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ON THE ANTI-CANONICAL GEOMETRY OF WEAK Q-FANO
THREEFOLDS, III

CHEN JIANG and YU ZOU

Abstract. For a terminal weak Q-Fano threefold X, we show that the mth

anti-canonical map defined by |−mKX | is birational for all m≥ 59.

§1. Introduction

Throughout this paper, we work over an algebraically closed field of characteristic 0 (e.g.,

the complex number field C). We adopt standard notation in [14].

A normal projective variety X is called a weak Q-Fano variety (resp. Q-Fano variety) if

−KX is nef and big (resp. ample). According to the minimal model program, (weak) Q-Fano

varieties form a fundamental class in birational geometry. Motivated by the classification

theory of three-dimensional algebraic varieties, we are interested in the study of explicit

geometry of (weak) Q-Fano varieties with terminal or canonical singularities. In this

direction, there are a lot of works in the literature (see, e.g., [2], [4]–[6], [10]–[12], [16]–

[19]).

Given a terminal weak Q-Fano threefold X, themth anti-canonical map ϕ−m,X (or simply

ϕ−m) is the rational map induced by the linear system |−mKX |. We are interested in the

fundamental question of finding an optimal integer c3 such that ϕ−m is birational for

all m ≥ c3. The existence of such c3 follows from the boundedness result in [13]. More

generally, Birkar [1] showed that, for a positive integer d, there exists a positive integer cd
such that ϕ−m is birational for all m≥ cd and for all terminal weak Q-Fano d -folds, which

is one important step toward the solution of the Borisov–Alexeev–Borisov conjecture. The

following example shows that c3 ≥ 33.

Example 1.1 [8, List 16.6, No. 95]. A general weighted hypersurface X66 ⊂ P(1,5,6,

22,33) is a Q-factorial terminal Q-Fano threefold of Picard number 1 with ϕ−m birational

for m≥ 33 but ϕ−32 not birational.

In [5], it was showed that for a terminal weak Q-Fano threefold X, ϕ−m is birational for

all m≥ 97, which seems far from being optimal comparing to Example 1.1. Later in [6], it

was showed that any terminal weak Q-Fano threefold is birational to some terminal weak

Q-Fano threefold Y such that ϕ−m,Y is birational for all m≥ 52. Moreover, in recent works

[10], [11], we can make use of the behavior of the pluri-anti-canonical maps studied in [5] in

the classification of terminal Q-Fano threefolds. So we believe that a better understanding of

the behavior of the pluri-anti-canonical maps (including new methods developed during the

approach) will help us understand the classification of terminal Q-Fano threefolds better.

The main goal of this paper is to give an improvement of [5], [6] without passing to a

birational model. The main theorem of this paper is the following.
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24 C. JIANG AND Y. ZOU

Theorem 1.2. Let X be a terminal weak Q-Fano threefold. Then the mth anti-canonical

map ϕ−m defined by |−mKX | is birational for all m≥ 59.

Remark 1.3. Theorem 1.2 holds for canonical weak Q-Fano threefolds by taking a

Q-factorial terminalization by [14, Ths. 6.23 and 6.25].

For terminal Q-Fano threefolds, we have a slightly better bound.

Theorem 1.4. Let X be a terminal Q-Fano threefold. Then the mth anti-canonical map

ϕ−m defined by |−mKX | is birational for all m≥ 58.

To prove the main theorem, we already have several criteria to determine the birationality

in [5], [6], which are optimal in many cases (cf. [5, Exam. 5.12]). In order to study the

birationality of | −mKX |, as indicated in [4]–[6], it is crucial to study when | −mKX | is
not composed with a pencil. In fact, finding a criterion for |−mKX | not composed with a

pencil is one of the central problems in [5], [6] (see [5, Prob. 1.3], [6, Prob. 1.5]). Comparing

to the birationality criteria, the non-pencil criteria in [5], [6] are not satisfactory. As one

of the main ingredients of this paper, we give a new criterion for |−mKX | not composed

with a pencil.

Theorem 1.5 (=Theorem 4.2). Let X be a terminal weak Q-Fano threefold. If

h0(X,−mKX)> 12m+1

for some positive integer m, then |−mKX | is not composed with a pencil.

The following special case is already interesting for the study of anti-canonical systems of

terminal weak Q-Fano threefolds, and might have applications on upper bounds of degrees

of terminal weak Q-Fano threefolds (cf. [16], [17]).

Corollary 1.6. Let X be a terminal weak Q-Fano threefold. If h0(X,−KX)> 13, then

|−KX | is not composed with a pencil.

The paper is organized as follows: in §2, we recall basic knowledge. In §3, we recall the

birationality criteria of terminal weak Q-Fano threefolds in [5], [6] with some generalizations.

In §4, we prove the new criterion Theorem 4.2 and give an effective method to apply it. In

§5, we prove the main results.

Notation

For the convenience of readers, we list here the notation that will be frequently used in

this paper. Let X be a terminal weak Q-Fano threefold.

ϕ−m The rational map defined by |−mKX |
P−m = h0(X,−mKX) The mth anti-plurigenus of X
BX = {(bi, ri)} The Reid basket of orbifold points of X
RX = {ri} The collection of local indices of X
rX = lcm{ri | ri ∈RX} The Cartier index of KX

rmax =max{ri | ri ∈RX} The maximal local index of X
σ(BX) =

∑
i bi An invariant of BX contributing to the Riemann–Roch formula

σ′(BX) =
∑

i
b2i
ri

An invariant of BX contributing to the Riemann–Roch formula

γ(BX) =
∑

i
1
ri
−
∑

i ri+24 An invariant of BX from the Miyaoka inequality

B
(0)
X = {n0

1,r× (1, r)} The initial basket of BX
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THE ANTI-CANONICAL GEOMETRY OF FANO THREEFOLDS 25

§2. Preliminaries

Let X be a terminal weak Q-Fano threefold. Denote by rX the Cartier index of KX .

For any positive integer m, the number P−m = h0(X,OX(−mKX)) is called the mth anti-

plurigenus of X and ϕ−m denotes the mth anti-canonical map defined by |−mKX |.

2.1 The fibration induced by |D|
Let X be a terminal weak Q-Fano threefold. Consider a Q-Cartier Weil divisor D on X

with h0(X,D)≥ 2. Then there is a rational map defined by |D|:

Φ|D| :X ��� Ph0(X,D)−1.

By Hironaka’s desingularization theorem, we can take a projective birational morphism

π :W →X such that:

(i) W is smooth.

(ii) The movable part |M | of |�π∗(D)�| is base-point-free and, consequently, γ := Φ|D| ◦π
is a morphism.

(iii) The sum of π−1
∗ (D) and the exceptional divisors of π has simple normal crossing

support.

Let W
f−→ Γ

s−→ Z be the Stein factorization of γ with Z := γ(W )⊂ Ph0(X,D)−1. We have

the following commutative diagram:

W

π

��

γ

���
��

��
��

��
��

��
��

f �� Γ

s

��
X

Φ|D| �������� Z.

If dim(Γ)≥ 2, then a general member S of |M | is a smooth projective surface by Bertini’s

theorem. In this case, |D| is said to be not composed with a pencil of surfaces (not composed

with a pencil, for short).

If dim(Γ) = 1, then Γ ∼= P1 as h1(Γ,OΓ) ≤ h1(W,OW ) = h1(X,OX) = 0. Furthermore, a

general fiber S of f is a smooth projective surface by Bertini’s theorem. In this case, |D| is
said to be composed with a (rational) pencil of surfaces (composed with a pencil, for short).

In each case, S is called a generic irreducible element of |M |. We can also define a generic

irreducible element of a moving linear system on a surface in the similar way.

Definition 2.1. Keep the same notation as above. Let D′ be another Q-Cartier Weil

divisor on X with h0(X,D′)≥ 2. We say that |D| and |D′| are composed with the same pencil,

if both of them are composed with pencils and they define the same fibration structure

W → P1. In particular, |D| and |D′| are not composed with the same pencil if one of them

is not composed with a pencil.

2.2 Reid’s Riemann–Roch formula and Chen–Chen’s method

A basket B is a collection of pairs of coprime integers where a pair is allowed to appear

several times, say

{(bi, ri) | i= 1, . . . , s;bi is coprime to ri}.
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26 C. JIANG AND Y. ZOU

For simplicity, we will alternatively write a basket as a set of pairs with weights, say, for

example,

B = {2× (1,2),(1,3),(3,7),(5,11)}.

Let X be a terminal weak Q-Fano threefold. According to Reid [20], there is a basket of

(virtual) orbifold points

BX =
{
(bi, ri) | i= 1, . . . , s;0< bi ≤

ri
2
;bi is coprime to ri

}
associated with X, where a pair (bi, ri) corresponds to an orbifold point Qi of type
1
ri
(1,−1, bi). Denote by RX the collection of ri (counted with multiplicities) appearing

in BX , and rmax = max{ri | ri ∈ RX}. Note that the Cartier index rX of KX is just

lcm{ri | ri ∈RX}.
According to Reid [20], for any positive integer n,

P−n =
1

12
n(n+1)(2n+1)

(
−K3

X

)
+(2n+1)− l(n+1), (2.1)

where l(n+1) =
∑

i

∑n
j=1

jbi(ri−jbi)
2ri

and the first sum runs over Reid’s basket of orbifold

points. Here, jbi means the smallest nonnegative residue of jbi mod ri.

Set σ(BX) =
∑

i bi and σ′(BX) =
∑

i
b2i
ri
. From (2.1), for n= 1,2,

−K3
X = 2P−1+σ(BX)−σ′(BX)−6, (2.2)

σ(BX) = 10−5P−1+P−2. (2.3)

Denote

γ(BX) :=
∑
i

1

ri
−
∑
i

ri+24.

By [13] and [20, 10.3],

γ(BX)≥ 0. (2.4)

We recall Chen–Chen’s method on basket packing from [2]. Let

B =
{
(bi, ri) | i= 1, . . . , s;0< bi ≤

ri
2
;bi is coprime to ri

}
be a basket and assume that b1r2− b2r1 = 1, then the new basket

B′ = {(b1+ b2, r1+ r2),(b3, r3), . . . ,(bs, rs)}

is called a prime packing of B. We say that a basket B′ is dominated by B, denoted by

B �B′, if B′ can be achieved from B by a sequence of prime packings (including the case

B =B′).

By [2, §2.5], there is a unique basket B
(0)
X , called the initial basket of BX , of the form

B
(0)
X = {n0

1,r× (1, r) | r ≥ 2} such that B
(0)
X �BX . By [2, §2.7], we have

n0
1,2 = 5−6P−1+4P−2−P−3, (2.5)

n0
1,3 = 4−2P−1−2P−2+3P−3−P−4, (2.6)
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n0
1,4 = 1+3P−1−P−2−2P−3+P−4−σ5, (2.7)

where σ5 =
∑

r≥5n
0
1,r. We refer to [2] for more details.

2.3 Auxiliary results

We list here some useful results on terminal weak Q-Fano threefolds.

Proposition 2.2. Let X be a terminal weak Q-Fano threefold. Then:

(1) rX = 840 or rX ≤ 660 [5, Prop. 2.4].

(2) P−8 ≥ 2 [2, Th. 1.1]; moreover, if P−1 = 0 and P−2 > 0, then P−6 ≥ 2 [2, Case 1 of

Proof of Prop. 3.10].

(3) −K3
X ≥ 1

330 [2, Th. 1.1]; moreover, if P−1 = 0 and P−2 > 0, then −K3
X ≥ 1

70 , and if in

addition P−4 ≥ 2, then −K3
X ≥ 1

30 [2, (4.1), Lem. 4.2, and Case I of Proof of Th. 4.4].

(4) If P−1 = 0, then 2 ∈RX [5, Proof of Th. 1.8, p. 106].

Lemma 2.3. Suppose that {(bi, ri) | 1 ≤ i ≤ k} is a collection of pairs of integers with

0< 2bi ≤ ri for 1≤ i≤ k. Then
∑k

i=1(ri− 1
ri
)≥ 3

2

∑k
i=1 bi.

Proof. ri ≥ 2bi implies that ri− 1
ri

≥ 3
2bi.

§3. The criteria for birationality

In this section, we recall the birationality criteria of terminal weak Q-Fano threefolds in

[5], [6]. Here, we remark that all birationality criteria in this section are from [5], [6] except

for Theorem 3.5 and Corollary 3.7 (which are minor generalizations of [6, Th. 5.9]). Also,

we provide Lemma 3.3 in order to apply Corollary 3.7 efficiently. In fact, in [6], [6, Th. 5.9]

is only used for very special cases, but in this paper, thanks to Lemma 3.3, we make use of

Corollary 3.7 in many cases.

3.1 General settings

We recall numerical invariants needed in the birationality criteria, namely, ν0, m0, a(m0),

m1, μ
′
0, and N0.

Notation 3.1. Let X be a terminal weak Q-Fano threefold.

Let ν0 be a positive integer such that P−ν0 > 0.

Take a positive integer m0 such that P−m0 ≥ 2. Set

a(m0) =

{
6, if m0 ≥ 2,

1, if m0 = 1.

Take m1 ≥m0 to be an integer with P−m1 ≥ 2 such that |−m0KX | and |−m1KX | are
not composed with the same pencil.

Set D := −m0KX and keep the same notation as in §2.1. Denote S to be a generic

irreducible element of |M−m0 | = Mov |�π∗(−m0KX)�|. Choose a positive rational number

μ′
0 such that

μ′
0π

∗(−KX)−S ∼Q effective Q-divisor.

Set N0 = rX(π∗(−KX)2 ·S).
Remark 3.2 [6, Rem. 5.8]. Here, we explain how to choose μ′

0. In general, by

assumption, we can always take μ′
0 =m0. On the other hand, if |−m0KX | and |− kKX |
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28 C. JIANG AND Y. ZOU

are composed with the same pencil for some positive integer k, and k
P−k−1 <m0, then we

can take μ′
0 =

k
P−k−1 as

kπ∗(−KX)∼Q (P−k−1)S+effective Q-divisor.

Lemma 3.3. In Notation 3.1, N0 ≥ � rX
m1ν0rmax

.
Proof. We may modify π such that |M−m1 | = Mov |�π∗(−m1KX)�| is base-point-free.

Pick a generic irreducible element C of the base-point-free linear system |M−m1 |S |. Since
π∗(−m1KX)≥M−m1 , π

∗(−m1KX)|S ≥ C. Set

ζ := (π∗(−KX) ·C) = (π∗(−KX)|S ·C)S .

By [5, Prop. 5.7(v)], ζ ≥ 1
ν0rmax

. Since π∗(−KX)|S is nef,

π∗(−KX)2 ·S ≥ π∗(−KX)|S · 1

m1
C ≥ 1

m1ν0rmax
.

Hence, N0 ≥ � rX
m1ν0rmax

 as N0 is an integer by [5, Lem. 4.1].

3.2 Birationality criteria

We recall the birationality criteria of terminal weak Q-Fano threefolds.

Theorem 3.4 [5, Th. 5.11]. Keep the setting in Notation 3.1. Then the mth anti-

canonical map ϕ−m is birational if one of the following conditions holds:

(1) m≥max{m0+m1+a(m0),�3μ′
0�+3m1}.

(2) m≥max{m0+m1+a(m0),�53μ′
0+

5
3m1�,�μ′

0�+m1+2rmax}.
(3) m≥max{m0+m1+a(m0),�μ′

0�+m1+2ν0rmax}.

As another criterion, we have the following modification of [6, Th. 5.9].

Theorem 3.5. Keep the setting in Notation 3.1. Fix a real number β ≥ 8. Then the

mth anti-canonical map ϕ−m is birational if

m≥max

⎧⎨
⎩m0+a(m0),

⎡
⎢⎢⎢μ′

0+
4ν0rmax

1+
√

1− 8
β

⎤
⎥⎥⎥−1,�μ′

0+
√
βrX/N0�

⎫⎬
⎭ .

Proof. The proof is the same as [6, Th. 5.9] by replacing [6, Lem. 5.10] with

Lemma 3.6.

Lemma 3.6 [3, Th. 2.8]. Let S be a smooth projective surface, and let L be a nef and

big Q-divisor on S satisfying the following conditions:

(1) L2 > β, for some real number β ≥ 8, and

(2) (L ·CP )≥ 4

1+
√

1− 8
β

for all irreducible curves CP passing through any very general point

P ∈ S.

Then the linear system |KS + �L| separates two distinct points in very general positions.

Consequently, |KS + �L| gives a birational map.

We will use the following version of Theorem 3.5.

Corollary 3.7. Keep the setting in Notation 3.1. Then the mth anti-canonical map

ϕ−m is birational if one of the following conditions holds:
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(1) m≥max{m0+a(m0),�μ′
0+4ν0rmax−1,�μ′

0+
√
8rX/N0�}.

(2) ν0rmax ≥
√

rX
2N0

and

m≥max

{
m0+a(m0),

⌊
μ′
0+2ν0rmax+

rX
N0ν0rmax

⌋}
.

Proof. (1) follows directly from [6, Th. 5.9] or Theorem 3.5 with β = 8. For (2), take

β =
N0

rX

(
2ν0rmax+

rX
N0ν0rmax

)2

≥ 8

in Theorem 3.5. Then

4ν0rmax

1+
√

1− 8
β

=
4ν0rmax

√
β√

β+
√
β−8

=
4ν0rmax

√
β√

N0

rX

(
2ν0rmax+

rX
N0ν0rmax

+
∣∣∣2ν0rmax− rX

N0ν0rmax

∣∣∣)
=
√

βrX/N0.

So the conclusion follows from Theorem 3.5.

Finally, we explain the strategy to apply the birationality criteria to assert the

birationality. It is clear that in order to apply Theorem 3.4 and Corollary 3.7, we need

to control the values of (some of) ν0, m0, m1, μ
′
0, N0, and rX , rmax. To be more precise, we

need to give upper bounds of ν0, m0, m1, μ
′
0, rX , rmax and lower bounds of N0. Here, m0

and ν0 can be controlled by Proposition 2.2 (in particular, we can always take m0 = 8), μ′
0

can be controlled by Remark 3.2, N0 can be controlled by Lemma 3.3 (in most cases, we use

the trivial lower bound N0 ≥ 1), and rX and rmax can be controlled by (2.4). So the most

important and difficult part is to bound m1. We will deal with this issue in the next section.

§4. A new criterion for |−mK| not composed with a pencil

In this section, we give a new criterion on when |−mKX | is not composed with a pencil

for a terminal weak Q-Fano threefold X. Such a criterion is essential in order to apply

criteria for birationality in §3 (see also [4]–[6]). In [5], the following proposition is used to

determine when |−mK| is not composed with a pencil.

Proposition 4.1 [5, Cor. 4.2]. Let X be a terminal weak Q-Fano threefold. If

P−m > rX(−K3
X)m+1

for some positive integer m, then |−mKX | is not composed with a pencil.

However, Proposition 4.1 is too weak for application, especially when rX(−K3
X) is large

(see Example 4.10). In [6], there is a modification of this inequality (cf. [6, Lem. 4.2 and

Prop. 5.2]), but one has to replace X with a birational model. In this paper, by technique

developed recently in [12], we give a new criterion.

Theorem 4.2. Let X be a terminal weak Q-Fano threefold. If

P−m > 12m+1

for some positive integer m, then |−mKX | is not composed with a pencil.
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4.1 A structure theorem of terminal weak Q-Fano threefolds

We recall the following structure theorem of terminal weak Q-Fano threefolds from [12].

It plays the role of Fano–Mori triples as in [6]. Unlike [6], we do not need to replace by a

birational model (cf. [6, Prop. 3.9]).

Proposition 4.3 [12, Prop. 4.1]. Let X be a terminal weak Q-Fano threefold. Then there

exists a normal projective threefold Y birational to X satisfying the following properties:

(1) Y is Q-factorial terminal.

(2) −KY is big.

(3) For any sufficiently large and divisible positive integer n, |−nKY | is movable.

(4) For a general member M ∈ |−nKY |, M is irreducible and (Y, 1nM) is canonical.

(5) There exists a projective morphism g : Y → S with connected fibers where F is a general

fiber of g, such that one of the following conditions holds:

(a) S is a point and Y is a Q-Fano threefold with ρ(Y ) = 1.

(b) S = P1 and F is a smooth weak del Pezzo surface.

(c) S is a del Pezzo surface with at worst Du Val singularities and ρ(S) = 1, and

F � P1.

Here, we remark that in the proof of [12, Prop. 4.1], Y is obtained by running a K -MMP

on a Q-factorialization of X, so the induced map X ��� Y is a contraction, that is, it does

not extract any divisor.

4.2 Bounding coefficients of anti-canonical divisors

In this subsection, we discuss coefficients of certain divisors in the Q-linear system of the

anti-canonical divisor in several cases.

Lemma 4.4. Let S be a smooth weak del Pezzo surface, and let C be a nonzero effective

integral divisor on S which is movable. If −KS ∼Q aC+B for some positive rational number

a and some effective Q-divisor B, then a≤ 4.

Proof. By classical surface theory, it is well known that there is a birational map from

S to P2 or the Hirzebruch surface F0 or F2. So, by taking pushforward, we may replace S

by P2 or F0 or F2. Here, C is not contracted by the pushforward as it is movable.

If S = P2, then intersecting with a general line L, we get a≤ a(C ·L)≤ (−KS ·L) = 3.

If S = F0, then we may find a ruling structure φ : F0 → P1 such that C is not vertical.

Then we get a≤ 2 by intersecting with a fiber of φ.

If S = F2, then we consider the natural ruling structure φ : F2 → P1. If C is not vertical,

then intersecting with a fiber of φ, we get a ≤ 2. If C is vertical, then intersecting with

−KS , we get a(−KS ·C)≤K2
S which implies that a≤ 4.

Lemma 4.5. Let Y be a Q-factorial terminal Q-Fano threefold with ρ(Y ) = 1, and let D

be an integral divisor with h0(D)≥ 2. If −KY ∼Q aD+B for some positive rational number

a and some effective Q-divisor B, then a ≤ 7. Moreover, the equality holds if and only if

Y � P(1,1,2,3), B = 0, and OY (D)�OY (1).

Proof. Suppose that a≥ 7. As ρ(Y ) = 1, we have −KY ∼Q tD for some rational number

t≥ a≥ 7. Recall that the Q-Fano index of Y is defined by

qQ(Y ) = max{q | −KY ∼Q qA,A is a Weil divisor}.
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By [18, Cor. 3.4(ii)], t= qQ(Y )≥ 7. As h0(D)≥ 2, there are two different effective divisors

D1,D2 ∈ |D| such that −KY ∼Q tD1 ∼Q tD2, which implies that Y � P(1,1,2,3) by [18, Th.

1.4(vi)]. But, in this case, t= qQ(Y ) = 7. Hence, a= 7, B = 0, and OY (D)�OY (1).

Lemma 4.6. Keep the setting in Proposition 4.3, and suppose that S = P1. If −KY ∼Q

ωF +E for some positive rational number ω and some effective Q-divisor E, then ω ≤ 12.

This lemma is from the proof of [12, Prop. 4.2]. For the reader’s convenience, we recall

the proof here.

Proof. We may assume that ω > 2. By Proposition 4.3(3)(4), for a sufficiently large and

divisible integer n, |−nKY | is movable, and there exists an effective Q-divisor M ∼−nKY

such that (Y, 1nM) is canonical. Since −KY is big, we can write −KY ∼Q A+N , where A

is an ample Q-divisor and N is an effective Q-divisor. Set Bε =
1−ε
n M + εN for a rational

number 0< ε < 1. Take two general fibers F1,F2 of g. Denote

Δ = (1− 2

ω
)Bε+

2

ω
E+F1+F2.

Then

−(KY +Δ)∼Q −
(
1− 2

ω

)
(KY +Bε)∼Q

(
1− 2

ω

)
εA

is ample as ω > 2. Hence, by the connectedness lemma [12, Lem. 2.6], Nklt(Y,Δ) is

connected. By construction, F1 ∪F2 ⊂ Nklt(Y,Δ), then Nklt(Y,Δ) dominates P1. By the

inversion of adjunction [14, Lem. 5.50], (F,(1− 2
ω )Bε|F + 2

ωE|F ) is not klt for a general fiber

F of g. As being klt is an open condition on the coefficients, by the arbitrariness of ε, it

follows that (F,(1− 2
ω )

1
nM |F + 2

ωE|F ) is not klt for a very general fiber F of g.

On the other hand, as (Y, 1nM) is canonical, (F, 1nM |F ) is canonical by Bertini’s theorem

(see [14, Lem. 5.17]). SinceM is a general member of a movable linear system by assumption,

M |F is a general member of a movable linear system on F. So each irreducible component

of M |F is nef. Also, we can take M such that M |F and E|F have no common irreducible

component. By construction, 1
nM |F ∼Q E|F ∼Q −KF . So we can apply [12, Th. 3.3] to

F, 1nM |F ,E|F , which implies that 2
ω ≥ 1

6 . Hence, ω ≤ 12.

Lemma 4.7. Keep the setting in Proposition 4.3, and suppose that S is a del Pezzo

surface. Suppose that D is a nonzero effective integral divisor on Y which is movable. If

−KY ∼Q ωD+E for some positive rational number ω and some effective Q-divisor E, then

ω ≤ 12.

Proof. As S is a del Pezzo surface with at worst Du Val singularities and ρ(S) = 1, there

are three cases (see [15], [17, Rem. 3.4(ii)]):

(1) K2
S = 9 and S � P2.

(2) K2
S = 8 and S � P(1,1,2).

(3) 1≤K2
S ≤ 6.
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Consider the linear system H on S defined by

H :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|OP2(1)|, if S � P2,

|OP(1,1,2)(2)|, if S � P(1,1,2),

|−KS |, if 2≤K2
S ≤ 6,

|−2KS |, if K2
S = 1.

ThenH is base-point-free and defines a generically finite map (cf. [7, Th. 8.3.2]). By Bertini’s

theorem, we can take a general element H ∈ H such that H and G = g−1(H) = g∗H are

smooth. Note that for a general fiber C of g|G, C � P1, (−KG ·C) = 2, and G|G ∼ (H2) ·C.

Note that g|G is factored through by a ruled surface over H, so K2
G ≤ 8−8g(H). Then

(−KY |G)2 = (−KG+G|G)2

=K2
G+4H2

≤ 8−8g(H)+4H2

= −4(KS ·H)≤ 24.

By construction, as |G| defines a morphism from Y to a surface and D is movable, D|G is

an effective nonzero integral divisor for a general G. So we may write

−KY |G ∼Q ωD|G+E|G. (4.1)

Take a general fiber C of g|G. If (D|G ·C) �= 0, then by (4.1) intersecting with C, ω ≤ 2.

If (D|G ·C) = 0, then D|G is vertical over H and thus D|G is numerically equivalent to

a multiple of C. By Proposition 4.3(3), −KY |G is nef. Then, by (4.1), intersecting with

−KY |G,

24≥ (−KY |G)2 ≥ ω(−KY |G ·D|G)≥ ω(−KY |G ·C) = 2ω,

which implies that ω ≤ 12.

4.3 A new geometric inequality

Now, we are prepared to prove Theorem 4.2.

Proof of Theorem 4.2. It suffices to show that, if |−mKX | is composed with a pencil,

then P−m ≤ 12m+1.

Take g : Y → S to be the morphism in Proposition 4.3. Take a common resolution π :

W →X, q :W → Y . We may modify π such that f :W → P1 is the fibration induced by

|−mKX | as in §2.1. See the following diagram:

W
π

����
��
��
�� q

���
��

��
��

�
f �� P1

X ��������� Y
g �� S.

Denote by FW a general fiber of f. Then

π∗(−mKX)∼ (P−m−1)FW +E, (4.2)
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where E is an effective Q-divisor on W. Set ω = P−m−1
m . Pushing forward (4.2) to Y, we

have

−KY ∼Q ωq∗FW +EY , (4.3)

where EY is an effective Q-divisor on Y. Note that q∗FW is a general member of a movable

linear system.

Case 1. S is a point.

In this case, ω ≤ 7 by (4.3) and Lemma 4.5.

Case 2. S = P1.

If S =P1 and q∗FW |F =0, then q∗FW ∼F and −KY ∼Q ωF +EY . By Lemma 4.6, ω≤ 12.

If S = P1 and q∗FW |F �= 0, then q∗FW |F is a movable effective nonzero integral divisor

on F. Restricting (4.3) on F, we have −KF ∼Q ω(q∗FW |F )+EY |F . By Lemma 4.4, ω ≤ 4.

Case 3. S is a del Pezzo surface.

In this case, ω ≤ 12 by (4.3) and Lemma 4.7.

Combining all above cases, we proved that P−m−1
m = ω ≤ 12 as long as | −mKX | is

composed with a pencil.

Applying Proposition 4.1 and Theorem 4.2, we have the following criteria for | −mK|
not composed with a pencil (cf. [6, Prop. 5.4]).

Proposition 4.8. Let X be a terminal weak Q-Fano threefold. Let t be a positive real

number, and let m be a positive integer. If m ≥ t,m ≥ rmaxt
3 , and one of the following

conditions holds:

(1) m>−3
4 +

√
12

t·(−K3
X)

+6rX + 1
16 ,

(2) m>−3
4 +

√
12

t·(−K3
X)

+ 72
−K3

X
+ 1

16 ,

then |−mKX | is not composed with a pencil.

Proof. By [6, Prop. 5.3],

P−m ≥ 1

12
m(m+1)(2m+1)(−K3

X)+1− 2m

t
.

The assumption implies that either P−m > rX(−K3
X)m+1 or P−m > 12m+1. Hence, |−

mKX | is not composed with a pencil by Proposition 4.1 and Theorem 4.2.

By the same method, we have the following corollary.

Corollary 4.9. Let X be a terminal weak Q-Fano threefold. Let t be a positive

real number, and let m be a positive integer. If m ≥ t,m ≥ rmaxt
3 , and m > −3

4 +√
12

t·(−K3
X)

+ 6
l·(−K3

X)
+ 1

16 for some positive real number l, then P−m−1> m
l .

We illustrate in the following example on how efficient Proposition 4.8 is comparing to

[5, Cor. 4.2].

Example 4.10. Suppose that X is a terminal weak Q-Fano threefold with P−1 = 0,

BX = {2× (1,2),(2,5),(3,7),(4,9)}, and −K3
X = 43

315 . Then [5, Cor. 4.2] implies that

|−mKX | is not composed with a pencil for all m≥ 61 (see the last paragraph of [5, p. 106]).

On the other hand, by Proposition 4.8, | −mKX | is not composed with a pencil for all

m ≥ 23 (see Case 4 of Proof of Theorem 5.6), which significantly improves the previous
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result. Also, it can be computed directly by (2.1) to get P−22 = 260 < 12× 22+1, which

tells that the estimates in Proposition 4.8 are efficient enough comparing to directly using

the Riemann–Roch formula.

4.4 A remark on [5, Cor. 4.2]

In this subsection, we discuss the equality case of [5, Cor. 4.2] for terminal Q-Fano

threefolds.

Proposition 4.11. Let X be a terminal Q-Fano threefold, and let m be a positive

integer. If

P−m = rX(−K3
X)m+1

and |−mKX | is composed with a pencil, then:

(1) rX(−K3
X) = 1.

(2) If, moreover, the Weil divisor class group of X has no m-torsion element, then

h0(X,−kKX) = k+1 for all 1≤ k ≤m.

Proof. We recall the proof of [5, Cor. 4.2]. As |−mKX | is composed with a pencil, take

D =−mKX and keep the notation in §2.1, we have

π∗(−mKX)∼ (P−m−1)S+F, (4.4)

where S is a generic irreducible element of Mov |�π∗(−mKX)�| and F is an effective Q-

divisor. Then

m(−K3
X)≥ (P−m−1)(π∗(−KX)2 ·S)≥ 1

rX
(P−m−1)

by [5, Lem. 4.1].

Now, by assumption, the equality holds. So (π∗(−KX)2 ·F ) = 0. This implies that F is

π-exceptional as −KX is ample. So (4.4) implies that

−mKX ∼ (P−m−1)π∗S.

Then

−KX ∼Q rX(−K3
X)π∗S. (4.5)

By [9, Lem. 2.3], (π∗S)
3 ≥ 1

rX
. Then (4.5) implies that

−K3
X ≥ (rX(−K3

X))3

rX
,

which implies that rX(−K3
X) = 1 as it is a positive integer. Under the assumption that the

Weil divisor class group of X has no m-torsion element, (4.5) implies that −KX ∼ π∗S. So

the conclusion follows as −kKX ∼ kπ∗S is composed with a pencil for any 1≤ k ≤m (see

[5, p. 63, Case (fp)]).

The following example shows that Proposition 4.11 is nonempty.

Example 4.12 [8, List 16.6, No. 88]. A general weighted hypersurface X42 ⊂ P(1,1,

6,14,21) is a terminal Q-Fano threefold with rX(−K3
X) = 1 and BX = {(1,2),(1,3),(1,7)}.

By [18, Prop. 2.9], the Weil divisor class group of X is torsion-free. Certainly, P−k = k+1

and |−kKX | is composed with a pencil for 1≤ k ≤ 5.
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§5. Proofs of main results

In this section, we apply the birationality criteria (Theorem 3.4 and Corollary 3.7) and

the non-pencil criteria (Proposition 4.8) to prove the main theorem. The proof will be

divided into several cases:

1. rX = 840.

2. P−2 = 0.

3. P−2 > 0, P−1 = 0, and rmax ≥ 14.

4. P−2 > 0, P−1 = 0, and rmax ≤ 13.

5. P−1 > 0 and rmax ≥ 14.

6. P−1 > 0 and rmax ≤ 13.

Here, recall that rX = lcm{ri | ri ∈ RX} is the Cartier index of KX , and rmax = max{ri |
ri ∈RX} is the maximal local index.

5.1 The case rX = 840

Theorem 5.1. Let X be a terminal weak Q-Fano threefold with rX = 840. Then ϕ−m

is birational for all m≥ 48.

Proof. Keep the setting in Notation 3.1. By [6, Lem. 6.5] and the first line of its proof,

we know that rmax = 8, P−1 ≥ 1, and −K3
X ≥ 47

840 . Take m0 = 8 and ν0 = 1. By Corollary

4.9 (with l = 1, t= 4.5, and −K3
X ≥ 47

840), we have P−12−1> 12.

If |−12KX | and |−8KX | are composed with the same pencil, then take μ′
0 =

12
P−12−1 < 1

by Remark 3.2. By Proposition 4.8(2) (with t=13.5 and −K3
X ≥ 47

840), we can take m1 =36.

By Lemma 3.3, N0 ≥ � 840
8m1

=3. Then, by Corollary 3.7(1), ϕ−m is birational for all m≥ 48.

If |−12KX | and |−8KX | are not composed with the same pencil, then take m1 = 12 and

μ′
0 =m0 = 8. Then, by Theorem 3.4(3), ϕ−m is birational for all m≥ 36.

5.2 The case P−2 = 0

Theorem 5.2. Let X be a terminal weak Q-Fano threefold. If P−2 = 0, then ϕ−m is

birational for all m≥ 51.

Proof. Keep the setting in Notation 3.1. In this case, the possible baskets are classified

in [2, Th. 3.5] with 23 cases in total (see Table A.1 in the Appendix). Here, we refer to the

numbering in Table A.1.

For Nos. 1–5 of Table A.1, rX ≤ 84,−K3
X ≥ 1

84 , P−8 ≥ 2, and rmax ≤ 11. So we can

take m0 = 8. By Corollary 4.9 (with l = 2 and t = 5.7), P−21 − 1 > 21
2 . If | − 21KX | and

|−8KX | are composed with the same pencil, then take μ′
0 =

21
P−21−1 < 2 by Remark 3.2. By

Proposition 4.8(1) (with t = 6.6), we can take m1 = 25. Then, by Theorem 3.4(2), ϕ−m is

birational for all m≥ 48. If |−21KX | and |−8KX | are not composed with the same pencil,

then take m1 = 21 and μ′
0 = m0 = 8. Then, by Theorem 3.4(2), ϕ−m is birational for all

m≥ 51.

For Nos. 6–13 and Nos. 16–23 of Table A.1, rX ≤ 78,−K3
X ≥ 1

30 , P−6 ≥ 2, and rmax ≤ 14.

So we can take m0 = 6. By Corollary 4.9 (with l= 1 and t= 3.6), P−17−1> 17. If |−17KX |
and | − 6KX | are composed with the same pencil, then take μ′

0 =
17

P−17−1 < 1 by Remark

3.2. By Proposition 4.8(1) (with t= 4.9), we can take m1 = 23. Then, by Theorem 3.4(2),

ϕ−m is birational for all m≥ 51. If |−17KX | and |−6KX | are not composed with the same

pencil, then take m1 = 17 and μ′
0 = m0 = 6. Then, by Theorem 3.4(2), ϕ−m is birational

for all m≥ 51.
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For No. 14 of Table A.1, rX = 210,−K3
X = 17

210 , P−5 = 2, and rmax = 7. So we can take

m0 =5. By Corollary 4.9 (with l=1 and t=4.2), P−10−1> 10. If |−10KX | and |−5KX | are
composed with the same pencil, then take μ′

0 =
10

P−10−1 < 1 by Remark 3.2. By Proposition

4.8(2) (with t= 12), we can take m1 = 30. Then, by Theorem 3.4(2), ϕ−m is birational for

all m ≥ 51. If | − 10KX | and | − 5KX | are not composed with the same pencil, then take

m1 = 10 and μ′
0 =m0 = 5. Then, by Theorem 3.4(2), ϕ−m is birational for all m≥ 29.

For No. 15 of Table A.1, rX = 120,−K3
X = 3

40 , P−5 = 2, and rmax = 8. So we can take

m0 = 5. By Corollary 4.9 (with l= 1 and t= 4), P−11−1> 11. If |−11KX | and |−5KX | are
composed with the same pencil, then take μ′

0 =
11

P−11−1 < 1 by Remark 3.2. By Proposition

4.8(1) (with t= 10), we can take m1 = 27. Then, by Theorem 3.4(2), ϕ−m is birational for

all m ≥ 46. If | − 11KX | and | − 5KX | are not composed with the same pencil, then take

m1 = 11 and μ′
0 =m0 = 5. Then, by Theorem 3.4(2), ϕ−m is birational for all m≥ 32.

5.3 The case P−2 > 0 and P−1 = 0

Lemma 5.3. Let X be a terminal weak Q-Fano threefold. If P−1 = 0 and P−2 > 0, then

γ(BX)≥ 0, 2 ∈RX , σ(BX)≥ 11. (5.1)

Proof. By (2.3), we have σ(BX) = 10−5P−1+P−2 = 10+P−2 ≥ 11. Other statements

follow from (2.4) and Proposition 2.2(4).

Theorem 5.4. Let X be a terminal weak Q-Fano threefold. If P−2 > 0, P−1 = 0, and

rmax ≥ 14, then ϕ−m is birational for all m ≥ 59. Moreover, ϕ−58 may not be birational

only if BX = {(1,2),2× (1,3),(8,17)} and |−24KX | is composed with a pencil.

Proof. Keep the setting in Notation 3.1. By [5, Case II of Proof of Th. 3.12] (especially

the last paragraph of Subsubcase II-3-iii) or the second paragraph of [5, Case IV of Proof

of Th. 1.8] (see Table A.2 in the Appendix), we can see that rmax ≤ 13 provided P−4 = 1.

Hence, by assumption, P−4 ≥ 2, and we can always take m0 = 4.

Case 1. rmax ≥ 16.

It is not hard to search by hands or with the help of a computer program to get all

possible BX satisfying (5.1) and rmax ≥ 16. Here, note that σ(BX)≥ 11 implies that
∑

i ri >

2σ(BX)≥ 22.

If 22≤ rmax ≤ 24, then there is no BX satisfying (5.1). If 16≤ rmax ≤ 21, then all possible

BX satisfying (5.1) are listed in Table 1.

Here, we explain briefly how to get Table 1. The algorithm is the following: first, we can

list all possible RX satisfying 2 ∈RX and γ(BX)≥ 0; then we find all possible bi for those

RX such that σ(BX) ≥ 11. For example, let us consider the case rmax = 17. As 2 ∈ RX ,

{2,17} ⊂ RX . So we can list all possible RX with γ(BX) ≥ 0 by enumeration method by

considering the second largest ri:

{2, 5, 17}; {2, 2, 4, 17}; {2, 4, 17};
{2, 3, 3, 17}; {2, 2, 3, 17}; {2, 3, 17};
{2, 2, 2, 2, 17}; {2, 2, 2, 17}; {2, 2, 17};
{2, 17}.
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Table 1. Baskets satisfying Lemma 5.3 with rmax ≥ 16.

No. BX −K3

1 {(1,2),(10,21)} < 0
2 {2× (1,2),(10,21)} 5/21
3 {2× (1,2),(9,20)} < 0
4 {2× (1,2),(9,19)} < 0
5 {(1,2),(1,3),(9,19)} < 0
6 {3× (1,2),(9,19)} 9/38
7 {3× (1,2),(8,19)} 5/38
8 {4× (1,2),(7,18)} 5/18
9 {(1,2),(2,5),(8,17)} < 0
10 {3× (1,2),(8,17)} < 0
11 {2× (1,2),(1,3),(8,17)} < 0
12 {2× (1,2),(1,4),(8,17)} < 0
13 {(1,2),2× (1,3),(8,17)} 7/102
14 {4× (1,2),(8,17)} 4/17
15 {4× (1,2),(7,17)} 2/17
16 {2× (1,2),(2,5),(7,16)} 11/80
17 {4× (1,2),(7,16)} < 0
18 {3× (1,2),(1,3),(7,16)} 5/48
19 {5× (1,2),(7,16)} 7/16

Then all possible BX with σ(BX)≥ 11 are listed in Table 1; for instance, there is no such

basket BX with RX = {2,4,17} because in this case σ(BX)≤ 1+1+8 = 10.

For No. 2 of Table 1, −K3
X = 5

21 , and in this case, P−2 = 2, rX = 42, and rmax = 21. We

can take μ′
0 =m0 = 2. By Proposition 4.8(1) (with t = 2.28), we can take m1 = 16. Then,

by Theorem 3.4(1), ϕ−m is birational for all m≥ 54.

For other cases with −K3
X > 0, we have −K3

X ≥ 7
102 and rmax ≤ 19. By Corollary 4.9 (with

l=1, t=2), P−13−1> 13. If |−13KX | and |−4KX | are not composed with the same pencil,

then take m1 = 13 and μ′
0 = m0 = 4. Then, by Theorem 3.4(1), ϕ−m is birational for all

m≥ 51.

So we may assume that | − 13KX | and | − 4KX | are composed with the same pencil.

Then, in the following, we can take μ′
0 =

13
P−13−1 < 1 by Remark 3.2 and m0 = 4.

For Nos. 6–8 of Table 1, −K3
X ≥ 5

38 , rX ≤ 38, and rmax ≤ 19. By Proposition 4.8(1) (with

t= 2.4), we can take m1 = 16. Then, by Theorem 3.4(1), ϕ−m is birational for all m≥ 50.

For Nos. 14–16 and Nos. 18 and 19 of Table 1, −K3
X ≥ 5

48 , rX ≤ 80, and rmax ≤ 17. By

Proposition 4.8(1) (with t= 3.88), we can take m1 = 22. Then, by Theorem 3.4(2), ϕ−m is

birational for all m≥ 56.

For No. 13 of Table 1, −K3
X = 7

102 , rX = 102, and rmax = 17. By Proposition 4.8(1) (with

t= 3.6), we can take m1 = 25. Then, by Theorem 3.4(2), ϕ−m is birational for all m≥ 59.

Moreover, if |−24KX | is not composed with a pencil, then take m1 =24. Then, by Theorem

3.4(2), ϕ−m is birational for all m≥ 58.

Case 2. 14≤ rmax ≤ 15.

For the remaining cases 14 ≤ rmax ≤ 15, we have −K3
X ≥ 1

30 by Proposition 2.2(3) as

P−4 ≥ 2. By Corollary 4.9 (with l = 1, t= 3.4), P−17−1> 17.

If |−17KX | and |−4KX | are not composed with the same pencil, then take m1 = 17 and

μ′
0 =m0 = 4. Then, by Theorem 3.4(2), ϕ−m is birational for all m≥ 51.
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If |−17KX | and |−4KX | are composed with the same pencil, then take μ′
0 =

17
P−17−1 < 1

by Remark 3.2 and m0 = 4.

If rmax = 15, then we claim that rX ≤ 60. In fact, as {15,2} ⊂ RX , by (2.4), s �∈ RX

for all s > 7. If 7 �∈ RX , then rX divides 60. If 7 ∈ RX , then RX = {15,7,2} by (2.4), and

moreover BX = {(1,2),(3,7),(7,15)} by σ(BX)≥ 11. But this basket has −K3
X < 0 by (2.2),

which is absurd. Hence, rX ≤ 60. By Proposition 4.8(1) (with t = 4, −K3
X ≥ 1

30), we can

take m1 = 21. Then, by Theorem 3.4(2), ϕ−m is birational for all m≥ 51.

If rmax = 14, then we claim that BX = {6 × (1,2),(5,14)}. Suppose that BX =

{(b1, r1), . . . ,(bk, rk),(b,14)} with b ∈ {1,3,5}. Then σ(BX) ≥ 11 implies that
∑k

i=1 bi ≥ 6.

If there exists some ri > 2, then
∑k

i=1 ri > 2
∑k

i=1 bi ≥ 12, that is,
∑k

i=1 ri ≥ 13. So (2.4)

implies that
∑k

i=1
1
ri

≥ 3− 1
14 . On the other hand, (2.4) implies that 3

2k+14− 1
14 ≤ 24,

which says that k ≤ 6. So
∑k

i=1
1
ri

≤ 5× 1
2 +

1
3 < 3− 1

14 , a contradiction. So all ri = 2 and

k ≥ 6. Then γ(BX)≥ 0 implies that k = 6, and σ(BX)≥ 11 implies that b= 5. We conclude

that BX = {6× (1,2),(5,14)}. In this case, −K3
X = 3

14 and rX = rmax = 14. By Proposition

4.8(1) (with t = 2), we can take m1 = 10. Then, by Theorem 3.4(1), ϕ−m is birational for

all m≥ 32.

Combining all above cases, we have proved the theorem.

Lemma 5.5. (cf. [2, Case I of Proof of Th. 4.4]). Let X be a terminal weak Q-Fano

threefold with P−1 = 0 and P−2 > 0. If P−4 ≥ 2 and −K3
X < 1

12 , then BX is dominated by

one of the following initial baskets:

{8× (1,2),3× (1,3)},
{9× (1,2),(1,4),(1,5)},
{9× (1,2),(1,4),(1,6)},
{9× (1,2),2× (1,5)}.

Note that in the latter three cases, all possible packings have rmax ≤ 9.

Proof. Following [2, Case I of Proof of Th. 4.4], we only need to consider the cases

(P−3,P−4) = (1,2) or (0,2) in [2, Subcase I-3 of Proof of Th. 4.4].

If (P−3,P−4) = (1,2), then [2, Subcase I-3 of Proof of Th. 4.4] shows that BX is

dominated by {8× (1,2),3× (1,3)}. (Actually, it shows moreover that BX is dominated

by {7× (1,2),(2,5),2× (1,3)}.)
If (P−3,P−4) = (0,2), then P−1 = 0 and P−2 = 1. Then, by (2.5)–(2.7), n0

1,2 = 9, n0
1,3 = 0,

and n0
1,4+σ5 = 2. So BX is dominated by {9× (1,2),(1, s1),(1, s2)} for some s2 ≥ s1 ≥ 4.

The case (s1, s2) = (4,4) is ruled out by [2, Subcase I-3 of Proof of Th. 4.4]. Hence, we get

the conclusion by (2.4) and [2, Lem. 3.1].

Theorem 5.6. Let X be a terminal weak Q-Fano threefold. If P−1 = 0,P−2 > 0, and

rmax ≤ 13, then ϕ−m is birational for all m≥ 56.

Proof. Keep the setting in Notation 3.1. By Proposition 2.2, P−6 ≥ 2 and −K3
X ≥ 1

70 .

We always take ν0 = 2.

If P−4 = 1, then P−2 = 1. Following the second paragraph of [5, Case IV of Proof of Th.

1.8] (see Table A.2 in the Appendix), we have rX ≤ 130. By Corollary 4.9 (with l=1, t=5.5,

and −K3
X ≥ 1

70), P−24−1> 24. If |−24KX | and |−6KX | are not composed with the same

pencil, then take m1 = 24 and μ′
0 = m0 = 6. Then, by Theorem 3.4(2), ϕ−m is birational
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for all m ≥ 56. If | − 24KX | and | − 6KX | are composed with the same pencil, then take

m0 = 6 and μ′
0 =

24
P−24−1 < 1 by Remark 3.2. By Proposition 4.8(1) (with t = 6.9), we can

take m1 = 30. Then, by Theorem 3.4(2), ϕ−m is birational for all m≥ 56.

From now on, we assume that P−4 ≥ 2. Note that −K3
X ≥ 1

30 by Proposition 2.2(3). By

Corollary 4.9 (with l = 1 and t = 3.6), P−16 − 1 > 16. If | − 16KX | and | − 4KX | are not

composed with the same pencil, then take m1 = 16 and μ′
0 = m0 = 4. Then, by Theorem

3.4(2), ϕ−m is birational for all m≥ 46.

In the following discussions, we assume that |−16KX | and |−4KX | are composed with

the same pencil. We can always take m0 = 4 and μ′
0 =

16
P−16−1 < 1 by Remark 3.2.

Case 1. rmax ≤ 6 or rmax ∈ {10,12}.
If rmax ≤ 6, then rX ≤ 60. If rmax = 10 (resp. rmax = 12), then rX ≤ 210 (resp. rX ≤ 84)

by [5, p. 107]. Then, by Corollary 3.7(2), ϕ−m is birational for all m≥ 52.

Case 2. rmax = 7.

If rmax = 7, then rX divides lcm(2,3,4,5,6,7) = 420. Hence, either rX = 420 or rX ≤ 210.

If rX = 420, then {4,5,7} ⊂RX and one element of {3,6} is in RX . Suppose that

BX = {(b1, r1), . . . ,(bk, rk),(1, r),(1,4),(a5,5),(a7,7)},

where r ∈ {3,6}, a5 ≤ 2, and a7 ≤ 3. Then σ(BX)≥ 11 implies that
∑k

i=1 bi ≥ 4. Lemma 2.3

implies that

γ(BX)≤ 24−
(
7− 1

7
+5− 1

5
+4− 1

4
+3− 1

3
+4× 3

2

)
< 0, (5.2)

a contradiction. Hence, rX ≤ 210. Then, by Corollary 3.7(2), ϕ−m is birational for allm≥ 43.

Case 3. rmax = 8.

If rmax = 8, then we claim that rX ≤ 168. In fact, if rX > 168, then {5,7} ⊂RX . Suppose

that

BX = {(b1, r1), . . . ,(bk, rk),(a5,5),(a7,7),(a8,8)},

where a5 ≤ 2, a7 ≤ 3, and a8 ≤ 3. Then σ(BX) ≥ 11 implies that
∑k

i=1 bi ≥ 3. Similar to

(5.2), Lemma 2.3 implies that γ(BX)< 0, a contradiction. Hence, rX ≤ 168.

Then, by Corollary 3.7(2), ϕ−m is birational for all m≥ 43.

Case 4. rmax = 9.

If rmax = 9, then we claim that rX ≤ 252 or BX = {2× (1,2),(2,5),(3,7), (4,9)}.
If 7 and 8 are not in RX , then rX ≤ 180.

If 8 ∈ RX , then as {2,8,9} ⊂ RX , we know that 6 and 7 are not in RX by γ(BX) ≥ 0.

If 5 �∈ RX , then rX = 72. If 5 ∈ RX , then RX = {2,5,8,9} as γ(BX) ≥ 0, but in this case,

σ(BX)≤ 10, a contradiction.

If 7 ∈RX , then as {2,7,9} ⊂RX , we know that at most one element of {4,5,6} is in RX

by γ(BX) ≥ 0. If 5 �∈ RX , then rX ≤ 252. If 5 ∈ RX , then by σ(BX) ≥ 11 and γ(BX) ≥ 0,

it is not hard to check that the only possible basket is BX = {2× (1,2),(2,5),(3,7),(4,9)}.
This concludes the claim.

If rX ≤ 252, then by Corollary 3.7(2), ϕ−m is birational for all m≥ 50.

https://doi.org/10.1017/nmj.2023.17 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.17


40 C. JIANG AND Y. ZOU

If BX = {2× (1,2),(2,5),(3,7),(4,9)}, then −K3
X = 43

315 . By Proposition 4.8(2) (with

t= 7.6), we can take m1 = 23. Then, by Theorem 3.4(2), ϕ−m is birational for all m≥ 41.

Case 5. rmax = 11.

If rmax = 11, then we claim that rX ≤ 264 or BX = {3× (1,2),(1,3),(2,5), (5,11)} or

BX = {2× (1,2),(1,3),(3,7),(5,11)}.
As {2,11} ⊂ RX , we know that at most one element of {6,7,8,9,10} is in RX by

γ(BX)≥ 0. If 10 ∈ RX , then rX = 110 by [5, p. 107]. If 9 ∈ RX or 8 ∈ RX , then rX ≤ 264

by [5, p. 107]. If 7 ∈ RX , then 5 �∈ RX by γ(BX) ≥ 0. So either rX = 154 or at least one

element of {3,4} is in RX . For the latter case, it is not hard to check that the only basket

satisfying σ(BX) ≥ 11 and γ(BX) ≥ 0 is BX = {2× (1,2),(1,3),(3,7),(5,11)}. If 6 ∈ RX ,

then we get a contradiction by Lemma 2.3 as (5.2).

If none element of {6,7,8,9,10} is in RX , then rX divides 660 and rX < 660 by [5, p. 107].

So either rX ≤ 220 or rX = 330. Moreover, if rX = 330, then {2,3,5,11} ⊂RX and 4 �∈ RX ,

and it is not hard to check that the only basket satisfying σ(BX) ≥ 11 and γ(BX) ≥ 0 is

BX = {3× (1,2),(1,3),(2,5),(5,11)}. This concludes the claim.

If rX ≤ 264, then by Corollary 3.7(2), ϕ−m is birational for all m≥ 56.

If BX = {3× (1,2),(1,3),(2,5),(5,11)}, then −K3
X = 31

330 . By Proposition 4.8(2) (with

t= 7.6), we can take m1 = 28. Then, by Theorem 3.4(2), ϕ−m is birational for all m≥ 50.

If BX = {2× (1,2),(1,3),(3,7),(5,11)}, then −K3
X = 50

462 . By Proposition 4.8(2) (with

t= 7), we can take m1 = 26. Then, by Theorem 3.4(2), ϕ−m is birational for all m≥ 48.

Case 6. rmax = 13.

If rmax = 13, then rX ≤ 390 or rX = 546 by [5, p. 107].

If rX = 546, then again by [5, p. 107], BX = {(1,2),(1,3),(3,7),(6,13)} and −K3
X = 61

546 .

By Proposition 4.8(2) (with t= 6), we can take m1 = 26. Then, by Theorem 3.4(2), ϕ−m is

birational for all m≥ 52.

If rX ≤ 390 and −K3
X ≥ 1

12 , then by Proposition 4.8(2) (with t = 6.9), we can take

m1 = 30. Then, by Theorem 3.4(2), ϕ−m is birational for all m≥ 56.

If rX ≤ 390 and −K3
X < 1

12 , then by Lemma 5.5, BX is dominated by {8×(1,2),3×(1,3)}.
As rmax = 13, this implies that BX is dominated by either {3× (1,2),(6,13),2× (1,3)} or

{6× (1,2),(5,13)}. So we get the following possibilities of BX by γ(BX)≥ 0:

{3× (1,2),(6,13),2× (1,3)} −K3 = 5/78,

{2× (1,2),(6,13),(2,5),(1,3)} −K3 = 19/195,

{2× (1,2),(6,13),(3,8)} −K3 = 11/104,

{(1,2),(6,13),(3,7),(1,3)} −K3 = 61/546,

{6× (1,2),(5,13)} −K3 = 1/13.

In the above list, only the first and the last have −K3
X < 1

12 . In particular, in these cases,

rX ≤ 78. Then, by Corollary 3.7(2), ϕ−m is birational for all m≥ 55.

Combining all above cases, we have proved the theorem.

5.4 The case P−1 > 0

Lemma 5.7. Let X be a terminal weak Q-Fano threefold. If P−1 > 0 and rmax ≥ 16, then

P−4 ≥ 2.
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Proof. If P−4 = 1, then P−2 = P−3 = 1. Since rmax ≥ 16, by the classification in [2,

Subsubcase II-4f of Proof of Th. 4.4], BX is dominated by {2×(1,2),2×(1,3),(1, s1),(1, s2)}
with s2 ≥ s1 ≥ 5, which means that s1+s2 = rmax ≥ 16. But in this case 2× 3

2 +2× 8
3 +16−

1
16 > 24, contradicting (2.4) and [2, Lem. 3.1]. So P−4 ≥ 2.

Theorem 5.8. Let X be a terminal weak Q-Fano threefold. If P−1 > 0 and rmax ≥ 14,

then ϕ−m is birational for all m≥ 52.

Proof. Keep the setting in Notation 3.1. We always take ν0 = 1.

If 14 ≤ rmax ≤ 15, then rX ≤ 210 by [5, p. 104]. By Proposition 2.2(2), we can take

μ′
0 =m0 = 8. Then, by Corollary 3.7(2), ϕ−m is birational for all m≥ 52.

If rmax = 24, then BX = {(b,24)} with b ∈ {1,5,7,11}. If P−1 = 1, then b = σ(BX) =

5+P−2 ≥ 6 by (2.3); hence, b≥ 7 and P−2 ≥ 2. By (2.2), we have −K3
X ≥ 23

24 . Similarly, if

P−1 = 2, then P−2 ≥ 2P−1−1 = 3, and thus b≥ 5. Hence, by (2.2), −K3
X ≥ 47

24 . If P−1 ≥ 3,

then by (2.2), −K3
X ≥ b− b2

24 ≥ 23
24 . In summary, −K3

X ≥ 23
24 and P−2 ≥ 2. We can take

μ′
0 =m0 = 2. By Proposition 4.8(2) (with t = 1), we can take m1 = 9. Then, by Theorem

3.4(1), ϕ−m is birational for all m≥ 33.

In the following, we consider 16≤ rmax ≤ 23. By Lemma 5.7, we always take μ′
0 =m0 = 4

and ν0 = 1.

If rmax = 23, then BX = {(b,23)} with 1 ≤ b ≤ 11. If P−1 = 1, then b = 5+P−2 ≥ 6 and

thus by (2.2) −K3
X ≥ 10

23 . If P−1 =2, then b=P−2 ≥ 2P−1−1= 3; hence, by (2.2) −K3
X ≥ 14

23 .

If P−1 ≥ 3, then −K3
X ≥ b− b2

23 ≥ 22
23 . In summary, −K3

X ≥ 10
23 . By Proposition 4.8(1) (with

t= 36
23), we can take m1 = 12. Then, by Theorem 3.4(1), ϕ−m is birational for all m≥ 48.

If 20 ≤ rmax ≤ 22, then by (2.4), we have rX ≤ 60. Then, by Corollary 3.7(2), ϕ−m is

birational for all m≥ 50.

If 18 ≤ rmax ≤ 19, then rX ≤ 190 by [5, p. 104]. Then, by Corollary 3.7(2), ϕ−m is

birational for all m≥ 52.

If 16 ≤ rmax ≤ 17, then rX ≤ 240 by [5, p. 104]. Then, by Corollary 3.7(2), ϕ−m is

birational for all m≥ 52.

Theorem 5.9. Let X be a terminal weak Q-Fano threefold. If P−1 > 0 and rmax ≤ 13,

then ϕ−m is birational for all m≥ 58.

Proof. Keep the setting in Notation 3.1. By Theorem 5.1 and Proposition 2.2(1), we

may assume that rX ≤ 660. By Proposition 2.2(2), we can take m0 = 8 and ν0 = 1. We take

μ′
0 = 8 unless stated otherwise.

Case 1. rmax ≤ 8.

If rmax ≤ 8, then rX divides lcm(8,7,6,5) = 840. As rX ≤ 660, rX = 420 or rX ≤ 280.

If rX =420, then by Proposition 4.8(1) (with t=19.5, −K3
X ≥ 1

330), we can take m1 =52.

By Lemma 3.3, N0 ≥ � 420
8m1

=2. Then, by Corollary 3.7(1), ϕ−m is birational for all m≥ 48.

If rX ≤ 280, then by Corollary 3.7(1), ϕ−m is birational for all m≥ 55.

Case 2. rmax = 9.

If rmax = 9, then rX divides 2,520. As rX ≤ 660 and 9 divides rX , we have rX ≤ 360 or

rX ∈ {504,630}.
If rX ≤ 360, then by Corollary 4.9 (with l=4, t=10, and −K3

X ≥ 1
330), we have P−30−1>

30
4 . If |−30KX | and |−8KX | are composed with the same pencil, then take μ′

0 =
30

P−30−1 < 4

by Remark 3.2. Then, by Corollary 3.7(1), ϕ−m is birational for all m ≥ 57. If |− 30KX |

https://doi.org/10.1017/nmj.2023.17 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.17


42 C. JIANG AND Y. ZOU

and |−8KX | are not composed with the same pencil, then take m1 = 30 and μ′
0 =m0 = 8.

Then, by Theorem 3.4(3), ϕ−m is birational for all m≥ 56.

If rX = 630, then −K3
X ≥ 1

315 (note that −K3
X ≥ 1

330 and rX(−K3
X) is an integer). By

Corollary 4.9 (with l=2.8 and t=11), we have P−33−1> 33
2.8 . If |−33KX | and |−8KX | are

composed with the same pencil, then take μ′
0 =

33
P−33−1 < 2.8 by Remark 3.2. By Proposition

4.8(1) (with t= 20 and −K3
X ≥ 1

315), we can take m1 = 63. By Lemma 3.3, N0 ≥ � 630
9m1

= 2.

Then, by Corollary 3.7(1), ϕ−m is birational for all m≥ 52. If |−33KX | and |−8KX | are
not composed with the same pencil, then take m1 = 33 and μ′

0 =m0 = 8. By Lemma 3.3,

N0 ≥ � 630
9m1

= 3. Then, by Corollary 3.7(1), ϕ−m is birational for all m≥ 48.

If rX = 504, then RX = {9,8,7} by (2.4). Write BX = {(a,7),(b,8),(c,9)}, where a ≤
3, b ∈ {1,3} and c ∈ {1,2,4}. If P−1 ≥ 2, then by (2.2),

−K3
X = 2P−1+

a(7−a)

7
+

b(8− b)

8
+

c(9− c)

9
−6

≥ 6

7
+

7

8
+

8

9
−2> 0.6. (5.3)

If P−1 = 1, then by (2.2) and (2.3),

−K3
X =

a(7−a)

7
+

b(8− b)

8
+

c(9− c)

9
−4> 0,

σ(BX) = a+ b+ c= 5+P−2 ≥ 6. (5.4)

So it is easy to check that −K3
X ≥ 73

504 by considering all possible values of (a,b,c). By

Proposition 4.8(2) (with t = 7.3 and −K3
X ≥ 73

504), we can take m1 = 22. By Lemma 3.3,

N0 ≥ � 504
9m1

= 3. Then, by Corollary 3.7(1), ϕ−m is birational for all m≥ 44.

Case 3. rmax = 10.

If rmax = 10, then we claim that rX ≤ 210 or rX = 420.

By (2.4), at most one element of {7,8,9} is in RX . If 7 �∈ RX , then rX divides either

120 = lcm(10,8,60) or 180 = lcm(10,9,60). If 7 ∈RX , then rX divides 420 = lcm(10,7,60),

so either rX ≤ 210 or rX = 420. This concludes the claim.

If rX ≤ 210, then by Corollary 3.7(1), ϕ−m is birational for all m≥ 48.

If rX = 420, then by (2.4), RX = {10,7,4,3}. Write BX = {(1,3),(1,4), (a,7),(b,10)},
where a≤ 3 and b ∈ {1,3}. If P−1 ≥ 2, then by (2.2),

−K3
X = 2P−1+

2

3
+

3

4
+

a(7−a)

7
+

b(10− b)

10
−6

≥ 2

3
+

3

4
+

6

7
+

9

10
−2> 1. (5.5)

If P−1 = 1, then by (2.2) and (2.3),

−K3
X =

2

3
+

3

4
+

a(7−a)

7
+

b(10− b)

10
−4> 0,

σ(BX) = 2+a+ b= 5+P−2 ≥ 6. (5.6)

So it is easy to check that−K3
X ≥ 13

420 by considering all possible values of (a,b). By Corollary

4.9 (with l= 1 and t= 4.8), we have P−16−1> 16. If |−16KX | and |−8KX | are composed

with the same pencil, then take μ′
0 =

16
P−16−1 < 1 by Remark 3.2. Then, by Corollary 3.7(1),

ϕ−m is birational for all m≥ 58. If |−16KX | and |−8KX | are not composed with the same
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pencil, then take m1 = 16 and μ′
0 = m0 = 8. Then, by Theorem 3.4(3), ϕ−m is birational

for all m≥ 44.

Case 4. rmax = 11.

If rmax = 11, then we claim that rX ≤ 330 or rX ∈ {385,396,440,462,660}.
By (2.4), at most one element of {7,8,9,10} is in RX . So rX divides one element of

{1,980,1,320,4,620}. As rX ≤ 660 and 11 divides rX , it is clear that rX ≤ 330 or rX ∈
{385,396,440,462,495,660}. Moreover, if rX = 495, then {11,9,5} ⊂RX , which contradicts

(2.4). This concludes the claim.

If rX ≤ 330, then by Corollary 4.9 (with l= 7.6, t= 7.6, and −K3
X ≥ 1

330), P−28−1> 28
7.6 .

If |−28KX | and |−8KX | are composed with the same pencil, then take μ′
0 =

28
P−28−1 < 7.6

by Remark 3.2. Then, by Corollary 3.7(1), ϕ−m is birational for all m ≥ 58. If |− 28KX |
and |−8KX | are not composed with the same pencil, then take m1 = 28 and μ′

0 =m0 = 8.

Then, by Theorem 3.4(3), ϕ−m is birational for all m≥ 58.

If rX = 385 (resp. 396), then −K3
X ≥ 2

385 (resp. ≥ 2
396). By Corollary 4.9 (with l= 1.5 and

t= 9), P−33−1> 33
1.5 . If |−33KX | and |−8KX | are composed with the same pencil, then

take μ′
0 =

33
P−33−1 < 1.5 by Remark 3.2. Then, by Corollary 3.7(1), ϕ−m is birational for

all m≥ 56 (resp. ≥ 57). If |−33KX | and |−8KX | are not composed with the same pencil,

then take m1 = 33 and μ′
0 =m0 = 8. By Lemma 3.3, N0 ≥ � 385

11m1
= 2. Then, by Corollary

3.7(2), ϕ−m is birational for all m≥ 47 (resp. ≥ 48).

We claim that if rX ∈ {440,462,660}, then −K3
X ≥ 74

462 or BX = {(1,2),(2,5),(1,
3),(1,4),(1,11)} with −K3

X = 17
660 .

If rX = 440, then by (2.4), RX = {11,8,5}. Arguing similarly as (5.3), we get −K3
X > 0.5

when P−1 ≥ 2. Arguing similarly as (5.4), we get constrains for BX when P−1 = 1. By (2.2)

and considering all the possible baskets when P−1 = 1, we can see that −K3
X ≥ 97

440 .

If rX = 462, then by (2.4), RX = {11,7,6} or {11,7,3,2} or {11,7,3,2,2}. Arguing

similarly as (5.5), we get −K3
X > 0.5 or −K3

X > 0.9 or −K3
X > 1 when P−1 ≥ 2. Arguing

similarly as (5.6), we get constrains for BX when P−1 = 1. By (2.2) and considering

all the possible baskets when P−1 = 1, we can see that −K3
X ≥ 85

462 or −K3
X ≥ 95

462 or

−K3
X ≥ 74

462 unless BX = {2×(1,2),(1,3),(2,7),(1,11)} with −K3
X = 1

231 . But the last basket

has P−5 = 0, which is absurd.

If rX = 660, then by (2.4), RX = {11,5,4,3} or {11,5,4,3,2}. Arguing similarly as (5.5),

we get −K3
X > 1 or −K3

X > 1.5 when P−1 ≥ 2. Arguing similarly as (5.6), we get constrains

for BX when P−1 = 1. By (2.2) and considering all the possible baskets when P−1 = 1, we

can see that −K3
X ≥ 167

660 or −K3
X ≥ 233

660 unless BX = {(1,2),(2,5),(1,3),(1,4),(1,11)} with

−K3
X = 17

660 .

To summarize, we conclude the claim that −K3
X ≥ 74

462 or BX = {(1,2),(2, 5),(1,3),(1,
4),(1,11)} with −K3

X = 17
660 .

If −K3
X ≥ 74

462 , then by Proposition 4.8(2) (with t= 5.7), we can take m1 = 21. Then, by

Theorem 3.4(3), ϕ−m is birational for all m≥ 51.

Now, we consider the case BX = {(1,2),(2,5),(1,3),(1,4),(1,11)} with −K3
X = 17

660 . By

Corollary 4.9 (with l=1 and t=4.8), P−18−1> 18. If |−18KX | and |−8KX | are composed

with the same pencil, then take μ′
0 =

18
P−18−1 < 1 by Remark 3.2. By Proposition 4.8(2) (with

t= 14.4), we can take m1 = 53. By Lemma 3.3, N0 ≥ � 660
11m1

= 2. Then, by Corollary 3.7(1),

ϕ−m is birational for all m≥ 52. If |−18KX | and |−8KX | are not composed with the same

pencil, then take m1 = 18 and μ′
0 = m0 = 8. By Lemma 3.3, N0 ≥ � 660

11m1
 = 4. Then, by

Corollary 3.7(2), ϕ−m is birational for all m≥ 45.
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Case 5. rmax = 12.

If rmax = 12, then we claim that rX ≤ 132 or rX = 420.

By (2.4), at most one element of {6,7,8,9,10,11} is in RX . So rX divides one element

of {120,180,420,660}. Recalling that 12 divides rX , it is clear that rX ≤ 132 or rX ∈
{180,420,660}. Moreover, if rX ∈ {180,660}, then {12,9,5}⊂RX or {12,11,5}⊂RX , which

contradicts (2.4). This concludes the claim.

If rX ≤ 132, then by Corollary 3.7(2), ϕ−m is birational for all m≥ 43.

If rX = 420, then by (2.4), RX = {12,7,5}. Arguing similarly as (5.3), we get −K3
X ≥ 241

420

when P−1 ≥ 2. Arguing similarly as (5.4), we get constrains for BX when P−1 = 1. By

(2.2) and considering all the possible baskets when P−1 = 1, we can see that −K3
X ≥ 241

420 .

By Proposition 4.8(2) (with t = 2.75), we can take m1 = 11. Hence, by Lemma 3.3, N0 ≥
� 420
12m1

= 4. Then, by Corollary 3.7(2), ϕ−m is birational for all m≥ 40.

Case 6. rmax = 13.

If rmax = 13, then we claim that rX ≤ 364 or rX = 390 or rX = 546.

By (2.4), at most one element of {6,7,8,9,10,11,12} is in RX . So rX divides one element

of {5,460,1,560,2,340,8,580}. Recalling that 13 divides rX and rX ≤ 660, it is clear that

rX ≤ 364 or rX ∈ {390,429,455,468, 520,546,572, 585}. Moreover, if rX ∈ {429,455,468,
520,572,585}, then we can see thatRX violates (2.4) by discussing the factors. For example,

if rX = 455, then {13,7,5} ⊂RX which violates (2.4). This concludes the claim.

If P−4 = 1, then P−k = 1 for 1≤ k ≤ 4. By [2, Subsubcase II-4f of Proof of Th. 4.4], BX

is dominated by

{2× (1,2),2× (1,3),(1, s1),(1, s2)}

for some s2 ≥ s1 ≥ 4. As rmax = 13, (s1, s2) = (6,7). Considering all possible packings, we

get the following possibilities of BX :

{2× (1,2),2× (1,3),(2,13)},
{(1,2),(2,5),(1,3),(2,13)},
{(3,7),(1,3),(2,13)},
{(1,2),(3,8),(2,13)},
{2× (2,5),(2,13)}.

Then rX ≤ 273 or BX = {(1,2),(2,5),(1,3),(2,13)}.
If rX ≤ 273, then by Corollary 3.7(2), ϕ−m is birational for all m≥ 55.

If BX = {(1,2),(2,5),(1,3),(2,13)}, then −K3
X = 23

390 . By Corollary 4.9 (with l = 1 and

t = 3), P−13−1 > 13. If |−13KX | and |−8KX | are composed with the same pencil, then

take μ′
0 =

13
P−13−1 < 1 by Remark 3.2. Then, by Corollary 3.7(1), ϕ−m is birational for all

m≥ 56. If |−13KX | and |−8KX | are not composed with the same pencil, then takem1 =13

and μ′
0 =m0 = 8. Then, by Lemma 3.3, N0 ≥ � 390

13m1
= 3. Then, by Corollary 3.7(2), ϕ−m

is birational for all m≥ 44.

So, from now on, we assume that P−4 ≥ 2 and take m0 = 4. We take μ′
0 = 4 unless stated

otherwise.

If rX ≤ 364, then by Corollary 3.7(1), ϕ−m is birational for all m≥ 57.

If rX =546, then by (2.4),RX = {13,7,3,2}. Arguing similarly as (5.5), we get −K3
X > 0.9

when P−1 ≥ 2. Arguing similarly as (5.6), we get constrains for BX when P−1 = 1. By

https://doi.org/10.1017/nmj.2023.17 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.17


THE ANTI-CANONICAL GEOMETRY OF FANO THREEFOLDS 45

(2.2) and considering all the possible baskets when P−1 = 1, we can see that −K3
X ≥ 157

546 .

By Proposition 4.8(2) (with t = 3.6), we can take m1 = 16. Hence, by Lemma 3.3, N0 ≥
� 546
13m1

= 3. Then, by Corollary 3.7(2), ϕ−m is birational for all m≥ 44.

If rX = 390, then by (2.4), RX = {13,6,5} or {13,5,3,2} or {13,5,3,2,2}. Arguing

similarly as (5.5), we get −K3
X > 0.5 or −K3

X > 0.8 or −K3
X > 1 when P−1 ≥ 2. Arguing

similarly as (5.6), we get constrains for BX when P−1 = 1. By (2.2) and considering all the

possible baskets when P−1 = 1, we can see that −K3
X ≥ 133

390 or −K3
X ≥ 23

390 or −K3
X ≥ 62

390 .

By Corollary 4.9 (with l = 1, t = 3, and −K3
X ≥ 23

390), P−13 − 1 > 13. If | − 13KX | and

| − 4KX | are composed with the same pencil, then take μ′
0 =

13
P−13−1 < 1 by Remark 3.2.

Then, by Corollary 3.7(1), ϕ−m is birational for all m≥ 56. If |−13KX | and |−4KX | are
not composed with the same pencil, then take m1 = 13 and μ′

0 =m0 = 4. Then, by Lemma

3.3, N0 ≥ � 390
13m1

= 3. Then, by Corollary 3.7(2), ϕ−m is birational for all m≥ 40.

Combining all above cases, we have proved the theorem.

5.5 Proofs of Theorem 1.2 and Theorem 1.4

Proof of Theorem 1.2. It follows from Theorems 5.2, 5.4, 5.6, 5.8, and 5.9.

Proof of Theorem 1.4. From the proof of Theorem 1.2, ϕ−58 may not be birational only

if BX = {(1,2),2× (1,3),(8,17)}, P−1 = 0, and |−24KX | is composed with a pencil. In this

case, rX(−K3
X) = 7 and P−24 = 169 = 7×24+1 by (2.1). But this contradicts Proposition

4.11.

Appendix

The possible baskets with P−2 = 0 are the following (cf. [2, Th. 3.5]).

Table A.1. Baskets with P−2 = 0.

No. BX −K3 P−3 P−4 P−5 P−6 P−7 P−8

1 {2× (1,2),3× (2,5),(1,3),(1,4)} 1/60 0 0 1 1 1 2
2 {5× (1,2),2× (1,3),(2,7),(1,4)} 1/84 0 1 0 1 1 2
3 {5× (1,2),2× (1,3),(3,11)} 1/66 0 1 0 1 1 2
4 {5× (1,2),(1,3),(3,10),(1,4)} 1/60 0 1 0 1 1 2
5 {5× (1,2),(1,3),2× (2,7)} 1/42 0 1 0 1 2 3
6 {4× (1,2),(2,5),2× (1,3),2× (1,4)} 1/30 0 1 1 2 2 4
7 {3× (1,2),(2,5),5× (1,3)} 1/30 1 1 1 3 3 4
8 {2× (1,2),(3,7),5× (1,3)} 1/21 1 1 1 3 4 5
9 {(1,2),(4,9),5× (1,3)} 1/18 1 1 1 3 4 5
10 {3× (1,2),(3,8),4× (1,3)} 1/24 1 1 1 3 3 5
11 {3× (1,2),(4,11),3× (1,3)} 1/22 1 1 1 3 3 5
12 {3× (1,2),(5,14),2× (1,3)} 1/21 1 1 1 3 3 5
13 {2× (1,2),2× (2,5),4× (1,3)} 1/15 1 1 2 4 5 7
14 {(1,2),(3,7),(2,5),4× (1,3)} 17/210 1 1 2 4 6 8
15 {2× (1,2),(2,5),(3,8),3× (1,3)} 3/40 1 1 2 4 5 8
16 {2× (1,2),(5,13),3× (1,3)} 1/13 1 1 2 4 5 8
17 {(1,2),3× (2,5),3× (1,3)} 1/10 1 1 3 5 7 10
18 {4× (1,2),5× (1,3),(1,4)} 1/12 1 2 2 5 6 9
19 {4× (1,2),4× (1,3),(2,7)} 2/21 1 2 2 5 7 10
20 {4× (1,2),3× (1,3),(3,10)} 1/10 1 2 2 5 7 10
21 {3× (1,2),(2,5),4× (1,3),(1,4)} 7/60 1 2 3 6 8 12
22 {3× (1,2),7× (1,3)} 1/6 2 3 4 9 12 17
23 {2× (1,2),(2,5),6× (1,3)} 1/5 2 3 5 10 14 20
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The possible baskets with P−1 = 0 and P−2 = P−4 = 1 are the following (cf. the second

paragraph of [5, Case IV of Proof of Th. 1.8]).

Table A.2. Baskets with P−1 = 0 and P−2 = P−4 = 1.

No. BX rX

1 {9× (1,2),(1,3),(1,7)} 42
2 {8× (1,2),(2,5),(1,7)} 70
3 {8× (1,2),(2,5),(1,6)} 30
4 {7× (1,2),(3,7),(1,6)} 42
5 {6× (1,2),(4,9),(1,6)} 18
6 {7× (1,2),(3,7),(1,5)} 70
7 {6× (1,2),(4,9),(1,5)} 90
8 {5× (1,2),(5,11),(1,5)} 110
9 {4× (1,2),(6,13),(1,5)} 130
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