHY13, How12, How13].

We now give a more precise account of our main theorem. Begin by fixing a rational indefinite
quaternion algebra B that is unramified at 2, and a maximal order OB ⊂ B. Let CB/Z denote
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the Deligne–Mumford (DM) stack (over Spec Z) that parametrizes pairs A = (A, ιA); here A is
an abelian surface over some base scheme S, and

ιA : OB → End(A)

is an OB-action which is assumed to satisfy a ‘determinant’ condition, cf. Definition 2.3 below.
This stack is an integral model of the classical Shimura curve attached to B.

The orthogonal special cycles are (more or less, cf. Remark 2.7) defined by the following
moduli problem: for an integer n > 0, let Zo(n) be the stack that parametrizes diagrams

ξ : A → A,

where A = (A, ιA) is a point of CB , and ξ is an OB-linear traceless endomorphism such that
ξ2 = −n. We may then view Zo(n) as a divisor on CB/Z via the natural forgetful map, which
we denote by the same symbol. In [KRY06], Kudla, Rapoport and Yang equip these cycles
with explicit Green functions Gro(n, v) depending on a parameter v ∈ R>0, and extend the
construction to all n ∈ Z to obtain arithmetic classes

Ẑo(n, v) := (Zo(n, v),Gro(n, v)) ∈ ĈH1
R(CB/Z)

in the first arithmetic Chow group.1 They then assemble these divisors into a formal generating
series, and prove the following remarkable theorem.

Theorem 1.1 [KRY06, Theorem A]. For τ = u + iv ∈ H and qτ = e2πiτ , the orthogonal
generating series

Φ̂o(τ) :=
∑
n∈Z
Ẑo(n, v) qnτ ∈ ĈH1

R(CB/Z)Jq±1
τ K

is the q-expansion of a modular form of weight 3/2 for the congruence subgroup Γ0(4DB) with
trivial character; here DB is the discriminant of B.

Our construction of the unitary special cycles, which we briefly review here, is adapted from
[KR09]. Suppose that k = Q(

√
∆) is an imaginary quadratic field, with ∆ < 0 a squarefree

integer, and let ok denote the ring of integers of k. Denote the non-trivial Galois automorphism
of k by a 7→ a′. Here and throughout the entire paper, we assume that:

(i) ∆ is even; and

(ii) every prime dividing DB is inert in k.

In particular, the second condition implies the existence of an embedding φ : ok → OB, and for
the moment, we fix one such embedding.

Let E+ denote the DM stack over Spec(ok) representing the following moduli problem: for a
base scheme S over ok, the S-points of E+ form the category of tuples

E+(S) = {E = (E, iE , λE)}

where E is an elliptic curve over S, together with an ok-action iE : ok → End(E), and a principal
polarization λE whose corresponding Rosati involution ∗ satisfies

iE(a)∗ = iE(a′).

1 Here, and throughout this paper, our arithmetic Chow groups are taken with real coefficients, cf. § 2.1.
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We also require that on the Lie algebra Lie(E), the action induced by iE coincides with the
action induced by the structural morphism ok → OS . In the notation of [KR09], this stack is
referred to as M(1, 0).

Similarly, we define E− to be the moduli space of tuples E = (E, iE , λE) as above, except
now we insist that the action on Lie(E) coincides with the conjugate of the action given by the
structural morphism ok → OS . Finally, we set

E := E+
∐
E−

to be the disjoint union of these two stacks.
Let CB/ok = CB/Z×Spec(ok) denote the base change. Suppose that S is a scheme over

Spec(ok), and that we are given points E ∈ E(S) and A ∈ CB/ok(S). For any embedding

φ : ok → OB,
we define the space of special homomorphisms:

Homφ(E,A) := {y ∈ Hom(E,A) | y ◦ iE(a) = ιA(φ(a)) ◦ y, for all a ∈ ok}.

As discussed in § 3.1, this space comes equipped with an ok-Hermitian form hφE,A.
For m ∈ Z>0, the unitary special cycle Z(m,φ) is (the DM stack over ok representing) the

following moduli problem: for a scheme S over Spec(ok), the S-points of Z(m,φ) comprise the
category of tuples

Z(m,φ)(S) = {(E,A, y)}
where E ∈ E(S), A ∈ CB/ok(S), and y ∈ Homφ(E,A) such that hφE,A(y, y) = m. Abusing notation,
we use the same symbol Z(m,φ) to denote the divisor on CB/ok obtained via the natural forgetful
morphism Z(m,φ) → CB/ok . We equip these divisors with Green functions Gru(m,φ, η) that
depend on a real parameter η > 0, and whose construction parallels that of the Green functions
Gro(n, v) for the orthogonal cycles. We thereby obtain classes

Ẑ(m,φ, η) := (Z(m,φ),Gru(m,φ, η)) ∈ ĈH1
R(CB/ok).

We also describe how to extend the definitions to all integers m ∈ Z. In addition, we shall require
the following rescaled variants: let

Ẑ∗(m,φ; η) := (Z∗(m,φ),Gru∗(m,φ, η)),

where

Z∗(m,φ) := Z
(

m

(|m|, DB)
, φ

)
and Gru∗(m,φ, η) := Gru

(
m

(|m|, DB)
, φ, (|m|, DB)1/2 · η

)
.

This leads us to the unitary generating series: for w = ξ + iη ∈ H and qw = e2πiw, we set

Φ̂u(w) := Ẑ(0, η) +
1

4h(k)

∑
m 6=0

∑
[φ]∈Opt /O×,1B

(Ẑ(m,φ, η) + Ẑ∗(m,φ, η))qmw ,

where the sum on [φ] is over a set of equivalence classes of optimal embeddings ok →OB, cf. (1.1).
The main theorem of this paper describes the relationship between the orthogonal and unitary

generating series in terms of the Shimura lift, first introduced by Shimura [Shi73] and later
extended to the non-holomorphic setting by Shintani and Niwa, cf. [Shi75, Niw75]. The Shimura
lift is an operation which takes as its input a modular form F of half-integral weight κ/2,
together with a square-free parameter t ∈ Z>0, and produces a modular form Sht(F ) of even
integral weight κ− 1.
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Main Theorem. Suppose ∆ < 0 is an even squarefree integer, and every prime dividing DB is
inert in k = Q(

√
∆). Let

Φ̂o
/ok

(τ) =
∑
n∈Z
Ẑo(n, v)/ok q

n
τ ∈ ĈH1

R(CB/ok)Jq±1
τ K

denote the base change of the orthogonal generating series to Spec(ok). Then, for w = ξ+ iη ∈ H,

Sh|∆|(Φ̂
o
/ok

)(w) = Φ̂u(w).

In particular, Φ̂u is (the q-expansion of) a modular form of weight two. 2

The proof hinges on a decomposition

ĈH1
R(CB/ok) = M̃W ⊕ (Vert⊕R ω̂)⊕ An

cf. § 2.1, which is orthogonal for the Arakelov–Gillet–Soulé intersection pairing. We may
accordingly decompose our generating series into components, and our strategy for the proof
of the main theorem is to show that the Shimura lift formula holds one component at a time.
More precisely, we recall that Kudla, Rapoport and Yang prove the modularity of the orthogonal
generating series (Theorem 1.1) by showing that each of its components taken individually is
the q-expansion of a known modular form. Our main theorem amounts to saying that for each
component, the Shimura lift of this form can be identified with the corresponding component
of Φ̂u.

The proofs for the M̃W and Vert components depend only on the geometry of the cycles, and
not their Green functions. This was studied in the prequel to the present work, and in particular
the desired relations for these components follows immediately from [San13, Corollary 4.11].

The ‘analytic’ component An is spanned by classes of the form f̂ = (0, f), where f is a smooth
function on the complex points of CB/ok , and can be thought of as being ‘vertical at ∞’. In § 6,
we prove the main theorem for these components, which involves computing relations between
the two families of Green functions, and explicit formulas derived from Niwa and Shintani’s
presentation of the Shimura lift via theta series.

Finally, the desired theorem for the ‘Hodge components’, obtained by pairing against the
so-called ‘Hodge bundle’ ω̂, is proven in § 7, and largely follows from considerations similar to
the previous case.

Notation
(a) B is a fixed indefinite rational quaternion algebra, with maximal order OB, and discriminant

DB > 1. Denote the reduced trace and reduced norm on B by Nrd and Trd, respectively.

(b) O×,1B is the subgroup of O×B consisting of elements of reduced norm 1.

(c) k = Q(
√

∆) is an imaginary quadratic field, with ring of integers ok, such that (i) ∆ < 0
is a squarefree even integer and (ii) every prime dividing DB is inert in k. We denote the
non-trivial Galois automorphism on k by a 7→ a′.

(d) Having fixed the generator
√

∆ ∈ k, we let σ0 : k → C be the complex embedding such that
σ0(
√

∆) = |∆|1/2i. Let σ1 = σ′0 denote the conjugate embedding.

(e) By definition, an embedding φ : ok ↪→ OB is called optimal if

φ(ok) = φ(k) ∩ OB. (1.1)
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Note O×,1B acts on the set of optimal embeddings by conjugation, i.e. for ξ ∈ O×,1B ,

(ξ · φ)(a) := Adξ ◦ φ(a) = ξ · φ(a) · ξ−1 for all a ∈ ok.

Let Opt denote the set of optimal embeddings, and Opt /O×,1B denote the set of optimal

embeddings taken up to O×,1B -equivalence.

(f) H = {z ∈ C,=(z) > 0} is the usual complex upper half-plane, and H± = C\R is the union

of the upper and lower half-planes.

2. Shimura curves and orthogonal special cycles

We begin this section by reviewing the theory of arithmetic Chow groups that we will use, and

then we recall the definitions and basic facts from [KRY06] regarding Shimura curves and the

generating series of orthogonal special cycles.

2.1 Chow groups for arithmetic surfaces

We briefly recall the construction of the first arithmetic Chow groups for arithmetic surfaces,

mainly for the purposes of setting up notation; basic references include [GS90, Lan88] for the

case of schemes, and [Vis89, KRY06] for the necessary modifications in the case of DM stacks.

Let OL be the ring of integers of a number field. For us, an arithmetic surface over OL is

a regular, geometrically irreducible, DM stack X of dimension two, together with a proper and

flat morphism X → Spec(OL). Let Σ denote the set of embeddings L ↪→ C; for any DM stack

Y over OL and σ ∈ Σ, we let Y(Cσ) denote the complex orbifold attached to the base change

Y ×σ,OL Spec(C).

Definition 2.1. An (R)-arithmetic divisor on an arithmetic surface X is a tuple

Ẑ = (Z,Gr(Z))

where:

(i) Z =
∑
niZi is a formal R-linear combination of pairwise distinct prime divisors Z i, i.e.

each Z i is an irreducible closed substack which is étale locally a Cartier divisor;

(ii) Gr(Z) = (Grσ(Z))σ∈Σ is a tuple indexed by elements of Σ, where for each embedding

σ ∈ Σ, we have a Green function Grσ(Z) on X (Cσ); by definition, this means Grσ(Z) is

a (0, 0)-current on X (Cσ) which is smooth on the complement of Z(Cσ), has logarithmic

singularities along Z(Cσ), and satisfies Green’s equation (as currents2 on X (Cσ)):

ddc Grσ(Z) + δZ(Cσ) = [ωσ(Z)] (2.1)

for some smooth (1, 1)-form ωσ(Z);

(iii) let ι : C → C denote complex conjugation, which induces a map ι : X (Cι◦σ) → X (Cσ); we

then require that

Grι◦σ(Z) = ι∗Grσ(Z) for all σ ∈ Σ.

2 More precisely, we suppose that we are given a ‘uniformization’ X (Cσ) = [Γ\X] presenting X (Cσ) as an orbifold;
here X is a Riemann surface and Γ ⊂ Aut(X) is a discrete group which contains a finite-index subgroup that acts
without fixed points. We then interpret (2.1) to mean an equality of Γ-invariant currents on X, cf. [KRY06, § 2.3].
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An important class of examples is the principal divisors: if f is a rational function on X ,
then

d̂iv(f) = (div(f), (log |σ(f)|2)σ∈Σ)

is an arithmetic divisor.

Definition 2.2. We define the first arithmetic Chow group ĈH1
R(X ), with real coefficients, to

be the quotient of the space of arithmetic divisors modulo the real subspace spanned by the
principal divisors.

This space admits a perfect pairing, the so-called (Arakelov–Gillet–Soulé) intersection pairing

〈·, ·〉 : ĈH1
R(X )× ĈH1

R(X ) → R,

whose construction we briefly recall, at least in the following special case: suppose Ẑ1 =
(Z1,Gr(Z1)) and Ẑ2 = (Z2,Gr(Z2)) are prime divisors equipped with Green functions, such
that their supports on the generic fibre are disjoint. Then the intersection pairing is given by

〈Ẑ1, Ẑ2〉=
∑
p⊂OL
prime

∑
x∈Z1∩Z2(Falg

p )

log(N(p))
length(OZ1∩Z2,x)

# Aut(x)

+
1

2

∑
σ∈Σ

∫
X (Cσ)

Grσ(Z1) · ωσ(Z2) + Grσ(Z2)δZ1(Cσ). (2.2)

This definition can be extended to the space of arithmetic divisors by linearity, and with the aid
of a ‘moving lemma’ in this context, it can be shown that one obtains a well-defined pairing on
ĈH1

R(X ), cf. [GS90].

The intersection pairing allows us to define a convenient decomposition of ĈH1
R(X ), following

[KRY06, § 4.1]. For each σ ∈ Σ, we fix a volume form µσ on X (Cσ), and a metrized line bundle

ω̂ ∈ P̂ic(X )⊗ R

such that for each σ, the corresponding first Chern class is µσ. Abusing notation, we denote the
image of ω̂ under the natural map P̂ic(X )⊗ R → ĈH1

R(X ) by the same symbol ω̂.

Denote by 1̂ = (0,1) ∈ ĈH1
R(X ) the class corresponding to the constant function 1 on each

component X (Cσ). Let Vert denote the real subspace of ĈH1
R(X ) spanned by 1̂, together with

classes of the form (Y, 0), where Y is an irreducible component of a reducible fibre Xp at a finite
prime p.

Next, we let An denote the subspace spanned by classes of the form f̂ = (0, (fσ)σ∈Σ), where
each fσ is a C∞ function on X (Cσ) such that:

(i) f ι◦σ = ι∗ ◦ f ; and

(ii) for each σ ∈ Σ, we have ∫
X (Cσ)

fσ · µσ = 0.

If we set
M̃W := (R ω̂ ⊕ Vert⊕An)⊥,

we obtain an orthogonal decomposition into three subspaces:

ĈH1
R(X ) = M̃W ⊕ (R ω̂ ⊕ Vert)⊕ An. (2.3)
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For convenience, we refer the collection of elements {ω̂, 1̂, (Y, 0), f̂} as above as a good spanning

set for the latter two summands. For a class Ẑ ∈ ĈH1
R(X ), we shall take the components of Ẑ

to mean the collection of pairings
〈Ẑ,Y〉

where Y varies among the good spanning vectors, together with the orthogonal projection
(Ẑ)MW ∈ M̃W. A class is then completely determined by its components.

Finally, we observe that the space M̃W admits a more geometric interpretation. Let

resL : ĈH1
R(X ) → CH1(XL)⊗Z R, (Z,Gr(Z)) 7→ ZL

denote the ‘restriction-to-the-generic-fibre’ map. Note that if Ẑ = (Z,Gr(Z)) ∈ M̃W, then

0 = 〈Ẑ, 1̂〉 =
[L : Q]

2
deg(ZL)

and so resL defines a map
resL : M̃W → Jac(XL)(L)⊗Z R, (2.4)

where Jac(XL)(L) denotes the L-valued points of the Jacobian variety of XL. This latter map
is an isomorphism, which moreover identifies the intersection pairing with the negative of the
Néron–Tate height pairing on Jac(XL)(L)⊗ R, cf. [Hri85].

2.2 Shimura curves
We begin this section by introducing (an arithmetic model of) the Shimura curve attached to
B, defined as a moduli space of abelian surfaces.

Definition 2.3. Let CB/Z denote the moduli space over Spec(Z) that attaches to a scheme S
the category whose objects are tuples

CB/Z(S) = {A = (A, ιA)};

here A is an abelian scheme over S of relative dimension two, and ιA : OB → End(A) is an OB
action. We further require that for any b ∈ OB, the characteristic polynomial for the action of
ι(b) on Lie(A) is given by

ch(ι(b)|Lie(A)) = X2 − Trd(b)X + Nrd(b) ∈ OS [X].

Morphisms in this category are OB-equivariant isomorphisms of abelian schemes over S.

We record a few facts about CB/Z here.

Theorem 2.4 [KRY06, Proposition 3.1.1]. The moduli problem CB/Z is representable by a DM
stack (also denoted by CB/Z), which is regular, proper and flat over Spec(Z) of relative dimension

one, and smooth over SpecZ[D−1
B ].

The complex points CB/Z(C) can be described via complex uniformization, as follows. Fix
once and for all an isomorphism

BR
∼−→ M2(R), (2.5)

and for any z = x+ iy ∈ H±, let

Jz :=
1

y

(
x −x2 − y2

1 −x

)
, (2.6)
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so that J2
z = −1. Then for every z ∈ H±, we may produce a point Az = (Az, ιz) ∈ CB/Z(C) as

follows. We takeAz =BR/OB as a real torus, with the action ιz ofOB given by left-multiplication;
the complex structure on Az is given by right multiplication by Jz.

Conversely, a point (A, ι) ∈ CB/Z(C) admits an OB-linear isomorphism A ' BR/OB of real
tori. A complex structure on BR that commutes with the left-multiplication action of OB is
necessarily given by right multiplication by some element J ∈ BR with J2 = −1. Under the
isomorphism (2.5), there is a unique z ∈ H± such that J = Jz.

By carefully tracking the choices made in the discussion above, we obtain the following fact,
cf. [KRY06, § 3.2].

Proposition 2.5. The map z 7→ (Az, ιz) induces an isomorphism

[O×B\H±]
∼−→ CB/Z(C). (2.7)

A certain metrized line bundle ω̂o, known as the Hodge bundle, will play a particularly
important role in this paper, so we take the opportunity here to make our acquaintance. Let
A / CB denote the universal abelian variety, with zero section ε : CB → A . We then set

ωo := ε∗Ω2
A / CB ∈ Pic(CB/Z).

We may equip the Hodge bundle with the metric ‖ · ‖ described in [KRY06, § 3.3] (as the
specific form of this metric plays almost no role in the present paper, we will not define it here),
and obtain a class

ω̂o = (ωo, ‖ · ‖) ∈ P̂ic(CB/Z),

which, as before, we also view as an arithmetic divisor ω̂o ∈ ĈH1
R(CB/Z) via the natural map

P̂ic(CB/Z)⊗ R → ĈH1
R(CB/Z).

2.3 Orthogonal special cycles
In this section, we recall the construction of orthogonal special cycles and their Green functions.

Definition 2.6. Fix an integer n > 0. Let Zo(n)] denote the DM stack over Spec(Z) representing
the following moduli problem; to a scheme S, we associate the category of tuples

Zo(n)](S) = {(A, x)}

where A = (A, ι) ∈ CB (S) and x ∈ EndOB (A) is traceless, commutes with the OB-action, and
satisfies x2 + n = 0.

We may view Zo(n)] as a cycle on CB via the forgetful map.

Remark 2.7. As shown in [KR00], these cycles may contain zero-dimensional embedded
components in fibres at primes p|DB. To rectify this defect, we replace Zo(n)] by its Cohen–
Macauleyfication Zo(n), so that Zo(n) → CB is a divisor. From the point of view of intersection
theory, the cycles Zo(n)] and Zo(n) are indistinguishable, cf. § 4 of [KR00].

These cycles admit complex uniformizations.

Proposition 2.8 (Cf. [KRY06, § 3.4]). Let

Ωo(n) := {ξ ∈ OB | Trd(ξ) = 0,Nrd(ξ) = n},
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and note that O×B acts on this set by conjugation. There is an isomorphism[
O×B

∖ ∐
ξ∈Ωo(n)

Dξ

]
' Zo(n)(C),

where
Dξ = {z ∈ H± | Jzξ = ξJz} ⊂ H±.

This isomorphism is compatible with the complex uniformization CB (C) ' [O×B\H±].

Next, we describe the Green functions constructed in [KRY06, § 3.5]. Let B0 = {b ∈ B |
Trd(b) = 0}, which can be equipped with the quadratic form of signature (1, 2) given by the
restriction of the reduced norm on B to this subspace. Let Do(B0

R) denote the space of negative-
definite (real) planes in B0

R = B0 ⊗Q R. It is straightforward to check that the map

H
∼−→ Do(B0

R), z 7→ J⊥z

is an isomorphism. As Jz = −Jz, we obtain a two-to-one map

H± → Do(B0
R), z 7→ J⊥z .

Now suppose v ∈ B0
R, and ζ = J⊥z ∈ Do(B0

R). Let vζ denote the orthogonal projection of v onto
ζ, and set

Ro(v, z) := −2Nrd(vζ) where ζ = J⊥z . (2.8)

By construction, v ∈ ζ⊥ if and only if Ro(v, z) = 0. In particular, for ξ ∈ B0, we have z ∈ Dξ if
and only if Ro(ξ, z) = 0.

For r ∈ R>0, let

β1(r) =

∫ ∞
1

e−ur
du

u
.

As r approaches zero, we have β1(r) = −log r − γ + O(r), where γ is the Euler–Mascheroni
constant.

The Green function Gro(n, v) for the cycle Zo(n), which depends on a real parameter v ∈ R>0,
is then given by

Gro(n, v)(z) :=
∑

ξ∈Ωo(n)

β1(2πvRo(ξ, z)); (2.9)

here we are viewing Gro(n, v) as a O×B-invariant function on H. In particular,

ddc[Gro(n, v)] + δZo(n)(C) = [ψo(n, v)c1(ω̂o)] (2.10)

as currents on CB/Z(C) ' [O×B\H], where

ψo(n, v)(z) =
∑

ξ∈Ωo(n)

(4πv{Ro(ξ, z) + 2Nrd(ξ)} − 1)e−2πvRo(ξ,z)

and c1(ω̂o) is the first Chern form of the Hodge bundle ω̂o.

2.4 The orthogonal generating series of Kudla–Rapoport–Yang
Following [KRY06, § 3.5], we define the terms in the orthogonal generating series as follows. For
n ∈ Z>0 and v ∈ R>0, let

Ẑo(n, v) := (Zo(t),Gro(n, v)) ∈ ĈH1
R(CB/Z)R.
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For n < 0, note that the right-hand side of (2.9) defines a smooth function on CB/Z(C). Therefore,
in this case we define

Ẑo(n, v) := (0,Gro(n, v)).

Finally, for the constant term, we set

Ẑo(0, v) := −ω̂o − (0, log v)− (0, logDB).

Theorem 2.9 [KRY06, Theorem A]. Let τ = u + iv ∈ H. Define the ‘orthogonal generating
series’

Φo(τ) :=
∑
n∈Z
Ẑo(n, v) qn,

where q = e2πiτ . Then Φo(τ) is the q-expansion of a modular form for the group Γ0(4DB), of
weight 3/2 and trivial character.

As the coefficients of Φo(τ) lie in the infinite-dimensional space ĈH1
R(CB/Z), we need to

explain the meaning of this theorem more precisely. Recall that in § 2.1, we described a
decomposition

ĈH1
R(CB/Z) = (Vert⊕R ω̂o)⊕ An⊕M̃W,

together with a spanning set for the first two factors. This allows us to decompose our generating
series Φ̂o into components (given by the generating series formed by pairing the coefficients

against the vectors in this spanning set, together with the projections to the M̃W-component).

Each of these generating series has scalar coefficients with the exception of the M̃W-component,
whose coefficients are valued in a finite-dimensional vector space. The content of this theorem
is that each of these generating series is the q-expansion of a modular form in the usual sense,
and the theorem is proved by identifying the generating series with the q-expansions of known
modular forms.

Moreover, the proof of this theorem reveals that the components arising from elements of
Vert and the M̃W-component are holomorphic.

3. Unitary cycles and their Green functions

3.1 Unitary special cycles
In this section, we recall the construction of the unitary cycles discussed in [San13, § 2]; they are
the analogues of unitary (Kudla–Rapoport) special cycles, as described in [KR09], in the Shimura
curve setting. Throughout this section, we fix an optimal embedding φ : ok → OB. We also fix
an element θ ∈ OB such that θ2 = −DB. We may assume, without loss of generality, that

Trd(θ φ(
√

∆)) > 0

since (i) the assumption that B is indefinite implies that the above trace is non-zero, and (ii) we
may replace θ by −θ if necessary.

Suppose A = (A, ι) ∈ CB (S), for some base scheme S over Spec(ok). Then, by [How09, § 3.1],
there exists a unique principal polarization λ0

A on A such that

(λ0
A)−1 ◦ ι(b)∨ ◦ λ0

A = ι(θ−1bιθ) for all b ∈ OB. (3.1)

By [San13, Lemma 2.4], the isogeny

λA,φ := λ0
A ◦ ι(θφ(

√
∆)) (3.2)
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defines another (non-principal) polarization on A; note that the Rosati involution ∗ defined by
this latter polarization satisfies

ι(φ(a))∗ = ι(φ(a′)) for all a ∈ ok.

Next, let E + denote the moduli stack over Spec(ok) whose S-points parametrize triples

E +(S) = {E = (E, iE , λE)};

here E/S is an elliptic curve, iE : ok → EndS(E) is an ok-action, and λE is a principal
polarization. We also require that:

(i) the induced action iE : ok → EndS(Lie(E)) agrees with the action given via the structural
morphism ok → OS ; and

(ii) for any a ∈ ok, we have λ−1
E ◦ iE(a)∨ ◦ λE = iE(a′).

Similarly, we set E − to be the moduli space of tuples (E, iE , λE) as above, except that we insist
that ok acts on Lie(E) via the conjugate of the structural morphism.

Finally, we take

E := E +
∐

E −

to be the disjoint union of these two stacks.
For a base scheme S over Spec(ok), suppose we are given two points E ∈ E (S) and A ∈ CB (S).

We then have the space of special homomorphisms

Homφ(E,A) := {y ∈ Hom(E,A) | y ◦ iE(a) = ιA(φ(a)) ◦ y for all a ∈ ok}.

This space comes equipped with an ok-Hermitian form hφE,A defined by

hφE,A(s, t) := (λE)−1 ◦ t∨ ◦ λA,φ ◦ s ∈ End(E, iE) ' ok.

Let qφE,A(x) := hφE,A(x, x) denote the corresponding quadratic form.

Definition 3.1 (Unitary special cycles). For an integer m ∈ Z>0, let Z(m,φ) denote the DM
stack over Spec(ok), whose S-points parametrize tuples

Z(m,φ)(S) = {(E,A, y)}

where E ∈ E (S), A ∈ CB (S), and y ∈ Homφ(E,A) is a special homomorphism such that

qφE,A(y) = m.

By [San13, Proposition 2.6], the forgetful morphism Z(m,φ) → CB/ok allows us to view
Z(m,φ) as a divisor on CB/ok := CB/Z×Spec(ok); abusing notation, we shall denote the divisor
by the same symbol, and hope that the reader will be able to discern from the context whether
a given instance of the notation refers to the stack or the divisor.

3.2 Complex uniformizations and Green functions
Fix an embedding φ : ok → OB, which induces an embedding φ : k → B. We start by describing
an alternative complex uniformization of CB . Let Bφ = (B, (·, ·)φ) denote the Hermitian space
whose underlying vector space is B endowed with the k-vector space structure given by the
action

a · v := φ(a)v for all a ∈ k, v ∈ B.
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The Hermitian form (·, ·)φ is given by the formula

(x, y)φ :=
∆

2
Trd(x yι) +

√
∆

2
Trd(φ(

√
∆)xyι) ∈ k. (3.3)

Let Q(x) = (x, x)φ = ∆Nrd(x) denote the corresponding quadratic form, and note that the

kR-Hermitian space Bφ
R := Bφ ⊗Q R 'M2(R) is of signature (1, 1) with respect to this form.

Let D(Bφ
R) denote the space of non-isotropic kR-lines in Bφ

R. There is a transitive action of

B×R on D(Bφ
R) given by right multiplication:

γ · ζ := ζγ−1 ⊂ BR.

Recalling that we had fixed an embedding σ0 : k → C, let

Ik :=
√

∆⊗ |∆|−1/2 ∈ kR

denote the square root of −1 in kR such that σ0(Ik) = i. It is then straightforward to check that

we have a B×R -equivariant isomorphism

H±
∼−→ D(Bφ

R), z 7→ ζ := {v ∈ BR | vJz = −φ(Ik)v}. (3.4)

Without loss of generality, we may normalize the map (3.4) so that i is identified with the line

φ(k)⊗ R ⊂ BR. With this choice, H+ is identified with the subset D(Bφ
R)− ⊂ D(Bφ

R) consisting

of negative-definite lines. In particular, we obtain an alternative uniformization

CB/Z(C) ' [O×,1B \D(Bφ
R)−],

where O×,1B is the subgroup of O×B consisting of elements of norm 1, acting on D(Bφ
R)− by right

multiplication.

The geometric meaning of this isomorphism is as follows. Any complex abelian surface A ∈
CB/Z(C) admits an isomorphism A ' BR/OB of real tori. The embedding φ then determines a

distinguished complex structure on BR, namely right-multiplication by −φ(Ik), which commutes

with the action of OB. Any other complex structure, in particular that arising from the complex

structure of A, is then determined by the line in BR on which it agrees with the distinguished

one. Hence, after possibly applying an automorphism to ensure that this line is negative, we see

that the space of such lines in turn parametrizes the points of CB/Z(C).

Upon fixing coordinates, an easy calculation yields the following description of the first Chern

class of ω̂o under this uniformization, cf. [KRY04, (3.16)].

Lemma 3.2. Fixing a basis {e, f} of Bφ
R such that (e, e)φ = −(f, f)φ = 1 and (e, f)φ = 0 yields

an isomorphism

U1 := {Z ∈ C | |Z| < 1} ∼−→ D(Bφ
R)−, Z 7→ spankR(Ze+ f).

With respect to the coordinate Z,

c1(ω̂o) =
i

π

dZ ∧ dZ
(1− |Z|2)2

. (3.5)
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We now say a few words about polarizations. Let Aζ ∈ CB/Z(C) denote the abelian surface

corresponding to ζ ∈ D(Bφ
R)−, and recall that fixing an element θ ∈ OB with θ2 = −DB

determines a principal polarization λ0 = λ0
Aζ

on Aζ as in (3.1). Then the Riemann form {·, ·}λ0
on H1(Aζ) = OB corresponding to λ0 is given by

{a, b}λ0 = Trd(a bι θ−1).

Thus, if we set λA,φ := λ0 ◦ ι(θ φ(
√

∆)), then we find that the corresponding Riemann form is

{a, b}λA,φ = Trd(φ(
√

∆) a bι) = trok/Z((φ(
√

∆)a, b)φ). (3.6)

We now turn to the complex uniformization of the cycles Z(m,φ). Recalling that E =
E+
∐ E−, we have a corresponding decomposition

Z(m,φ) = Z+(m,φ)
∐
Z−(m,φ)

of stacks over Spec(ok). We also recall our convention that Z±(m,φ)(Cσ0) denotes the complex
points of Z±(m,φ), where we view C as an ok-algebra via the fixed embedding σ0 : k → C.

Proposition 3.3. For a fractional ideal a of ok, and an integer m > 0, let

Ω+(m, a, φ) :=

{
y ∈ φ(a)−1OB

∣∣∣∣ Nrd(y) =
m

∆N(a)

}
,

which admits an action of o×k ×O
×,1
B via the formula

(a, b) · y := φ(a) y b−1, a ∈ o×k , b ∈ O
×,1
B .

Then

Z+(m,φ)(Cσ0) '
[
o×k ×O

×,1
B

∖ ∐
[a]∈Cl(k)

∐
y∈Ω+(m,a,φ)

Dy
]
,

where Dy := {(y)⊥} ⊂ D(Bφ
R)−, and the ideals a range over any set of representatives for the

class group. Similarly, if

Ω−(m, a, φ) :=

{
y ∈ φ(a)−1OB

∣∣∣∣ Nrd(y) =
−m

∆N(a)

}
,

then

Z−(m,φ)(Cσ0) '
[
o×k ×O

×,1
B

∖ ∐
[a]∈Cl(k)

∐
y∈Ω−(m,a,φ)

D′y
]
,

where D′y := {spankR(y)}.

Proof. We begin by describing the uniformization of Z+(m,φ). Fix a set of representatives
{a1, . . . , ah} for the class group Cl(k) of k. For each ai, we have a complex elliptic curve

Ei = C/σ0(ai).

There is also a natural ok-action of signature (1, 0), given by the restriction of the embedding
σ0 : k → C to ok, and a compatible principal polarization λEi determined by the alternating
Riemann form

{x, y}Ei =
1

2N(ai)∆
trC/R(x y′ σ0(

√
∆)), x, y ∈ H1(Ei,Z) = ai. (3.7)
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In this way, the triple Ei := (Ei, σ0|ok , λEi) defines a point of E +(Cσ0), with automorphism group
|o×k |, and every point of E +(Cσ0) is isomorphic to such a triple.

Now suppose (E,A, y) ∈ Z+(m,φ)(Cσ0) is a complex-valued point of a unitary special cycle.

We may assume that A = Aζ corresponds to a line ζ ∈ D(Bφ
R)−, and E = Ei as above. Then

y : Ei → Aζ is determined by the ok-linear map

ỹ : ai ' H1(Ei,Z) → H1(Aζ ,Z) ' OB
on the level of homology, which in turn is determined by the image of any non-zero element. For
concreteness, let

y :=
1

N(ai)
ỹ(N(ai)) ∈ φ(ai)

−1OB. (3.8)

If J ∈ End(BR) denotes the complex structure on Lie(Aζ) = BR determined by ζ, then

J(ξ) = ỹ(σ0(Ik)) [by holomorphicity]

= φ(Ik)y [by ok-linearity];

in turn, these relations hold if and only if ζ = (y)⊥. Furthermore, by the description of the
polarizations λEi and λAz ,φ as in (3.7) and (3.6),

hφEi,Aζ (y, y) = (λEi)
−1 ◦ y∨ ◦ λAz ,φ ◦ y

= ∆ N(ai) Nrd(y),

and so
hφEi,Aζ (y, y) = m =⇒ y ∈ Ω+(m, a, φ).

To summarize, we have described a construction(
y ∈ Homφ

ok
(Ei, Aζ)

with hφEi,Aζ (y, y) = m

)
 

(
y ∈ Ω+(m, ai, φ)

with ζ = y⊥

)
.

Conversely, an element y ∈ Ω+(m, ai, φ) defines a morphism y : Ei → Aζ for ζ = y⊥, by
demanding that the corresponding map on Lie algebras is determined by y as in (3.8). Finally,
one sees that the action of o×k × O

×,1
B on E+(C) × CB (C) induces the action on Ω+(m, ai, φ)

described in the proposition. The corresponding statement for Z−(m,φ) follows by a similar
argument. 2

These uniformizations will allow us to furnish the cycles Z±(m,φ) with Green functions,

inspired by those appearing in [KRY06, § 3.5]. Given b ∈ B and a line ζ ∈ D(Bφ
R)−, let prζ(b)

denote the orthogonal projection of b onto ζ, and set

Rφ(b, ζ) = −2(prζ(b), prζ(b))φ > 0.

Note that Rφ(b, ζ) = 0 if and only if ζ = b⊥. In addition, for any γ ∈ GU(Bφ
R),

Rφ(b, γ(ζ)) = Rφ(γ∗(b), ζ).

Consider the exponential integral

β1(u) :=

∫ ∞
1

e−utt−1 dt, u ∈ R>0,

and set
Gr+

φ (b, ζ) := β1(2πRφ(b, ζ)).
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Proposition 3.4. Suppose (b, b)φ > 0. As currents on D(Bφ
R)−, we have

ddc[Gr+
φ (b, ζ)] + δDb = [ϕ+

φ · c1(ω̂o)],

where
ϕ+
φ (b, ζ) := 1

2(2π(Rφ(b, ζ) + 2∆Nrd(b))− 1) exp(−2πRφ(b, ζ)),

c1(ω̂o) is the first Chern form of the Hodge class, and Db = {b⊥} is a singleton set in D(Bφ
R)−.

Proof. We fix a basis {e, f} of Bφ
R as a kR-vector space such that (e, e)φ = −(f, f)φ = 1, and

(e, f)φ = 0, which yields an identification U1 ' D(Bφ
R)− as in Lemma 3.2.

Write b = ξ1e+ ξ2f , with ξ1, ξ2 ∈ kR. If Z = Z(ζ) ∈ U1 corresponds to ζ, then

Rφ(b,Z) := Rφ(b, ζ) = −2(prζ(b), prζ(b))φ = 2
|Zξ1 − ξ2|2

1− |Z|2 .

Thus, away from Dξ, we have

ddc Gr+
φ (b,Z) =

i

2π
∂∂̄ Gr+

φ (b,Z)

= i
e−2πR

2πR

[
− ∂2R

∂Z∂Z̄
+

(
2π +

1

R

)
∂R

∂Z

∂R

∂Z̄

]
dZ ∧ dZ̄,

where R = Rφ(b,Z). Evaluating the derivatives in the preceding display, we see that away
from Dξ,

ddcGr+
φ (b,Z) = i

(
Rφ(b,Z) + 2∆Nrd(b)− 1

2π

)
e−2πR dZ ∧ dZ̄

(1− |Z|2)2
. (3.9)

Now to investigate the behaviour of Gr+
φ (ξ,Z) near Dξ, we use the expression

β1(t) = −γ − log t−
∫ −t

0

eu − 1

u
du,

where γ is the Euler–Mascheroni constant. Also note that the point in w0 ∈ U1 corresponding
to the line ξ⊥ ∈ Dξ is given by Z0 = ξ2/ξ1, and hence

|Zξ1 − ξ2|2 = |ξ1|2 |Z− Z0|2.

In particular, we may write

Gr+
φ (b,Z) = −log |Z− Z0|2 + f(Z)

where f(Z) is a C∞ function.
Let Nε denote a small ball of radius ε around w0, and g a compactly supported C∞ function

on U1. Then, abbreviating Gr+ = Gr+
φ (b,Z), we have∫

U1

Gr+ · ddcg = lim
ε→0

∫
U1−Nε

Gr+ · ddcg

= lim
ε→0

∫
U1−Nε

g · ddcGr+ −
∫
∂Nε

(Gr+ · dcg − g · dcGr+).

Consider the limit ε → 0. Combining (3.9) and (3.5), the first integral approaches [ϕ+
φ ·c1(ω̂)](g),

while using the ‘integral table’ [Lan88, p. 23], the second integral approaches g(w0). 2
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Note that for ζ ∈ D(Bφ
R)−, and a negative vector b ∈ Bφ

R, we have b ∈ ζ if and only if
Rφ(b, ζ) + 2∆Nrd(b) = 0. With this in mind, we set

Gr−φ (b, ζ) := β1(2π (Rφ(b, ζ) + 2∆Nrd(b))).

Then, by a similar calculation to the previous proposition, we have

ddc[Gr−φ (ξ)] + δD′ξ = [ϕ− · c1(ω̂)],

where
ϕ−φ (b, ζ) = 1

2(2π Rφ(b, ζ)− 1) exp(−2π (Rφ(b, ζ) + 2∆Nrd(b))).

We want to use these calculations to describe Green functions for the unitary special cycles,
and thereby define classes in the first arithmetic Chow group of CB . One technical hiccup,
however, is that the cycles are defined over ok and not Z. The following lemma assures us that
the machinery of arithmetic Chow groups continues to operate after base change to ok.

Lemma 3.5. The base change CB/ok := CB/Z×Z Spec(ok) is an arithmetic surface over Spec(ok)
in the sense of § 2.1: it is regular of dimension two, and proper and flat over Spec(ok). Moreover,
CB/ok is smooth over Spec(ok[D

−1
B ]).

Proof. The only non-obvious point is regularity. Note that Spec(ok) is smooth over SpecZ[∆−1],
and recall that CB/Z is smooth over SpecZ[D−1

B ]. Since (DB,∆) = 1, every point x ∈ Spec(Z) has
an open neighbourhood U such that at least one of CB/Z×U or Spec(ok)×U is smooth over U .
Since regularity is a local property and smooth base changes preserve regularity, it follows that
CB/ok is regular. 2

For every m > 0 and η ∈ R>0, we define an arithmetic class

Ẑ(m,φ, η) := (Z(m,φ),Gru(m,φ, η)) ∈ ĈH1
R(CB/ok), (3.10)

where the Green functions

Gru(m,φ, η) = (Gru(m,φ, η)σ0 ,Gru(m,φ, η)σ1)

are given as follows: set

Gru(m,φ, η)σ0(ζ) :=
1

|o×k |
∑

[a]∈Cl(k)

∑
y∈Ω+(m,a,φ)

Gr+
φ ((N(a)η)1/2y, ζ)

+
∑

y∈Ω−(m,a,φ)

Gr−φ ((N(a)η)1/2y, ζ) (3.11)

and, if ι : CB/ok(Cσ1) → CB/ok(Cσ0) is the map induced by complex conjugation,

Gru(m,φ, η)σ1 := ι∗Gru(m,φ, η)σ0 .

Note that when m < 0, the same formula (3.11) defines a smooth function on CB (Cσ0), and
so in this case we may also define classes

Ẑ(m,φ, η) := (0,Gru(m,φ, η)) ∈ ĈH1
R(CB/ok). (3.12)

Remark 3.6. The normalizing factor (N(a))1/2 appears in the arguments of the functions Gr± in
(3.11) because we choose to work with vectors in B, rather than the Hermitian space Hom(a, B).
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4. The Shimura lift, and statement of the main theorem

4.1 The Shimura lift via theta series

In this section, we rapidly recall the construction of the Shimura lift [Shi73], which is an operation

taking modular forms of half-integral weight to modular forms of even integral weight. Rather

than using Shimura’s original approach, however, we shall consider the reformulation due to

Shintani [Shi75] and Niwa [Niw75], who show that one can recover the Shimura lift via integration

against a specific theta kernel. This approach has the advantage of being readily generalized to

forms that are non-holomorphic.

We begin by recalling the construction of the Niwa–Shintani theta kernel. Fix an integer

N > 0, a squarefree positive integer t, and consider the quadratic form on R3 determined by the

matrix

Q =
2

Nt

 −2
1

−2

 .

Let L = Z⊕NtZ⊕ (Nt/4)Z, which is an even self-dual lattice for the form Q.

There is an action of SL2(R) on R3, given as follows: for g ∈ SL2(R), put g · (x1, x2, x3) =

(x′1, x
′
2, x
′
3), where (

x′1 x′2/2

x′2/2 x′3

)
= g

(
x1 x2/2
x2/2 x3

)
gt.

This action induces an isomorphism SL2(R)/{±Id} ' SO(Q).

Finally, for any positive integer λ, define the Schwarz function fλ ∈ S(R3) to be

fλ(x1, x2, x3) := (x1 − ix2 − x3)λ exp

(
− 2π

Nt
(2x2

1 + x2
2 + 2x2

3)

)
.

Definition 4.1 (Niwa–Shintani theta kernel). Suppose N , t, and λ are positive integers, and

t is squarefree. Let χ be a Dirichlet character modulo N , and set κ = 2λ + 1. For τ = u + iv,

w = ξ + iη ∈ H, define the Niwa–Shintani theta kernel of parameter t to be

ΘNS(τ, w) := (4η)−λ v−κ/4
∑
x∈L

χt(x1){ω(στ )fλ}(σ−1
4w · x),

where:

(a) χt(a) := χ(a)(−1/a)λ(t/a), where (·/·) is the (modified) Kronecker symbol, cf. Appendix A

of [Cip83];

(b) ω is the Weil representation for the dual pair (SL2, O(Q));

(c) στ =

(
v1/2 uv−1/2

v−1/2

)
;

(d) and σ4w =

(
2η1/2 2ξη−1/2

η−1/2/2

)
.

It follows from the properties of the Weil representation that ΘNS is a modular form of

weight κ/2 as a function of τ , for the congruence group Γ0(4Nt) with character χ(Nt/·).
As a function of w, the conjugate of the theta kernel ΘNS is a modular form of weight

2λ = κ− 1, with level 2Nt and character χ2.
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To recover Shimura’s lift, it turns out that one needs to apply a Fricke involution (normalized
to take into account the half-integral weight) to both variables; following the notation of [Cip83],
define

Θ#
NS(τ, w) := ΘNS |W (4Nt)|W (2Nt)

= 2−2λ−1/2(Nt)−3λ/2−1/4(−iτ)−κ/2(w)−2λ ΘNS

( −1

4Ntτ
,
−1

2Ntw

)
.

Definition 4.2 (Shimura lift). Suppose that G ∈ Mκ/2(4N,χ), and let Gt(τ) := G(tτ) ∈
Mκ/2(4Nt, χ(t/·)). We define the Shimura lift of G to be the function

Sht(G)(w) := C(λ)

∫
Γ0(4Nt)\H

vκ/2 Gt(τ) Θ#
NS(τ, w) dµ(τ), (4.1)

whenever the integral is defined; here λ = (κ− 1)/2 and C(λ) = (−1)λ23λ−2(tN)−λ/2−1/4.

We will also need a Poincaré series expression for the Niwa–Shintani theta kernel. The proof
amounts to making the necessary straightforward modifications to the argument in [Koj95, § 3],
where an analogous statement for the ‘untwisted’ theta kernel appears; we omit the argument
here, and refer the reader to [San12, Theorem 4.4] for details.

Theorem 4.3. For any integer µ > 0, τ = u+ iv ∈ H, and α ∈ R, define a theta function

θµ(τ, α) := (2
√

2π)−µ v−µ/2
∑
`∈Z

Hµ(2
√

2πv `)e(τ`2 + 2α`),

where e(z) = e2πiz and Hµ is the Hermite polynomial

Hµ(x) = (−1)µex
2/2 (d/dx)µ(e−x

2/2).

Then, for w = ξ + iη ∈ H,

Θ#
NS(τ, w) = C

λ∑
µ=0

(
λ

µ

)
4µ η1−µ

∑
m∈Z

χt(m) mλ−µ

×
∑

γ∈Γ∞\Γ0(4Nt)

=(γτ)µ−λ

χt(γ)jκ/2(γ, τ)
exp

(
− πη

2m2

4=(γτ)

)
θµ(γτ,−ξm/2),

where C = (−1)λ2−4λ(tN)λ/2+1/4, and χt(γ) = χt(d) when γ =
(
a b
c d

)
∈ Γ0(4Nt).

4.2 The unitary generating series and the main theorem
Recall that for m ∈ Z with m 6= 0, and any η ∈ R>0 we have constructed classes

Ẑ(m,φ, η) = (Z(m,φ),Gru(m,φ, η)) ∈ ĈH1
R(CB/ok),

as in (3.10) and (3.12); by convention, we set Z(m,φ) = 0 when m < 0.
We also require the following rescaled variants of these cycles: let

Ẑ∗(m,φ; η) = (Z∗(m,φ),Gru∗(m,φ, η)), (4.2)

where

Z∗(m,φ) := Z
(

m

(|m|, DB)
, φ

)
,
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and

Gru∗(m,φ, η) := Gru
(

m

(|m|, DB)
, φ, (|m|, DB)1/2 · η

)
.

Note that if (|m|, DB) = 1, then Ẑ∗(m,φ, η) and Ẑ(m,φ, η) coincide.
It remains to define the ‘constant term’ Ẑ(0, η). It is worth pointing out that there is a unique

value for the constant term which makes our main theorem true, and this is what prompts our
definition; unfortunately, I am unaware of an a priori reason for this term to have the precise
value that it does.

To start, let χk denote the Dirichlet character associated to k, so that for a prime p, we have

χk(p) =


1 if p is split,

0 if p is ramified,

−1 if p is inert.

Consider the character χ′ obtained by induction to level 4DB|∆|; that is,

χ′(a) =

{
0 if (a, 4DB|∆|) > 1,

χk(a) if (a, 4DB|∆|) = 1.
(4.3)

We also define the Gauss sum

χ̌′(a) :=

4DB |∆|−1∑
h=0

χ′(h) exp

(
2πiah

4DB|∆|

)
and its ‘L-function’3

L(s, χ̌′) :=
∑
m>0

m−sχ̌′(m),

which is analytic (as written) in the half-plane Re(s) > 0. A straightforward calculation, cf.
[San12, Lemma 5.3.1], gives

L(s, χ̌′) = (2i
√
|∆|) ·

∏
p|DB

(1 + (p− 1)p−s)(1 + p−s) · L(s, χk).

Definition 4.4. Let ω̂ := ω̂o/ok denote the base change of (the class corresponding to) the Hodge

class ω̂o, and define the constant term to be

Ẑ(0, η) :=
i

2π
L(1, χ̌′) [ω̂ + (2 log(η) +A) · 1̂],

where the class 1̂ = (0,1) corresponds to the constant function 1, and

A = log(4D3
B|∆|3/π)− γ − 2

L′(1, χ̌′)

L(1, χ̌′)
;

here γ is the Euler–Mascheroni constant.

Finally, we arrive at the definition for the unitary generating series.

3 Note χ̌′ is not a Dirichlet character, so L(s, χ̌′) is not an L-function in any meaningful sense.
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Definition 4.5. Let

Φ̂u(τ) := Ẑ(0, v) +
1

4h(k)

∑
m 6=0

∑
[φ]∈Opt /O×,1B

(Ẑ(m,φ, v) + Ẑ∗(m,φ, v))qm,

where τ = u + iv ∈ H, q = exp(2πiτ), and the sum
∑

[φ] is over any set of representatives of

optimal embeddings taken up to O×,1B -conjugacy.

We shall also need to consider the base change

Φ̂o
/ok

(τ) :=
∑
n∈Z
Ẑo(n, v)/ok q

n
τ ∈ ĈH1

R(CB/ok)Jq±1
τ K,

cf. [GS90, Theorem 3.6.1]. Explicitly, the coefficients are given by

Ẑo(n, v)/ok := (Z o(n, v)/ok , (Gro(n, v)σ0 ,Gro(n, v)σ1)),

where the two Green functions are obtained by pulling back Gro(n, v) via the natural map

CB/ok(Cσi)
∐
CB/ok(Cσ1) → CB/Z(C).

Theorem 4.6 (Main theorem). Recall our standing assumptions: ∆ is squarefree and even, and
that each prime dividing DB is inert in k. Then we have an equality of q-expansions

Sh|∆|(Φ̂
o
/ok

)(w) = Φ̂u(w). (4.4)

Outline of proof. As discussed in the introduction, the proof begins with the decomposition

ĈH1
R(CB/ok) = (Vert⊕R ω̂)⊕ An⊕ M̃W,

together with a collection of ‘good’ spanning vectors for the first two summands, as in § 2.1; we
need to show that for each component of the orthogonal generating series, the Shimura lift of
that component is equal to the corresponding component of the unitary generating series.

First, we observe that the M̃W-component of an arithmetic cycle depends only on its
restriction to the generic fibre. Indeed, let Ẑ = (Z, gZ) ∈ ĈH1

R(CB )R, and write its decomposition

Ẑ = (ẐVert + Ẑω) + ẐMW + ẐAn

with respect to the previous display. Pairing against 1 = (0, 1) ∈ Vert yields

degZk = 〈Ẑ,1〉 = 〈Ẑω,1〉 = deg(Zω)k,

and so

Ẑω =
degZk
degωk

ω̂.

Recall that the ‘restrict-to-the-generic-fibre’ morphism resk induces an isomorphism

resk : M̃W
∼−→ Jac(CB ,k)(k)⊗ R, (Z, gZ) 7→ Zk

where Jac(CB ,k)(k) is the group of rational points of the Jacobian of the generic fibre of CB/ok ,

cf. § 2.1. In particular, for any class Ẑ = (Z, gZ) ∈ ĈH1
R(CB/ok), we have

reskẐMW = reskẐ − reskẐω = Zk−
degZk
degωk

ωk. (4.5)
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Thus, if the generic fibres of two arithmetic divisors are equal, then so are their M̃W-components.
In particular, [San13, Corollary 4.11] implies the desired Shimura lift relation for the M̃W
components; the same corollary implies that the Shimura lift relation holds for the vertical
components as well.

It remains to prove the Shimura lift formula for the analytic components and the Hodge
component (obtained by pairing against the Hodge class ω̂), which appear in §§ 6 and 7
respectively. 2

5. Conductors and Frobenius types of orthogonal special cycles

In this brief interlude, we prove a key relation between the two indexing sets Ωo(n) and Ω±(m,
a, φ) that appear in the complex uniformizations of the orthogonal and unitary special cycles,
at least in the special case that the squarefree part of n is equal to |∆|.

To start, recall that

Ωo(n) := {ξ ∈ OB | Trd(ξ) = 0,Nrd(ξ) = n}.

Suppose ξ ∈ Ωo(|∆|t2), for some positive integer t; it induces an embedding iξ : k → B determined
by the formula

iξ(t
√

∆) = ξ.

We define the conductor c(ξ) of ξ to be the smallest integer c such that

iξ(oc) ⊂ OB,

where

oc = Z[c
√

∆] ⊂ ok
is the (unique) order of conductor c. Note that since ξ ∈ OB, it follows that c(ξ) divides t, and
one furthermore has the property (c(ξ), DB) = 1, by valuation considerations. Finally, one easily
checks that c(ξ) only depends on the O×B-conjugacy class of ξ.

We may also consider the situation at primes dividing DB. Let p be such a prime, and recall
our standing assumption that p is inert in k. As the conductor c(ξ) is relatively prime to DB,
we may localize at p and take quotients in order to obtain an isomorphism

iξ,p : ok,p/(p)
∼−→ OB,p/(θ),

where θ ∈ OB is some fixed element such that θ2 = −DB. Now suppose φ : ok → OB is any
embedding, which gives another isomorphism

φp : ok,p/(p)
∼−→ OB,p/(θ).

As the source and target are both isomorphic to Fp2 , there are two possibilities: either φp = iξ,p,
or they differ by the Frobenius on Fp2 .

It will be convenient to keep track of the various possibilities, over the prime factors of DB,
in the following way. We define the Frobenius type ν(ξ, φ) of ξ relative to φ to be

ν(ξ, φ) :=
∏
p|DB

νp(ξ, φ) where νp(ξ, φ) :=

{
1 if φp = iξ,p,

p otherwise.
(5.1)
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The following lemma, which is a straightforward exercise in quaternion algebras, implies that
the Frobenius type is invariant under conjugation by O×B in both variables:

ν(ξ, φ) = ν(ε · ξ · ε−1, φ) = ν(ξ, Adε ◦ φ) for any ε ∈ O×B .

Lemma 5.1. Let p|DB, and ϕ,ϕ′ : ok,p → OB,p any two embeddings, with reductions

ϕ,ϕ′ : ok,p/(p) → OB,p/(θ).

Then ϕ = ϕ′ if and only if ϕ = Adt ◦ ϕ′ for some t ∈ Bp with ordpNrd(t) even. 2

All told, for a fixed embedding φ, we obtain a disjoint decomposition

Ωo(|∆|t2) =
∐
c|t

(c,DB)=1

∐
ν|DB

Ωo(|∆|t2, c, ν;φ)

where Ωo(|∆|a2, c, ν;φ) is the subset of elements ξ ∈ Ωo(|∆|a2) with c(ξ) = c and ν(ξ, φ) = ν.
The main proposition of this section is a comparison between Ωo(|∆|m2) and Ω±(m, a, φ),

whose definition we recall:

Ω±(m, a, φ) :=

{
y ∈ φ(a)−1OB

∣∣∣∣ (y, y)φ = ∆Nrd(y) = ± m

N(a)

}
.

There is a natural map

Ω+(m, a, φ) → Ωo(|∆|m2)

η 7→m · η−1φ(
√

∆)η

whose image lies in the subset

Ωo(|∆|m2)φ-pos := {ξ ∈ Ωo(|∆|m2) | ξ = mb−1φ(
√

∆)b for some b ∈ B× with (b, b)φ > 0}.

Proposition 5.2. Fix a set of representatives {a1, . . . , ah} of Cl(k), and consider the map

f :
h∐
i=1

Ω+(m, ai, φ) → Ωo(|∆|m2)φ-pos, η 7→ ξ = m · η−1φ(
√

∆)η.

Then for any ξ ∈ Ωo(|∆|m2)φ-pos, we have

#f−1(ξ) = |o×k | ρ
(

m

c(ξ) ν(ξ, φ) |∆|

)
where ρ(N) denotes the number of (integral) ok-ideals of norm N .

Proof. By definition,

f−1(ξ) =
h∐
i=1

{
b ∈ φ(ai)

−1OB | Nrd(b) =
m

∆N(ai)
, ξ = m · b−1φ(

√
∆)b

}
.

By assumption, there exists an element b0 ∈ B× such that ξ = m · b−1
0 φ(

√
∆)b0 and (b0, b0)φ =

∆Nrd(b0) > 0. Note that if b1 ∈ B× is another such element, then

b1 = φ(a)b0 for some a ∈ k×.
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Hence, fixing one such choice b0 ∈ B×, we have

#f−1(ξ) = #

h∐
i=1

{
a ∈ k | N(a) =

m

∆N(ai)Nrd(b0)
, φ(a) ∈ φ(ai)

−1OBb−1
0

}
= |o×k | ·#

{
a ⊂ k a fractional ideal | N(a) =

m

∆Nrd(b0)
, φ(a) ⊂ OBb−1

0

}
. (5.2)

We shall analyze the ideals appearing in the above display on a prime-by-prime basis. To start,
suppose p - DB. We may fix an isomorphism OB,p 'M2(Zp), and without loss of generality, we

may assume that φ(
√

∆) is identified with the matrix
(

1
∆

)
; note that the assumption that ∆

is even ensures that this is possible even when p = 2.
Let c = c(ξ) denote the conductor of ξ, and set

w(c)p :=

(
c

1

)
∈ OB,p.

One easily checks that the embedding φc := Adw(c)p ◦ φ has conductor c; in other words

φc(oc,p) = φc(kp) ∩ OB,p.
By assumption, the same is true for the embedding iξ,p. Hence, by [Vig80, Theorem 3.2], these
two embeddings differ by conjugation by an element of O×B,p, and so there exist elements ap ∈ kp
and up ∈ O×B,p such that

b0 = φ(ap) w(c)p up ∈ B×p .
Next, suppose p | DB, and so in particular p is inert in k. Fix a uniformizer Π ∈ OB,p. We

may then write
b0 = φ(ap) ·Πep · up ∈ B×p ,

where ap ∈ kp, ep is either 0 or 1, and u ∈ O×B,p. By Lemma 5.1,

ep = ordpνp(ξ, φ).

Let a0 := (
∏
p ap · ok,p) ∩ k denote the fractional ideal corresponding to the finite adele (ap).

By the product formula,

|Nrd(b0)| =
∏
p-DB

|n(ap) ·Nrd(w(c)p)|−1
p

∏
p|DB

|n(ap) ·Nrd(Π)ep |−1
p

= N(a0)
∏
p-DB

|Nrd(w(c)p)|−1
p

∏
p|DB

|Nrd(Π)ep |−1
p

= N(a0) · c · ν(ξ, φ).

Thus, replacing the ideals a appearing in (5.2) by a0 · a, and recalling that Nrd(b) < 0 by
assumption,

#f−1(ξ) = |o×k | ·#
{
a ⊂ k | N(a) =

m

|∆|c(ξ)ν(ξ, η)
, φ(a) ⊂ OB,pw(c)−1

p for all p - DB,

and φ(a) ⊂ OB,pΠ−ep for all p|DB

}
.

Finally, it remains to check that the ideals appearing in the above display are in fact integral.
Indeed, one checks locally that for such an ideal a, we have φ(a) ⊂ OB,p for all primes p: when
p|DB, this follows from valuation considerations, and when p -DB, this follows from the particular
choice of w(c)p. Hence, φ(a) ⊂ OB, and since φ is optimal, it follows that a ⊂ ok. 2
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Similarly, if we set

Ωo(|∆|m2)φ-neg := {ξ ∈ Ωo(|∆|m2) | ξ = mb−1φ(
√

∆)b for some b ∈ B× with (b, b)φ < 0},
then we obtain a map

g :
∐
[a]

Ω−(m, a, φ) → Ωo(|∆|m2)φ-neg,

whose fibres, by the same argument as above, have cardinality

#g−1(ξ) = |o×k | ρ
(

m

c(ξ) ν(ξ, φ) |∆|

)
.

We also observe in passing that by the Noether–Skolem theorem,

Ωo(|∆|m2) = Ωo(|∆|m2)φ-pos
∐

Ωo(|∆|m2)φ-neg.

The following calculation will appear several times in the sequel, and so will be worthwhile
to state on its own.

Lemma 5.3. For any integer m > 0,∑
ν|DB

ρ

(
m

ν

)
=
∑
a|m

χ′(a),

where χ′ is the character appearing in (4.3).

Proof. First, we claim that for any integer N > 0, we have

ρ(N) =
∑
a|N

χk(a).

Indeed, both sides are multiplicative, so it suffices to verify this formula when N is a power of a
prime p. The formula is easily verified by considering separately the cases where p is inert, split,
or ramified in k.

Next, we note that if ordpN is even for every prime p|DB, then∑
a|N

χk(a) =
∑
a|N

(a,DB)=1

χk(a) =
∑
a|N

χ′(a).

Finally, we observe that for a given m, there is a unique ν∗|DB such that ordp(m/ν
∗) is even for

all p|DB. If ν 6= ν∗, then ρ(m/ν) = 0, because an inert prime occurs to an odd power in m/ν.
Thus, ∑

ν|DB

ρ(m/ν) = ρ(m/ν∗) =
∑

a|(m/ν∗)

χ′(a) =
∑
a|m

χ′(a). 2

6. Proof of main theorem: analytic components

In this section, we prove the Shimura lift formula for the ‘analytic’ components of our generating
series. We begin by briefly recalling how these components are defined. Let f = (fσ0 , fσ1) denote
a pair of smooth functions on CB/ok(Cσ0) and CB/ok(Cσ1), respectively, such that

fσ1 = ι∗fσ0 (6.1)
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and ∫
CB (Cσi )

fσi · c1(ω̂)σi = 0, (6.2)

where c1(ω̂)σi is the first Chern form of the Hodge class ω̂. We obtain a class f̂ := (0, f) ∈
ĈH1

R(CB/ok). If Ẑ = (Z, g(Z)) is any arithmetic class, then

〈Ẑ, f̂〉 =
1

2

1∑
i=0

∫
CB (Cσi )

fσi · ωσi(Z),

where ωσi(Z) is the smooth (1, 1)-form on CB (Cσi) such that

ddcgσi(Z) + δZ(Cσi ) = [ωσi(Z)].

As gσ1(Z) = ι∗gσ0(Z) we find that

〈Ẑ, f̂〉 =

∫
CB (Cσ0 )

fσ0 · ωσ0(Z). (6.3)

Applying this discussion to the orthogonal generating series, we have that for τ = u+ iv ∈ H,

〈Φ̂o
/ok

(τ), f̂〉 =
∑
n∈Z
n6=0

(∫
CB (Cσ0 )

fσ0 · ωσ0(Zo(n, v))

)
qn. (6.4)

We recall ωσ0(Zo(n, v)) has the following explicit form, cf. (2.10),

ωσ0(Zo(n, v)) = ψo(n, v) · c1(ω̂),

in terms of the uniformization CB (Cσ0) = [O×,1B \H]. Here ψo(n, v)(z) is the O×,1B -invariant
function on H given by

ψo(n, v)(z) =
∑

x∈Ωo(n)

(4πv{Ro(x, z) + 2Nrd(x)} − 1)e−2πvRo(x,z), (6.5)

where Ro(·, z) is the majorant determined by z as in (2.8).
Turning now to the unitary generating series, recall that for m ∈ Z with m 6= 0 and y ∈ R>0,

we had defined classes Ẑ(m,φ, η), and their re-scaled variants Ẑ∗(m,φ, η) (cf. (4.2)), where the
corresponding smooth (1, 1)-form ωσ0(Ẑ(m,φ, η)) can be written as follows:

ωσ0(Ẑ(m,φ, η)) =
1

|o×k |
ψu(m,φ, η) · c1(ω̂).

Here, for z ∈ H and η ∈ R>0, we recall that

ψu(m,φ, η) =
1

2

∑
[a]∈Cl(k)

{ ∑
y∈Ω+(m,a,φ)

[2πN(a)η(Rφ(y, z) + 2∆Nrd(y))− 1]e−2πN(a)ηRφ(µy,z)

+
∑

y∈Ω−(m,a,φ)

[2πN(a)ηRφ(y, z)− 1]e−2πN(a)η(Rφ(y,z)+2∆Nrd(y))

}
. (6.6)

By (6.2), we have 〈Ẑ(0, v), f̂〉 = 0, and so

〈Φ̂u(τ), f̂〉 =
1

4h(k)

∑
m∈Z
m 6=0

∑
[φ]

(∫
CB (C)

fσ0 · {ωσ0(Ẑ(m,φ, v)) + ωσ0(Ẑ∗(m,φ, v)}
)
qm.
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Lemma 6.1. Suppose φ : ok → OB is an optimal embedding, m ∈ Z, and µ ∈ OB such that
Nrd(µ) = (m,DB). Set φ′ := Adµ−1 ◦ φ, and note that φ′ is again optimal. Then:

(i) Z∗(m,φ′)k = Z(m,φ)k and ∑
[φ]∈Opt /O×,1B

Z(m,φ)k =
∑
[φ]

Z∗(m,φ)k

as cycles on CB /k;
(ii) Gru∗(m,φ′, η) = Gru(m,φ, η); and

(iii) ωσ0(Ẑ∗(m,φ′, η)) = ωσ0(Ẑ(m,φ, η)).

Proof. (i) For any fractional ideal a, left-multiplication by µ gives a bijection

Ω±(m/(m,DB), a, φ′)
∼−→ Ω±(m, a, φ), y 7→ µ · y. (6.7)

Furthermore, the map

D(Bφ′

R )
∼−→ D(Bφ

R), ζ 7→ µζ

is an isomorphism that identifies Dy = y⊥ ∈ D(Bφ′

R )− with Dµ·y = (µy)⊥ ∈ D(Bφ
R)− when

y ∈ Ω+(. . . ), and identifies Dy = spanφ′(kR)(y) with Dµy = spanφ(kR)(µy), when y ∈ Ω−(. . . ).
The first claim in the lemma then follows immediately from the complex uniformizations. The
second claim follows by noting that the assignment φ 7→ Adµ−1 ◦φ acts as a permutation on the

set of O×,1B classes of optimal embeddings.
(ii) Set d := (|m|, DB) for notational simplicity. Recall that for a point z ∈ H and a vector

b ∈ BR, we had defined the majorant

Rφ(b, z) := −2(prζ(z)(b), prζ(z)(b))φ,

where ζ(z) := {v ∈ BR | vJz = −φ(Ik)v} is the φ(kR)-stable negative line in BR corresponding
to z, and prζ(z) is the orthogonal projection onto this line. A direct calculation reveals that for
φ′ = Adµ−1 ◦ φ, we have

Rφ′(b, z) = Nrd(µ−1)Rφ(µ · b, z) = d−1Rφ(µ · b, z).
Thus,

Gru∗(m,φ′, η)(z) =
1

|o×k |
∑

[a]∈Cl(k)

[ ∑
y∈Ω+(m/d,a,φ′)

β1

(
2πN(a)η

d
·Rφ′(y, z)

)

+
∑

y∈Ω−(m/d,a,φ′)

β1

(
2πN(a)η

d
· (Rφ′(y, z) + 2∆Nrd(y))

)]

=
1

|o×k |
∑

[a]∈Cl(k)

[ ∑
y∈Ω+(m/d,a,φ′)

β1(2πN(a)η ·Rφ(µy, z))

+
∑

y∈Ω−(m/d,a,φ′)

β1(2πN(a)η · (Rφ(µy, z) + 2∆Nrd(µy)))

]
= Gru(m,φ, η),

where we apply the bijection (6.7) in the last line.
(iii) This follows immediately from parts (i) and (ii), via Green’s equation (2.1). 2
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After summing over O×,1B -classes of optimal embeddings, the f̂ -component of the unitary
generating series becomes (for w = ξ + iη ∈ H and qw = e2πiw)

〈Φ̂u(w), f̂〉 =
1

2h(k)

∑
m∈Z
m6=0

∑
[φ]

(∫
CB (Cσ0 )

fσ0 · ωσ0(Ẑ(m,φ, η))

)
qmw . (6.8)

The main theorem of this section equates the Shimura lift of the f -component of Φ̂o with that of
Φ̂u. In fact, we shall prove something a priori slightly stronger, namely that the f̂ -components
of these two generating series arise by integrating fσ0 against certain theta functions, and that
these theta functions are related by the Shimura lift.

Let
Θo(τ, z) :=

∑
n∈Z
n6=0

ψo(n, v)(z) qnτ , τ = u+ iv (6.9)

and

Θu(w, z) :=
1

2h(k)|o×k |
∑
m∈Z
m 6=0

∑
[φ]

ψu(m,φ, η)(z) qmw , w = ξ + iη.

The function Θo(τ, z) can be shown to be a theta kernel arising via the Weil representation
for the dual pair (O(1, 2),SL2), cf. [KRY06, (4.4.5)]. In particular, it is a modular form in the
τ -variable of weight 3/2. Although we will not pause to do so here, it can be also be shown that
Θu arises via restriction of a theta kernel attached to (O(2, 2), SL2) of weight two.

Since the sets Ω±(m, a, φ) appearing in Proposition 3.3 are empty unless |∆| divides m,

Θu(w, z) =
1

2h(k)|o×k |
∑
m∈Z
m 6=0

∑
[φ]

ψu(|∆|m,φ, η)(z) q|∆|mw

=
1

2h(k)|o×k |
∑
m∈Z
m 6=0

(∑
[φ]

ψu(|∆|m,φ, η)(z)e−2π|∆|mη
)
e2πi|∆|mξ. (6.10)

As the sums defining Θo and Θu are absolutely convergent, we have

〈Φ̂o(τ), f̂〉 =

∫
CB (Cσ0 )

fσ0(z) ·Θo(τ, z)c1(ω̂)

and

〈Φ̂u(w), f̂〉 =

∫
CB (Cσ0 )

fσ0(z) ·Θu(w, z)c1(ω̂).

Theorem 6.2. Suppose ∆ < 0 is squarefree and even, and every prime dividing DB is inert in k.
Then

Sh|∆|Θ
o(·, z)(w) = Θu(w, z).

Proof. As Θo(τ, z) is a non-holomorphic form in the τ variable (of weight 3/2, level Γ0(4DB),
and trivial character), its Shimura lift is given by integrating against the Niwa–Shintani theta

kernel Θ#
NS ; in the notation of § 4.1, we have N = DB, λ = 1, t = |∆| and χt = χ′

Sh|∆|Θ
o(·, z)(w) = C ·

∫
Γ0(4DB |∆|)\H

v3/2 Θo|∆|(τ, z) Θ#
NS(τ, w) dµ(τ)
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where C = −2(|∆|DB)−3/4 and the measure dµ(τ) = du · dv/v2 is the standard hyperbolic
measure on H. Substituting the Poincaré series expansion for Θ#

NS of Proposition 4.3 (formally
for now, we will justify this step momentarily), and applying the usual ‘unfolding’ trick, we have

Sh|∆|Θ
o(·, z)(w) =

1

8

∫
Γ∞\H

v3/2 Θo(|∆|τ, z)
[∑
m∈Z

χ′(m)
1∑

µ=0

4µ
(
ηm

v

)1−µ

× exp

(
−πη

2m2

4v

)
θµ(τ,−ξm/2)

]
dµ(τ)

=
1

8

∫ ∞
0

v−1/2 exp

(
−πη

2m2

4v

)[∑
m∈Z

χ′(m)

1∑
µ=0

4µ
(
ηm

v

)1−µ]
×
(∫ 1

0
Θo(|∆|τ, z) θµ(τ,−ξm/2) du

)
dv (6.11)

where
θµ(τ,−ξm/2) =

∑
`∈Z

`µe2πi(τ`2−ξ`m)

for µ = 0, 1. A straightforward estimate reveals that (6.11) is absolutely convergent, and so in
particular our interchanges of summations and integrals is justified.

Computing first the integral on u, we obtain∫ 1

0
Θo(|∆|(u+ iv), z) θµ(u+ iv,−ξm/2) du

=
∑
`∈Z

`µe−2πv`2+2πiξ`m

∫ 1

0
Θo(|∆|(u+ iv), z)e−2πi`2u du

=
∑
`∈Z

`µe−4πv`2+2πiξ`m

{
ψo(|∆|n, |∆|v)(z) if `2 = |∆|n for some n 6= 0,

0 otherwise.

Since |∆| is squarefree, only those ` with |∆| dividing ` will contribute to the previous display.
Thus

Sh|∆|Θ
o(·, z)(w) =

1

8

∫ ∞
0

v3/2
∑
m∈Z

χ′(m)
1∑

µ=0

4µ
(
ηm

v

)1−µ
exp

(
−πη

2m2

4v

)
×
∑
`∈Z
` 6=0

(|∆|`)µe−4πv|∆|2`2+2πiξ|∆|`m ψo(|∆|`2, |∆|v)(z)
dv

v2
.

Exchanging the summations with the integral, we obtain

Sh|∆|Θ
o(·, z)(w) =

1

8

∑
m,`∈Z

χ′(m)

∫ ∞
0

v−1/2

[ 1∑
µ=0

(|∆|`)µ4µ
(
ηm

v

)1−µ]
× exp

(
−πη

2m2

4v
− 4πv|∆|2`2

)
ψo(|∆|`2, |∆|v)(z) dv · e2πim`|∆|ξ

=
1

4

∑
`∈Z
6̀=0

∑
0<m||`|

χ′(m)

∫ ∞
0

v−1/2

[ 1∑
µ=0

( |∆|`
m

)µ
4µ
(
ηm

v

)1−µ]
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× exp

(
−πη

2m2

4v
− 4πv|∆|2`2

m2

)
ψo(|∆|`2/m2, |∆|v)(z) dv · e2πi`|∆|ξ

=
∑
`∈Z
` 6=0

( ∑
0<m||`|

χ′(m) · Io(`,m, η)(z)

)
· e2πi`|∆|ξ, (6.12)

where

Io(`,m, η)(z) :=
1

4

∫ ∞
0

v−1/2

[ 1∑
µ=0

( |∆|`
m

)µ
4µ
(
ηm

v

)1−µ]
× exp

(
−πη

2m2

4v
− 4πv|∆|2`2

m2

)
ψo(|∆|`2/m2, |∆|v)(z) dv

=
1

4

∑
x∈Ωo(|∆|`2/m2)

∫ ∞
0

v−1/2

[ 1∑
µ=0

( |∆|`
m

)µ
4µ
(
ηm

v

)1−µ]

× exp

(
−πη

2m2

4v
− 2π|∆|v(Ro(x, z) + 2Nrd(x))

)
×{4π|∆|v[Ro(x, z) + 2Nrd(x)]− 1} dv.

Now for each x, this integral is a sum of Bessel K-functions of half-integral weight, which can be
evaluated explicitly with the aid of the tables of Gradshteyn and Ryzhik, cf. [GR95, (8.342.(vi))
and (8.468)]. In particular, for a, b ∈ R>0, we have the following relations:∫ ∞

0
v−3/2e−(π/2)(av+b/v) dv =

√
2

b
e−π
√
ab (6.13)∫ ∞

0
v−1/2e−(π/2)(av+b/v) dv =

√
2

a
e−π
√
ab, (6.14)∫ ∞

0
v1/2e−(π/2)(av+b/v) dv =

√
2(1 + π

√
ab)

πa3/2
e−π
√
ab. (6.15)

After applying these formulae, we arrive at the expression

Io(m, `, η)(z) =
1

2

∑
x∈Ωo(|∆|`2/m2)

(
πηm

(√
2|∆|{Ro(x, z) + 2Nrd(x)}1/2 + 2|∆| `

m

)
− 1

)
× exp(−

√
2|∆|πm{Ro(x, z) + 2Nrd(x)}1/2η).

Replacing x by m · x in the preceding sum then yields

Io(m, `, η)(z) =
∑

x∈Ωo(|∆|`2)
c(x)|(`/m)

1

2
(πη(

√
2|∆|{Ro(x, z) + 2Nrd(x)}1/2 + 2|∆|`)− 1)

× exp(−
√

2|∆|π{Ro(x, z) + 2Nrd(x)}1/2η)

=:
∑

x∈Ωo(|∆|`2)
c(x)|(`/m)

Io(`, x, η)(z).
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Now, employing Lemma 5.3, we have∑
m||`|

χ′(m)Io(`,m, η)(z) =
∑
m||`|

χ′(m)
∑

x∈Ωo(|∆|`2)
c(x)|(`/m)

Io(`, x, η)(z)

=
∑
c||`|

( ∑
m||`|/c

χ′(m)

) ∑
x∈Ωo(|∆|`2)
c(x)=c

Io(`, x, η)(z)

=
∑
c||`|

(∑
ν|DB

ρ

( |`|
νc

)) ∑
x∈Ωo(|∆|`2)
c(x)=c

Io(`, x, η)(z)

=
1

2h(k)|o×k |
∑
[φ]

∑
c||`|

∑
ν|DB

|o×k |ρ
( |∆`|
|∆|νc

) ∑
x∈Ωo(|∆|`2)
c(x)=c
ν(x,φ)=ν

Io(`, x, η)(z). (6.16)

Note that for each x occurring in the above sum, the term |o×k |ρ(·) that precedes it counts the

number of elements y ∈∐[a] Ω±(|∆|`, a, φ) such that

x = |`| · y−1φ(
√

∆)y,

as in Proposition 5.2.

The following lemma, whose proof appears at the end of this section, provides the key link

between the majorants associated to x and y in this situation.

Lemma 6.3. Suppose y ∈ B×R and

x = t · y−1φ(
√

∆)y

for some t ∈ R×, and embedding φ : k → B. Then for any z ∈ H,

Ro(x, z) + 2Nrd(x) =
2t2

|∆|Nrd(y)2
(Rφ(y, z) + ∆Nrd(y))2. 2

We first consider the case ` > 0. Choose y ∈ Ω+(`|∆|, a, φ), so that

Nrd(y) =
|∆|`

∆N(a)
= − `

N(a)
.

If we set x = ` · y−1φ(
√

∆)y ∈ Ωo(|∆|`2)φ-pos, then applying the lemma, we have

Io(`, x)(z) =
1

2

(
πη

(√
2|∆|

{√
2N(a)

|∆|1/2 · (Rφ(y, z) + ∆Nrd(y))

}
+ 2N(a)∆Nrd(y)

)
− 1

)
× exp

(
−
√

2|∆|π
{√

2N(a)

|∆|1/2 · (Rφ(y, z) + ∆Nrd(y))

}
η

)
=

1

2
{2πN(a)η[Rφ(y, z) + 2∆Nrd(y)]− 1}e−2πN(a)η[Rφ(y,z)+∆Nrd(y)].
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Similarly, if we choose y ∈ Ω−(`|∆|, a, φ), and set x = ` · y−1φ(
√

∆)y ∈ Ωo(|∆|`2)φ-neg, then we
obtain

Io(`, x)(z) =
1

2

(
πη

(√
2|∆|

{√
2N(a)

|∆|1/2 · (Rφ(y, z) + ∆Nrd(y))

}
− 2N(a)∆Nrd(y)

)
− 1

)
× exp

(
−
√

2|∆|π
{√

2N(a)

|∆|1/2 · (Rφ(y, z) + ∆Nrd(y))

}
η

)
=

1

2
{2πN(a)ηRφ(y, z)− 1}e−2πN(a)η[Rφ(y,z)+∆Nrd(y)].

Returning now to (6.16), we may replace the sum on x by the sum over elements y ∈ Ω±(. . . )
to obtain (for ` > 0)∑

m||`|

χ′(m)Io(`,m)(z) =
1

2h(k)|o×k |
∑
[a]

∑
[φ]

×
{ ∑
y∈Ω+(|∆|`,a,φ)

1

2
{2πN(a)η[Rφ(y, z) + 2∆Nrd(y)]− 1}e−2πN(a)η[Rφ(y,z)+∆Nrd(y)]

+
∑

y∈Ω−(|∆|`,a,φ)

1

2
{2πN(a)ηRφ(y, z)− 1}e−2πN(a)η[Rφ(y,z)+∆Nrd(y)]

}
=

1

2h(k)|o×k |
ψu(|∆|`, η)(z)e−2π|∆|`η.

Hence, comparing (6.12) and (6.10), we see that if ` > 0, then the |∆|`th Fourier coefficients of
Sh|∆|Θ

o and Θu are equal. A nearly identical calculation reveals that the same holds true when
` < 0, concluding the proof of the theorem.

Proof of Lemma 6.3. We first show that the lemma holds for a specific point z0 ∈ H. Given the
embedding φ : k → B, we may write

B = φ(k) + ϑφ(k)

for some element ϑ ∈ B such that ϑι = −ϑ and ϑφ(a) = φ(a′)θ for all a ∈ k. Note that ϑ2 > 0
since B is indefinite. If we write

y = φ(a) + ϑφ(b)

with a, b ∈ kR, then

x= t · y−1φ(
√

∆)y

=
t

Nrd(y)
(φ(
√

∆)(N(a) + ϑ2N(b))− 2ϑφ(ab
√

∆)).

Let z0 ∈ H denote the point such that Jz0 = −φ(Ik), so that the orthogonal complement (with
respect to the reduced norm form) is the negative plane

J⊥z0 = ϑφ(kR) ⊂ Bo
R = {v ∈ BR | Trd(b) = 0}.

Applying the definition of Ro(x, z), cf. (2.8), we have

Ro(x, z0) + 2Nrd(x) =
2t2|∆|

Nrd(y)2
(4N(a)N(b)ϑ2 + Nrd(y)2).
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On the other hand, the negative kR-complex line ζ0 ∈ D(Bφ
R)− corresponding to z0 is given by

ζ0 = {v ∈ BR | vJz0 = −φ(Ik)v} = φ(kR),

so
Rφ(y, z) + ∆Nrd(y) = 2|∆|N(a) + ∆Nrd(y).

This immediately implies that

Ro(x, z0) + 2Nrd(x) =
2t2

|∆|Nrd(y)2
(Rφ(y, z0) + ∆Nrd(y))2;

i.e. the lemma holds at z0. Next, we observe that for any γ ∈ B×,1R ' SL2(R), we have

Ro(x, γ · z0) = Ro(γ−1xγ, z0) and Rφ(y, γ · z0) = Rφ(yγ, z0),

and so by translation, the lemma holds for all z ∈ H. 2

7. Proof of main theorem: the Hodge component

We begin by recalling the following formula of Bost for the height pairing. Suppose

L̂ = (L, (‖ · ‖σi)i=0,1) ∈ P̂ic(CB/ok),

is a metrized line bundle, and denote its image in ĈH1
R(CB/ok) by the same symbol. Then the

pairing against an arithmetic divisor Ẑ = (Z,Gr(Z)) ∈ ĈH1
R(CB/ok)) can be expressed as

〈Ẑ, L̂〉= hL̂(Z) +
1

2

1∑
i=0

∫
CB (Cσi )

Grσi(Z) · c1(L̂)σi

= hL̂(Z) +

∫
CB (Cσ0 )

Grσ0(Z) · c1(L̂)σ0 ,

where hL̂(Z) is the arithmetic height of L̂ along Z, as in [Bos99, § 3.2.2]; note that hL̂(Z) depends
only on the cycle Z, and not its Green function. Thus, for τ = u+ iv ∈ H,

〈Φ̂o
/ok

(τ), ω̂〉 = 〈Ẑo(0, v), ω̂〉+
∑
n∈Z
n6=0

[hω̂(Zo(n)/ok) + κo(n, v)]qnτ ,

where

κo(n, v) :=

∫
CB (Cσ0 )

Gro,σ0(n, v)(z) c1(ω̂).

Similarly, for w = ξ + iη ∈ H, the Hodge component of the unitary generating series is

〈Φ̂u(w), ω̂〉= 〈Ẑ(0, η), ω̂〉+
1

4h(k)

∑
` 6=0

∑
[φ]

〈Ẑ(m,φ, η) + Ẑ∗(m,φ, η), ω̂〉 q`w

= 〈Ẑ(0, η), ω̂〉+
∑
6̀=0

(Hu(`, η) +Ku(`, η))e2πi`ξ, (7.1)

where

Hu(`, η) :=
1

4h(k)

∑
[φ]∈Opt

mod O×,1B

[hω̂ Z(`, φ) + hω̂ Z∗(`, φ)]e−2π`η
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and (using Lemma 6.1)

Ku(`, η) :=
1

4h(k)

(∫
CB (Cσ0 )

∑
[φ]∈Opt

mod O×,1B

(Gru,σ0(`, φ, η) + Gru∗,σ0(`, φ, η))c1(ω̂)

)
e−2π`η

=
1

2h(k)

(∫
CB (Cσ0 )

∑
[φ]∈Opt

mod O×,1B

Gru,σ0(`, φ, η) c1(ω̂)

)
e−2π`η. (7.2)

Theorem 7.1. Assume |∆| is squarefree and even and every prime dividing DB is inert in k.
Then we have an equality of q-expansions:

Sh|∆| 〈Φ̂o
/ok

(·), ω̂〉 (w) = 〈Φ̂u(w), ω̂〉.
Proof. The proof begins in the same manner as the proof of Theorem 6.2: the generating series
〈Φ̂o

/ok
, ω̂〉 is a non-holomorphic modular form of weight 3/2, level 4DB, and trivial character,

and so its Shimura lift is given by integrating against the Niwa–Shintani theta kernel θ#
NS . We

wish to substitute the Poincaré series expansion for θ#
NS , as in Theorem 4.3, and apply the usual

unfolding trick. Doing so formally for the moment, we have

Sh|∆|Φ̂
o
ω̂(w) =

1

8

∫ ∞
0

∫ 1

0
v−1/2 Φ̂o

ω̂(|∆|τ)

[∑
m∈Z

χ′(m)

1∑
µ=0

4µ
(
ηm

v

)1−µ

× exp

(
−πη

2m2

4v

)
θµ(τ,−ξm/2)

]
du dv (7.3)

where C = −2(|∆|DB)−3/4 and

θµ(τ,−ξm/2) =
∑
`∈Z

`µe2πi(τ`2−ξ`m).

We have also used the abbreviation Φ̂o
ω̂(τ) = 〈Φ̂o

/ok
(τ), ω̂〉 for the Hodge component.

The Fourier coefficients of Φ̂o
ω̂(τ) were computed completely explicitly by Kudla, Rapoport

and Yang, cf. [KRY04, Theorem 8.8]. From their calculations, one can show that (7.3) is
absolutely convergent, and so the unfolding procedure above (as well as interchanges of
summations and integrations appearing in the sequel) are justified. Carrying out the integral
on u, we obtain∫ 1

0
Φ̂o
ω̂(|∆|(u+ iv)) θµ(u+ iv,−ξm/2) du

=
∑
`∈Z

`µe−2πv`2+2πiξ`m

∫ 1

0
Φ̂o
ω̂(|∆|(u+ iv))e−2πi`2u du

=
∑
`∈Z

`µe−4πv`2+2πiξ`m


〈Ẑo(0, v), ω̂〉 if ` = 0,

hω̂(Zo(|∆|n)) + κo(|∆|n, |∆|v) if `2 = |∆|n for some n > 0,

0 otherwise.

Note that only terms with |∆| dividing ` contribute above, and that the constant term only
appears when µ = 0. After an interchange of summation with integration, we may write

Sh|∆|Φ̂
o
ω̂(w) = Ao(η) +

∑
`∈Z
6̀=0

( ∑
0<m||`|

χ′(m) · (Ho(`,m, η) +Ko(`,m, η))

)
· e2πi`|∆|ξ, (7.4)
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where

Ao(η) :=
1

8

∫ ∞
0

v−1/2
∑
m∈Z

χ′(m) exp

(
−πη

2m2

4v

)(
ηm

v

)
· 〈Ẑo(0, v), ω̂〉 dv,

Ho(`,m, η) :=
1

4

∫ ∞
0

v−1/2

[ 1∑
µ=0

( |∆|`
m

)µ
4µ
(
ηm

v

)1−µ]
× exp

(
−πη

2m2

4v
− 4πv|∆|2`2

m2

)
hω̂(Zo(|∆|`2/m2)) dv, (7.5)

and

Ko(`,m, η) :=
1

4

∫ ∞
0

v−1/2

[ 1∑
µ=0

( |∆|`
m

)µ
4µ
(
ηm

v

)1−µ]
× exp

(
−πη

2m2

4v
− 4πv|∆|2`2

m2

)
κo(|∆|`2/m2, |∆|v) dv. (7.6)

To prove the theorem, we show that the Fourier expansions (7.1) and (7.4) coincide. We do this
over the next three subsections, by equating first the contributions from the ‘height terms’ (the
H terms), then the ‘Archimedean’ terms (the K terms) and in the final subsection, the constant
terms.

7.1 Height contributions
First, using the formulas (6.13) and (6.14) to calculate the integral on v in (7.5),

Ho(`,m, η) =
1

4
hω̂(Zo(|∆|`2/m2) · 2 (1 + sgn(`))e−2π|∆||`|η

=

{
hω̂(Zo(|∆|`2/m2) · e−2π|∆||`|η if ` > 0,

0 otherwise.

By [San13, Theorem 4.10], we have that if |∆| - `, then∑
[φ]∈Opt /O×,1B

Z(`, φ) + Z∗(`, φ) = 0,

and if ` = |∆|`′, then

1

4h(k)

∑
[φ]∈Opt /O×,1B

Z(`, φ) + Z∗(`, φ) =
∑
α|`′

χ′(α)Zo
(
|∆|(`

′)2

α2

)
/ok

; (7.7)

note that the quantity on the right-hand side is twice that appearing in [San13], since here we
have taken the sum on optimal embeddings modulo O×,1B , instead of O×B .

Thus, if ` < 0 or |∆| - `, then Hu(`, η) = 0. On the other hand, for any ` > 0, we have

Hu(`|∆|, η) =
1

4h(k)

∑
[φ]∈Opt

mod O×,1B

[hω̂ Z(`|∆|, φ) + hω̂ Z∗(`|∆|, φ)]e−2π`|∆|η

=
∑
α|`

χ′(α) hω̂(Zo(|∆|`2/α2))e−2π`|∆|η

=
∑
α|`

Ho(`, α, η),

as required.

1996

https://doi.org/10.1112/S0010437X14007507 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007507


Unitary cycles on Shimura curves and the Shimura lift II

7.2 Archimedean contributions
In [KRY04, Proposition 12.1], the quantity κo(|∆|`2/m2, |∆|v) appearing in (7.6) above is
computed to be

κo(|∆|`2/m2, |∆|v) =
∑

x∈Ωo(|∆|`2/m2)

modO×,1B

1

|Γx|
·
∫ ∞

0
e−4π|∆|2(`/m)2vs((s+ 1)1/2 − 1)

ds

s

= 2
∑

x∈Ωo(|∆|`2/m2)

modO×,1B

1

|Γx|
·
∫ ∞

1
exp[−4π|∆|2(`/m)2v(s2 − 1)]

s

s+ 1
ds,

where Γx = {γ ∈ O×,1B | γx = xγ}. Note that the right-hand side of this formula is twice the
value appearing in [KRY04, Proposition 12.1] because here we have taken the base change to ok;
we have also written our formula in terms of O×,1B -orbits, rather than O×B .

Substituting this expression into (7.6) and changing the order of integration, we find

Ko(`,m, η) =
1

2

( ∑
x∈Ωo(|∆|`2/m2)

mod O×,1B

|Γx|−1

)
Io(m, `, η),

where

Io(m, `, η) :=

∫ ∞
1

∫ ∞
0

v−1/2

[ 1∑
µ=0

( |∆|`
m

)µ
4µ
(
ηm

v

)1−µ]
× exp

(
−πη

2m2

4v
− 4πv|∆|2`2s2

m2

)
dv ·

(
s

s+ 1

)
ds.

The inner integral, which turns out to be independent of m, can be explicitly evaluated with the
aid of (6.13) and (6.14), yielding

Io(m, `, η) = Io(`, η) =

∫ ∞
1

2

(
1 +

sgn(`)

s

)
e−2π|∆|η|`|s s

s+ 1
ds.

From this, a straightforward calculation shows that

Io(`, η) =
1

π`|∆|η e
−2π|∆|`η if ` > 0, (7.8)

and

Io(`, η) =
1

π|`∆|η e
−2π|`∆|η − 4e2π|∆`|η

∫ ∞
1

e−4π|`∆|ηsds

s
if ` < 0. (7.9)

In summary, the Archimedean part of the |∆|`th Fourier coefficient of Sh|∆|Φ
o
ω̂ is∑

m||`|

χ′(m)Ko(`,m, η) =
1

2

(∑
m||`|

χ′(m)
∑

x∈Ωo(|∆|`2/m2)

mod O×,1B

|Γx|−1

)
Io(`, η).

We turn to the corresponding term Ku(`, η) for the unitary series, cf. (7.2). If |∆| does not
divide `, then Ω±(`, a, φ) = ∅ and so Ku(`, η) = 0 in this case. On the other hand, since a generic
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point in H has a stabilizer of order 2 under the action of O×,1B ,∫
CB (Cσ0 )

=

∫
[O×,1B \H]

=
1

2

∫
O×,1B \H

,

and so, applying the definitions for the Green functions,

Ku(|∆|`, η) =
e−2π`|∆|η

4h(k)|o×k |
·
∑
[φ]

∫
O×,1B \H

∑
[a]

[ ∑
y∈Ω+(|∆|`,a,φ)

β1(2πN(a)ηRφ(y, z))

+
∑

y∈Ω−(|∆|`,a,φ)

β1(2πN(a)η(Rφ(y, z) + 2∆Nrd(y)))

]
· c1(ω̂)

=
e−2π`|∆|η

2h(k)|o×k |
·
[∑

[φ]

∑
[a]

∑
y∈Ω+(|∆|`,a,φ)

mod O×,1B

∫
H
β1(2πN(a)ηRφ(y, z)) · c1(ω̂)

+
∑

y∈Ω−(|∆|`,a,φ)

mod O×,1B

∫
H
β1(2πN(a)η(Rφ(y, z) + 2∆Nrd(y))) · c1(ω̂)

]

=
1

2h(k)|o×k |
·
∑
[φ]

∑
[a]

∑
y∈Ω±(|∆|`,a,φ)

mod O×,1B

Iφ(y, η), (7.10)

where

Iφ(y, η) := e−2π`|∆|η
∫
H
β1(2πN(a)ηRφ(y, z)) · c1(ω̂) if y ∈ Ω+(|∆|`, a, φ),

and

Iφ(y, η) := e−2π`|∆|η
∫
H
β1(2πN(a)η(Rφ(y, z) + 2∆Nrd(y))) · c1(ω̂) if y ∈ Ω−(|∆|`, a, φ).

Note that a factor of two emerges in (7.10) between the first and second lines because {±1} acts
trivially on H but non-trivially on Ω±(. . . ).

Fix an embedding φ : ok → OB, and an element y ∈ Ω+(|∆|`, a, φ). Recall that φ induces an
isomorphism

H ' D(Bφ
R)−

as in (3.4). We may fix an orthogonal kR basis {e, f} of Bφ
R such that (e, e)φ = −(f, f)φ = 1,

which yields an isomorphism

U1 = {Z ∈ C | |Z| < 1} ∼−→ D(Bφ
R)−, Z 7→ spankR(Ze+ f),

such that with respect to the parameter Z = reiθ on U1, we have

c1(ω̂) =
2

π

r dr ∧ dθ
(1− r2)2

,

cf. Lemma 3.2. Thus, we may write

Iφ(y, η) =
2e−2π`|∆|η

π

∫
U1

β1(2πN(a)η ·Rφ(y, reiθ))
r dr dθ

(1− r2)2
.
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Since U(BR) acts transitively on D(Bφ
R)− ' U1, and the measure appearing in the above display

is invariant for this action, we may assume without loss of generality that

y =

( |∆`|
N(a)

)1/2

×
{
e if ` > 0,

f if ` < 0.

Following definitions, we obtain

2πηN(a) ·Rφ(y, reiθ) = −4π|`∆|η
1− r2

×
{
r2 if ` > 0,

1 if ` < 0.

Thus, when ` > 0,

Iφ(y, η) =
2e−2π`|∆|η

π

∫
U1

∫ ∞
1

exp

(
−4π|`∆|r2s

1− r2

)
ds

s

r dr dθ

(1− r2)2

= 4e−2π`|∆|η
∫ 1

0

∫ ∞
1

exp

(
−4π|`∆|ηr2s

1− r2

)
ds

s

r dr

(1− r2)2

= 4e−2π`|∆|η
∫ ∞

1
exp(4π|`∆|ηs)

[∫ 1

0
exp

(
−4π|`∆|ηs

1− r2

)
r dr

(1− r2)2

]
ds

s

=
e−2π`|∆|η

2π|`∆|η

∫ ∞
1

ds

s2
=
e−2π`|∆|η

2π`|∆|η .

On the other hand, if ` < 0,

Iφ(y, η) =
2e−2π`|∆|η

π

∫
U1

∫ ∞
1

exp

(
−4π|`∆|ηs

1− r2

)
ds

s

r dr dθ

(1− r2)2

= 4e−2π`|∆|η
∫ ∞

1

ds

s
·
∫ 1

0
exp

(
−4π|`∆|ηs

1− r2

)
r dr

(1− r2)2

=
e−2π`|∆|η

2π|`∆|η

∫ ∞
1

e−4π|`∆|ηsds

s2

= e−2π`|∆|η ·
(

1

2π|`∆|η e
−4π|`∆|η − 2

∫ ∞
1

e−4π|`∆|ηsds

s

)
=

1

2π|`∆|η e
−2π|`∆|η − 2e2π|`∆|η

∫ ∞
1

e−4π|`∆|ηsds

s

Comparing with (7.8) and (7.9), we find that for all ` 6= 0 and y ∈ Ω+(|∆|`, a, φ),

Iφ(y, η) = 1
2I

o(`, η).

A similar calculation shows that the preceding display holds true for y ∈ Ω−(|∆|`, a, φ). Thus,

Ku(|∆|`, η) =
1

4h(k)|o×k |
·
(∑

[φ]

∑
[a]

∑
y∈Ω±(|∆|`,a,φ)

mod O×,1B

1

)
·
(

1

2
Io(`, η)

)
.
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By Proposition 5.2 and passing to O×,1B -equivalence classes, we have

1

2h(k)|o×k |
∑
[φ]

∑
[a]

∑
y∈Ω±(|∆|`,a,φ)

mod O×,1B

1 =
1

2h(k)|o×k |
∑
[φ]

∑
x∈Ωo(|∆|`2)

mod O×,1B

ρ

( |`|
c(x) · ν(x, φ)

)

=

(∑
c||`|

∑
ν|DB

ρ

( |`|
c · ν

))
·
(

1

2h(k)

∑
[φ]

∑
x∈Ωo(|∆|`2)

mod O×,1B
c(x)=c,ν(x,φ)=ν

1

|o×k |

)

=
∑
m||`|

χ′(m)
∑

x∈Ωo(|∆|`2/c2)

mod O×,1B

1

|Γx|
,

where, in the last line, we have used Lemma 5.3, together with the fact that Γx = |o×k | for the x
appearing above. Therefore,

Ku(|∆|`, η) =
1

2

(∑
m||`|

χ′(m)
∑

x∈Ωo(|∆|`2/m2)

mod O×,1B

1

|Γx|

)
Io(`, η) =

∑
m||`|

χ′(m)Ko(m, `, η),

as required.

7.3 The constant term

Recall that we had computed the constant term of Sh|∆|Φ̂
o
ω̂ to be

Ao(η) :=
1

8

∫ ∞
0

v−1/2
∑
m∈Z

χ′(m) exp

(
−πη

2m2

4v

)(
ηm

v

)
ao(|∆|v) dv

=
1

4

∫ ∞
0

∑
m∈Z

χ′(m) exp

(
−πη

2m2v2

4

)
(ηm)ao(|∆|/v2) dv

where

ao(v) := 〈Ẑo(0, v)/ok , ω̂〉 = −〈ω̂, ω̂〉 − degωk(log v + logDB)

is the constant term of Φ̂o
ω̂(|∆|τ).

To help our formulas appear somewhat neater, let D = DB and t = |∆|.
Applying twisted Poisson summation to the inner sum on m, cf. [Cip83, (2.42)], yields∑

m∈Z
χ′(m) m exp

(
−πη

2m2v2

4

)
=
−i

2D2t2
· 1

η3v3

[∑
m∈Z

χ̌′(m)m exp

(
− πm2

4D2t2η2v2

)]
,

where

χ̌′(m) =

4Dt∑
a=1

χ′(a) e(am/4Dt).

Substituting and applying a change of variables yields

Ao(η) =
−i

8D2t2

∫ ∞
0

ao(t/v2) · 1

η2v3

∑
m∈Z

χ̌′(m)m exp

( −πm2

4D2t2η2v2

)
dv
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=
−i
2

∫ ∞
0

∑
m∈Z
m>0

ao(4D2t3η2u/m2) · χ̌′(m) m−1 exp(−πu) du

=
i

2

∫ ∞
0

∑
m>0

χ̌′(m) m−1(〈ω̂, ω̂〉+ deg(ωk)[log u+ log(4D3t3η2)− 2 logm))e−πu du.

Expanding, we obtain

Ao(η) =
i

2

[
L(1, χ̌′) · (〈ω̂, ω̂〉+ deg(ωk) log 4D3t3η2) ·

(∫ ∞
0

e−πu du

)
+L(1, χ̌′) deg(ωk)

(∫ ∞
0

log(u)e−πu du

)
− 2L′(1, χ̌′) · deg(ωk)

(∫ ∞
0

e−πu du

)]
=

i

2π
[L(1, χ̌′) · (〈ω̂, ω̂〉+ deg(ωk)(log 4D3t3η2 − γ − log π))

− 2L′(1, χ̌′) · deg(ωk)], (7.11)

where we have used the integral representation

γ = −
∫ ∞

0
log(u)e−u du.

Now comparing (7.11) with Definition 4.4 for the constant term Ẑ(0, η), we immediately see that

Ao(η) = 〈Ẑ(0, η), ω̂〉,

as required. 2
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