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Abstract

The goal of this paper is to generalise, refine and improve results on large intersections from [2, 8]. We show that
if G is a countable discrete abelian group and ¢, ¢ : G — G are homomorphisms, such that at least two of the three
subgroups ¢(G), ¥(G) and (¥ — ¢)(G) have finite index in G, then {¢, ¥} has the large intersections property.
That is, for any ergodic measure preserving system X = (X, X, u, (Tg)geG), any A € X and any & > 0, the set

{geG:u(AnT- ANTZ! A) > u(A)? - &}

v(8) ¥ (g)
is syndetic (Theorem 1.11). Moreover, in the special case where ¢(g) = ag and y(g) = bg for a, b € Z, we show
that we only need one of the groups aG, bG or (b — a)G to be of finite index in G (Theorem 1.13), and we show
that the property fails, in general, if all three groups are of infinite index (Theorem 1.14).

One particularly interesting case is where G = (Qs, -) and ¢(g) = g, ¥(g) = g2, which leads to a multiplicative
version of the Khintchine-type recurrence result in [8]. We also completely characterise the pairs of homomorphisms
¢, Y that have the large intersections property when G = 72.

The proofs of our main results rely on analysis of the structure of the universal characteristic factor for the
multiple ergodic averages

In the case where G is finitely generated, the characteristic factor for such averages is the Kronecker factor. In
this paper, we study actions of groups that are not necessarily finitely generated, showing, in particular, that, by
passing to an extension of X, one can describe the characteristic factor in terms of the Conze—Lesigne factor and
the o -algebras of ¢(G) and ¢ (G) invariant functions (Theorem 4.10).

Contents

1 Introduction
1.1 Khintchine-type recurrence and the large intersections property . . . . . . . . ... ..
1.2 Mainresults . . . . . . . L
1.3 Applications to geometric progressions and other multiplicative patterns . . . . . . . .
1.3.1 Patternsin (N,-) . . . . . . . . e e
1.4 Applications to patterns in Z2 . . . . . . . ...
1.5 Preliminary remarks on characteristic factors . . . . . . ... ... ... ... .. ..

[eBENEEN IV, NN Sl )

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2022.97 Published online by Cambridge University Press


doi:10.1017/fms.2022.97
https://orcid.org/0000-0002-0063-8229
https://orcid.org/0000-0001-9373-7527
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2022.97&domain=pdf
https://doi.org/10.1017/fms.2022.97

[\S}

E. Ackelsberg, V. Bergelson and O. Shalom

1.6 Structure of the paper . . . . . . . . . ... e 9
2 Preliminaries 9
2.1  Uniform Cesaro limits . . . . . . . . . o 0 v i i e e e e e e e 9
22 Factors. . . . . oo e e e 10
2.3 Factorof invariant sets . . . . . . . . . ... L e e e 10
24 Host-Krafactors . . . . . . . . 0 i i e e e e e e e e 10
2.5 Joinsandmeetsof factors . . . . . . . . L ... e e 11
2.6 Characteristic factors . . . . . . . . . . L. e e e 12
2.7 Seminorms for multiplicative configurations . . . . . . ... ... ..., 14
3 Theorem 1.11 14
3.1 Characteristic factors . . . . . . . . . . L L e e e e 16
3.2 Relative orthonormal basis . . . . . . . ... .. L L o 19
3.3 Proof of Theorem 1.11 . . . . . . . . . . . et e e 20
4 Extensions 24
4.1 Characteristic factors related to Theorem 1.13 . . . . . . ... ... ... .. .. ... 25
5 A limit formula for {ag, bg} 30
5.1 Previous limitformulas . . . . . . . . . . .. . .. e 30
5.2 Mackey group . . . . o i e e e e e e e e e e e e e e 31
5.3 Cocycleidentities . . . . . . . ... L. e e 32
5.4 Proof of Proposition 5.3 . . . . . . . . .. e e e e 33
5.5 Limitformula . . . . . . . .. . e e e e 34
5.6 Proofof Theorem 1.13 . . . . . . . . .. . . . . . e 36
6 Proof of Theorem 1.14 38
7 3-point configurations in Z> 41
7.1  Ergodic popular difference densities when r(M, M) = (2,1,1) . . . ... ... ... 41
7.2 Ergodic popular difference densities when r(My, M) = (1,1,1) . .. ... ... ... 43
7.3  Finitary combinatorial consequences and open questions . . . . . . . ... ... ... 47
8 Khintchine-type recurrence for actions of semigroups 49
8.1 The group generated by a cancellative abelian semigroup . . . . ... ... ... ... 49
82 Notionsof largeness . . . . . . . . .. ... oL e 49
8.3 Extending main results to actions of cancellative abelian semigroups . . . . . ... .. 51
8.4 Two combinatorial questions . . . . . . . . ... Lo e 52
A Proof of Lemma 3.6 53

1. Introduction

Let (G,+) be a countable discrete abelian group. A probability measure-preserving G-system, or
simply G-system for short, is a quadruple X = (X, X, 1, (Tg)geG), where (X, X, u) is a standard Borel
probability space (that is, up to isomorphism of measure spaces, X is a compact metric space, X is the
Borel o-algebra and u is a regular Borel probability measure) and 7, : X — X, g € G, are measure-
preserving transformations, such that Ty, = T, o Ty, for every g, h € G and Ty = Id. The transformation
T, : X — X givesrise to a unitary operator on L?(u), which we also denote by Ty, given by the formula
T, f(x) = f(Tgx). We say that a G-system is ergodic if the only measurable (T )gcG-invariant functions
are the constant functions.

1.1. Khintchine-type recurrence and the large intersections property

The starting point for the study of recurrence in ergodic theory is the Poincaré recurrence theorem,
which states that, for any measure-preserving system (X, X, u, T) and any set A € X with u(A) > 0,
there exists n € N, such that u(ANT™A) > 0.
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Khintchine’s recurrence theorem strengthens and enhances Poincaré’s recurrence theorem by
improving on the size of the intersections and the size of the set of return times.

Theorem 1.1 (Khintchine’s recurrence theorem [24]). For any measure-preserving system (X, X, u,T),
any A € X and any € > 0, the set

neN:u(AnNT™™A) > u(A)? -«
{ }

has bounded gaps.

Khintchine’s recurrence theorem easily extends to general semigroups, where the appropriate coun-
terpart of ‘bounded gaps’ is the notion of syndeticity. In this paper, we deal with recurrence in countable
discrete abelian groups. A subset A of a countable discrete abelian group G is said to be syndetic if there
exists a finite set F C G, suchthat A+ F={a+ f:a€ A, feF}=G.

It is natural to ask if recurrence theorems other than Poincaré’s recurrence theorem also have
Khintchine-type enhancements. For instance, it follows from the IP Szemerédi theorem of Furstenberg
and Katznelson [20] and also from [3, Theorem B] that, for any abelian group G, any k € N and
any family of homomorphisms ¢1,...,¢x : G — G, the following holds: if (X, X, i, (Tg)gec) is a
G-system and A € X has u(A) > 0, then the set

. —1 -1
{g €G: p(A NT; A m--~mT¢k(g)A) > o}

is syndetic.! With the goal of Khintchine-type enhancements in mind, this motivates the following
definition:

Definition 1.2. A family of homomorphisms ¢, ..., ¢x : G — G has the large intersections property
if the following holds: for any ergodic G-system (X, X, u, (T)geG), any A € X and any £ > 0, the set

. -1 -1 e+l
{g €G: ﬂ(A N1l A m~--mT¢k(g)A) > u(A) —g}

is syndetic.

The large intersections property is closely related to the phenomenon of popular differences in
combinatorics (see, e.g. [1, 11, 12, 25, 26]).

Determining which families of homomorphisms have the large intersections property is a challenging

problem with many surprising features. In the case G = Z and ¢;(n) = in, the problem was resolved
in [8].

Theorem 1.3 ([8], Theorems 1.2 and 1.3). The family {n,2n,...,kn} has the large intersections
property in Z if and only if k < 3.

Later work of Frantzikinakis [18] and of Donoso et al. [15] generalised this picture for arbitrary
homomorphisms Z — Z, which take the form n +— an for some a € Z.
Theorem 1.4 ([18], special case of Theorem C; [15], Theorem 1.5).

1. Forany a,b € Z, the families {an, bn} and {an, bn, (a + b)n} have the large intersections property
(in Z).

2. Forany k > 4 and any distinct and nonzero integers ay, . . ., ay € Z, the family {an, . ..,agn} does
not have the large intersections property (in Z).

Remark 1.5. Finitary combinatorial work of [26, Theorem 1.6] suggests that the family {an, axn, asn}
has the large intersections property if and only if a; +a; = ay for some permutation {i, j, k} of {1, 2, 3}.

In [10], Khintchine-type recurrence results are established in the infinitely generated torsion groups
G = EB:;I Z/pZ.

n fact, this set is an IP* set, which is a stronger notion of largeness that we do not address in this paper (see 20).
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Theorem 1.6 ([10], Theorems 1.12 and 1.13).

1. Fix a prime p > 2. If c1,¢2 € Z/pZ are distinct and nonzero, then {c\g,c2g} has the large
intersections property in G = @;0:1 Z/pZ.

2. Fix a prime p > 3. If ¢1, ¢y € Z/ pZ are distinct and nonzero and c¢| + ¢y # 0, then {cg, c2g, (c1 +
c2)g} has the large intersections property in G = @:7:1 Z/pZ.

Remark 1.7. It is conjectured in [ 10, Conjecture 1.14] that, if ¢y, ¢;, ¢3 € Z/pZ are distinct and nonzero
and ¢; + ¢ # ¢ for every permutation {7, j, k} of {1, 2,3}, then {c1g, c2g, c3g} does not have the large
intersections property in G = @:’:1 Z/pZ.

Khintchine-type recurrence in general abelian groups was addressed in [2] and [27]. For 3-point
linear configurations, the following was shown in [2]:

Theorem 1.8 ([2], Theorem 1.10). Let G be a countable discrete abelian group. Let ¢, : G — G be
homomorphisms. If all three of the subgroups ¢(G), Y (G) and (¥ — ¢)(G) have finite index in G, then
{@, ¥} has the large intersections property.

Remark 1.9. Earlier work of Chu demonstrates that at least some finite index condition is necessary
for large intersections. Namely, it follows from [13, Theorem 1.2] that the pair {(n, 0), (0, n)}, does not
have the large intersections property in Z? (see [2, Example 10.2]). While we do not pursue optimal
lower bounds for families lacking the large intersections property in this paper, Chu also showed
that, for the pair {(n,0), (0,n)}, the optimal lower bound is still polynomially large. In particular,

,u(A N T(‘nIO)A N T(‘Oln)A) > 1(A)* — & for syndetically many n (see [13, Theorem 1.1]).

For more restricted 4-point configurations, the following result was shown in [2] and independently
in [27]:

Theorem 1.10 ([2], Theorem 1.11; [27], Theorem 1.3). Let G be a countable discrete abelian group.
Let a, b € Z be distinct, nonzero integers, such that all four of the subgroups aG, bG, (a + b)G and
(b — a)G have finite index in G. Then {ag, bg, (a + b)g} has the large intersections property.

1.2. Main results

In this paper, we refine the understanding of Khintchine-type recurrence for 3-point configurations
in abelian groups and make substantial progress towards characterising the pairs of homomorphisms
¢, ¥ : G — G that have the large intersections property.

Our first result shows that the large intersections property holds for any pair of homomorphisms
{¢, ¥} solong as at least two of the three subgroups in Theorem 1.8 have finite index in G. In particular,
this shows that [2, Conjecture 10.1] is false.

Theorem 1.11. Let G be a countable discrete abelian group. Let ¢, : G — G be homomorphisms,
such that at least two of the three subgroups ¢(G), ¢ (G) and (y — ¢)(G) have finite index in G. Then
for any ergodic G-system (X, X, u, (Tg)geG), any A € X and any & > 0, the set

. -1 -1 3
{g €G: ,u(A NI, AN Tw(g)A) > 1(A) g}

is syndetic.

As mentioned above (see Remark 1.9), the work of Chu [13] provides a counterexample to the large
intersections property when all three subgroups ¢(G), ¥ (G) and (y — ¢)(G) have infinite index in G.
In this paper, we give additional counterexamples for the group G = @fﬂ Z with homomorphisms
g — agand g — bg for some a,b € Z (see Theorem 1.14 below). A natural question to ask, then, is
what happens when only one of the subgroups ¢(G), ¥ (G) or (¢ — ¢)(G) has finite index. Namely:
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Question 1.12. Let G be a countable discrete abelian group, and let ¢ : G — G, ¢ : G — G be
homomorphisms, such that at least one of the subgroups ¢(G), ¥ (G) or (¥ — ¢)(G) has finite index
in G. Is it true that, for any ergodic G-system (X, X, u, (Tg)geG), any A € X, and any € > 0, the set

ANT;!

{geG:u(AﬁT_ (g) )>,u(A)3—e}

v(8)
is syndetic?

Note that, by symmetry, it is enough to provide an answer to Question .12 under the assumption
that ( — ¢)(G) has finite index. Indeed, suppose ¥ (G) has finite index in G. Then, since (Tg)qec is a
measure-preserving action, we have the identity

AN T;(g)A) (A N1} ,ANT])

(A NT,( (- w)(g)A)

¥(8)
Hence, the pair {¢, ¥ } has the large intersections property if and only if {tp w} has the large intersections
property, where & = —¢ and ¢ =  — ¢. Moreover, we have (i — @)(G) = y(G), which is of finite
index. A similar argument applies when ¢(G) has finite index.

When G = Z2, we can use additional tools from linear algebra to classify all pairs of homomorphisms
¢ and ¥, which allows us to answer Question 1.12 affirmatively in this setting. In fact, we can give
a precise description of the optimal size of intersections for all 3-point configurations in Z> (see
Subsection 1.4 below). However, our results rely heavily on properties of 2 X 2 matrices, and it appears
that the full generality of Question 1.12 for general abelian groups and general homomoprhisms is out
of reach without developing new techniques.

On the other hand, in the special case ¢(g) = ag and ¥ (g) = bg fora, b € Z, we answer Question 1.12
affirmatively:

Theorem 1.13. Let G be a countable discrete abelian group. Let a, b € Z be integers, such that (b—a)G
has finite index in G. Then for any ergodic G-system (X, X, 1, (Tg)geG ), any A € X and any € > 0, the
set

{g €G: M(A NI, AN Tb’;A) > u(A)>3 —e}

is syndetic.

We also show that the assumption that (b — a)G has finite index in G is necessary. To see this, we
prove the following result:

Theorem 1.14. Let G = €, Z. Let | € N. There exists a number P = P(l), such that, forany a,b € N
with p | ged(a, b) for some prime p > P, there is an ergodic G-system (X, X, 1, (Tg)gec) and a set
A € X with u(A) > 0, such that

HANTGANT, A) < p(A)

for every g # 0.

Question 1.15. Can p in the statement of Theorem 1.14 be replaced by any natural number?

1.3. Applications to geometric progressions and other multiplicative patterns

One particularly interesting corollary of Theorem 1.13 is a multiplicative version of the following large
intersection theorem in [8]:
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Theorem 1.16 ([8], Corollary 1.5). Let E C Z be a set of positive upper Banach density

En{M,M+1,...,N-1
d*(E) = limsup | { i > 0.
N—M—sc0 N-M

Then, for any € > 0, the set
{neZ:d"(En(E-n)Nn(E-2n))>d(E)-¢&}

is syndetic.

Consider the group G = (Qo, -). This is a multiplicative counterpart of (Z, +). In the group (Q~o, -),
the upper Banach density of a set E C Qs is given by

En®
d . (E) = sup lim sup IEN Py e))
o

N - |q)N| '

where the supremum is taken over all Fglner sequences @ = (®y )y e in (Qsg, ). An instructive class
of examples of Fglner sequences in (Qxo, -) is given by sequences of the form

N
by = {bN l_[q:i c-N<r; < N},
i=1

where (gn)nen is a sequence of generators of (Qsg,-) and (by)nen is any sequence in Qsg. The
subscripton d;, , is to emphasise that this density is with respect to the multiplicative structure on Q-
rather than its additive structure. Using an ergodic version of the Furstenberg correspondence principle
(see [6, Theorem 2.8]), we deduce the following result as an immediate consequence of Theorem 1.13:

Theorem 1.17. Let E C Q- be a set of positive multiplicative upper Banach density d;  (E) > 0, and
let k € Z. Then for any € > 0, the sets

{46 dp(ENg En g VE) > 4 (B) - o} @
and
{q € Q0 d:mlt(E Ng 'En ‘I_kE) > dy i (E) _8} 3)

are syndetic.

Remark 1.18. The special case where k = 1 in (2) or k = 2 in (3) is related to the existence of length 3
geometric progressions in sets of positive multiplicative density. Heuristically, if E were a random set,
where each positive rational number g € Q¢ is independently chosen to be inside E with probability «,
then the expected number of geometric progressions of length 3 and quotient ¢ would be a. Now, fix
any set E with & = (E) = a. Choosing & sufficiently small, our result implies that E contains almost as
many geometric progressions with quotient ¢ as a random set with the same density, a, for a syndetic

set of quotients.

Theorem 1.14 shows that, if n and m share a large prime factor, then {g", g} does not have the large
intersections property in (Qsg, -). What happens in the case that n and m are coprime is an interesting
question that we are unable to answer with our current methods:

Question 1.19. Suppose n,m € N are coprime. Does the pair {¢”, g} have the large intersections
property in (Q>o,-)?

https://doi.org/10.1017/fms.2022.97 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.97

Forum of Mathematics, Sigma 7

Since every Z-action can be lifted to a (Qs, -)-action (indeed, (Qso, -) is torsion-free, so Z embeds
as a subgroup), we see from Theorem 1.3 above that {g, ¢, . . ., ¢g*} does not have the large intersections
property for k > 4. However, we can still ask about geometric progressions of length 4.

Question 1.20. Does the triple {g, ¢, ¢} have the large intersections property in (Qsg, -)?

For a discussion of where our methods come up short for answering Questions 1.19 and 1.20, see
Subsection 2.7 below.

1.3.1. Patterns in (N, -)

A notion of upper Banach density can be defined in the semigroup (N, -) by the formula in (1), where
the supremum is now taken over Fglner sequences in (N, -). Examples of Fglner sequences in (N, -)
include sequences of the form

N
@Nz{bN[]pf:OSrisN},
i=1

where (p;)nen is an enumeration of the prime numbers and (b )y en is any sequence in N. In Section 8,
we transfer Theorems 1.11 and 1.13 to the setting of cancellative abelian semigroups. As a consequence,
we obtain the following result about geometric configurations in the multiplicative integers:

Theorem 1.21. Let E C N be a set of positive multiplicative upper Banach density, and let k € Z. Then
for any € > 0, the sets

{m eEN: d;mlt(E NE/m*n E/mk+1) >d: (E) - s}

and

{meN:d*

mult

ENE/mnE/m*|>d: (E)-¢
(EnEm0E/m) > di (B - e}

are (multiplicatively) syndetic in (N, -).

1.4. Applications to patterns in 7>

When G = Z2, we are able to give a complete picture of the phenomenon of large intersections for
3-point matrix patterns, that is, patterns of the form {¥, ¥ + M,ii, ¥ + M,ii}, where X, 7 € Z> and M, M
are 2 x 2 matrices with integer entries (note that any homomorphism ¢ : Z> — Z? can be expressed as
a 2 x 2 matrix with integer entries, so matrix patterns capture all possible configurations in Z> that can
be described within the framework of group homomorphisms).

Following [8], we say that the syndetic supremum of a bounded real-valued Z’-sequence

(@n,m) () 22 18 the quantity
synd-sup ,, ;) ez2@n,m := SUPp {aeR:{(n,m)e 22 apm > a} is syndetic inZz}.
For 2 %2 integer matrices M and M; and a € (0, 1), we define the ergodic popular difference density by
epddyy, (@) :=inf synd-supﬁezz,u(A N TI\_lllﬁA N Tj_ulzﬁA)’

where the infimum is taken over all ergodic Z2-systems (X, X, , (Tj)icz2) and sets A € X with
u(A) = a@. This can be seen as an ergodic-theoretic analogue to the popular difference density de-
fined in [26]. It is natural to ask if epdd,, (@) coincides with the finitary combinatorial quantity
pdd,,, s, (@). Standard tools for translating between ergodic theory and combinatorics, such as Fursten-
berg’s correspondence principle, are insufficient for resolving this question, and we do not know the
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Table 1. Ergodic popular difference densities for 3-point matrix patterns in Z>

r(M,, M>) Other conditions epddyy, ar, (@) Reason

(2,2,2) - a3 [2, Theorem 1.10]

(2,2,1) - a’ Theorem 1.11

2,1,1) - a? ‘Fubini’ for UC - lim [9]

(1,1, 1) [M,M>]=0 < q¢log(l/a) Behrend-type construction [4, 8]

(1, 1,1) [My, M>] #0, a’ ‘Fubini’ for UC - lim [9]

‘row-like’

(1,1,1) [M;, M>] #0, ot [13, Theorem 1.1],

‘column-like’ [16, Theorem 1.2]

answer in general. However, in special cases where pdd,,, », (@) is known, it is in agreement with the
values of epdd,,, s, (@) displayed in Table | below, and we suspect that pdd,,, s, (@) = epddy;, , (@)
in the remaining cases (see Subsection 7.3 below for additional remarks on (combinatorial) popular
difference densities for matrix patterns in Z?).

Theorem 1.11 provides a sufficient condition on the matrices M; and M, to guarantee that
epddy;, p, (@) > a> for @ € (0,1). We now seek to describe the quantity epdd M,.m, (@) for any pair
of 2 x 2 integer matrices M| and M,. Table | summarises ergodic popular difference densities for all
3-point matrix configurations in Z? (for matrices My, M,, we let (M, M>) be a list of the ranks of M,
M, and M, — M in decreasing order, and we denote by [ M/, M;] the commutator My M, — My M)).

The cases r(My, M) = (2,2,2) and r (M|, M) = (2,2, 1) are covered directly by [2, Theorem 1.10]
and Theorem 1.1 1, respectively. Indeed, a matrix M has full rank if and only if the subgroup M (Z?) C Z?
has finite index. More precisely,

[Z%: M(Z%)] = {|det(M)l, ff det(M) # 0;
0, if det(M) = 0.

The remaining cases are proved in Section 7.

1.5. Preliminary remarks on characteristic factors

In this paper, we approach multiple recurrence problems by determining and utilising the so-called
characteristic factors, which are the factors that are responsible for the limiting behaviour of the quantity
#(A n T;(lg)A n Tl;(lg)A)
in ergodic G-systems (see Subsection 2.2 for a discussion of factors in general and Definition 3.3 for a
definition of characteristic factors). For Z-actions, there are two different approaches to characteristic
factors for linear averages, developed independently by Host and Kra [23] and by Ziegler [30], giving
rise to factors that coincide (see [5, Appendix A]). However, in the context of G-actions, where G is an
arbitrary (nonfinitely generated) countable discrete abelian group, the approaches of Host—Kra and of

Ziegler may produce different factors (see Subsection 2.6 below for more details).

Our work, thus, leads to the general open question of how, in the setup of countable discrete abelian
groups, the Host—Kra factors are related to the actual characteristic factors of the corresponding multiple
ergodic averages (the factors obtained by Ziegler’s approach). Discerning the relationship between the
Host—Kra factors and the characteristic factors may lead to a better understanding of the quantities

u(An T;l An..nT!

1(8) i (8) A),

where X = (X, X, u, (Ty)gec) is a G-system, A € X and ¢; : G — G are homomorphisms or, more
generally, polynomial maps.
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1.6. Structure of the paper

The paper is organised as follows. In Section 2, we introduce notation and conventions that we use
throughout the paper.

Proofs of the main results appear in Sections 3—6. First, in Section 3, we establish characteristic
factors for the multiple ergodic averages

Uc -;i;g Too)J1-Ty(g) J2

when (¢ — ¢) (G) has finite index in G and prove Theorem 1.11. Then, in Section 4, we use an extension
trick to simplify the characteristic factors, and in Section 5, prove a new limit formula for the extension
system, leading to a proof of Theorem 1.13. Finally, we prove Theorem 1.14 in Section 6.

The final two sections contain applications of the main results. Using Theorem 1.11 together with
additional tools from [2, 8, 9, 13, 16], we compute ergodic popular difference densities for 3-point
matrix patterns in Z2. In Section 8, we extend the main results (Theorems 1.11 and 1.13) to the setting

of cancellative abelian semigroups.

2. Preliminaries

The goal of this section is to introduce some notations and objects that will play an important role in
this paper. Throughout this section, we let G denote an arbitrary countable discrete abelian group and
X=(X,X, u, (Tg)gec) a G-system.

2.1. Uniform Cesaro limits

The large intersection property of a family {¢1, . .., ¢k} is related to the limit behaviour of the multiple
ergodic averages

> HT (o (4)

geDyN i=

|‘DN

where (®y)nen is a Fglner sequence? in G and fi,..., fr € L*(u). By [3] and [32], the quantity
in (4) converges in L?(u) as N — oo, and the limit is independent of the choice of Fglner sequence
(®n )N en. For more concise notation, we define the uniform Cesaro limit x = UC -limgcg x4 if
m 2gewy Xg — X for every Fglner sequence (®n )n ey in G.

One crucial tool for handling uniform Cesaro limits is the following version of the van der Corput
differencing trick:

Lemma 2.1 (van der Corput lemma, cf. [2], Lemma 2.2). Let ‘H be a Hilbert space and G a countable
amenable group. Let (ug)qcG be a bounded sequence in H. If UC -limgcg (ug+h, ug> exists for every

h € G, and
uC-lim UC- 11m<ug+h, ug) =0
then,
uc- ;16% ug =0
strongly.

2A sequence (®pn )nen of finite subsets of G is a Fglner sequence if, for any x € G, W — 0as N — oo.
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Another useful tool for computing uniform Cesaro limits is the following ‘Fubini’ trick, which we
use extensively in Section 7:

Lemma 2.2 ([9], special case of Lemma 1.1). Let G and H be countable discrete amenable groups, and
let (Vi,g)(h,g)eHxG be a bounded sequence. Suppose

UC- lim  vp,
(h,g)eHXG

exists, and for every g € G,
UC-lim vy, o
heH
exists. Then

UC-1im UC-lim vy o = UC-  lim  v,.
geG heH (h,g)eHXG

2.2. Factors

A factor of X is a G-system Y = (¥, ), v, (Sg)gec) together with a measurable map 7 : X — Y, such
that 7,y = vand m o Ty, = Sg o «r for all g € G. There is a natural one-to-one correspondence between
factors and (7T} ), eg-invariant sub-o--algebras of X'. Throughout the paper, we freely move between the
system Y and the o-algebra 771 () and refer to both of them as factors of X. Given f € L*(u), we
denote by E(f])) the conditional expectation of f with respect to the o--algebra 7~ ())). We say that f
is measurable with respect to Y if f = E(f|)).

2.3. Factor of invariant sets

Let X = (X, X, 1, (Tg)gec) be a G-system. We write Zg (X) for the sub-o--algebra of G-invariant sets.
We say that X is ergodic if Zg (X) is the o-algebra comprised of null and conull subsets of (X, X, u). For
asubgroup H < G, we denote by Zy (X) the sub-o-algebra of H-invariant sets. Given a homomorphism
¢ : G — G, itis convenient to denote by Z,,(X) the o-algebra T, (g (X).

2.4. Host-Kra factors

The Gowers—Host—Kra seminorms are an ergodic-theoretic version of the uniformity norms introduced
by Gowers in [22]. These seminorms were first introduced by Host and Kra in [23] in the case of ergodic
Z-systems, and then generalised by Chu, Frantzikinakis and Host to Z-systems that are not necessarily
ergodic in [14]. In [10, Appendix A], a general theory of Gower—Host—Kra seminorms is developed for
(not necesssarily ergodic) G-systems, where G is an arbitrary countable discrete abelian group.

Definition 2.3. Let G be a countable discrete abelian group, and let X = (X, X, y, (Tg)gec) be a G-
system. Let f € L*(X), and let k > 1 be an integer. The Gowers—Host-Kra seminorm || f ||y« ) of
order k of f is defined recursively by the formula

1/ llur () = 1E(S1Zc (X)) l2

for k =1, and
) k-1 \ 172
IFllur ) = UC - lim (144177, )
for k > 1, where Ag f(x) = f(Tgx) - f(x).
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In [10, Appendix A], it is shown that the Gower-Host—Kra seminorms for general G-systems are
indeed seminorms. Moreover, these seminorms correspond to factors of X.

Proposition 2.4 (cf. [10], Proposition 1.10). Let G be a countable discrete abelian group, let
X be a G-system and let k > 0. There exists a unique (up to isomorphism) factor Z*(X) =

(Zk(X),Zk(X),,uk, (Tg(k))gec) of X with the property that for every f € L¥(X), || fllyr1x) =0
if and only if E(f|Z2*(X)) = 0.

The factors Z¥ guaranteed by Proposition 2.4 are called the Host—Kra factors of X.

Let X = (X, X, 11, (Tg)gei) be a G-system. Then, Z9(X) is the same as the o-algebra Zg (X). In
particular, if X is ergodic, then Z°(X) is trivial. In the literature, Z'(X) is often called the Kronecker
factor, and Z2(X) the Conze—Lesigne or quasi-affine factor of X.

We summarise some basic results about the Host—Kra factors.

Theorem 2.5. Let G be a countable discrete abelian group, and let X = (X, X, u, (Ty)gec) be a ergodic
G-system. Then,

(i) Forevery k > 1, Z¥"1(X) < ZX(X). In other words, Z*~' (X) is a factor of Z* (X). In particular,
I(X) < ZK(X) for every k > 0.

(ii) The Kronecker factor of X is isomorphic to a rotation on a compact abelian group. Namely, there
exists a homomorphism « : G — Z into a compact abelian group (Z,+), such that Z'(X) is
isomorphic to (Z, (Rg)geG), where Rgz = 2+ a(g).

(iii) For every k > 1, if X is ergodic, then Z*(X) is an extension of Z¥~'(X) by a compact abelian
group (H,+) and a cocycle p : G x Z¥"1(X) — H. Namely, Z*(X) = Z¥"1(X) x H as measure
spaces, and the action is given by T(ék) (z,h) = (Tg(k_l)z, h+p(g,2)).

Proof. The proof of (i) is an immediate consequence of the monotonicity of the seminorms (see [23,
Corollary 4.4]). The proof of (ii) in the generality of countable discrete abelian groups can be found
n [2, Lemma 2.4]. The proof of (iii) can be found for Z-actions in [23, Proposition 6.3], and the same
proof works for arbitrary countable discrete abelian groups. m}

2.5. Joins and meets of factors

Let G be a countable discrete abelian group, let X = (X, X, u, (Tg)gec) be a G-system and let ¢,y :
G — G be arbitrary homomorphisms.

1. LetZ ‘L (X), orjust Z,(X), denote the o-algebra of the Kronecker factor of X with respect to the action
of ¢(G), that is, the o-algebra of the factor Z}p(X ) obtained by applying Proposition 2.4 for the
G-system (X, X, u, (Ty(g))gec) and k = 1. More generally, let H be a subgroup of G and k > 1, we
let Z ];I (X) denote the o-algebra of the k-th Host—Kra factor Z’;I (X) with respect to the action of H.

2. Let A, Ay, A; be o-algebras on X. Then,

o We write A < X if the o-algebra A is a sub-o--algebra of X.
o Welet A; V A, denote the join of A; and Aj;, that is, the o--algebra generated by .4; and A, in X.
o Welet A; A A, denote the meet of A; and Ay, that is, the maximal o--algebra which is also a
sub-c-algebra of A and A,.
We say that A, and A, are u-independent if their meet is trivial modulo p-null sets.
o More generally, we say that A; and A, are relatively independent over the o-algebra A if
A1 AN A < A

3. WeletZ, ,(X) denote the meet of Z,,(X) and Z,, (X) and Z,_y (X) the meet of Z,(X) and Z (X).

We let Z, , (X) denote the factor of X which corresponds to the o-algebra Z,, , (X).

e}

The next two lemmas give convenient alternative descriptions of independent and relatively inde-
pendent o-algebras. These results are classical and can be found, for example, in [31, Proposition 1.4];
we provide short proofs for the convenience of the reader.
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Proposition 2.6 (Independent o--algebras). Let X = (X, X, u) be a probability space. Two o -algebras
Ay and A; on X are u-independent if and only if the following equivalent conditions hold:

(i) Any function f € L*(X) measurable with respect to Ay and A, simultaneously is a constant
p-almost everywhere.
(i) If f € L™ (X) is measurable with respect to Ay and g € L*(X) is measurable with respect to A,

then
/f-gd#=/fdu-/gdﬂ-
X X X

Proof. The first definition of independence above is clearly equivalent to (i). We prove the equivalence
between (i) and (ii).

()= (ii).

/Xf~gd#=/XE(f|Az)-gdu=/XE(f|Az)d#'/ng#=/de#~/xgd#,

where the second equality holds since E(f|.A2) is a constant u-a.e. by (i).
For (ii)=> (i), let f = f — [ fdu. Then,

171z, = [ 17 d#=' [ Fa

We conclude that f = / fdu. O

2
=0.

Proposition 2.7 (Relatively independent o-algebras). Let X = (X, X, ) be a probability space. Let
A1, Az be two o-algebras on X, and let A be a third o-algebra, such that A < Ay A Ay. Then, Ay and
Ay are relatively independent with respect to A if the following equivalent conditions hold:

(i) Any function f € L*(X) measurable with respect to Ay and Ay simultaneously is measurable with
respect to A.
(ii) Iffis measurable with respect to Ay and g is measurable with respect to Ay, then

E(fglA) = E(flA) - E(g|A).

Proof. Condition (i) is equivalent to the definition of relative independence above. Therefore, it is
enough to prove the equivalence of (i) and (if).

(i)=(ii). We have E(fg| A1) = f - E(g| A1) = f - E(g|.A), where the last equality follows from (z).
Now, by taking the conditional expectation over A, we have

E(fglA) = E(f|A) - E(g|A).

(i)= (i). Let f = f — E(f|A). Then E(|f]*|A) = E(f|A)? = 0. In particular, [ | f|*du = 0, thus,
f=E(flA). m

2.6. Characteristic factors

Let X = (X, X, u, T) be an invertible ergodic measure preserving system and f7, ..., fx € L*(X), k > 0.
The convergence of the multiple ergodic averages

1 =

v 2]

n=0 i

" f; ®)

k
=1
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in L?(u) for general k was established by Host and Kra [23] and independently, though somewhat later,
by Ziegler [30].

Host and Kra proved convergence by showing that the averages in (5) are controlled by the Gowers—
Host—Kra seminorms defined above. This reduces the general convergence problem to convergence
under the additional assumption that each function f; is measurable with respect to the Host—Kra factor.

Ziegler, on the other hand, studied the universal (minimal) characteristic factors for the multiple
ergodic averages

N-1 k

1 )
i ;) E[T“‘"fi,
where ay, ..., ar € Z are distinct and nonzero. These are the minimal factors Z;_; (X), such that
lim ljf ﬁT‘”"f- =0
Noe N .

whenever E (f;| Zx-1(X)) = 0 for some i.

In [5, Appendix A], Leibman proved that, for Z-systems, the factors studied by Host and Kra coincide
with the factors studied by Ziegler, thus giving these factors the name Host—Kra—Ziegler factors. Using
Fglner sequences in order to define averages, one can generalise the above to arbitrary countable discrete
abelian groups (or even more generally, to amenable groups). However, in the setting of general abelian
groups, Host—Kra factors may no longer coincide with the characteristic factors for averages of the form

k
ucC —;iergl:[Taigﬁ.

We give a very simple example. Let p be a prime number and F,, be the group with p elements. We
denote by F)) the direct sum of countably many copies of [F,. In [10], it is shown that there are many
nontrivial ergodic F7-systems with nontrivial Host-Kra factors ZK(X) for any k > 0. However, the
only characteristic factor for the average

UC-lm Ty fi - Tpafy

is X'. Indeed, since T),, = Id, the average is nonzero for every f;, # 0, assuming that fi = ... = f,_1 = 1
(say). To overcome this technicality, one may restrict to the case where k < p, but the situation is not
that simple for arbitrary countable discrete abelian groups, and, in general, Host—Kra factors may not
coincide with the universal characteristic factors.

This phenomenon was not studied previously in the literature, but it plays an important role in this
paper. More specifically, we study how the Host—Kra factor Z!(X), which coincides with the classical
Kronecker factor, is related to the the universal characteristic factor, Z(X), for the average

UC-1m T, fiT>, f>,
glefg o f1Tog fo

where f1, f» € L*(u), in the setting of actions of countable discrete abelian groups. One of our main
tools is a result which asserts, roughly speaking, that by adding eigenfunctions to the system X, one has
that the characteristic factor Z;(X) is generated by the Host—Kra factor Z'(X) and the o-algebra of
2G-invariant functions. We also give an example that illustrates the necessity of adding eigenfunctions
to the system (see Example 4.1).
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2.7. Seminorms for multiplicative configurations

We now give a brief explanation of where our methods come up short of fully answering Questions 1.19
and 1.20. As discussed above, our approach to the large intersections property is to study families of
seminorms and their corresponding characteristic factors. However, in the case of Questions 1.19 and
1.20, these seminorms have somewhat exotic behaviour.

For example, Question 1.19 is related to the averages

uc -qlei(glo J1(Tgnx) fo(Tgmx) (6)

for some ergodic (Q-, -)-system. An application of the van der Corput lemma (Lemma 2.1) shows
that (6) is equal to zero if

UC- lim

[ 8am i B £lZpn (0) d| =0
q€Qx0

If the action of Tyn-m, g € (Qso, -), were ergodic (e.g. if n = m + 1), then the above expression is
manageable as we will see in this paper. Presumably, if n and m are coprime, then this expression may
also be manageable, but we do not see how.

Question 1.20 is related to the average

ucC - qlei(glo 1, fi quszqz f3. @)

Using the van der Corput lemma, the Cauchy—Schwarz inequality and then the van der Corput lemma
again, we see that the average in (7) is zero if

UC- lim

q1€Qx0 42€Qx0

UC- lim [ ApA s fs d,u' =0.

If in the expression above we had g7, g3, or g3, g3, then this expression would be related to the Gowers—
Host—Kra seminorm of f3 with respect to the action of all squares or cubes of (Q-q,-). The above
quantity is therefore some combination of the two. Again, presumably, the fact that 2 and 3 are coprime
may be useful to analyse these seminorms. Studying the structure of these new peculiar seminorms is
an interesting problem that we do not pursue in this paper.

3. Theorem 1.11

We first give a brief overview of the proof of Theorem 1.11. Let X = (X, X, u, (Tg)ge) be an ergodic
G-system, and let ¢, : G — G be arbitrary homomorphisms, such that (¢ — ¢)(G) has finite index in
G. The key component in the proof of Theorem 1.11 is the analysis of the limit behaviour of the multiple
ergodic averages

uc- ;IEHGI JiTy(g)%) - f2(Ty(g)%) ®)
for fi1, fo € L*(X). Standard arguments using the van der Corput lemma (Proposition 3.5) show that
UC - lim f; (T(p(g)x) . fz(T(/,(g)x) =
geG

, 9
uc -;ierg E(f1lZ2,(X))(Ty(g) (X)) E (f2 24 (X)) (Ty (g) (%)) ©

where Z,(X) and Z, (X) are the o-algebras of the Kronecker factors of X with respect to the actions
of ¢(G) and ¥ (G), respectively (see Subsection 2.5).
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In Theorem 1.11, we assume, furthermore, that ¢ (G) has finite index in G. In this case, the factor
2, (X) coincides with Z, (1; (X), the Kronecker factor of X with respect to the action of G (see Lemma 3.6).
Our main observation is that one can replace Z, (X) in (9) with a smaller factor. As an illustration, we
give the following example:

Example 3.1. Consider the additive group G = @;":l Z/AZ. We use i € C to denote the square root
of —1, and for every natural number n € N, we let C,, denote the group of roots of unity of degree n. We

define an action of Gon X = (I—[jeN C4) x Cy by

18 28 .g%2-g:
Te(x,y) = ((,g;xj)jeN,y . l_[(xjgj i858y,
JeN

where x = (x1,x2,...) € [ Cs and g = (g1, 82, ...) is any representation of g in @;‘;1 Z/4Z. The

system (X, (Ty)geG) is a group extension of its Kronecker factor Zg (X) = [ ;e Ca by the cocycle

o-:GxHC4—>C2,
JEN

o(g.x) = [ o3 iE),

JEN

Let (g) = 2g. We observe that the function f(x,y) = y is orthogonal to L>(Z'(X)). On the other
hand, we have

Tof(x,y) =0 (2g,x) -y = [ [ %72y = [ [ &y = [ [-D® x ).

JEN JEN JEN

In other words, f is an eigenfunction with respect to the action of ¢ (G) on X with eigenvalue 1(2g) =
[1jen(=1)8 . Therefore, f is measurable with respect to Z,(X), and we see that ZHX) # Z4(X).
Now, let ¢(g) = g. We claim that f does not contribute to (8). Namely, we have that

-lim T, fi T =
UcC glerl('l; gfl 2gf 0

for every bounded function fi. Indeed, by (9), it is enough to check this equality in the case where f is
an eigenfunction with respect to the action of G. Let y(g) be the eigenvalue of f], we see that

UC-1im T, fiToe f = fi - f-UC-1lim x(g) - 1(2g).
geG geG

The eigenfunctions of X take the form A(x,y) = ]—L’.‘zl xll." for some n € Nand [4,...,1, € {0,1,2,3}.
Therefore, g — x(g)A(2g) is a nontrivial character of G and so

UC - lim y(g)1(2g) = 0.
geG

Remark 3.2. In the example above, the factor Z' (X) is isomorphic to [] jen Ca equipped with the action

Tg(l)x = (i% - x;);en, while Z2(X) = X. On the other hand, for the 2G-system (X, (T;)ge2G), We have
Z),(X) =X

Example 3.1 suggests that a (G)-eigenfunction contributes to (8) if and only if its eigenvalue
coincides with an eigenvalue of the G-action. In practice, we use a result of Frantzikinakis and Host [19]
to decompose f> into a linear combination of eigenfunctions (see Proposition 3.12). However, since

https://doi.org/10.1017/fms.2022.97 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.97

16 E. Ackelsberg, V. Bergelson and O. Shalom

the action of ¥(G) may not be ergodic, we have to include in our analysis the case where the ¢(G)-
eigenvalue, 1((g)), is not a constant in X, but rather a ¢ (G)-invariant function. We let Z, (X) be the

sub-c-algebra of Z,, (X) generated by all the iy (G)-eigenfunctions with eigenvalues A(y(-), x) : X — G
that coincide with an eigenvalue with respect to the G-action for u-a.e. x € X. We show that one can
replace Z, (X) with Z,(X) in (9). After replacing Z,(X) by Z,(X), the remainder of the proof of
Theorem 1.11 follows by modifying previous arguments used for deducing Khintchine-type recurrence
from knowledge of relevant characteristic factors (see, e.g. [2, Section 8]).

3.1. Characteristic factors

We start with a definition of characteristic factors (cf. [21, Section 3]).

Definition 3.3. Let G be a countable discrete abelian group, let ¢, : G — G be arbitrary homomor-
phisms and let X = (X, X, u, (Ty)gec) be a G-system. A factor Y = (Y, Y, v, (Sg)gec) of X is called a
partial characteristic factor for the pair (@, ) with respect to ¢ if

UC - lim Ty () /iTy (g) f2 = UC - im Ty (o) E(f1 1)) Ty () S2
geG geG

for every fi, f» € L*(X). We define a partial characteristic factor with respect to ¢ similarly and say
that Y is a characteristic factor if it is a partial characteristic factor with respect to both ¢ and i, that is

uc ';ig?; Ty(g) 1Ty (g) f2 = UC ;lerg To() ECSilV)Ty () E(1219)

for every fi, f € L= (X).

In other words, a factor of a measure preserving system X = (X, X, u, (Tg)gec) is a characteristic
factor for a certain multiple ergodic average, if the study of the limit behaviour of the average can be
reduced to this factor. The following easy lemma is related to the well-known result of Furstenberg,
which asserts that a system X = (X, X, u,T) is weakly mixing if and only if the Kronecker factor,
Z1(X), is trivial.

Lemma 3.4. Let X = (X, X, u, (Tg)gec) be a G-system, let ¢ : G — G be a homomorphism and let
f € LX(X). IfE(f|12,(X)) = 0, then for every h € L*(X), we have

UC - lim
geG

/Tw(g)f'hd/l‘ =0.
X

Proof. Assume E(f | Z,(X)) = 0. Then by Proposition 2.4, || flly2(4(Gy) = 0. that is,

/ A¢(g)fd:“‘ =0.
b'e

Since UC -limgeg |agl = 0 &= UC -limgeg a§ = 0 for every bounded complex-valued sequence
g > ag, we have

UC - lim
geG

UC-lim/ (Tye) X Tpi)) fOF - f® fd(uxp)=0.
8€G Jxxx

The mean ergodic theorem implies that

[ B @ f1Tpn (X X0) - 7 dlax ) =0
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and E(f ® f|Zyxe(X X X)) = 0. Therefore, for every 1 € L%(X), we have,

2
UC-lim(/T¢(g)f~hdy) =/ E(f® f|Zpxp(X X X)) - h® hdux =0,
geG X X2

which implies that

/ Tog)fh d/l' =0
X

UC - lim
geG

as required. O

Using the van der Corput lemma (Lemma 2.1), we show that Z,(X) and Z, (X) are partial charac-
teristic factors for the pair (¢, ) with respect to ¢ and ¢, respectively.

Proposition 3.5. Let X = (X, X, u, (Tg)gec) be an ergodic G-system. Let ¢, : G — G be homomor-
phisms, such that (y — ¢)(G) has finite index in G. Then, for any fi, f» € L*(u), one has

UC-lim Ty(q) i+ Ty(e) fo = UC - 1im Ty E(f11 2 (X)) - Ty E (o] 2 (X))

in L?(p).

Proof. We follow the argument of Furstenberg and Weiss [21]. By linearity and symmetry, it is enough
to show that

UC-lim Tog) /i - Ty /2= 0

whenever E( fi|Z,(X)) = 0. Dividing through by a constant, we may assume that || f;|l < 1fori =1,2.
We use the van der Corput lemma with ug = Ty (4) f1 - Ty (g) f2. For every g, h € G, we have

<”g+h’”g> = /XT<F(g+h)f1 Ty (gen) f2 - Ttp(g)ﬁ ) Tw(g)JTZ du. (10)

Since the measure y is T, (4)-invariant, (10) is equal to

/XTW,)fl fi Tw-g)0) (Twh)fl 'E) du.
Hence, by the mean ergodic theorem, we have
uc -éigr(l}(ugm,ug) = / Toanfi- fr - ETyny fr - folTy—o(X)).
X
Since H := (¢ — ¢)(G) has finite index in G and the action of G on X is ergodic, we can find a partition
X = U§:1 A; to H-invariant sets, where / is at most the index of H in G. Since f; is bounded by 1,
k

<3

i=1

Anﬂh)fl S 1a, d#'-

‘UC - i,gg(”gm’ tg)

Now, since E(f1|Z,(X)) = 0, Lemma 3.4 implies that UC -limjeg fX Tomn) fi ]T] La,du| = 0, for
every 1 <i < k. The van der Corput lemma (Lemma 2.1) then implies that

UC-1limT, - T, =0,
lim Too) /i Tue) /2
and this completes the proof. m}
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In [5, Appendix A], Leibman proved the following result in the special case where G = Z. For the
sake of completeness, we give a proof for arbitrary countable discrete abelian G in Appendix A.

Lemma 3.6. Let (X, X, 1, (Tg)gec) be a G-system, and let H < G be a subgroup of finite index. Then,
forevery k > 1, one has ZIIfI (X) = Zé(X).

In particular, if ¢(G) has finite index in G, then the factor Z,(X) coincides with Z(X).

Corollary 3.7. Let G be a countable discrete abelian group, let X = (X, X, 1, (Tg)gec) be a G-system
and let , : G — G be arbitrary homomorphisms, such that ¢(G) and (Y — ¢)(G) have finite index
in G. Then, for any bounded functions fi, f» € L*(X),

UC';iengw(g)fl Ty a = UC';iengwg)E(fﬂZ(X)) Ty o) E(f2| 24 (X)).

Let G be a countable discrete abelian group and X = (X, X, u, (Tg)qec) be an ergodic G-system. By
Theorem 2.5(ii), the Kronecker factor of X, Z' (X) is isomorphic to an ergodic rotation. Therefore, it is
convenient to identify the Kronecker factor with the system Z = (Z, a), where Z is a compact abelian
group and @ : G — Z is a homomorphism, such that T&}z =z + g, where T! is the G-action on Z. The
following corollary of Proposition 3.5 will be useful later on in this paper.

Proposition 3.8. Let X = (X, X, u, (Tg)gei) be an ergodic G-system with Kronecker factor Z = (Z, ).
Let ¢, : G — G be homomorphisms, such that (y — ¢)(G) has finite index in G. Then, for any
fo. fi» fo € L¥(u) and any continuous function n : Z*> — C, we have

UC - Tim 17(@y(g)> @y (g)) / foTo) fi - Ty(g) o du
gGG X
= UC-;iggl;U(%@)aO/w(g)) LfO’Tw(g>E(f1IZ¢(X))'ng)E(fzIZw(X)) dp.

Proof. By the Stone-Weierstrass theorem and linearity, we may assume 1 (u, v) = 41 (u)A2(v) for some
characters A, A2 € Z. Let m : X — Z be the factor map, and let y; := A; ox. Note that Ty x; = A;(@g) xi,
S0 x; is a G-eigenfunction with eigenvalue 4; o a.

Now, set
ho = X1x2fo
hi = x1 /i,
hy = x2 f2.

Since y; and y» are measurable with respect to the Kronecker factor Z(X), which is a sub-o--algebra
of Z,(X) and Z,(X), we have the identities

E(m|Z,(X)) = x1 - E(f1l24(X)),
E(h2|Z,(X)) = x2 - E(f2]2,(X)).

Thus, applying Proposition 3.5 for the functions /1, &, and integrating against s, we have

uc - lim 1(@p(g)s @y (g)) /XfO'ng)fl Ty (g) f2 dp

=UC - lim h0~T¢(g)h1 ~T¢,(g)h2 du
gEG X
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= UC- tim [ o+ Tyt E(|2,00) - Tuto E(l 24(X) d

=UC -;gg U(atp(g)v a¢(8)) ‘/X Jo T E(fil2o(X)) - Ty (o) E(f2| 24(X)) dp. ]

In the next section, we will study the factor Z, (X) further.

3.2. Relative orthonormal basis

Let G be a countable discrete abelian group, and let X = (X, X, u, (Tg)gec) be a G-system. Under the
assumption that the system is ergodic, it is well known that the factor Z!(X) admits an orthonormal
basis of eigenfunctions. The following example demonstrates that this may fail for nonergodic systems.

Example 3.9. Let S! = { € C: |z| = 1}. Consider X = S! x S! equipped with the Borel o-algebra,
the Haar probability measure u and the measure-preserving transformation 7'(x,y) = (x,y - x). Any
function f € L?(X) takes the form

flx,y) = Z an,mxnym

n,meN

for some a,_,, € C with

> lanml? < oo. (11)

n,meN

Now suppose that there exists some constant ¢ € S', such that Tf(x,y) = c - f(x,y) for p-a.e.
(x,y) € S' x S!. By the uniqueness of the Fourier series, we deduce that

An+m,m = C * Anm

for every n,m € N. If m # 0, this is a contradiction to (11) unless a, , = 0. We conclude that f is an
eigenfunction if and only if it is independent of the y coordinate. In particular, L?(X) is not generated
by the eigenfunctions of X.

On the other hand, the functions {x"}, <y are invariant and therefore measurable with respect to
Z1(X). Moreover, the functions {y"},cn satisfy A, (y™) = T"(y™) - y™™ = x™", which is an invariant
function. Hence, y™ is also measurable with respect to Z'(X). We thus conclude that X coincides with
Z1(X).

In order to handle nonergodic systems, Frantzikinakis and Host [19] came up with the following
definition.

Definition 3.10. Let H be a countable discrete abelian group acting on a probability space
(X, X, 4, (Tp)hen)- A relative orthonormal system is a countable family (¢;);en belonging to L2 (p),
such that

@) 1E(|¢j|2 |Zx (X)) has value O or 1 u-a.e. for every j € N;
(ii) E(¢jﬁ|IH (X)) =0 u-ae. forall j, k € N with j # k.
The family (¢;);en is also a relative orthonormal basis if it also satisfies
(iii) The linear space spanned by the set of functions

{¢jlﬁ cjeN Y e L¥(u)is H-invariant}

is dense in L2(u).

We also give a definition of eigenfunctions that applies to nonergodic systems.
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Definition 3.11 (H-eigenfunctions). Let H be a countable discrete abelian group and X =
(X, X, 4, (Tp)ner) be an H-system. We say that f : X — C is an H-eigenfunction if there exists
an H-invariant function A : X — H, such that Tnf(x) =A(x,h) - f(x)forall h € H and u-a.e. x € X.
In this case, we also say that A is the eigenvalue of f.

Note that under the assumption that the H-action is ergodic, this definition coincides with the standard
definition of an eigenfunction. Observe, moreover, that the functions {y™},,en from Example 3.9 are
eigenfunctions according to this definition.

Frantzikinakis and Host proved the following result:

Theorem 3.12 ([19], Theorem 5.2). Let X = (X, X, u, (Tp)nen ) be an H-system. Then Zg (X) admits
a relative orthonormal basis of eigenfunctions.

The proof of Theorem 3.12 is given for Z-actions in [19], but the same argument can be easily
generalised for arbitrary group actions.

3.3. Proof of Theorem 1.11

In this subsection, we prove Theorem 1.11. Example 3.1 is a good example to have in mind while
reading this section.

Let X = (X , X, U, (Tg)geg) be an ergodic G-system, and let Z = (Z, @) be the Kronecker factor of
X.Let A € X and f = 14. We can write

fe = E(FIZ(X) = ) aidi,
ieN
where {;};en is an orthonormal basis of eigenfunctions and a; € C. Moreover, using Theorem 3.12,
fu = E(fy|24(X) = ) biti,
ieN

where {&;};en is a relative orthonormal basis of ¢ (G)-eigenfunctions and b; = E(f - Ei |Zy (X)) are
¥ (G)-invariant functions.
Choose N; € N sufficiently large so that

N1

fc - Zaigi

i=1

<

&
8
2

and

&
g

N
- (Z bifz’) <
i=1 2

For each j € N, the function &; is a y(G)-eigenfunction, so we can write &;(Ty(g)x) =

,u,(x ¥ (g))€j(x) for some zﬁ(G) invariant function y; : X — ¥ (G). The group Z is compact, so
Z is countable and we can write Z = Unen Fns where Fy C F, C - - - are finite sets. Let

Cn = {8 = xi(@pg)x2(@y(g) : X15x2 € Ful,

and let C = | J,,ciy Cyr- Finally, let

E;,:= {xEX:,uj(x,-) EC,AJ((?\C)}.

https://doi.org/10.1017/fms.2022.97 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2022.97

Forum of Mathematics, Sigma 21

Note that the complement of E; ,, consists of all x € X, such that u;(x, -) belongs to a finite set. Since
1 is measurable, we conclude that so is the complement of E; ,,. Hence, E; ,, are measurable. Since
Uiy Ej.n = X for every j € N, there exists sufficiently large N, € N, such that

12
E
bi&:*d < —
(-/X\ELNZ | ijl /'l) 16N,

for j = 1,...,Ny. Then, let N > max{Ny, N>}, such that: if T,{; = y(ag){; forsomei =1,...,Ny,
then y € Fy.
Now, let By € Z be a small neighborhood of 0 in Z, such that if z € By and y € Fy, then

(z) = 1] < —

16N
Let g : Z — [0, ) be a continuous function supported on By normalised so that
UC - lim no(a¢(g))no(a¢(g)) =1.
geG

Put n(u, v) := no(u)ne(v). Then, by Proposition 3.8, we have

uc —;ierg 1(p(e)> u(g) H(A NT, (AN Tl/_,(lg)A)
=UC- lim ’7(0‘¢(g)’“t//(g)) / I Tog)fe - Ty(g) fu du
gEG X
= /Xf'UC-;igg n0(@p())Tp(g) fe - M0(@y () Ty (g) fy dp-

From the definition of By, if @y (g) € Bo. then ||[Ty(o)&i — &ill, < & fori = 1,...,Nj. Hence, for
every g € G, since 1 is supported on By, we have

l[0(@g () Tpe) fe = UO(atp(g))fcnz <

N,
UO(“w(g))(Tap(g)fc - Z aiTw(g)fi)

i=1 2

N Ny
no(%(gﬂ(z aiTp)i= ), aié“i)

+
i=1 i=1 2
N
+ nO(aw(g))(Z a;d; _fc)
i=1 2
N] e N]
ST]()(ac,a(g))( fc_zaigi +N1m+ fc_zaigi )
i=1 2 i=1 2
e € & S5e
< UO(“w(g))(g + 16 + g) = ETIO(Q‘P@))'

Therefore,

'Lf'ﬂo(a¢<g>)Tw(g>fc oy ) Ty(g) fu dﬂ—/xfc'f'ﬂ(asa(gwawg))Tw(g)fw d#’

= ‘/Xf'ﬂo(awg))Tw(g)fw “(mo(@y(e) Ty (g) fo = M0(@y(g)) fo) d#'
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< ’70(“«0(8))”’70(a¢(g))T¢(g)fc - ’70((’¢(g))f6“1
Se
< En(a¢(g),a¢(g)).
Taking a Cesaro average, we have the inequality

. -1 -
UC - lim 7 (age)- 0 c) ulanTlyanTyl A

. S5e
> / fe - f-UC-Timn(ay(e), @u(g) Tuig) fo du— T (12)
X gEG 16
Now, we estimate the average
UC-1i , T, .
lim n{ep (). @u(o) Tui fo
First, foreachi =1, ..., Ni, we have

[[70 (@ () (Ty () (bii) = bidi)||., = |7 - 0@y () (Ty (o€ = &)l < %'Io(%@)

Next, let 1 < j < Ny. Write Ty (g)(b;€)) = bjuj(x, (). If uj(x,-) ¢ C, then for any y1, x» € Z,
the character g = y1(a@y(g)) X2(@y (o))t (x,¥(g)) is nontrivial, so

UC - lim y1(ag(g))x2(@u(g) 1 (x, 4(8)) = 0.
Hence, by the Stone—Weierstrass theorem,
UC- lim 1(@p(e), u ) )1 (x. ¥ (8)) = 0.
Therefore,
UC - lim n{ayo): @) Tuie) o = UC - lim iy ). @y () Tuie) fu-

where flp = E(f] va (X)) and Zp (X) is the factor generated by ¢ (G)-eigenfunctions whose eigenvalues
come from C. Note that
ﬁp = Z bié:,

ieN

where

z. _ é:j(x)’ ,Uj(x, ) € C’
Ej(x) = {0, (6, ¢ C.

‘We note that since C is at most countable, j('j is measurable. Moreover,
—_~ NI —_~ Nl ~
Jo - Z bi&i =E(f - Z bi&ilZy (X)),
i=1 i=1
)

N,
-~ ~ £
Jo = Zbifi 3
=1

<
2
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If x € Ej n, then we must have 1 (x,-) € Cn. Thatis, u;(x,¥(g)) = x1(@p(g)) x2(@y(g)) for some
X1, X2 € FN. Thus,

|77(a'<p(g)’aw(g))(ﬂj(x"/’(g)) - 1)‘ = |’7(atp(g)7all/(g))()(l (@) x2(ay () - 1)|
< (@ (e)> @ (e)) (X1 (@p(e) X2 (@u(g) = X2(@y(g)))]
+ (@ (e @uie) 2@y (g) = 1))
E E E
<nl@pior o) 1oy + Tay) = a7 (@@ Wio)-

Therefore,

2

Mg @wi@) (Tuiw (biE) - b)) X
~ ~1\ 2
= /X"l(awg»a¢<g>)(Tw(g>(bj§j)—bjfj)‘ dp
~ 2
= [ [es 0 [ I vucen) (st = DF o
2 ~ 2 ~ 2
Sn(awg»%(g))z(/E_ (%) |bjfj) dﬂ+4/X\E_ (b,§,| du)

2 2
2f( € \2 & g
<1(@p() @y (e) ((S—N) +4(TN]) ) < Z(S—Mn(a¢(g),a¢(g>)) :

Putting together our estimates, we have

HUC - limn (g (g)- 2y (e)) Tu(e) for = f¢”
geG 2

= HUC -lim (@ (e), @y(e)) Ty (o) fu — fw”
geG 2

Ny
< ||UC- lim n(@g(0) @y 0) Tuio fo = Tuie) ), bidi
i=1 2
Nl _ .
+|lUC -;igrg 1(@e(e) Xy(e) (Tzﬁ(g)(bifi) - bjfj)
i=1 2

+

Nl _ .
Zbifi - fu
i=1 2
N1ﬁ+f (2\/_+5)s e
8N 8 16

&
<<+
8

NS} I

Substituting back into (12), we have

138
. | -
UC-;lergn(aso(g),aw(g))ﬂ(A“Tw G ANT, () /fc f - fu du =

13¢

> p(A) = <

13)
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Since UC -limge n(@p(g)s @y (g)) = L. it follows that the set

. - -1 3
{g €G: y(A NT;l A mTMg)A) > 1(A) —g}

is syndetic in G. If not, there exists a Fglner sequence (®p )y ey, such that (A N T_(g)A N Tl;( )A) <

u(A)? — & for every g € Uy oy @y . But then,

ANT,!

. - 3
UC- lim (@) () # (A NTy v (g) ) < p(A) —e,

¢(g)

which contradicts the inequality in (13).

4. Extensions

As we have observed in Subsection 3.3, the partial characteristic factors obtained in Proposition 3.5 are
not the minimal characteristic factors. For example, in Subsection 3.3, we proved that one can replace
2y (X) with the smaller factor Z, (X). In this section, we develop an extension trick that will be used
to further simplify the characteristic factors. These results will be useful in the proof of Theorem 1.13,
where ¢(G) is no longer assumed to have finite index in G. In the example below, we illustrate our main
result in the simpler case where ¢(g) = g, ¥ (g) = 2g. The following example is based on Example 3.1.

Example 4.1. Let G = @;11 Z/4Z, and let X = (HjeN C4) X Cp X Cy, where the action of g € G on
X is given by

Tg<x,xm,y>=((zgfx,),eN,xm ]‘[( DR I [C D! (14)

JjeN

for x = (x1,x2,...) € [[jen Ca, X € C2 and y € C,. Note that for g = (g1, 82,...) € G, only finitely
many of the coordinates g; € Z/4Z are nonzero, so (14) is well defined.

As in Example 3.1, the function f(X,x.,y) = y is a 2G-eigenfunction with eigenvalue 2g
H;’;l (—1)87. However, this time, f may have a nontrivial contribution for the average. Indeed, if we let
f1(X, X0, ¥) = X0, then fi is a G-eigenfunction with eigenvalue g — [];.,(—1)8* and

ucC - ;IEHGI Tg f1(X, X0, ¥) Tog f (X, X0, ¥) = Xeo * ¥

is nonzero. Let ¢(g) = g and y/(g) = 2g. The above computation shows that f is measurable with respect
to Zw where Z, is defined in Subsection 3.3. As a result, we deduce that Z(X) V 7, (X) < le (X) is
a strict inclusion.

Consider the homomorphism A : G — S', A(g) = ]_[‘j’.';1 i8i and observe that 1(2g) = H;"zl(—l)gl’ is
the eigenvalue of f,. We extend X to a new system X, where A is an eigenvalue. Let X = (ﬂ jeN C4) X

C4 X C3, and let the action of g € G on X be given by

.o 28; .g%-g;
S (.30, ) = [ (197)) 10, A(@)xems y - | | (557 -i85780)
JEN

for x = (x1,x2,...) € [[jen Ca, X € Cq and y € Cy. It is easy to see that X = (X, (Sg)gec) is an
extension of X with respect to the factor map 77 (X, Xe, y) = (X,x2,y). Observe that now the function
h(X,Xx,y) = Xs On X is an eigenfunction with eigenvalue A and we deduce that /- f or is a2G-invariant
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function on X. This means that 7 o & is measurable with respect to the o-algebra Z ()? )V Iw()? ). In
fact, one can show that now we have an equality Z(X) v I,p()? ) = Zw()? ).

Definition 4.2. Let G be a countable discrete abelian group, and let ¢ : G — G be a homomorphism.
We say that a character y € G factors through ¢ is y = A o ¢ for some 1 € G.

The main result in this section is the following theorem.

Theorem 4.3. Let X = (X, X, 1, (Tg)geg) be an ergodic G-system. Let ¢,y : G — G be homomor-

phisms. For any countable set C C G of characters that factor through ¢ and \, there exists an ergodic
extension X of X with the following property: for any x € C, there exist G-eigenvalues A, u of X, such

that A(¢(8)) = (¥ (8)) = x(8)-

The fact that X in Theorem 4.3 is ergodic will be important in our proof. In preparation for proving
that X is ergodic, we need the following definition.

Definition 4.4. Let (X,G) be an ergodic system and U a compact abelian group. A cocycle is a
measurable map p : G x X — U satistying p(g + g’,x) = p(g,x) - p(g’, Tyx) for every g,g" € G and
p-a.e. x € X. Two cocycles p, p’ : G x X — U are said to be cohomologous if there exists a measurable
map F : X — U, such that p(g,x) - p’(g,x)"! = AgF(x) forall g € G and p-a.e. x € X. The image of
p, Up, is defined to be the minimal closed subgroup generated by {p(g,x) : g € G,x € X}. The cocycle
p is said to be minimal if it is not cohomologous to any cocycle p’ with U, s U,,.

In [31], Zimmer proved that every cocycle is cohomologous to a minimal cocycle and established
the following criterion for ergodicity.

Lemma 4.5 ([31], Corollary 3.8). Let X = (X, X, u, (Tg)ge(;) be an ergodic G-system, U a compact
abelian group and p : G X X — U a cocycle. Then, X X, U is ergodic if and only if p is minimal and
U =U,.

We are now set to prove Theorem 4.3.

Proof of Theorem 4.3. Let {x; : i € N} be an enumeration of the elements in C. By assumption, for
every i € N, there exist homomorphisms )(l."’,/\/lf” : G — S, such that x/ (¢(g)) = leﬂ(zp(g)) = yi(g).
Let I = Nx {¢,¢}, and let ¥ : G — (S')! be the homomorphism whose (i, ¢)-coordinate is leﬁ
and (j,y)-coordinate is X}b for every i, j € N. By Zimmer’s theory, there exists a minimal cocycle

p 1 GxX — (SN which is cohomologous to y, where the latter is viewed as a G x X — (S")!
function that is independent of x € X. This means that there exists a measurable map F : X — ()7,
such that pg = ¥(g) - AgF. Let V be the image of p, then, by Lemma 4.5, X=X X, V is ergodic. Now,
for every coordinate ¢ € 1, consider the projection map r; : (S')! — S'. By restricting 7; to V, we get
a homomorphism 7, : V — S'. Then, the function bi.o(x,v) =7, o (v) - m; o F(x) is an eigenfunction
with eigenvalue Ag¢; ,(x,v) = )(f (g) and ¢; » (x,v) = 7; 4 (v) - m; 4 F(x) is an eigenfunction with
eigenvalue Ag¢; y (x,v) = /\/}p (g)- This completes the proof. O

4.1. Characteristic factors related to Theorem 1.13

The goal of this subsection is to prove a stronger version of Propositions 3.5 and 3.8 with smaller
characteristic factors. We will use the above extension theorem in order to express these characteristic
factors in terms of Z, ,(X) and the invariant o-algebras, Z,(X) and Z, (X). Then, using a result of
Tao and Ziegler [29] (see Theorem 4.8 below), we will reduce matters further to studying the Conze—
Lesigne factor Z2(X) with respect to the action of G, which is already well understood for arbitrary
countable discrete abelian groups (see [2], [27]).
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We start with a lemma.

Lemma 4.6. Let X = (X, X, u, (Tg)geg) be an ergodic G-system. Let Lyyy (X X X) denote the
o-algebra of (Ty(g) X Ty (g))geG-invariant sets in X x X. Then,

Proof. Let fi, f» € L*(X) be arbitrary functions and f(x,y) = f1(x) f2(y). Then, by the mean ergodic
theorem, we have that

E(f|Zgxy (X x X))(x,y) = UC - im Ty () i(x) - Ty () 2(3)

in L?(p X p). By the van der Corput lemma, E(f|Zpxy (X x X)) =0if

UC - lim
heG

UC - lim / Ty(g+m) f1(x) - Ty (gem) [2(3) * Ty(g) J1(x) - Ty (g) f2(¥)d (p X p) (x, y)‘ =0.
8€G Jxxx

Since ¢(G) X ¥ (G) is measure-preserving, the above is equal to

)(‘/X Awmfz(y)dﬂ(y)‘)

which by the Cauchy—Schwarz inequality is bounded above by

uc- }llierg(’ [ 8wt

1/2
(||f1||U2(<p(G)) ' ||f2||U2(z//(G))) .

We deduce that if E(f|Z,(X) X Zy(X)) =0, then E(f|Zyxy (X x X)) = 0. Since linear combinations
of functions of the form f] ® f» with fi, fo € L*(X) are dense in L* (X x X), we deduce that the same
holds for every bounded function on X X X, and this completes the proof. O

Using Theorem 4.3, we can now prove the following useful result.

Lemma 4.7. Let G be a countable discrete abelian group, and let X = (X, X, u, (Tg)gei) be an ergodic
G-system. Suppose that ¢, : G — G are arbitrary homomorphisms, such that (y — ¢)(G) has finite
index in G. Then, there exists an ergodic extension n: X — X, such that

A Ty (X)) < (Z(EZ) v@,(;’f)) ® (2(5(’) vzw(if)).

Proof. Let {{;}ien be arelative orthonormal basis of eigenfunctions for Z,(X) and {£;};en be the same
for Z(X). Forevery i,j € N,let4; : ¢(G) x X — Cand u; : y(G) x X — C denote the eigenvalues
of ¢; and &;, respectively. Our goal is to study the functions f € L*(X?) which are (T, (g) X Ty (g))gcG-
invariant. By Lemma 4.6, we can write any such function as

FOuy) = ) e (o NGE ),

i,jeN

where ¢; ; is a ¢(G) X (G)-invariant function. Since f is Ty (4) X Ty (4)-invariant, we deduce that

cij(x,¥)Ai(@(8), ) (W (g),y) = ci j(x,y).

Hypothetically, if ¢; ; was a constant, then unless it is zero (and then can be removed from the
summation), the equation above implies that A;(¢(g),-) = (¥ (g),-) = x(g) for some character
X € G. In this special case, we can apply Theorem 4.3 in order to find an extension where A; and y;
are eigenvalues. This means that we can express the lift of /; ® £; to Xasa product of a tensor product
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of G-eigenfunctions (whose eigenvalues are A; and y;) and a ¢(G) X ¢ (G)-invariant function, which
completes the proof in this special case. Below, we generalise the above to arbitrary c; ;.

LetC;; = {(x,y) € XxX : ¢; j(x,y) # 0}. Then, A;(¢(g),x)u;(¥(g),y) = 1 forevery (x,y) € Ci’l
and all g € G. Hence, g — A;(¢(g),x) and g — u;(¥(g),y) are equal to the same character y € G
which factors through ¢ and  simultaneously for all (x,y) € C; ;. Now, for every y € G, we let

Te =4, J) € N*: (ux ) ({(x,y) € X x X : Vg Ai(9(8), %) = p; (¥ (g),y) = x(g)} > 0}
and set
C={xeG:J,#0}andJ := UJX.
yeC
Our first observation is that
Fey) = ( Z)Jci,ﬂx,y)a(x)fj(y). (15)
e

Indeed, if (i, j) ¢ J, then for every x, (i, j) € J,., but then from the computation above u(C; ;) = 0 and
ci,j = 0for (uxp)-ae. (x,y) € X xX.

Claim. The set C is at most countable.

Proof of the claim. We use the fact that in a probability space there can be at most countably many
disjoint sets of positive measure. Assume by contradiction that C is uncountable. Since there are only
countably many (i, j) € N2, we deduce that there exists some (ig, jo) which belongs to J ' for all y in

an uncountable subset of G. But since the sets

{(x,y) e XXX :VgeG, Ai(p(g),x) =i (g),y) =x(&)}

are disjoint for different y’s and of positive measure, we obtain a contradiction. This proves the claim. O

Now, we return to the proof of the lemma. Since C is at most countable, we can apply Theorem 4.3.
We see that there exists an ergodic extension 7 : X - X , such that for every y € C, there exist
G-eigenvalues y%, y¥ : G — S! with y#(¢(g)) = x(g) and x¥ (¥(g)) = x(g). Let m)f,mi X > §!
be the corresponding eigenfunctions. Now, fix some (i, j) € J, and let y € C be, such that 2;(¢(g),x) =
wi(w(g),y) = x(g) whenever c; ;(x,y) # 0. We deduce that (¢; ;- {; ® &) om - m§ ®mﬁ is a
¢(G) x ¥ (G)-invariant function. Since ¢; ; is also ¢(G) Xy (G)-invariant, we deduce by equation (15)
that f o & is a linear combination of products of eigenfunctions m)f ® mﬁ and some ¢(G) X ¥ (G)-
invariant functions. Equivalently, the lift of f to X x X is measurable with respect to the o-algebra

('@ vI,®) 8 (2'(X) VI, (D)
as required. )

The following result of Tao and Ziegler [29] plays in important role in our work.

Theorem 4.8 ([29], Theorem 1.19). Let G be a countable discrete abelian group, and let X =
(X, X, u, (Tg)gec) be a G-system. Let Hy, Hy be two subgroups of G, and denote by Hy + H, the
subgroup of G generated by H\ and Hj. Then, for every d,d> € N, one has

ZE(X) A2 (X) < 205 (X).

In particular, by setting d; = d> = 1 and using Lemma 3.6, we deduce:
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Lemma 4.9. Let G be a countable discrete abelian group and (X, X, u, (Tg)gec) be a G-system, and let
@, 1 G — G be homomorphisms, such that (y —¢)(G) has finite index in G. Then, Z,_y(X) < Zé (X).

We combine this with the results in Section 3 to deduce the following version of Theorem 3.5.

Theorem 4.10. Let G be a countable discrete abelian group and X = (X, X, u, (Ty)gec) be an ergodic
G-system. Suppose that ¢, : G — G are arbitrary homomorphisms, such that (y — ¢)(G) has finite
index in G. There exists an ergodic extension nt . (X, p) — (X, u), such that for any fy, f1, fo € L= ()

UcC - lim / Jo - To(g)J1 - Ty(g) J2 du =
g€G X
uc- lim /X Jor To ECRIZE(X) V To(X)) - Ty E(SI 26 (X) v Ty (X)) dit

in L*(X), where ﬁ := f; o 1t denotes the lift of f; to the extension X.

Recall that the factors Z,(X) and 2 (X) are relatively independent over Z, , (X). To put this fact
to use, we need to introduce a construction known as a fibre product:

Definition 4.11 (The fibre product over a factor.). For i = 1,2, let Y; = (Y;, Vi, i, (S(gi))ge(;) be
G-systems. Suppose that Y = (Y,),v,(Sg)gec) is a common factor, and let 7; : V; — Y, i =
1,2 denote the factor maps. The fibre product of Y| and Y, over Y is the system Y| Xy Y, =

(Yl Xy Y2, V1 ® Vo, 1 Xy iz, (S x SéZ))geG), where

Yixy Yo ={(y1,y2) €Y1 xYa:mi(y1) = m2(y2)}

and

M1 Xy Mo = / M1,y X H2,ydv(y),
Y

where

M = / Hiydv(y)
Y

is the disintegration of the measure y; over Y fori = 1, 2.
We will use the following result from [31]:

Theorem 4.12. Let G be a countable discrete abelian group, and let X = (X, X, u, (Tg)gec) be a
G-system. Let Y| = (Y1, Ay, 11, (T;l))ge(;) and Y, = (Ya, Ay, uz, (T;z))ge(;) be two factors of X with
factor maps n; - X — Y; fori = 1,2, and let Y = (Y, v) be their meet. Then, the o-algebra A, vV A,
corresponds to the fibre product Y| Xy Y.

Remark 4.13. In particular, Theorem 4.12 implies that Y| Xy Y is a factor of X. We note that Zimmer
also proved the other direction, namely, that two factors )y and ), are relatively independent over a
third factor Y if and only if the fibre product Y| Xy Y3 is a factor of X (see [31, Proposition 1.5]).

We also need the following result:

Theorem 4.14 (cf. [23], Proposition 4.6). Let v : (Y, Y, v, (Sg)eec) — (X, X, u, (Ty)gec) be a factor
map between G-systems, and let k > 1. Then, n~' (2% (X)) = ZX(¥) A 77 1(X).

Host and Kra [23] proved Theorem 4.14 for Z-actions, but the argument extends easily to arbitrary
countable discrete abelian groups.
‘We now have all the requisite tools to prove Theorem 4.10.
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Proof of Theorem 4.10. By the previous result, we see that if fy, f; or f, are orthogonal to functions
measurable with respect to the o-algebra Z,(X) V Z, (X), then the averages above are zero. Therefore,
by Theorem 4.12, the factor Z, (X) Xz, , (x) Zy (X) is a characteristic factor. We may therefore assume
without loss of generality that X = Z,(X) Xz, , (x) Zy (X). For the sake of simplicity of notations,
we write (1 for the measure iz, (x) Xz, , (x) 1z, (x) O0 Zy(x) Xz, , (x) Zy (X). By linearity, it suffices

to prove the theorem in the case where f; = ffp ® ffp and f» = fz"[J ® fzw for some fl‘p, fz‘p 1 Zy,(X) > C
and f’, £}/ : Zy(X) — C. Then,

UC—lim/f0T¢(g)f1'T¢(g)f2 du
8eG Jx

— : ¥ 4
=UC —élerg / Jo-Tog) (f]‘p ® fi ) “Ty(g) (fzw ®f, ) dug.y- (16)

Z,(X)XZy (X)
By Proposition 3.5, (16) is equal to
ve-tim [ ) T (- EGY 1260 00)) @
Zp (X)XZy (X) a7
Toto) (ECS 1200 (0) - 1)) it (. 9).
Note that we used the fact that E(h|Z, 4 (X)) (x) = E(h|Z,,4(X))(y) for uy 4 ae. x,y. By the mean

ergodic theorem, applied to the transformation 7, X T, the limit in (17) converges to

o B (7 EGY120000) © B 1200 (00) - 1Y)
Z,(X)XZy (X)

I‘pxw(X))d/l¢’¢.

By Lemma 4.7, we can find an ergodic extension 7 : X - X (independent of fy, fi, f2), such that
! (Zyxy (X)) is a sub-c--algebra of (Z(f) VI, (f)) ® (Z(Y) \Y% I,/,(f)). Now, by applying the same

argument as above with f~0 ]j and fé instead of fy, f; and f>, and using Theorem 4.14 in order to replace
1 (Z2,,4(X)) with Z, ,(X), we deduce that:

UC - lim /i f(; . T(p(g)ﬁ . Tz//(g)]é dﬁZ
gEG X (18)
(- B 120.00) & B 12000 - 7)

n—1<IW<X>))dﬁ¢,w,

where i, is the lift of u, , to X.

We return to the proof of the theorem. By linearity, it is enough to show that if E (E|Zé (X) v
I¢(f)) =0 or E(J:";|Zé(f) \Y% Il/,(f)) = 0, then (18) is zero. By symmetry and Lemma 4.9, we
may assume without loss of generality that E(ﬁlZ%w(f) VI, (X)) = 0. Since 2, (X), 2y (X) are
relatively independent over Zw,t//(i ), they are also relatively independent over the larger o--algebra
Zcp,t//()?) \Y% I(p()?). We deduce, by Proposition 2.7, that

E(ff120.4(X)VIy(X))  E(f120.4(X) VI, (X)) =0. (19)

Claim. E(f12,.4(X) VI, (X)) = E(f/124.4(X)).

Proof of the claim. Zw,w(f) \Y Iw(f) is a factor of Z,, (X). By Theorem 4.14, Eﬂ is measurable with
respect to Z, (X), and this and Z, (X) are relatively independent over Z, (X), so the claim follows. O
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Equation (19) and the claim imply that
T EG1Z00(B0) = (77 = EGi 1240 0DV T, (0))EGY 124,0(3)

is orthogonal to all functions measurable with respect to ZW/,()?) VI, (X), and so it is also orthog-
onal to those measurable with respect to Z(X) Vv Z,,(X). Since ! (Zpxy (X)) is a sub-c-algebra of

(Z(Y) \Y Lp(f)) ® (Z(f) \Y% Iw(f)), this implies that (18) is equal to zero as required. O
As a corollary, we also have the following stronger counterpart of Proposition 3.8.

Corollary 4.15. In the settings of Theorem 4.10. Let n : Z (g ) — C be a continuous function and
Jo, f1, fo € L¥(X). Let ag denote the rotation of g € G on Z(X). If a, b € Z are coprime, then

uc 'ilerg n(ag) '/)? ]% : Tugﬁ : Tbg}; du =
uC- lim n(a) /X Jo - Tag E(fI|25(X) V Tu(X)) - Tog (ol 28,(X) v T (X)) di,

whereﬁzﬁOHisthelzj‘tofﬁ mifori=0,1,2.

Proof. Since n is measurable with respect to Z ()? ), it is a linear combination of characters. Therefore,
it is enough to prove the equality in the special case where 7 itself is a character. Then, since a and b are
coprime, we can find ¢, s € Z, such that ra + sb = 1. Set hg = fo - =", hy = fi -n* and hy = f> - .
Arguing as in Theorem 4.10, we have

UC - lim h() . Tagh] . Tbgh2 dﬁZ
g€G Jx

UC-lim | ho - TugE (1 2,(X) vV Za(X) - TygE(ha| 25(X) v T, (X)) dfi. (20)
X

Now, since 7 is measurable with respect to Z(X), it is also measurable with respect to Zé (X)VZa(X)

and Zé(f) V Zp,(X), so the claim follows by rewriting h; in terms of 7 and f: on both sides of
equation (20). O

5. A limit formula for {ag, bg}

Let G be a countable discrete abelian group and X = (X, X, u, (Tg)gec) be an ergodic G-system. In
this section, we restrict ourselves to the homomorphisms ¢(g) = ag,¥(g) = bg, where a,b € Z. By
Theorem 4.10, we see that it is enough to analyse the ergodic average

UC-1im Ty f1 - The fo 21
geG

in the case where X is a Conze—Lesigne system (i.e. X = Z%(X)).

Under certain assumptions on a and b, two different (but related) formulas were obtained previously
in [2] and in [27] (see Theorems 5.1 and 5.2 below). Neither of the previously obtained formulas is
sufficient for our purposes, so we prove a new one in this section.

5.1. Previous limit formulas

Assuming all of the subgroups aG, bG, (a + b)G and (b — a)G have finite index in G, a limit formula
was obtained in [2] for the multiple ergodic averages in (21) by analysing a Mackey group associated to
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the abelian extension corresponding to the Conze-Lesigne factor (the relevant terminology is defined
in the next subsection). For compact groups Z and H, let M(Z, H) denote the space of measurable
functions f : Z — H equipped with the topology of convergence in measure (with respect to the Haar
probability measure).

Theorem 5.1 ([2], Theorem 7.1). Let G be a countable discrete abelian group. Let a,b € Z, such
that aG, bG, (a + b)G and (b — a)G have finite index in G. Let k| = —ab(a +b), k} = ab(a +b)
and k; = —ab(b - a). Set D = gcd(k',ké,ké) and k; = %fori =1,2,3. Let ¢1,¢2,¢c3 € Z so that
Z?:l kic; = 1. Let X = Z X, H be as in Theorem 2.5(iii). There is a function  : Z X Z — H, such
that Y (0,z) = 0 for every z € Z and t — Y (t,-) is a continuous map from Z to M(Z, H), and for every

fis fa, 3 € L¥(p),
3
UC - lim fi(Tagx) fo(TpgX) f3(T(arb)gX) = / 1—1 filz+ait,h+diu+ a?v + ¢y (t,z) du dv dt,
gEG ZxH? i=1

in L*>(u), where x = (z,h) € Zx H, and a; = a,a = b,az = a + b.
Assuming that (b — a) is even, the last author proved the following result.

Theorem 5.2 ([27], Corollary 6.2). Let G be a countable discrete abelian group. Let a,b € Z be, such
that (b — a) is even and (b — a)G has finite index in G. Let X = (X, X, u, (Ty)gecc) be an ergodic G-
system, such that X = Z?(X). Then, there exists an ergodic extension n : Y — X which is isomorphic
to a 2-step nilpotent coset system? and for every fi, f», f3 € L*(X),

UC - lim fi (Tag YD) f2(Tog YD) f5(TiasgyT) =
/ / fi (yyi‘ygg))ﬁ(yy’fygg)F)fE(yy’f”’ y§“5 IT) dug, (y2) dugyr(yT).
GIT JG,

The above formula fails if » — a is odd (see [27, Example 6.3]).

Observe that in the formulas in Theorems 5.1 and 5.2, we can take f3 = 1 and get a limit formula for
the averages we are interested in. However, for the sake of our argument, we need a limit formula for
every a, b € Z regardless of the indices of the subgroups aG, bG and (a + b)G and the parity of b —a.
Below, we remove the finite index assumptions in Theorem 5.1.

5.2. Mackey group

Let G be a countable discrete abelian group, and let X = (X, X, u, (Ty)qec) be an ergodic G-system.
Suppose that X = Zz(X), then, by Theorem 2.5, we can write X = Z X, H, where Z = (Z, a) is the
Kronecker factor, H is a compact abelian group and o : G X Z — H is a cocycle.

We now define a Mackey group associated to the cocycle o. Let

W =W(a,b) :={(z+at,z+bt) : z,t € Z},

and define Sow = (Wi + @gq, w2 + apg) for g € G, w = (wi,wp) € W. Let oy(w) :=
(ag(W1), 0hg (W2)). Then the Mackey group M = M (a, b) is the closed subgroup of H with annihilator
given by

M+ = {)? e H?: X o o is a coboundary over (W, S)}.

3The exact definition is given in [27]. We do not use this notion elsewhere in the paper.
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We will show that the Mackey group is a product of subgroups of H. For ¢ € Z, let M. < H be the
closed subgroup with annihilator

M} = {/\( € H: (g,2) = x(0eg(2)) is a coboundary over (Z, a/)}.
Proposition 5.3. Let a,b € Z be coprime, and let M = M (a, b) be the Mackey group. Then M =
M, X My,

The proof of Proposition 5.3 relies heavily on results from [2, Section 7], which we restate here for
ease of reference.

5.3. Cocycle identities

The following result gives a convenient characterisation of coboundaries (recall that a cocycle
p: GxZ — S'is a coboundary if pg = A F for some measurable function F : Z — sh.

Proposition 5.4 ([2], Proposition 7.12). Let Z be a Kronecker system and p : G x Z — S' a cocycle.
The following are equivalent:

(i) p is a coboundary;
(ii) for any sequence (gn)nen in G with ag, — 0 in Z, we have pg, (z) — 1 in L*(2).

The next proposition gives three equivalent characterisations of Conze—Lesigne (or quasi-affine)
cocycles.

Proposition 5.5 ([2], Proposition 7.15). Let Z be an ergodic Kronecker system and p : G X Z — S' a
cocycle. The following are equivalent:

(i) for any sequence (gn)nen in G with ag, — 0in Z, there is a sequence (wy,)nen of affine functions,
such that wppg, (2) — 1in L*(Z);
(ii) foreveryt € Z,

Pg (z+1)
Pg(Z)

is cohomologous to a character;
(iii) there is a Borel set A C Z withmz(A) > 0, such that

pg(z+1)
pg(2)
is cohomologous to a character for every t € A.

Lemma 5.6 ([2], Lemma 7.19). Let Z be an ergodic Kronecker systemand p : G X Z — S La cocycle.
Suppose (ay,) converges (to 0) in Z and w,(z) = cndn(2) are affine functions, such that (w,pg,)
converges (to 1) in L>(Z). Then, for every a € N,

cudn ((;) Xg, )/lﬁ (Z)Pagn, (2)

converges (to 1) in L*(Z).

Lemma 5.7 ([2], Lemma 7.23). Let Z X, H be an ergodic Conze—Lesigne G-system. Suppose a € Z
and aG has finite index in G. Then, aH = H.
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Lemma 5.8 ([2], Lemma 7.25). Let Z be a compact abelian group. Let c{,cy € St and 1,1, € Z.
If 11 # Ay, then

llerdr = c2dall 2z = V2.

5.4. Proof of Proposition 5.3

We will prove Proposition 5.3 via the next three lemmas. Rather than proving directly that M = M, XMy,
we will instead show the dual identity M+ = M; x M, . First, we show M X M;- € M*:

Lemma 5.9. In the setup of Proposition 5.3, My X M- € M~.

Proof. Let x1 € M; and x> € M; . We want to show ¥ = x1 ® x2 € M*. Let (gn)new be a sequence in
G, such that (aqg,, @pg,) — 0 in W. By Proposition 5.4, it suffices to show

X o00g,(w) =1 (22)
in L2(W). Now, since a and b are coprime, we have a,, — 0in Z. Since y1 € M L it follows that
X1(0ag, (2)) = 1 (23)
in L?(Z) by Proposition 5.4. Similarly,
X2(0bg, (2)) = 1 24
in L?(Z). Combining (23) and (24), we have
X1(Tag, (z+ at)) x2(opg, (z+ br)) — 1
in L?(Z x Z). That is, (22) holds. o
Before establishing the reverse inclusion, M+ C M x M lf, we need the following result:
Lemma 5.10. In the setup of Proposition 5.3,
Mlg{)n@)(zeﬁa:)(f‘:)(f:l}.
Proof. Let ¥ = x1 ® x2 € M*. By the argument in the proof of [2, Theorem 7.26], we have Xt )(é’ =
/\/1“2 Xé’z = 1. Therefore,

b -1
b 2 2 42
x P9 = yabyra =(X?X§’) (Xi‘ Xﬁ’) =1

By assumption, (b —a)G has finite index in G. It follows that H does not contain any (b — a)-torsion
elements (see Lemma 5.7), so x{" = 1. We immediately deduce Xé’ = x;“ =1as well. O
Lemma 5.11. In the setup of Proposition 5.3, M* C Mz X M.

Proof. Let ¥ = x1 ® xy2 € M*. We want to show y; € M; and x> € M; . For notational convenience,
let a; = a and a; = b. Let (gn)nen be a sequence in G, such that a,, — 0 in Z. By Proposition 5.4, it
suffices to show

Xi (U'aign (Z)) -1 (25)

in L2(Z) fori = 1,2.
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Now, (@ag,,, @bg,) — 0in W, so
X 00, (w) =1 (26)
in L2(W) by Proposition 5.4. Moreover, since y; o o is a Conze-Lesigne cocycle, we have

¢indin(2)xi(0og,(2) = 1 (27)

in L*(Z) for some sequences (Cisn)nen in S and (/li,n) inZ (see Proposition 5.5).

It follows by Lemma 5.6 that

neN

c:l,ln/ll(,ii) (O/gn)/l?’n(z))(i (O—aig,, (Z)) -1 (28)
in L2(Z). On the other hand, by Lemma 5.10, we have x = 1, so raising (27) to the a;-th power gives

¢l A% () = 1

i,n"i,n

in L2(Z). Hence, by Lemma 5.8, /l?"n = 1 for all sufficiently large n, and c;"'n — 1. Therefore, (28)
simplifies to

di,n)(i (O-a,-gn (Z)) -1 (29)
in L2(Z), where d; ,, = /li(’f:) (2g,)-
The numbers a and b are coprime, so at least one of them is odd. Without loss of generality, assume

a is odd. Then a divides (g), SO /1522 = 1. Hence, d; , = 1 for all large n, so (25) follows from (29) for
i = 1. It remains to show if (25) holds fori = 2.
Combining the identities in (29) for i = 1,2 and using d; , = 1, we have

drnx1(0ag, (2 + at)) x2(0pg, (2 + b1)) — 1
in L>(Z x Z). That is,
don) ©0g, (W) — 1
in L2(W). Comparing with (26), this implies dy n — 1. Therefore, (25) follows from (29) fori =2. O

Proposition 5.3 follows immediately from Lemmas 5.9 and 5.11.

5.5. Limit formula

With the help of Proposition 5.3, we will now prove a limit formula for the averages
UC -limgeg Tug f1Tbg f>- We need to define one more object related to the cocycle o~ before stating the
limit formula. For a compact space K, let M(Z, K) denote the space of measurable functions Z — K
equipped with the topology of convergence in measure.

Proposition 5.12. Let X = Z X, H be an ergodic Conze—Lesigne system. Let ¢ € Z. There exists a
Sfunction . : ZxX Z — H|M,, such that

(1) forevery g € G,

wc(aga 7) = O'Cg(z)(m()d M),

and
(2) themap Z 3t — Y. (t,-) € M(Z,H/M.) is continuous.
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In order to prove Proposition 5.12, we use the following characterisation of convergence in measure:

Lemma 5.13 ([2],7.28). Let (fu)nen be a sequence of functions in M(Z, H). Then f, — fin M(Z, H)
ifand only if xy o f, — x o f in L*(Z) for every character y € H.

Proof of Proposition 5.12. Given a sequence (g,).cn in G, such that (ag,, )sen is convergent in Z, we
want to show that the sequence

(O'an (Z))nEN

converges in M(Z, H/M_). Equivalently, by Lemma 5.13, we must show that

(e (0egn (D)) pers

converges in L2(Z) for every y € H/M. = M=*.

Let y € M}. By the definition of M., the cocycle )((O'Cg(z)) is a coboundary over (Z, a). Hence,
by Proposition 5.4, there is a continuous map ¢ — ¢(t,-) € L*(Z), such that @(ag,z) = x(0cg(2)).
Therefore,

X(O_cgn (Z)) — ¢(t,2)
in LZ(Z), where ¢ = lim,, o @g, € Z. O

By the Kuratowski and Ryll-Nardzewski measurable selection theorem (see [28, Section 5.2]), there
exists a measurable map ¢, : H/M, — H, such that 7, (¢,(x)) = x, where 7, is the canonical projection
ng  H— H/M,. Let Yy = 1, 0¥, and ¢y = 1, o f,. We can now state and prove a general limit
formula for Conze-Lesigne systems:

Theorem 5.14. Let X = Z. X, H be an ergodic Conze—Lesigne system. Let a,b € Z. Let M = M (a, b) =
M, X My. Then for any fi, f» € L*(u), we have

UcC - glyiergfl (Tag(Z, x))fZ (Tbg (z,x))

=/ filz+at,x+u+y(t,2)) o(z+bt,x +v +y(t,z)) dt du dv (30)
ZXMaxMj,

in L*(Z x H).

Remark 5.15. We have defined the functions i; by lifting ¢, and ¢ to the group H from H/M,
and H /M), respectively. If ¢ is another functions with 7, (/{) = ¢4, then for any ¢,z € Z, we have
Yi(t,z) —¢1(t,2) € M. Since the Haar measure on M, is invariant under shifts coming from M,, the
expression on the right-hand side of (30) is unchanged when i is replaced by i{. The same is true for
replacing ¥, by /], so it does not matter which lifts of ¢, and ;, we choose.

Proof. For notational convenience, let Yy = (Y,¥2) : ZXZ — H?, and let my; denote the Haar
measure on the Mackey group M = M, X Mp,.

It suffices to prove the formula in (30) for functions of the form f;(z,x) = w;(z)y;(x) with w; €
L®(Z) and y; € H. In this case, the right-hand side of (30) is equal to

/ 01z + at)wa(z + b x1 (D2 (DTW (1, ) dt / 7 dm,
Z M

where ¥y = 1 ® 2 € H2.
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We now consider two cases. First, if y ¢ M+, then /M X dmpys = 0, so the right-hand side of (30) is
equal to zero. Moreover, for every A € M+ and almost every z,f € Z, we have

/ fi(z+at,x) fr(z+ bt,y)A(x,y) dx dy = w1(z + at)ws(z + bt) / x (&, »)A(x,y) =0.
1{2 H2

Therefore, the left-hand side of (30) is also zero (see [2, Proposition 7.10]).
Now suppose y € M~ so that fM/'\/'de =1.For g € G and (z,x) € Z X H, we can write

J1(Tag (2, %)) f2(Tpg (2, %)) = w1 (2 + @ag)wa(z + apg) x1(x) x2(x) X (0ag (2), Tg (2)).
Thus, letting
@1(z,%) := wi(z +at)wy(z + br) x1(x) x2 () X (¥ (1, 2)),
we have

J1(Tag(z,%)) f2(Thg (2, X)) = Pay (z,x).

Since y annihilates the Mackey group M, we see by Proposition 5.12(ii) that Z 3 ¢ — ¥ (¥ (t,-)) € L*(Z)
is continuous, and so Z > ¢ > ¢; € L*>(Z x H) is also continuous. Therefore, for any & € L>(Z x H),
since the system (Z, @) is uniquely ergodic, we have

-1i = )
ucC lim (@ag. &) /Z (1, &) dt
That is

UC- lim ¢q, (z,X) = / v (z,x) dt 3D
gEG 7

weakly in L?(Z x H). By more general results on norm convergence on multiple ergodic averages (see
[3, 32)), it follows that (31) holds strongly. The right-hand side of (30) is also equal to fz v (z,x) dt, so
the formula in (30) holds when y € M*. m]
5.6. Proof of Theorem 1.13

We first prove the theorem in the special case where a and b are coprime.
Let f = 14. By Theorem 4.15, there is an extension X of X, such that

UC';lencl; n(a'g) Lf'Tugf'Tbgfdﬁ
= UC - lim n(arg) /X fTagE(FIZ5(X)) V Tu(X)) - Tag E(f128(X) v T, (X)) dft,

where fis the lift of f to X. For notational convenience, let ﬁ, =F (ﬂZé(f) \% Ia(f)) and ﬁ; =
E(ﬂZé(Y) V 7, (X)). We can therefore write

fa= Z cihi,

ieN
o = Z dik;,

JeN

where each ¢; is aG-invariant, d; is bG-invariantand h;, k ; are Zé ()?)—measurable. By Theorem 2.5(iii),
we can write Z2G (f) =7 X H. Then, by Theorem 5.14,
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UC - i (AnT—lAmT—lA)
lim n(ag) p bg

ag

=UC - lim n(ay) [ ]7 Tagﬁt : Tagﬁ i
geG X

Z / cid,; f - UC - lim n(ag) Taghi - Togk,; dii
ijan /X 8€G

> / i) (x) ()i (7. (x) + at, g () + u+ 1 (1,2))
1 TeN  XXZXMax My,

kj(mz(x)+bt,mg(x) +v +ya(t,z)) du(x) dt du dv,
where (77 (x), ng (x)) € Z X H is the projection of x € X onto the Conze-Lesigne factor Z X H. By

choosing n : Z — [0, o) concentrated on a small neighborhood of 0 (as in the proof of Theorem 1.11;
see Subsection 3.3), it remains to show the inequality:

L s 0Tz (). (5) + )k (3. () + ) ) ducdv > ().
7 I XxMaxMy

(32)
Let W be the o-algebra generated by functions f € L*(Z X H), such that f(z,x +y) = f(z, x) for

every y € M,. Similarly, let WW, be the o-algebra generated by functions f € L*(Z x H), such that
f(z,x+y) = f(z,x) for every y € Mj,. Then the left-hand side of (32) is equal to

/}_{,f E(fIWi V1) - E(fW2 Vv Tp) dfi. (33)

~ \3
By [13, Lemma 1.6], the quantity in (33) is bounded below by (/;2 f dﬁ) = u(A)3, so (32) holds.

Now suppose a, b € Z are arbitrary integers and write a = a’ - d and b = b’ - d, where d = gcd(a, b)
and a’, b’ are coprime. Since (b — a)G has finite index in G, we deduce that so does dG. Therefore, we
can find finitely many ergodic dG-invariant measures {u;}!_,, such that u = % Zﬁ:l w; and all of the

i=1’
systems X; = (X, X, u;, dG) admit the same Kronecker factor. By the argument above, we can find a
suitable 7 satisfying:

. -1 -1 3

ucC _glé[d% n(ag)ui(ANTL,ANT, A) > pui(A)” —&
foralli =1,...,/, and UC -limgeqg 17(a,) = 1. Therefore, by Jensen’s inequality, we have

. -1 -1 3

ucC —glégiGn(ag)y(A NT, AN Tb,gA) > u(A)’ —e.

As in the proof of Theorem 1.11, we conclude that
{8 €dG : p(ANTLANT,LA) > u(A) - €}
is syndetic. Since dG has finite index in G, this implies that
{8€ G u(ANTZANT,A) > u(A)® - &}

is syndetic, as required. m}
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6. Proof of Theorem 1.14
In this section, we prove Theorem .14, restated here for the convenience of the reader:

Theorem 6.1 (Theorem 1.14). Let G = @le Z. Let | € N. There exists P = P(l), such that, for any
a,b € Nwith p | ged(a, b) for some prime p > P, there is an ergodic G-system (X, X, 1, (Tg)gec ) and
aset A € X with u(A) > 0, such that

HANTZANT, A) < u(A)

for every g # 0.

Rather than constructing a EB?:] Z-system directly, we will instead construct a @::1 7] p*Z-system.
Since ;. Z/p*Zis aquotient of P, Z, the system we construct can be lifted to an ergodic P | Z-
system. Hence, Theorem .14 follows from:

Theorem 6.2. For any a,b,l € N, there exists a prime p (sufficiently large), an ergodic EB:;] 7 p*Z-
system X = (X, X, u, (Tg)ge@mzl Z/pzZ) and a set A € X with u(A) > 0, such that

u(AnT;) AnT]

CLANTS) A) < u(A)

forevery g #0.

The proof of Theorem 6.2 is based on the following result of Behrend [4].

Theorem 6.3. Let a, b € N be distinct and nonzero. There is an absolute constant ¢ > 0, such that: for

every N € N, there is a subset B C {0, 1, ..., N — 1}, such that |B| > N - ¢~ VIog(N) 4nd B contains no
configurations of the form {n,n + am,n + bm} for m # 0.

For every prime number p, let C,, = {z € C : z” = 1} denote the group of all roots of unity of order
p and let w, = e27i/P be the first p-th root of unity in C. The following is an immediate corollary of
Behrend’s theorem.

Lemma 6.4. Let a,b € N be distinct, then, for every l, there exists a sufficiently large prime p and a
subset B C Cp, of size |B| > pl_ﬁ which contains no configurations of the form {y,y - x%,y - x?} for
x# L

Throughout this section, we let 7, := C}) and G, := P, Z/pZ.
We start by giving a proof that the large intersection property fails for nonergodic systems.

Lemma 6.5. Let a, b € Z be distinct and nonzero. For every L € N, there is a P = P(L), such that
Jor every prime p > P, there is a G p-system (X, X, u, (Tg)geG,, ), such that, for every | < L, there is a
measurable set A = A(l) with u(A) > 0 and

IU(A N TagA N TbgA) < /J(A)l

Jor every g # 0.

This result was previously established in [2, Proposition 10.11], but we give a different proof that
will be useful later on.

Proof. Let p be a prime number, and let X, = 7, X Cp,. We equip X, with the Borel o-algebra, the
Haar measure u and the action of G, by

0o

Ty (x,u) = (x, ﬂxf?'"u).

i=1
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Now, fix a subset B C C,, which avoids configurations of the form {y,y - x%,y -xb} whenever x # 1,
andlet A =7, x B. Itis easy to see that u(A) = |B|

— agi bgi —
(A N TagA N Ty A) /szlg(yng(yﬂx )1B(yﬁx )dxdy

and we have

iel iel
a b
/2 1g(y) 18|y - 1_[ xi| 1B|y- 1_[ x; | |dxdy =
To {i : gi#0} {i : gi#0}
a b
K2 (y,x)esz: .,y I_[ Xi| Y- I_l X; CcB
{i : gi#0} {i : g;#0}

a b
But, {y,y . (H{i . g#o}xi) Y- (ﬂ{i : g#o}xi) } C Bifandonlyif [y; . 4,201 X; = 1. Since g # 0, we

deduce that u(ANT,, ANT, gA) % = @—: u(A)L. Now, choose P sufficiently large for which there

exists a set B with |B| > p! = (Lemma 6.4). Then, u(ANT,gANTpgA) < u(A)! as required. O

Roughly speaking, the idea in this section is to construct an ergodic p-th root for the system above.

We fix some P sufficiently large as in Lemma 6.5, and let p > P be a prime number. For convenience
of notations, we let w = ¢2™/7 and i = €27/’ We define an action of G = @, .,y Z/p*Z on T by
setting Sox = {(g)x, where {(g) = (775")ien = (w¥!);en. Since the image of { is dense in 7, the action
is ergodic.

Now, we extend this action to the product space X =T X C,2. Let ¢ : C;, = C),» be the map

2mix 72””)('1)

ple? )=e r

where [x[, = x mod p. Then, ¢ is a cross-section of the canonical projection C,,> — C),, and we have
that ¢(x)” = x, and ¢(w) = 1. Our goal is to define an action (Ty)sec on X, such that T)q (2, u) =
(., [iewt!® - u).

We do so in two steps. We define an action Ty on X which satisfies that 7, (¢, u) = (Se, 1, ¢(t;)u), for
every i € N, where ¢; € @:’: | Z/ p"Z is the i-th unit vector. Writing g = 3’ g;e; and using the group
law, we get the following action:

o §j—

T(tu)—Stl_[l_lcp(a)t])u, (34)
j=1 k

where an empty product ]_[;i 0 Xk is equal to 1.
Unfortunately, this action is not what we are looking for. Indeed,

p-1
(TP () = o[ [ e - 1)u) = (103w,
k=0
To fix that, we let & = w bea p-th root of ﬁ(g) and change the action accordingly:

o [8j—

To(t,u) =| Sgt, 1_[ l—lgo(wktj)«fgf -ul. (35
J=1
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Lemma 6.6. For everyt € T, u € Cp2 and g € G, we have
Tpe(t,u) = (t,178u). (36)

Proof. The proof is a direct computation. Indeed, it suffices to prove that (36) holds for g = e for every
J € N.Let j € N be arbitrary. Since w is of order p, S ot = t. As for the second coordinate, observe that

p-1
1—[ o(wkt}) - €7 = &P (%) =1
k=0

The first equality follows because the product is independent on ¢; and always equals to p(w) - ... -

o(wP™) = ,7(’2’)’ and the last equality follows from the definition of £. This completes the proof of the
lemma. O

The main difficulty in the proof is showing that this action is ergodic.
Lemma 6.7. The action in (35) on X is ergodic.

Proof. We use Zimmer'’s criterion for ergodicity [31, Lemma 4.5]. Since the action of G on 7T is ergodic,
itis enough to show that the cocycle o : GXT — C,2,0(g, 1) = [1;2, Hif;)l @(w*t;) is minimal. Since
Cp is the largest proper subgroup of C,,., it is enough to show that o~ is not cohomologous to a cocycle

taking values in C,,. Suppose, by contradiction, that there exists a cocycle 7 : 7 — C,, cohomologous

&i - L.
to o. Since 77 = 1, we deduce that o (g, )P = I‘[;’Zl w( z)tf‘ff’gl is a coboundary. Therefore, there
exists F : T — S!, such that

F(Sg1)
P ,1) = 8 37
o’ (g.1) F) (37
for every g € G and t € T. Observe that for every g,h € G, ApoP(g,t) is a constant in ¢. Therefore,
by (37), Ap,An, F is a constant for every iy, hy € G. Let s € T and define A F(x) = % We claim

that A, F(x) is an eigenfunction. Let g1, g2 € G, then Ag Ao, A F(x) = AgAg Ag, F(x) = 1. Hence, by
ergodicity, Ag, A F is constant and A F is an eigenfunction for every s € Z. Recall that translations by
s € Z are continuous with respect to the L2-norm. In particular, there exists an open subgroup U < 7T,
such that

IAGF = Ulp2 gy < V2 (38)

for all s € U. By ergodicity, the multiplicity of each eigenvalue is 1. Since eigenfunctions with different
eigenvalues are orthogonal, it follows that A F is a constant for all s € U. Otherwise, A F is orthogonal
to 1, and then

IASF =175, = IASFI7: + 117, =2
which contradicts (38). Now, choose g € G, such that ]2, w® € U (such g must exist by density).

Then, if we take s = w8, equation (37) implies that o (g, -) is a constant. As 0P (g, t) clearly depends
on ¢, this is a contradiction. O

We now complete the proof of Theorem 6.2. Let B C C), be as in Lemma 6.4. Let 7 : Cp2 — C), be
the map 7;(x) = x|, andlet A = T x B, where B = 77! (B). Then, ux (A) = %, and, as in the proof of
Lemma 6.5,

| | -2

Hx (AN Tupe AN Toped) = 5 = S

px (A < px (A

This completes the proof. O
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7. 3-point configurations in Z>

In this section, we establish ergodic popular difference densities for all 3-point matrix patterns in Z>.
The results are summarised in Table 1 in the Introduction.

7.1. Ergodic popular difference densities when r(My, M) = (2,1, 1)
The following theorem gives an affirmative answer to Question 1.12 for the group G = Z*:

Theorem 7.1. Suppose M| and M, are 2 X 2 matrices, such that r(My, M>) = (2,1, 1). Then, for any
a € (0,1), epddyy, pp, (@) = a’.

An example of the configurations handled by Theorem 7.1 is the class of all axis-aligned right
triangles in Z2, {(a, b), (a + n, b), (a, b + m)}, which corresponds to the choice of matrices

10 00
M]Z(OO) and MQZ(OI).

Proof of Theorem 7.1. Without loss of generality, we may assume rk(M;) = rk(M,) = 1 and rk(M; —
Mj) = 2. Indeed, if rk(M;) = 2, we may rearrange the expression
-1 -1 _ -1 -1
u(AnTy i AnTbA) =u(an Tyl 0T, 24)

and the new matrices Ny = M| — M, and N, = —M, satisfy the desired conditions.

We now break the proof into two cases depending on the diagonalisability of M; and M. Note that,
since M; has rank 1, its characteristic polynomial is of the form x(x — a) for some a € Z. Hence, if M;
has a nonzero eigenvalue, then it has an integer eigenvalue (in this case, equal to ) and is diagonalisable.

Case 1: M| or M, has a nonzero eigenvalue.

Without loss of generality, we may assume that M; has a nonzero eigenvalue and is therefore
diagonalisable. Hence, there is a nonsingular 2 X 2 integer matrix P, an integer a € Z and a rank 1
matrix N, with integer entries, such that

al

00

M1P=P( 00

), M,P =PN,  and rk(Nz—(aO))zz.

It is straightforward to check that, in order to satisfy the constraints on rank, N, must be of the form

cd ¢
Nz_(bdb)

with b # 0. By changing to the basis (), (]), we may further assume d = 0.

Suppose (X, X, i, (T;);cz2) is a measure-preserving Z2-system (we do not need to assume that the
system is ergodic here), and let A € X’ with u(A) = . Define a new Z>-action by S; := Tpj. Then,

: -1 -1 _ . 1 .
uc -%L%M(A Tyl piA N T3 prA) = UC - ;}1522”(/1 (S 0 A O Sy oy A)-

Now put S := S(4,0) and S := S, »). By Lemma 2.2 and the mean ergodic theorem, we have

UC- lim (AN Ty prA 0Tyl pzA) = UC- lim UC- lim u(A 0 S AN S;™ A)

nez? ny €Z ni€Z
- / 1o E(Ly | Z(S1) - E(1y | Z(55))
X

>a'3

= i
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where the inequality in the last line follows from [13, Lemma 1.6]. Therefore, for any & > 0, the set
Rg = {r_i €7?: /,l(A N TI\_/IllPﬁA OTA_/IIZPﬁA) >’ - 8}

is syndetic. Noting that P is nonsingular, it follows that the set P(R,) is also syndetic in Z>. But for any
m € P(R,), we have

-1 -1 3
u(ANT AT A) > ¥ - s

This shows epdd,,, s, (@) > a?.
To see the upper bound epdd,,, »,, (@) < a?, let (X, X, u, (T);<z2) be mixing of order 3. Then, for
any A € X, we have u(A N Tﬁ_lA N T;A) — u(A)? as it, m, m — it — co. Let P be a nonsingular 2 x 2

matrix with integer entries and a, b, ¢ € Z with a, b # 0, such that

a(

00

PM1:( 0 b

)P and PMzz(OC)P.

The group of transformations T := Tp;; is still mixing of order 3. Write /i = Pji for i € Z2. If m; — oo
and my — oo, then

ulAnTyanTyba) =u(anTyl, ganTy

(am;,0) (cma,bmy)

A) — u(A)>.
Hence, for any & > 0, there is a finite set F' C Z, such that
{ﬁ e7?: #(A NT, AN fﬂ;‘zﬁA) > u(A)? +e} clieZ?: Pie (FXZ)U(ZXF)}.
A union of finitely many lines in Z? is not syndetic, so
synd-supﬁezzp(A N TA}]IﬁA N TA}L%A) < u(A).
Case 2: M| and M; have no nonzero eigenvalues.

Since M| has rank 1, there is a nonsingular 2 X 2 integer matrix P, a nonzero integer a € Z and a
rank 1 matrix N, with integer entries and characteristic polynomial x?, such that

0a

M]PzP(OO

), M,P=PN, and rk(Nz—(Oa))zz_

00
st
we(20)
Since N, has characteristic polynomial x2, we have s + v = 0 and sv = tu. Therefore, if u = 0, then
s =v = 0. But then
0a 0Ot—a
NZ‘(() o)‘(o 0 )

has rank at most 1. Thus, we must have u # 0. It follows that N, can be written in the form

_2
sz(db db)

Write

b —-db
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for some b, d with b # 0. Changing to the basis ((1)), (4), we may assume d = 0 so that
00
v-(20)
Given a Z2-system (X, X, u, (Tj;);<z2), note that
-1 -1 4\ = -1 -1
u(AnTlAnTihA) = u(ANTE, o ANTE,, A).
Hence, replacing (ny, ny) by (n,n;), we reduce to Case 1. m]

7.2. Ergodic popular difference densities when r(M,, M;) = (1,1, 1)

For matrix configurations with (M, M) = (1, 1, 1), we must distinguish between several cases. First,
when M; and M, commute, a construction based on Behrend’s theorem shows that the ergodic popular
difference density decays faster than any polynomial:

Theorem 7.2. Suppose M| and My are commuting 2 X2 matrices, such that r (M, M>) = (1, 1, 1). Then,
for any sufficiently small a € (0, 1), epddy;, p, (@) < ¢ log(1/@) ‘yyhere ¢ > 0 is an absolute constant.

Theorem 7.2 applies to collinear 3-point configurations up to scaling and translation.

Proof of Theorem 7.2. We first distinguish between two cases depending on diagonalisability of M and
M.

Case 1: M, or M, has a nonzero eigenvalue.

Without loss of generality, assume M; has a nonzero eigenvalue and is therefore diagonalisable.
Since M, and M, — M, are also rank 1 and commute with M, there exists a nonsingular 2 X 2 matrix
P with integer entries and a, b € Z be distinct and nonzero, such that

a0

PM1=(OO

)P and PM, = (g 8)P 39

Case 2: M| and M, have no nonzero eigenvalues.
Using the condition r(My, M) = (1,1, 1), there is a nonsingular 2 X 2 integer matrix P, a nonzero
integer a € Z and a rank 1 matrix N, with integer entries and characteristic polynomial x, such that

0a 0a
MIP_P(OO)’ M2P—PN2 and I‘k(Nz—(OO))—l.
Moreover, N, commutes with the matrix (8 g ) Write

Note that

oG- )
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sou = 0 and v = 5. On the other hand, since N, has characteristic polynomial x2, we have s +v = 0 and
sv = tu. Hence, s = v = 0, and N, is of the form

0b
%= (50)
with b ¢ {0, a}.

Now, replacing (1, n3) € Z* by (n2,n1) € Z* and using the identity

(o)) = (65)()

for ¢ € Z, we can reduce Case 2 to Case 1.

Without loss of generality, let P be a nonsingular 2 X 2 matrix with integer entries and a,b € Z
distinct and nonzero, such that (39) holds. Put d := |det(P)| € N.

Define S : T2 — T2 by S(x,y) := (x,y +x). Let R : T> — T2 be the transformation R(x,y) =
(2x, 2y+x). Both S and R preserve the Haar probability measure i on T2. We claim that the (Z()>-action
generated by S and R is ergodic (with respect to x). To see this, suppose f € L*>(T?) is simultaneously
S- and R-invariant, and expand f as a Fourier series

flx,y) = Z Cn.me(nx +my),

n,m

where e(t) := e(2rit). Then

(SHCY) = D cnme((ntm)x+my) = > comme(ne +my).

n,m n,m

Therefore, since S f = f, we have ¢, = C_m,m for alln, m € Z. By Parseval’s identity, };,, ,,, |cn,m|2 =
||f||§ < 00,80 ¢p,m = 0 whenever m # 0. That is, f(x,y) = 25, cn.0e(nx). Now,

(RF)(x,¥) = ) cnoe(2nx).

n

Hence, since Rf = f, we have c2,,0 = 0 for every n € Z. Applying Parseval’s identity once again,
we conclude that ¢, 0 = 0 for n # 0. Thus, f(x,y) = co,0 is a constant function.
Fix @ € (0,1). By [8, Theorem 1.3], there exists a set A C T? with u(A) = a, such that

u(ANS™"ANSA) < @081/ for n # 0, where ¢ > 0 is an absolute constant.*
Let (X, X, v, (Tj);ez2) be an ergodic Z?-system and B € X’ with v(B) = a, such that

v(BAT'BNTZB) = (AN S™IR™ AN ST R™™A)

for every n,m € Z X Zsq (note that, because R is noninvertible, we cannot simply take X = T2, v = u,
B =Aand T; = S™ R™). Then, let Tj; := Tp; forii € Z°.
Since [Z* : P(Z*)] = |det(P)| = d < oo, the system (X X,v, (fﬁ)ﬁ€22) has at most d ergodic

components. Hence, we may write the ergodic decomposition as v = % fozl v; for some k < d and
some measure v;. For some 1 < i < k, we must have v;(B) > «a. Without loss of generality, we may
therefore assume v{(B) > a.

4The statement of [8, Theorem 1.3] only gives a bound of the form a! rather than @¢°¢(1/@)  However, as noted in [8]
immediately after the statement, the construction of the set A gives this stronger bound via Behrend’s theorem on sets without
3-term arithmetic progressions [4]. Additionally, [8, Theorem 1.3] is only stated for the case a = 1, b = 2, but the same method
works for general a, b (see, e.g. [2, Section 11]).
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Let 7i € Z* \ {0}. Let /i = Pii € Z*. Then
7-1 -1 _ -1 -1
(BT BT, B) =i (BATL, o BOTG, o B)

<d. ,u(A N SamA N S‘b’"‘A).
Hence, if v; (B N f/\_/lllﬁB n TA}IZHB) > d - a€1°¢1/@) then m; = 0. But since P is nonsingular,
{fieZ?: Piie {0} xZ} =QV N Z%

where 7 is the vector P~!(0) € Q2. Such a set is never syndetic, so epdd,,, , (@) < d - @¢°2(1/® For
¢’ < ¢ and a sufficiently small, one has d - a¢1°¢(1/@) < g¢"lg(1/@) ‘g6 this completes the proof. O

Now suppose (M, M>) = (1,1, 1), and M| and M, do not commute. In this case, M| or M, must be
diagonalisable,’ so we assume without loss of generality that M, is diagonalisable. We then distinguish
between two cases, depending on the form of M, when M, is diagonalised. Call the pair of matrices
(M, M) row-like if there is a nonsingular 2 X 2 matrix P with rational entries and rational numbers
a,b,c € Qwith a, b # 0, such that

-1 _ a0 -1 _ cb
PM, P —(0 0) and PM;,P —(0 O)'

Similarly, call the pair (M1, M5) column-like if there is a nonsingular 2 X 2 matrix P with rational entries
and rational numbers a, b, ¢ € Q with a, b # 0, such that

-1_|a 0 -1_|[C 0
PM,P —(00) and PM,P _(bO)'
For row-like configurations, we can use the ‘Fubini’ property of uniform Cesaro limits (Lemma 2.2)
to show epdd(a) = o*:

Theorem 7.3. Suppose M| and M, are 2 X 2 matrices with r(My, M) = (1,1, 1), such that (M, M>)

is row-like. Then, for any a € (0, 1), epddy;, p, (@) = .

Proof. Let P be a nonsingular 2 X 2 matrix with integer entries, such that

a0 cb
M1P=P(0 O) and M2P=P(0 0).

By changing to the basis (_bc), ((1)), we may assume ¢ = 0.
Let (X, X, i, (T;)iez2) be a measure-preserving system, and let A € X with p(A) = @ > 0. Define
a new Z2-action by Tj; := Tpj, and let S := T(1,0)- Then

u(A Ty psA D TI;I‘MA) _ ,,,(A NS™mA N S—”"ZA).

SIf neither M nor M, are diagonalisable, then they both have characteristic polynomial x2. By a change of basis, we may
assume M is in its Jordan form M; = ( 8 (1) ) Write M, = ( ? Z ) The condition rk(M3) = rk(M, — M) = 1 implies that

ad—bc=ad—- (b-1)c=0,s0c =0and ad = 0. Moreover, since M has characteristic polynomial xz, we have a +d = 0.
0b

Hence, M, = (O 0

). But then M, commutes with M.
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Thus, by Lemma 2.2, we have

. -1 -1 3
UC- lim (A N Tt A N Ty ) = o

Since P is nonsingular, it follows that
synd—supﬁezz/,t(A N TI\_411ﬁA N Tz\_/llzﬁA) >a’.

Now we will show epdd,,;, 5/, (@) < a>. Let P be a nonsingular 2 x 2 matrix with integer entries and
a,b,c € Zwitha,b # 0, such that

PM, = (g 8)1) and  PM, = (8 g)P.

Let (X, X, u, S, R) be an ergodic Z?-system, such that S is mixing of order 3. Define Tj; := S™' R™ and
T; = Tp; for i € Z*. Then, for A € X and m = Pii € Z?, we have

u(AnTy AT a) =u(ansmans®ma).
Since § is mixing of order 3, given & > 0, there exists a finite set F' C Z, such that
fiez? p(anTy anTyl A) > u(a) +2]
c P’l({rﬁ €7Z?:m; € F,my € F, or bmy —am; € F})
This set is a union of finitely many lines in Z?, so it is not syndetic. Hence,

synd—supﬁezzy(A N f&lle N 7:1;1]2%’4) < u(A)>. o

The prototypical column-like configuration is the class of axis-aligned isosceles right triangles, for
which it is known by previous work of Chu [13] and Donoso and Sun [16] that ot < epdd(a) < o),
where the o(1) term refers to a small positive value tending to 0 as @ — 0. We prove that these bounds
extend to all column-like configurations:

Theorem 7.4. Suppose M| and M are 2 X 2 matrices with r(My, M) = (1, 1, 1), such that (My, M>) is
column-like. Then, for any a € (0,1), epddyy, p, (@) > a*. Moreover, for any | < 4 and all sufficiently
small a (depending on 1), one has epddy,, p, (@) < o,

Proof. Let (X, X, u, (T;);cz2) be an ergodic Z2-system. Since the pair (M, M,) is column-like, there
exists a nonsingular 2 X 2 matrix P with integer entries and integers a, b, ¢ € Z with a, b # 0, such that

a0 c 0
M]PzP(OO) and M2P=P(b0).

Then, for any 7 € Z?, we have
-1 -1 _ -1 -1
/J(A N Ty peAD TMMA) - ,u(A N Tl AN TP(C,”,,MI)A).
Letting S := Tp(4,0) and R := Tp (¢ p), we therefore have the identity

H(ANTy ANT L A) = p(ANS™ANR™A).
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Now, since 7 is ergodic and P is nonsingular, the Z?-action generated by S and R has finitely many
ergodic components. Thus, by [13, Theorem 1.1],

{neZ:pu(ANnST"ANRTA) > u(A)*}
is syndetic in Z.° It follows that
> 2. -1 -1 4
[iez? u(anty ATy a) 2 ua))
is syndetic in Z>. Hence, epddyy, ar, (@) > a?.
Let! < 4. By [16, Theorem 1.2], there exists an ergodic Zz-system (X,X,u,S,R)andaset A € X,

such that (A N S™A N R™A) < u(A)! for every n # 0. Since the pair (M;, M;) is column-like, there
is a nonsingular 2 X 2 matrix P with integer entries and integers a, b, ¢ € Z with a, b # 0, such that

al

00

PM1=( b0

)P and PMzz(co)P.

Define T; := S?™ (RS™)™2, and let T; := Tp; for n € Z2. Note that (X, X, u, (fﬁ)ﬁezz) has finitely

many ergodic components. To be more precise, the ergodic decomposition has the form y = % Zle Ui
with k < d := |ab det(P)|. Without loss of generality, we may assume p(A) > u(A).
Now, for any 7 # 0, we have

m(ANTANT L A) <d-p(ansmangama),
where 77 = Pii € Z%. Therefore,
{ﬁ e m(AmT;;lﬁAmfﬂ;lzﬁA) > d~p1(A)l} c{iiez?: Piie {0} xZ} c Qv nZ2,

where ¥ = P!(]) € Q2 The set Qi N Z? is not syndetic, so this shows epdd,,, (@) < d - o' for
@ = p(A). Moreover, for any [’ < [, we have the inequality d-o! < o forall @ > O sufficiently small. O

7.3. Finitary combinatorial consequences and open questions

There are two cases in which our ergodic-theoretic results directly imply finitary combinatorial ana-
logues. Namely, when (M, M;) = (2,1, 1) and when (M|, M>) is a row-like pair of noncommuting
matrices with r(My, M) = (1,1, 1), we establish the bound epdd M. Mz(a/) > o3 with the help of the
‘Fubini’ property for uniform Cesaro limits (Lemma 2.2), and this allows us to avoid assuming that the
underlying Z2-system is ergodic. For this reason, we can obtain the following combinatorial result:

Theorem 7.5. Let M1, M3 be 2 X 2 matrices with integer entries. Suppose that either

() r(My, M>) = (2,1,1), or
@ii) r(My, M) = (1,1, 1), My and M, do not commute, and (M1, M3) is row-like.

Then, for any a, & > 0, there exists Ng = No(a, &) € N, such that, if N > Nyand A C {1,..., N}2 has
|A| > @N?, then there exists ii € Z? with Miii, Mii, (My — My)ii # 0, such that

|{% € 2% : (X, %+ Myii, % + Maii} C A}| > (& — &)N*.

In [13], it is assumed that the system (X, X, u, S, R) is ergodic. However, the proof easily extends to the case that the system
has finitely many ergodic components by noting that all of the ergodic components will have the same Kronecker factor.
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Proof. Let a, & > 0, and suppose no such Ny exists. Then, there is an increasing sequence (N )gen in
N and sets Ax C {1,..., Ny }? with |Ag| > aN?, such that

|[Ax N (A — Mlﬁ) N (Ax — Mzﬁ)l < (03 - 8)N]%

whenever M7, Moi, (M, — My)#i # 0.
For notational convenience, let Ay o := 72 \ Ar and Ak, = Ag. By passing to a subsequence if
necessary, we may assume without loss of generality that

lim i(Ak,il —ﬁl) N---N (Ak,ir —ﬁr) N {1,. . .,Nk}2|
k—oo N]%

(40)

exists forall » € N, 71y, ..., 7, € Z> and iy, ...,iy € {0, 1}. Hence, we may define a measure u on the
sequence space {0, l}Zz by setting

u({x € X 1 x(iy) =iy, ..., x(7Ay) =ir})

equal to the limit in (40) and extending with the use of Kolmogorov’s extension theorem. Since
({ 1,...,Nk }2) KeN is a Fglner sequence in Zz, the measure y is invariant under the shift transformations
(Tzx) (m) = x(m + i).
LetA:={xeX: x(a) = 1}. Then u(A) = limg e IA—@' > . On the other hand, if Mn, Myn, (M, —
k

N
M) # 0, then

p(A NTy AN TA_/[IZﬁA) - u({x € X : x(0) = x(M)73) = x(Mait) = 1})
_ i R0 (Ak - Miii) N (A — Maii)|
= l1m
k—o0 NI%

Sa3—8.

Hence,

Rei={i e pu(AnTy ANT A) > p(a) - o
C ker(M;) U ker(M;) U ker(M, — My).

But by the proofs of Theorems 7.1 and 7.3, R, is a syndetic subset of Z2, so this is a contradiction. O

For general 3-point matrix patterns in Z2, it remains an open problem to fully determine (finitary
combinatorial) popular difference densities. One particularly attractive case, which can be seen as a
finitary version of Question 1.12 for the group G = Z2, is the following:

Conjecture 7.6. Let M| and M, be 2 X 2 matrices with integer entries, such that M, — My has full rank.
Then, for any a, & > 0, there exists Ng = No(a, &) € N, such that, if N > Nyand A € {1,..., N}2 has
cardinality |A| > aN?, then there exists it € 72 with Myii, Mii # 0, such that

[{X € Z% : {# % + Myii, % + Maii} C A}| > (@ — )N

The special case when M, M, and M, — M, are all invertible, Conjecture 7.6 was verified by [12,
Theorem 1.1]. Moreover, Theorem 7.5 shows that Conjecture 7.6 holds when M and M, are both rank
1 matrices. The most interesting remaining case is when M| has full rank and M, is a rank 1 matrix.

Finally, the column-like family of configurations {(a, b), (a+n, b), (a, b+n)}, known as corners, has
been well studied from the perspective of popular differences in finitary combinatorics. In particular, it
is known that the popular difference density for corners is of the form o (see[l1]and also [17, 25]
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for an analogous result in a finite characteristic setting). To the authors’ knowledge, such results are not
known for general column-like matrix patterns, but we anticipate that techniques for handling corners
should apply in this generality with only minor modifications needed.

8. Khintchine-type recurrence for actions of semigroups

As a consequence of Theorem 1.13, we obtain the following combinatorial result. For any set £ C Q-
of positive multiplicative upper Banach density d, , (E) > 0 and any & > 0, there exists ¢ € Q>0 \ {1},
such that

d*

mult

(E ng'En q_zE) > d

mul

t(E)S — &

(in fact, the set of such g is multiplicatively syndetic). More generally, for any countable field F, any set
E C [P of positive multiplicative upper Banach density @7  (E) > 0 and any & > 0, the set of x € F,
such that
e (E VX EOXE) > dy (B) -
is multiplicatively syndetic.” This is suggestive of the following problem. Let R be an integral domain
(for example, R can be the ring Z, the ring of integers of a number field or the polynomial ring F[#] over
a finite field F). Given a set E C R* of positive multiplicative upper Banach density dj, , . (E) > 0
and & > 0, does there exist 7 € R \ {1}, such that
womate (E OV EIT O E[7) > dy i (B) =,

where E/r := {t e R:rt € E} for r € R? The goal of this section is to transfer our results into the
setting of cancellative abelian semigroups in order to answer this question affirmatively.

8.1. The group generated by a cancellative abelian semigroup

Let (S, +) be a countable cancellative abelian semigroup. That is, S is a countable set equipped with a
commutative and associative binary operation +, such that if s +7 = s+ r for some r, s, € S, thent =r.

We can define a group Gy as the set of formal differences {s —7:s,t € S} where we identify
s—tand s’ —t if s+t = s’ +t. More formally, we may define an equivalence relation ~ on S> by
(s,1) ~ (s,¢") if s +t" = 5" +t. Then Gy is the set of equivalence classes S*/~ with the operation
[(s, )] +[(s",2)] == [(s+s’,t+1)]. It is easy to check that this operation is well defined because S is
cancellative. Moreover, G s has an identity 0 := [(s, s)],and forany s, ¢ € S, wehave [(s,1)]+[(z,s)] = 0.
Thus, G is a group. Note that there is a natural embedding S — Gs given by s — [(s + s, 5)].

8.2. Notions of largeness

Foraset EC Sand anelements € S,letE —t:={se€S:s+t€E}and E+t:={s+t:5 € S}. The
following definition summarises combinatorial notions of largeness that we will use, some of which are
defined above in the setting of abelian groups.

Definition 8.1. Let (S, +) be a countable cancellative abelian semigroup.

o Aset E C S is syndetic if there are finitely many elements ¢, . .., t; € S, such that Uf ((E=1)=S.

o AsetT C S is thick if for any finite set F C S, there exists € S, such that F +¢t C T.

7In fact, our results show that for any k € N, dl’:mh (E Nnx'Enx*E ) can be made

arbitrarily close to d \ (E )3 for a multiplicatively syndetic set of x € F*. On the other hand, by Theorem 1.14, there are
n,m € N, such that &*  (E N x™™E N x ™E) is much smaller than &* . (E) for all x # 1.

mult mult

(E nx*En x-<k+‘>E) and d*

mult
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o Aset P C S is piecewise syndetic if there is a syndetic set E C S and a thick set 7 C S, such that
P=ENT.
o A sequence (Fy )y en of finite subsets of S is a Fglner sequence if, for any t € S,

|(Fy +t)AFN|

— 0.
IFn|

o The lower Banach density of a set E C § is the quantity

|ENFy|

d.(E) :=inf {lim inf
N-ow  |Fy|

: (FN)N en is a Fglner sequence in S}.
o The upper Banach density of a set E C § is the quantity

NnF
d*(E) :=sup {hm sup M
N —oo | Nl

: (FN)N en is a Fglner sequence in S}.
The following is a standard characterisation of syndetic and thick sets (see, e.g. [7, Section 2]).
Proposition 8.2. Let (S, +) be a countable cancellative abelian semigroup.

1. E is syndetic if and only if d.(E) > 0 if and only if E N T # 0 for any thick setT C S;
2. Tis thick if and only if d*(T) = 1 if and only if T N E # 0 for any syndetic set E C S.

Lemma 8.3. Let (S, +) be a countable cancellative abelian semigroup. Then S is thick in Gg.

Proof. Let F C Gg be a finite set. Write F = {s; —¢t; : 1 <i < k}, where s;,1; € S.Putt = Zf:] t; €8S.
Then

F+t={sl‘+ztj:1§isk}gs.

J#i
O

The fact that S is thick in Gy is closely related to the fact that any Fglner sequence in S is also a
Fglner sequence in G5, from which we deduce the following density result:

Proposition 8.4. Let E C S. Then d((E) = ng(E).

Proof. To show the inequality dz;s (E) > d§(E), it suffices to show that any Fglner sequence in § is a
Fglner sequence in G5. Let (Fn )y en be a Fglner sequence in S, and let x € Gg. We want to show
|(Fy +x)AFN|
_— 0.
[Fn|

Write x = s — ¢t with 5,7 € S. Then

|(Fy +x)aFn| _ |(Fy +s)a(Fy +0] _ |(Fy +s)aFn|  |Fna(Fy +1)]

= < + — 0.
[Fnl |Fy| [Fn| [Fn|

Hence, (Fn)n en is a Fglner sequence in G5 as claimed.
Now we show the reverse inequality d(E) > df; (E) If d (E ) = 0, there is nothing to show, so

assume d_; (E) > 0. Let m be an 1nvarlant mean on GS, such that m(E) = dg (E) Put c = m(S) =

m(E) > 0. Then, m: clm is an invariant mean on S. Moreover, m(E) = zm(E) >m(E) =d; S(E).

Therefore, dg(E) > m(E) > d*GS (E). m|

Lemma 8.5. Suppose E C Gg is syndetic in Gs. Then, E N S is syndetic in S.
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Proof. Let x1,...,xr € Gg, such that U{.‘zl (E —x;) = Gs. By Lemma 8.3, S is thick, so we may
assume x; € S foreachi =1, ..., k. We claim

k
U((EmS)—xi) > 5.

i=1

It suffices to check (ENS) —x; 2 (E—x;) N Sforeachi=1,...,k. Suppose y € (E —x;) NS, and
lett € E,suchthatt —x; =y. Then,t =y +x; € S+ 5 C S. Hence, y € (E N S) — x; as desired. O

8.3. Extending main results to actions of cancellative abelian semigroups

Any homomorphism ¢ : S — § extends uniquely to a homomorphism ¢ : Gs — Gg via ¢(s —t) =
¢(s) — p(t). To extend our Khintchine-type results to the semigroup setting, we need a condition on ¢
characterising when ¢(Gg) has finite index in G.

Proposition 8.6. Let (S,+) be a countable cancellative abelian semigroup. Let ¢ : S — S be a
homomorphism, and let ¢ : Gs — Gg be the group homomorphism @(s —t) = ¢(s) — ¢(t). The
Jfollowing are equivalent:

(1) @(S) is a piecewise syndetic subset of S;

(ii) @©(Gs) has finite index in Gg.

Proof. LetT := ¢(S),and let H := ¢(Gs). Notethat H=T - T = Gr.

(i) = (ii). Suppose T is piecewise syndetic in S. Then, dc(T) > 0. Thus, by Proposition 8.4,
ng(H) > dz;s (T) = dg(T) > 0. But in the group G, we have the identity

1

‘6= G5y

s0 [Gs : H] < oo.

(ii) = (i). Suppose H has finite index in Gs. Then, H is a syndetic subset of Gs, so H N S is
syndetic in § by Lemma 8.5. Moreover, by Lemma 8.3, T'is a thick subset of H. Let T:=Tu (S\ H)
sothatT =T N (H N S). We claim that 7 is thick in S.

Let F C S be afinite set. Put F{ = FNH and F, = F \ H. Since T is a thick subset of H, there exists
x € H,suchthat Fj+x C T. Writex = s—twiths,t € T € HNS. Then, Fi+s = Fi+x+t C T+t C T. Now
since s € HNS and H is a group, we have Fo+s C S\H. Thus, F+s = (F1+s)U(F2+s) C TU(S\H) =

This shows that 7 is a thick subset of S, s0 7 =T N (H N S) is piecewise syndetic in S. m}

Now we can extend Theorems 1.11 and 1.13 to the semigroup setting:

Theorem 8.7. Let (S, +) be a countable cancellative abelian semigroup. Let ¢, : S — S be homo-
morphisms. If at least two of the three subsemigroups ¢(S), ¥ (S) and (¢ +¢)(S) are piecewise syndetic
in S, then, for any set E C S with positive upper Banach density d¢(E) > 0 and any & > 0, the set

{s €S:dg(EN(E~-¢(s)N(E-(¢+y¥)(s)) > d;(E)3 - e}
is syndetic in S.

Remark 8.8. We use the pair {¢, ¢ + i} rather than {¢, '} since the difference ¢ — ¢ is not necessarily
defined as a map into S.

Proof. By Proposition 8.4, we have § := d*GS (E) =dg(E) > 0. Let g and  be the extensions of ¢ and
W to Gs. By Proposition 8.6, at least two of the subgroups @(G's), ¥ (Gs) and (<Z+ J)(Gs) have finite
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index in Gs. Hence, by Theorem 1.11, the set
R:= {g € Gs - dy, (E N (E - 3(g)) N (E - (¢+ J)(g))) > 6 - g}

is syndetic in G.
By Lemma 8.5, the set R N § is syndetic in S. But

RNS={seS:dy(EN(E-¢(s)N(E-(p+¥)(5) > —&},
so this completes the proof. O

Theorem 8.9. Let (S, +) be a countable cancellative abelian semigroup. Let a,b € N. If at least one
of the three subsemigroups aS, bS or (a + b)S is piecewise syndetic in S, then, for any set E C S with
positive upper Banach density dg(E) > 0 and any & > 0, the set

{seS:dy(EN(E—-as)N(E-(a+Db)s) >ds(E) - &}

is syndetic in S.

Proof. The proof is identical to the proof of Theorem 8.7, except one must use Theorem 1.13 in place
of Theorem 1.11. m]

8.4. Two combinatorial questions
Applying Theorem 8.9 in the semigroup (N, -), forany E C N with positive multiplicative upper Banach
density d:‘nult(E) > 0, any k € N and any & > 0, the set of m € N, such that

d*

mult

(EnE/m 0 Emk) > &), () -6

is multiplicatively syndetic in N. It is natural to ask if a finitary variant of this result holds.

Question 8.10. Let p, p2, ... be an enumeration of the positive prime numbers. Let 6, £ > 0, and let
k € N. Does there exists N = N(k, d, &) € N, such that the following holds: for any n > N and any set
Ac{pl'...py:0<r; <n}with |A] > 6n", there exists y € N\ {1}, such that

[{x € Nt {x,xy%, 1} € A} > (53 —g)n”.

Now, we describe an application of Theorem 8.7. Let py, p»,... and gy, g2, ... be enumerations
of the positive prime numbers. The map ¢ : N — N defined by ¢([T, p;') = 1L, ¢;" is an
automorphism of the semigroup (N, -). Hence, by Theorem 8.7, if E C N has positive multiplicative
upper Banach density d; . (E) > 0 and & > 0, then there is a multiplicatively syndetic set of numbers
y =T1%, p;’ €N, such that

1
n n
{x eN: {x,xnp?”xl—lql{i} C E}
i=1 i=1

The IP Szemerédi theorem of Furstenberg and Katznelson [20] implies that, for any £ € N and any
multiplicative automorphisms ¢1, ..., ¢r : N — N, the set of m € N, such that

d >d: (E) —e. (41)

*
mult

dy i (ENE[@i(m)N---NE/gr(m)) >0

is a multiplicative IP* set and, hence, multiplicatively syndetic. It is therefore natural to ask if a large
intersections variant holds for families of more than two multiplicative automorphisms:
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Question 8.11. Let py, po, ... be the enumeration of the positive prime numbers in increasing order.
For each j € N, let g 1,gj2,... be a distinct enumeration of the positive prime numbers. For which
k € N does the following hold: for any E C N with d; , (E) > 0 and any & > 0, there exists
y =TI, pi* € N\ {1}, such that

n n n
i ri ri
x€eN: x,anl‘,i,anii,...,x qk"l. CE
i=1 i=1 i=1

Note that (42) holds for k£ < 2 (see (41) and the discussion above).

>di (B —e. (42)

mult

d

*
mult

A. Proof of Lemma 3.6

In this section we prove Lemma 3.6, restated here for the convenience of the reader:
Lemma A.1 (Lemma 3.5). Let (X, X, u, (Tg)geg) be a G-system, and let H < G be a subgroup of finite
index. Then, for every k > 1, one has Z,’f, (X) = Zé (X).

We follow the arguments in [5, Appendix A] and generalise them to arbitrary countable discrete
abelian groups. We start with some background related to the Host—Kra parallelepipeds construction.
Definition A.2. Let G be a countable discrete abelian group, and let X = (X, X, u, (T¢)) be a G-system.
For every k > 0, we define a G-system ng = (XM, XK K (T4, ) inductively by setting

X([;O] = X, and Xg‘“] = Xg‘] XI(X'Gk‘) Xg‘], where I(X([;k]) is the o-algebra of (Tg[k])ge(;—invariant
functions.

Host and Kra [23] proved the following result for Z-systems, but the same proof works for arbitrary
countable discrete abelian groups.

Theorem A.3 ([23], Proposition 4.7). Zé(X) is the minimal o-algebra with the property that T(X*1)
is a sub-o-algebra of(Zé‘; (X))kl.
Let X = U,cs X, be a partition of X to G-invariant sets. Then, X([;k] = Ugey XM 7(x1K1) =

V et I(X([,k]) and Zé(X) =Vaes Zg(Xa). Therefore, by the ergodic decomposition, it is enough to
prove Lemma 3.6 in the case where the G-action is ergodic.
The following lemma gives the easy inclusion in Lemma 3.6.

Lemma A.4. In the setting of Lemma 3.6, Zé (X) < Z,’fl (X).

Proof. The proof is immediate by Theorem A.3 and since any (Tg[k])gec—invariant function is also a

(TiEk] )heq -invariant function. ]

We need the following observation.

Lemma A.5. Let G be a countable discrete abelian group, let X = (X, X, u, (Tg)geg) be an ergodic
measure preserving G-system and let H < G be a subgroup of finite index. Then, Ty (X) < Zg(X).

Proof. The group G/H acts ergodically by unitary transformations on % = L*(X,Zy, ulz,, ). Since
G/H is a finite abelian group, the unitary representation splits into a direct sum of one-dimensional
irreducible representations. In other words,  is generated by eigenfunctions of the action of G/H,
which are measurable with respect to Zg (X). This completes the proof. O

Now, we prove the k = 1 case of Lemma 3.6 under the additional assumption that the action of H is
ergodic.

Lemma A.6. Let G be countable discrete abelian groups, and let H < G be a finite index subgroup.
Let X = (X, X, u, (Tg)gec) be an ergodic G-system, and suppose the action of H is ergodic. Then,
Zu(X) = Z6(X).
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Proof. The group G/H is finite, and therefore it is a direct product of finite cyclic groups. In particular,
we can find d € N and a sequence of subgroups Hy = H < H; < --- < Hy < G, such that G/H; and
H;i/H;_1,1 < i < d, are cyclic groups of prime order. Using a proof by induction on d, we may assume
without loss of generality that G/H is cyclic and of prime order. Let gy € G be a representative of a
generator of G/H and [ := [G : H] be a prime number. By the ergodicity of H, the o-algebra Zg (X)
is generated by H-eigenfunctions. Hence, it is enough to show that every H-eigenfunction f is a linear
combination of G-eigenfunctions. Let 1 : H — S! be the eigenvalue of f, and observe that for any /-th
root w € S' of A(Igo), the function

frw Tef+..+o'™! “Ta-1go S
is a G-eigenfunction. Now, since
-
f= > frw - Tof+..+0™ Tiigf,
weS! : w'=A(lgop)
f is measurable with respect to Z5(X), and this completes the proof. O

Let G be a countable discrete abelian group, and let X = (X, &, p1, (Tg)gec) be a G-system. If the

system X is ergodic, it follows from the definition that X ([;1 I'is the Cartesian product of X with itself, and
the measure is the product measure. As a consequence of Lemma A.6, we have:

Lemma A.7. If the action of H on X is ergodic, then
z(xih =zx .

Proof. The inclusion I(Xg]) < I(XI[LI]])) is trivial. Now, let f : Xx X — Cbea (Ty XTj)neq invariant
function. By Lemma A.6, we can find an orthonormal basis of G-eigenfunctions { f;};en for Zg (X).
By Lemma 4.6, there exist constants a; ; € C for all i, j € N, such that

(o)

FOy) =D ai i f0F ).

i=1

Applying the H-action and using the uniqueness of the decomposition, we see that a; ; = O unlessi = j.

In particular, f is spanned by the G-invariant functions f; ® f;. Thus, f is measurable with respect to
Z(XZ) and the claim follows. m

We use Lemma A.7 to prove the following:
Proposition A.8. If the action of H on X is ergodic, then for k > 0, one has
k k k k
I(X}I])zI(X([;]) and ,ué] =:“1£1]'

Proof. We prove the claim by induction on k. The case k = 0 is trivial.
Assume that for some k > 0, I(XI[Jk]) = I(Xék]) and ,ug] = ,u%d. It is immediate that

[k+1] _  [k] [k] _ k] [k] _  [k+1]
He ~ =Hg *zxlhyHe =Hu Xz Hu =Hu

By the ergodic decomposition theorem, applied with respect to the o-algebra Z(X ([;k]), we can find
a partition Xg‘] =Uges Xo of Xék] to (Tg[k])gec; invariant sets. Let Sg' be the restriction of Tg[k] to the

set X,o. By the induction hypothesis, the action of (S} )scy on X, is ergodic. Hence, by Lemma A.7,
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we have

zx My = | za(xh) = | Zo(x) = z(x 5,

ael ael
as required. O

Proposition A.8 establishes Lemma 3.6 in the case where the action of H is ergodic. Now, we assume
that the H-action is nonergodic. As in the proof of Lemma A.6, we may assume without loss of generality
that G/H is cyclic of order / for some prime /. In particular, there exists a partition X = J;cz/;z X; into
H-invariant sets and some go € G, such that T X; = X;41,i € Z/IZ.

We need the following technical lemma.

Lemma A.9. Let G be a countable discrete abelian group, and letY = (Y, ), v, (Tg)gec) be an ergodic
G-system. Suppose that there exists some go € G and H-invariant subsets Y;, such that Y = U;cz1z Yi
andTgyY; = Yiy1 fori € Z[IZ. Then, Y Xz (v)Y = Ui jezyiz Yi.j whereY; i = Yi Xz, vy Yi and Tsgy X Trg,
is an isomorphism between Y; ; and Y. is, | € Z[IZ.

Proof. Let A € Zg(Y) be a measurable G-invariant subset of Y. Foreach0 <i </ -1,A; =ANY;
is an H-invariant set. In particular, A¢ is H-invariant and A; = T;4,Ag. We deduce that the mapping
A — A NY,is an isomorphism between Zg (Y) and Zg (Yp). Using the ergodic decomposition, we can

find a partition
Yy = U Y0,0

ael

of Yy to H-invariant sets. For every @ € I, and i # 0, let Y; o = T;4,Y0,o and Y, = Uiez/lz Y; o Then,
Y = Uger Yo is the ergodic decomposition of Y with respect to the factor Zg(Y). Thus, if we let
Yi,j = Uarel Y[’a, X Yj,a/a we have,

rW=Jaxzoom Yo =) | GiaxVia)= J |JCiax¥ia)= | %
acl acl i,je7)IZ i,j€Z/1Z acl i,jeZ/1Z
In particular, ¥; ; = U yef (Yi,o X Yi o) =Yi X Y, as required. m]

Recall that G = E;(l) igo + H. It follows from Lemma A.9 that for i, j € Z/IZ,
(Tgy X Tgy) (Yi Xzpy (v) ¥j) = Yis1,js1-

Therefore, the subsets V; = U jez/iz Y;.j+i> I € Z/IZ form a partition of ¥ Xz (y) ¥ into (Ty X Tg)geG-
invariant sets. Furthermore, Id X T;, is an isomorphism between Vj and V;.
We use Lemma A.9 to show the following:

Lemma A.10. Let X = (X, X, u, (Tg)geg) be an ergodic G-system. Let X = \J;cz1z Xi be a partition
1

into H-invariant sets and let gy € G be as above. Then, for any k > 0, there exists a partition X([;k

Ujezjizyx Wj, into (Tg[k])ge(;-invariant sets, such that Wy = Uiez/lZ(Xi)g(] and Tg[f]((Xi)I[Jk])

(X,-Jrl)l[_;< 1. Furthermore, for every j € (Z]IZ)¥, there exists an isomorphism of measure spaces Tj -
Wo — W;, which in every coordinate ofX[k] is a power of Tg,,.

Proof. We induct on k. The case k = 0 is trivial.
Assume that the claim holds for some k > 0. Then
[k+1] _ 5 [K] [k] _
X =Xg Xzx ) Xe = U (Wi Xzwy) Wj).
je(Z/1z)*
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Fix j € (Z/1Z)*. Since the isomorphism 7; : Wo — W; commutes with (Tg[k])gec, it induces an
isomorphism 7; X 7; : Wo Xz(w) Wo — W; Xz(w;) W;. By assumption, Wy = UieZ/,Z(X,-)I[_Ik], and by

[k+1]
Tg

Lemma A.9, Wy Xz(w,) Wo can be partitioned into ( )geG-invariant sets {V; };cz/1z, such that

Vo = U ((Xi)g(] XI((X.-)},"") (Xi)l[f]) _ U (Xi),[fﬂ].

i€Z/1Z i€Z/I1Z.

Moreover, Vj is isomorphic to V; via an isomorphism whose projections are powers of Tg[f I, Since Wo
is isomorphic to W;, this completes the proof. O

We recall that it suffices to establish the proof of Lemma 3.6 in the case where the G-action is ergodic
and G/H is a cyclic group of order [ for some [ > 0. As before, we find a partition X = (J;cz/;z Xi of X
into H-invariant sets and some go € G, such that Ty (X;) = X;4 fori € Z/IZ.

Proof of Lemma 3.6. Let k > 0, and let {W;};c(z/z« be as in Lemma A.10. Since Xo, ..., Xj-1
are disjoint (7})pecp-invariant subsets of X, we have I(XI[JI‘]) = HieZ/lZI((Xi)I[{k]) and ZI’fI(X)
[liezyiz ZI';(Xi). Let B be a (T,Ek])heH—invariant subset of (Xl-)l[f]. For every j € Z/IZ, let A;

(T([J{(_]i)go)(B) and A = J ez/z Aj. By definition, A € Wy is a (Tg[k])gec;-invariant set. Therefore, by

[k]
Theorem A.3, A € (Zé(X)) . Since X; is (T;Ek])—invariant, by Lemma A.5, X; € Zé;(X). Therefore,

(k]
B=A;=AnN (Xi)%‘] is an element of (Zg(X)) . Since B is arbitrary, and this holds for all i € Z/IZ,

we deduce that I(ch]) < ZE(X). By Theorem A3, we have ZJ; (X) < Z£(X). Lemma A 4 provides
the other inclusion, and this completes the proof. O
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