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Abstract

Let S be a Riemann surface of type (p, n) with 3p + n > 4 and n ≥ 1. We investigate products of some
pseudo-Anosov maps θ and Dehn twists tα on S, and prove that under certain conditions the products
tk
α ◦ θ are pseudo-Anosov for all integers k. We also give examples that show that tk

α ◦ θ are not pseudo-
Anosov for some integers k.
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1. Introduction

Let S be a Riemann surface of type (p, n), where p is the genus and n is the number
of punctures of S. Assume that 3p + n > 3. A nonperiodic map of S onto itself
is called reducible if it is isotopic to a map that keeps a system {c1, . . . , cs} of
disjoint and independent simple curves on S invariant. A map f is called pseudo-
Anosov [5, 14] if it leaves invariant a pair of transverse measured foliations {F+, F−}
such that f (F+)= λF+ and f (F−)= (1/λ)F− for a fixed real number λ > 1. See
also [1, 12, 13] for constructions and more properties of pseudo-Anosov maps. By the
Nielsen–Thurston classification of surface homeomorphisms [5, 14], a nonperiodic
map f is either isotopic to a reducible map, or isotopic to a pseudo-Anosov map.

The simplest nontrivial reducible map is the Dehn twist tα along a simple closed
geodesic α that is obtained by cutting S along α, rotating one of the copies of α by 360
degrees and then gluing the two copies back together. The problem of determining
whether a finite product of a pseudo-Anosov map f and a power of tα is still isotopic
to a pseudo-Anosov map was extensively studied in [4, 8, 9]. By an abuse of language
we call a map f pseudo-Anosov if f is isotopic to a pseudo-Anosov map, and we
call a mapping class θ pseudo-Anosov if one of its representatives is a pseudo-Anosov
map. In [9] Long and Morton proved that tk

α ◦ f are pseudo-Anosov for all but at most
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a finite number of integer values of k. Later, Fathi [4] found that tk
α ◦ f are pseudo-

Anosov for all but at most seven consecutive integer values of k. In [3] Boyer et al.
improved the number ‘seven’ to ‘six’.

The main purpose of this paper is to identify certain classes of pseudo-Anosov maps
f on a Riemann surface S with punctures so that tk

α ◦ f are pseudo-Anosov for all
integers k. Throughout the paper we assume that S is of type (p, n) with 3p + n > 4
and n ≥ 1. Let a denote a puncture of S. Write S̃ = S ∪ {a}. Let Moda

S be the group
that consists of isotopy classes of self-maps of S fixing the puncture a. Each element of
Moda

S projects to an element of the mapping class group ModS̃ under the map defined
by neglecting the puncture a, thus defining a natural group epimorphism

i :Moda
S→ModS̃.

Let H be the hyperbolic plane, and % :H→ S̃ the universal covering with a group G
of deck transformations. Since S̃ is a compact surface with a finite number of points
removed, the group G is finitely generated, torsion free, and of the first kind. Following
Bers [2], there is a fiber space F(S̃), referred to in the literature as a Bers fiber space,
over the Teichmüller space T (S̃) such that F(S̃) is isomorphic (via an isomorphism ϕ)
to the Teichmüller space T (S). Furthermore, ModS̃ extends to a group mod(S̃) of
fiber-preserving holomorphic automorphisms of F(S̃) and the isomorphism ϕ induces
a group isomorphism ϕ∗ :mod(S̃)→Moda

S . Since G can be regarded as a normal
subgroup of mod(S̃), the group ϕ∗(G) is a normal subgroup of Moda

S that consists of
mapping classes θ with i(θ)= id.

By [11, Theorem 2] or [7, Theorem 2], for any primitive simple hyperbolic element
h ∈ G, its ϕ∗-image ϕ∗(h) is represented by a spin t−1

α1
◦ tα0 , where the pair {α1, α0}

bounds an a-punctured cylinder on S. Denote

F(S, a)= {θ ∈Moda
S : θ is pseudo-Anosov and i(θ)= id}. (1.1)

By [7, Theorem 2], elements of F(S, a) are ϕ∗-images of essential hyperbolic
elements g of G, where g is called essential if its axis cg projects to a geodesic
%(cg) on S̃ that intersects every simple closed geodesic on S̃. For each simple closed
geodesic α̃ on S̃, let tα̃ denote the Dehn twist along α̃. Let α̂ be a geodesic in H
with %(α̂)= α̃. Let Uα̂ be a component of H− {α̂}. Associated with Uα̂ there is
a lift τα̂ :H→H of tα̃ that in turn determines a disjoint union of half-planes Ui ,
i = 1, 2, . . . , so that the region

6α̂ =H−
⋃

Ui ⊂H−Uα̂ (1.2)

is not empty and τα̂|6α̂ = id. We call those half-planes Ui maximal elements of τα̂ .
The lift τα̂ defines an element [τα̂] of mod(S̃). By [15, Lemma 3.2], we assert that

ϕ∗([τα̂]) ∈Moda
S is represented by the Dehn twist tα along a simple closed geodesic α

on S that is freely homotopic to α̃ on S̃ (as a is filled in). The main result of this paper
is the following.

https://doi.org/10.1017/S1446788710000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788710000078


[3] Pseudo-Anosov maps and Dehn twists 415

THEOREM 1.1. Let g ∈ G be an essential hyperbolic element, and let cg be the axis
of g. Assume that cg ∩6α̂ 6= ∅. Then for any integer k, the mapping class tk

α ◦ ϕ
∗(g)

is pseudo-Anosov.

REMARK. Theorem 1.1 is no longer valid if we drop the assumption that cg ∩6α 6= ∅.
In Section 8, we show that for any geodesic α ⊂ S, there exists an essential hyperbolic
element g ∈ G with cg ∩6α̂ = ∅ such that the product tk

α ◦ ϕ
∗(g) fails to be pseudo-

Anosov for some integer k.

From Theorem 1.1, we can prove for certain reducible mapping classes θ ∈Moda
S

that there exists a simple closed geodesic α on S such that tα ◦ θ is pseudo-Anosov. To
state our next result, we call an element h ∈ G a simple hyperbolic if it is hyperbolic
and its axis ch projects to a simple closed geodesic %(ch) on S̃. We will prove the
following corollary.

COROLLARY 1.2. Let h, g ∈ G be hyperbolic elements such that h is simple and hg
is essential. Write ϕ∗(h)= t−1

α ◦ tα0 . If cg intersects ch , then the mapping classes
t−1
α ◦ ϕ

∗(g) and tα0 ◦ ϕ
∗(g) are both pseudo-Anosov.

Since for every essential hyperbolic element g ∈ G there is an essential hyperbolic
element g0 in its conjugacy class in G such that the axis cg0 of g0 meets 6α̂ ,
Theorem 1.1 has another immediate corollary.

COROLLARY 1.3. For any essential hyperbolic element g ∈ G and any simple closed
geodesic α ⊂ S that is nontrivial on S̃, there is an element e ∈ G such that for any
integer k, the mapping class tk

α ◦ ϕ
∗(ege−1) is pseudo-Anosov.

The argument of Theorem 1.1 can be used to prove that any finite product∏
i

(tki
α ◦ f ),

where ki ∈ Z, is pseudo-Anosov for f = ϕ∗(g) ∈ F(S, a) provided that the axis of g
meets 6α̂ .

Now we briefly discuss a generalization of Theorem 1.1 that is related to a problem
posed in [6]. By Fathi’s result [4], for any geodesic α and any pseudo-Anosov map
f of S, the products tk

α ◦ f are pseudo-Anosov for all but at most seven consecutive
integers. The question asks if it is possible to replace tk

α by a multi-twist
∏

i tki
αi for an

integer tuple (k1, . . . km) and a collection (α1, . . . , αm) of m disjoint and independent
simple closed geodesics on S, where 1≤ m ≤ 3p − 3+ n, possibly at the cost of
replacing the number seven by an undetermined but universal number N . Let

{α̃1, . . . , α̃m} ⊂ S̃, 1≤ m ≤ 3p − 4+ n,

be a collection of disjoint simple closed geodesics, and let [τi ] ∈mod(S̃), 1≤ i ≤ m,
be the lifts of tα̃i such that ϕ∗([τi ])= tαi . Then α1, . . . , αm may not be disjoint. But
if the region

60 =H− {all maximal elements of τ1, τ2, . . . , τm}
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is not empty, then α1, . . . , αm are mutually disjoint. Again, the methods of
Theorem 1.1 can be employed to conclude that for any essential element g ∈ G with
cg ∩60 6= ∅, the mapping class (∏

i

tki
αi

)
◦ f, (1.3)

where ki ∈ Z, is pseudo-Anosov for f = ϕ∗(g) ∈ F(S, a).
This paper is organized as follows. Section 2 is background material that is needed

in the proof of Theorem 1.1. In Section 3, we study those reducible mapping classes
on S isotopic to a Dehn twist on S̃, and investigate the properties of the corresponding
curve systems. In Section 4, we interpret those reducible mapping classes as elements
of mod(S̃), and study their actions on S1. In Section 5, we prove that if θ = tk

α ◦ f ,
where f ∈ F(S, a), is reducible by a curve system {c1, . . . , cs}, then all ci are
nontrivial on S̃. In Section 6, we prove Theorem 1.1. Section 7 is devoted to the proof
of Corollary 1.2. In Section 8, we present an example to illustrate that Theorem 1.1
will not be true if the condition that cg ∩6α̂ 6= ∅ is dropped.

2. Preliminaries

We fix a Riemann surface S̃ as introduced above, and consider all possible pairs
(S̃1, w1) where S̃1 is a Riemann surface of the same type (p, n) and w1 : S̃→ S̃1 is
a quasiconformal homeomorphism. Two pairs (S̃1, w1) and (S̃2, w2) are equivalent if
the map w2 ◦ w

−1
1 : S̃1→ S̃2 is isotopic to a conformal map. The Teichmüller space

T (S̃) is defined as the set of pairs (S̃1, w1) modulo the equivalence relation. Note that
every pair (S̃1, w1) defines a new conformal structure µ1 on S̃ via pullbacks. Two
conformal structures µ1 and µ2 are equivalent if (S̃1, w1) is equivalent to (S̃2, w2).
Denote by [µ] the equivalence class of µ.

Associated with each point [µ] ∈ T (S̃) there is a Jordan domain wµ(H) depending
holomorphically on [µ], where wµ : C→ C is a quasiconformal map that satisfies
wµ(0)= 0, wµ(1)= 1, wµ is conformal off H, and ∂zw

µ(z)/∂z̄w
µ(z)= µ(z) for all

z ∈H. We then form the Bers fiber space

F(S̃)= {([µ], z) : [µ] ∈ T (S̃) and z ∈ wµ(H)}.

The Bers isomorphism theorem [2, Theorem 9] states that there is an isomorphism
ϕ : F(S̃)→ T (S).

By definition, ModS̃ consists of isotopy classes of self-maps of S̃. Let ζ ∈ModS̃
be induced by a self-map w of S̃. The map w can be lifted to an automorphism
ω :H→H under the universal covering % :H→ S̃. We callω, ω′ :H→H equivalent
if ωgω−1

= ω′gω′−1 for every element g ∈ G. The equivalence class of ω is denoted
by [ω]. The group mod(S̃) is a collection of [ω] for all maps w : S̃→ S̃. The
Bers isomorphism ϕ : F(S̃)→ T (S) induces an isomorphism ϕ∗ :mod(S̃)→Moda

S
defined by conjugation. Since the covering group G is regarded as a normal subgroup
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of mod(S̃), the image group ϕ∗(G) is a normal subgroup of Moda
S consisting of

elements θ such that i(θ)=id. Let [ω] ∈mod(S̃) be such that ϕ∗([ω])= θ . Then
[ω] ∈ G. There are three cases to consider.

Case 1. [ω] ∈ G is a simple hyperbolic element. Let c be its axis and write c̃ = %(c).
By [11, Theorem 2] or [7, Theorem 2], we see that ϕ∗([ω]) can be represented in the
form t−k

α ◦ tk
α0

for an integer k, where {α, α0} bounds an a-punctured cylinder on S.

Both α and α0 are simple closed geodesics homotopic to c̃ on S̃ as a is filled in.

Case 2. [ω] ∈ G is parabolic. In this case, the mapping class ϕ∗([ω]) is represented by
an ordinary power of a Dehn twist along a curve c, where c bounds a twice punctured
disk on S enclosing the puncture a and another puncture of S̃ corresponding to the
conjugacy class of the parabolic element.

Case 3. [ω] ∈ G is essential hyperbolic. In this case, the mapping class ϕ∗([ω]) is
pseudo-Anosov.

We proceed to investigate some special elements [ω] in mod(S̃)− G as well as its
image in Moda

S under the Bers isomorphism ϕ∗ :mod(S̃)→Moda
S . Let α̃ be a simple

closed geodesic on S̃ and α̂ ∈H a geodesic such that α̃ = %(α̂). Let U and U∗ be
the components of H− α̂. As mentioned earlier, the Dehn twist tα̃ can be lifted to a
quasiconformal homeomorphism τ :H→H with respect to U in the following way.
Let h ∈ G be a primitive simple hyperbolic element such that h(U )=U . We take an
earthquake h-shift on U and leave U∗ fixed. We then define τ via G-invariance.

Obviously, the map τ gives rise to a collection U of layered half-planes in H in a
partial order defined by inclusion. There are infinitely many disjoint maximal elements
of U such that the complement 6 of all maximal elements in H is nonempty and
simply connected. The map τ keeps each maximal element of U invariant and the
restriction τ |6 is the identity.

Let Q⊂ S1 denote the dense subset consisting of points covered by finitely many
elements of U . Choose z ∈Q and let U =U0 ⊃U1 ⊃ · · · ⊃Um , Ui ∈ U , cover z. Let
hi , i = 0, 1, . . . m, denote the primitive simple hyperbolic elements of G that keep Ui
invariant and take the same orientation as h0 = h. Then τ(z) is defined as

τ(z)= h0h1 · · · hm(z). (2.1)

For a point z ∈ S1 not covered by any elements of U , we have τi (z)= z. Now for
any other point z ∈ S1

−Q, we choose a sequence {z j } ⊂Q with z j → z. We have
τ(z)= lim j→∞τ(z j ).

The equivalence class of τ determines an element [τ ] of mod(S̃). By [15,
Lemma 3.3], the mapping class ϕ∗([τ ]) is represented by a Dehn twist tα for a simple
closed geodesic α ⊂ S. For this reason, in the rest of this paper we use the symbols
τα , Uα and 6α to denote τ , U and 6, respectively. Observe that if τα is a lift of tα̃
with respect to U , then h−1τα is also a lift of tα̃ with respect to U∗. But ϕ∗([h−1τα])

is represented by tα0 , where α0 together with α bounds an a-punctured cylinder on S.
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By [15, Lemma 3.3] again, for every simple closed geodesic α ⊂ S, there exists a lift
τα of tα̃ such that ϕ∗([τα])= tα .

Let [ω] ∈mod(S̃)− G be a lift of tα̃ . Then [ω] is of the form [τα]h for some h ∈ G.
In this case, the mapping class ϕ∗([ω]) is the product of tα and ϕ∗(h). Suppose that G
has a parabolic fixed point x , and that T ∈ G is the parabolic element so that T (x)= x .
By [15, Lemma 3.1], we have x ∈Q. Hence there are only finitely many elements
of Uα that cover x . It follows that every parabolic fixed point x of G is associated
with a positive integer ε(τα, x) that is the number of elements of Uα containing x .
It is evident that ε(τα, x)= ε(τα, τα(x)) 6= 0 if x is covered by a maximal element
of Uα , and ε(τα, x)= 0 if and only if x lies outside of all maximal elements of Uα .
In the latter case, the parabolic element T commutes with τα and the geodesic α on S
determined by tα = ϕ∗([τα]) is disjoint from the boundary of the twice punctured disk
determined by ϕ∗(T ) [11, Theorem 2].

3. Reducible mapping classes and curves

Let θ ∈ F(S, a). Let g ∈ G be such that ϕ∗(g)= θ . Let α ⊂ S be a simple closed
geodesic so that α is also nontrivial on S̃. Then α is not a geodesic on S̃ when a
is filled in. In what follows, we use α̃ to denote the geodesic homotopic to α on S̃.
Assume that θ = tk

α ◦ ϕ
∗(g) is not pseudo-Anosov. Then there is a system

C = {c1, . . . , cs}, (3.1)

where s ≥ 1, of disjoint simple closed geodesics on S that is invariant under a suitable
representative of θ . We assume that every curve in C is also nontrivial on S̃. The case
in which C contains a curve c that is trivial on S̃ will be handled in Section 5. We can
write

θ(C)= C.

Let 3 be the set of simple closed geodesics c on S that project to nontrivial simple
closed geodesics c̃ so that c̃ = α̃ or c̃ is disjoint from α̃. Let 31 be the subset of 3
consisting of geodesics c such that near the puncture a, the geodesics c and α bound
a bigon B enclosing a. Let 32 =3−31. Then 31 ∪32 =3 and 32 consist of
geodesics c on S that are nontrivial on S̃ and are equal to or disjoint from α.

LEMMA 3.1. C ⊂3.

PROOF. By taking a suitable power of ci , we may assume that θ(ci )= ci for every
i = 1, . . . , s. Assume that there is a c1 ∈ C, say, so that c̃1 ⊂ S̃ is nontrivial and
intersects α̃.

Since i(θ)= tk
α̃

, the Dehn twist tk
α̃

keeps c̃1 invariant. By hypothesis, the curve
c̃1 ⊂ S̃ intersects α̃, which means that the image loop tk

α̃
(c̃1) intersects c̃1. It follows

that tk
α̃

sends c̃1 to a different homotopy class. This is a contradiction. 2

Note that θ may not keep each element of C invariant. Let C0 be the subset of C
consisting of curves in C with θ(c) 6= c.
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LEMMA 3.2. C0 contains at most two curves. In other words, the mapping class θ2

keeps each element of C invariant. Further, if {c1, c2} = C0, then {c1, c2} bounds an
a-punctured cylinder on S.

PROOF. Suppose that C0 consists of at least three curves c1, c2 and c3. Since there are
at most two disjoint curves c and c′ on S so that c̃ = c̃′, we may assume that θ(c1)= c2
and {c1, c2} does not bound an a-punctured cylinder on S. That is, the geodesic c̃1 is
disjoint from c̃2. Since θ(c1)= c2, by filling in the puncture a, we obtain

i(θ)(c̃1)= c̃2. (3.2)

On the other hand, we recall that i(θ)= tα̃ . From Lemma 3.1, C0 ⊂3. We see that
both c̃1 and c̃2 are disjoint from α̃. This implies that tα̃(c̃1)= c̃1 and tα̃(c̃2)= c̃2. This
contradicts (3.2). 2

LEMMA 3.3. Suppose C ∩31 is empty. Then θ is not reduced by the system C.

PROOF. By Lemma 3.1, we have C ⊂3. So if C ∩31 is empty, then every curve in
C must be in 32. Therefore tα commutes with t j for 1≤ j ≤ s, where for simplicity
t j = tc j . Suppose that θ = tk

α ◦ ϕ
∗(g) is reduced by C. Then

(t1 ◦ · · · ◦ ts) ◦ (t
k
α ◦ ϕ

∗(g))= (tk
α ◦ ϕ

∗(g)) ◦ (t1 ◦ · · · ◦ ts).

Since tα commutes with each t j for 1≤ j ≤ s, we obtain

(t1 ◦ · · · ◦ ts) ◦ ϕ
∗(g)= ϕ∗(g) ◦ (t1 ◦ · · · ◦ ts). (3.3)

Recall that g ∈ G is essential. We see that (3.3) cannot hold since it says that ϕ∗(g)
keeps c1, . . . , cs invariant. 2

It follows from Lemma 3.3 that C ∩31 6= ∅. Consequently, we can choose a curve
c ∈ C ∩31. By Lemma 3.2, we can take a square of θ if necessary, and may assume
that θ(c)= c. Let τc :H→H be the lift of tc̃ so that ϕ∗([τc]) is represented by tc. We
have the following result.

LEMMA 3.4. The pair (τα, τc) satisfies the following properties.

(1) The geodesic boundary ∂W0 of any maximal element W0 of Uc is disjoint from
the geodesic boundary ∂U0 of any maximal element U0 of Uα .

(2) There exist maximal elements U and W of Uα and Uc, respectively, such that
U ∩W 6= ∅ and U ∪W =H.

(3) For any maximal element U0 6=U of Uα , we have U0 ⊂W .

PROOF. Since c ∈ C ∩31 ⊂3, the geodesic c̃ is disjoint from α̃. So every geodesic
in the set {%−1(c̃)} of preimages of c̃ is disjoint from any geodesic in the set {%−1(α̃)}

of preimages of α̃. But the geodesic boundary ∂U is one of the elements in {%−1(α̃)}

and ∂W is one of the elements in {%−1(c̃)}. This proves (1).
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To prove (2) of the lemma, we suppose that there is no such pair (U, W ). That is,
for any maximal element U ∈ Uα and any maximal element W ∈ Uc, either U ⊂W ,
or W ⊂U , or U, W are disjoint. Suppose that U ⊂W . For any hyperbolic element
h ∈ G whose repelling fixed point is contained in U ∩ S1 and whose attracting fixed
point lies outside of W , by construction, the region h(H−U ) is contained in a
maximal element U ′ of Uα . By assumption, the half-plane U ′ is disjoint from
W . It follows that 6α ∩6c 6= ∅ (where 6α and 6c are defined as in (2)) and the
boundary components of 6α ∩6c are either ∂U for some U ∈ Uα , or ∂W for some
W ∈ Uc. This implies that [τc] commutes with [τα]. Via the Bers isomorphism
ϕ∗ :mod(S̃)→Moda

S , we see that tc commutes with tα . This implies that c and α
are disjoint, which contradicts the fact that c ∈ C ∩31.

(3) is obvious. If U0 6=U , then U0 and U are disjoint. Thus U0 ⊂H−U . From (2),
we have U0 ⊂W . Lemma 3.4 is proved. 2

Suppose that cg intersects6α . Then there is a maximal element U ∈ Uα such that cg
intersects ∂U . Also assume that U contains the repelling (but not attracting) fixed point
of g. Let U0 ∈ Uα be another maximal element that contains g(H−U ). Then U0 must
be disjoint from U . Under the circumstances, a slight modification of the argument of
Lemma 3.4 leads to the following result.

LEMMA 3.5. Let U,U0 ∈ Uα be maximal elements defined as above. Then there exists
a maximal element W ∈ Uc such that either one of (U, W ) and (U0, W ) satisfies
condition (2) of Lemma 3.4, or both U and U0 are contained in W .

PROOF. Choose a maximal element W ∈ Uc so that W is not disjoint from U . If
(U, W ) satisfies condition (2) of Lemma 3.4, we are done. Otherwise, either U ⊂W ,
or W ⊂U .

Suppose that U ⊂W . Let U0 ∈ Uα be a maximal element that includes g(H−U ).
Assume that U0 is not contained in W . If (U0, W ) satisfies condition (2) of
Lemma 3.4, we are done. Otherwise, we see that 6α ∩6c 6= ∅. Now the argument
of Lemma 3.4(2) can be applied to show that τc commutes with τα . But this would
contradict the fact that c ∈ C ∩31.

If W ⊂U , then we consider the set M of all maximal elements of Uc that contains
h(H−W ), where h runs over all hyperbolic elements whose attracting fixed point lies
outside of W and whose repelling fixed point lies in W ∩ S1. If M contains an element
W ′ such that (U, W ′) satisfies condition (2) of Lemma 3.4, we are done. Otherwise,
the map τc commutes with τα , in contradiction to c ∈ C ∩31. 2

4. Reducible mapping classes interpreted as elements of mod(S̃)

In this section we discuss certain reducible mapping classes by virtue of elements
of mod(S̃). Let c ⊂ S be a simple closed geodesic. Let χ ∈Moda

S be a reducible
mapping class by a curve system containing c. Let [ω] ∈mod(S̃) be an element such
that ϕ∗([ω])= χ .
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LEMMA 4.1. Suppose that c̃ is nontrivial and that χ(c)= c. Let [τc] ∈mod(S̃) be
the element such that ϕ∗([τc]) is represented by tc. Then there exists a map in the
equivalence class [ω] (which is denoted by ω also) such that ω keeps the set of maximal
elements of Uc invariant.

PROOF. By assumption, we may choose a representative σ for χ so that σ(c)= c. It is
then obvious that σ commutes with the Dehn twist tc. That is,

σ ◦ tc ◦ σ
−1
= tc. (4.1)

From (4.1) and the Bers isomorphism ϕ∗, we obtain

[ω][τc][ω]
−1
= [τc]. (4.2)

Let W be any maximal element of Uc. Choose a representative ω′ of [ω]. Obviously,
the map τc keeps W ∩ S1 invariant, and no points in the interior of W ∩ S1 in S1 are
fixed by τc. Then ω′τcω

′−1
|S1 sends ω′(W ) ∩ S1 to itself and does not fix any point in

ω′(W ) ∩ S1. From (4.2), we see that τc|S1 sends ω′(W ) ∩ S1 to itself and does not fix
any point in ω′(W ) ∩ S1. This implies that there is a representative ω of [ω] such that
ω(W ) is also a maximal element of Uc. 2

The following result was proved in [16].

LEMMA 4.2. If c̃ is trivial, then χ(c)= c and every representative ω of [ω] fixes a
parabolic fixed point of G.

For every maximal element W ∈ Uc, we write W =W ∪ ∂W and W ∗ =H−W .
Also, the complement of an arc 0 in S1 is denoted by 0c.

LEMMA 4.3. Let W be a maximal element of Uc. Let [ω] ∈mod(S̃). If the intersec-
tion ω(W ∗) ∩W ∗ = ∅ for a representative ω of [ω], then for any representative ω0
of [ω], the region ω0(W ) is not a maximal element of Uc.

PROOF. First, observe that ω is a quasiconformal homeomorphism of H. For any
representative ω0 of [ω] we must have ω|S1 = ω0|S1 . The hypothesis implies that
(ω0(W ∗) ∩ S1) ∩ (W ∗ ∩ S1)= ∅. It follows that

S1
= ((ω0(W

∗) ∩ S1) ∩ (W ∗ ∩ S1))c = (ω0(W
∗) ∩ S1)c ∪ (W ∗ ∩ S1)c

= (ω0(W ) ∩ S1) ∪ (W ∩ S1)= (ω0(W ) ∪W ) ∩ S1.
(4.3)

Hence ω0(W ) and W cannot be disjoint. If ω0(W )=W , then ω0(W ) ∪W =W .
From (4.3), we obtain S1

=W ∪ S1. But W is a closed half-plane. This is absurd. We
thus conclude that ω0(W ) and W cannot be both maximal elements of Uc. Lemma 4.3
is proved. 2
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FIGURE 1. The axis cg and the sets U and U0.

5. Boundaries of twice punctured disks on S that enclose a fixed puncture

In this section we handle the case in which the curve system C defined as in (3.1)
contains a curve c that is trivial on S̃. We begin with the following lemma.

LEMMA 5.1. Suppose that cg crosses 6α . Then as a circle homeomorphism, the map
τ k
αg|S1 does not fix any parabolic fixed point of G.

PROOF. By hypothesis, the axis cg meets6α . Let U be a maximal element of Uα such
that cg intersects ∂U . Assume without loss of generality that U covers the repelling
fixed point Y of g. There exists another maximal element U0 of Uα that contains
g(H−U ). Then, of course, the half-plane U0 covers the attracting fixed point X of g.
Write {A, B} = ∂U0 ∩ S1 and {C, D} = ∂U ∩ S1, as labeled in Figure 1. Let (AB)
denote the circular arc connecting A and B on S1 without passing through any other
labeled points.

Clearly, on (Y C) ∪ (C B) ∪ (B X) the action of g is consistent with the action of τα .
Hence there are no fixed points of τ k

αg there. Let z ∈ (D A). If z is not covered by
any maximal element of Uα , then τ−k

α (z)= z and thus g−1τ−k
α (z)= g−1(z) 6= z. This

implies that τ k
αg(z) 6= z. If z is covered by a maximal element V of Uα , then V is

disjoint from U and U0, and τ−k
α (z) ∈ V ∩ S1. Observe that ∂V also projects to α̃, and

g−1(V ) ∩ V = ∅. It follows that g−1τ k
α (z) 6= z. We conclude that there are no fixed

points of τ k
αg on (D A).

We must show that τ k
αg has no fixed points on (AX) ∪ (DY ). Let z ∈ (AX). By [15,

Lemma 3.1], there exist a finite number of elements U0,U1, . . . ,Um in Uα such that
U0 ⊃U1 ⊃ · · · ⊃Um 3 z. This tells us that

ε(τα, z)= m + 1. (5.1)

Now g(z) is covered by U0 ⊃ g(U0)⊃ g(U1)⊃ · · · ⊃ g(Um) 3 g(z). By invariance,
all g(Ui ) ∈ Uα . Since U0 ∈ Uα , we see that ε(τα, g(z))≥ m + 2. But g(z) ∈ (AX),
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so ε(τα, τ k
αg(z))= ε(τα, g(z)). Hence

ε(τα, τ
k
αg(z))= ε(τα, g(z))≥ m + 2. (5.2)

Combining (5.1) and (5.2) leads to τ k
αg(z) 6= z.

Similarly, by considering the inverse of the map τ k
αg, one can prove that there are

no fixed points of τ k
αg on (DY ). The details are omitted.

Finally, we notice that any labeled point in {A, B, C, D, X, Y } is a fixed point of
a hyperbolic element of G; it cannot be a fixed point of any parabolic element of G.
This proves Lemma 5.1. 2

Assume that for some integer k, the mapping class θ = ϕ∗([τ k
αg]) is reducible by a

curve system (3.1). Let f be a representative of θ such that

f ({c1, . . . , cs})= {c1, . . . , cs}.

PROPOSITION 5.2. The system C does not contain any curve c that is trivial on S̃.

PROOF. If S̃ is compact, then there is nothing to prove. We assume henceforth that S̃
contains at least one puncture.

Suppose on the contrary that C contains a curve c that is trivial on S̃. Then c is the
boundary of a twice punctured disk 1 enclosing a and a puncture of S̃. We observe
that any two punctured disks 11 and 12, if both enclose the puncture a, must have an
overlap. This shows that ∂11 intersects ∂12. On the other hand, by definition, curves
in C are mutually disjoint. We see that there is exactly one curve c in C such that c̃ is
trivial.

Now f is a self-map of S with f (a)= a, and the region f (1) must also be a twice
punctured disk enclosing a. Then by the above argument, we obtain ∂1 ∩ ∂ f (1) 6= ∅.
Hence if f (c) 6= c, then f (c) /∈ C. So we must have f (c)= c.

Choose [ω] ∈mod(S̃) so that ϕ∗([ω])= θ is represented by f . By Lemma 4.2, any
representative ω0 of [ω] fixes a parabolic fixed point x of G. On the other hand, we
observe that ϕ∗([τ k

αg])= tk
α ◦ ϕ

∗(g)= θ . We see that [ω] = [τ k
αg] = [τ k

α ]g, and thus

ω|S1 = τ
k
αg|S1 . (5.3)

From Lemma 5.1, we conclude that τ k
αg|S1 does not fix any parabolic fixed point of G.

It follows from (5.3) that ω|S1 does not fix any parabolic fixed point of G, which leads
to a contradiction. 2

6. Proof of Theorem 1.1

By hypothesis, cg ∩6α 6= ∅. Let U ∈ Uα be the maximal element such that cg
intersects ∂U . Suppose that θ = ϕ∗([τ k

αg]) is reduced by (3.1). By Proposition 5.2,
the curve system C does not contain any curve c with c̃ trivial on S̃. Choose c ∈ C. Then
Lemma 3.2 leads to θ2(c)= c. By Lemma 3.3, we can assume that c ∈31. Thus, by
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(a) (b)

FIGURE 2. Two of the cases in the proof of Theorem 1.1.

Lemma 3.5, there exists a maximal element W ∈ Uc such that either ∂U ∩ ∂W = ∅,
U ∩W 6= ∅, and U ∪W =H, or both U and U0 are contained in W , where U0 is
as in Lemma 3.5. If the former possibility occurs, we let Y denote the intersection
cg ∩ (U ∩ S1) and X the intersection cg ∩ ((H−U ) ∩ S1). There are four cases in
total:

(i) Y is the repelling fixed point of g and ∂W is disjoint from cg;
(ii) Y is the repelling fixed point of g and ∂W intersects cg;
(iii) Y is the attracting fixed point of g and ∂W is disjoint from cg; and
(iv) Y is the attracting fixed point of g and ∂W intersects cg .

We only discuss the first two cases, which are drawn in Figures 2(a) and (b). The other
two cases can be treated by considering the inverse of τ k

αg.

Case (i). The geodesic boundary ∂W is disjoint from cg . In this case, the comple-
ment W ∗ of W is in U (Figure 2(a)). Now W ∗ is disjoint from cg to W ∈ Uc is
maximal. Since ∂W = ∂W ∗ projects to c̃ which is nontrivial on S̃, we see that
g(W ∗) ∩W ∗ = ∅. From Lemma 3.1, the geodesic c̃ is disjoint from α̃. Since ∂U
projects to α̃, either g(W ∗)⊂U or g(W ∗)⊂U∗. If g(W ∗)⊂U∗, then since τ k

α

keeps U∗ invariant, we see that τ k
αg(W ∗)⊂U∗ and that (τ k

αg)2(W ∗)⊂U∗. Hence
(τ k
αg)2(W ∗) ∩W ∗ = ∅. By Lemma 4.3, we conclude that (τ k

αg)2(W ) is not a maximal
element of Uc.

Assume that g(W ∗)⊂U . Note that the Euclidean diameter of W ∗ is positive and
that ∂W ∗ projects to c̃, and all boundaries of elements of Uα project to α̃. Since c̃ is
disjoint from α̃, all boundaries of elements of Uα are disjoint from ∂W ∗. We see that
there are only finitely many elements

U0 =U,U1, . . . ,Ur
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of Uα so that
W ∗ ⊂Ur ⊂ · · · ⊂U1 ⊂U. (6.1)

Let ε1(τα, W ∗) denote the number of elements of Uα that cover W ∗. By definition of
τα , we know that for i = 0, . . . , r , the half-planes τ−k

α (Ui ) are elements of Uα and
cover τ−k

α (W ∗). It follows that

ε1(τα, τ
−k
α (W ∗))≥ ε1(τα, W ∗). (6.2)

Notice that U and all g−1τ−k
α (Ui ), for i = 0, . . . , r , are elements of Uα . Since g is a

Möbius transformation, from (6.1) we obtain

g−1τ−k
α (W ∗)⊂ g−1τ−k

α (Ur )⊂ · · · ⊂ g−1τ−k
α (U0)⊂U. (6.3)

From (6.2) along with (6.3), we assert that

ε1(τα, g−1τ−k
α (W ∗)) > ε1(τα, τ

−k
α (W ∗))≥ ε1(τα, W ∗). (6.4)

In particular, (6.4) yields that ε1(τα, g−1τ−k
α (W ∗) 6= ε1(τα, W ∗)). Thus we must have

g−1τ−k
α (W ∗) 6=W ∗. A similar argument yields that

ε1(τα, (g
−1τ−k

α )2(W ∗)) > ε1(τα, W ∗). (6.5)

Thus (g−1τ−k
α )2(W ∗) 6=W ∗.

If (g−1τ−k
α )2(W ∗) ∩W ∗ = ∅, by Lemma 4.3, the half-plane (g−1τ−k

α )2(W ) is not
a maximal element of Uα . If (g−1τ−k

α )2(W ∗)⊃W ∗, then (6.5) is impossible. If
(g−1τ−k

α )2(W ∗)⊂W ∗, then (g−1τ−k
α )2(W )⊃W . This says that if (g−1τ−k

α )2(W )

were a maximal element of Uc, then W would not be a maximal element of Uc. It
follows that (g−1τ−k

α )2(W ) is not maximal. But this contradicts Lemma 4.1.

Case (ii). The geodesic boundary ∂W intersects cg . In this case, W ∗ ⊂U ; see
Figure 2(b). Since Y is the attracting fixed point of g that is covered by W ∗, we
have W ∗ ⊂ g(W ∗).

If U ⊆ g(W ∗), then g(W )⊆U∗ ⊂W . Since τ k
α keeps U∗ invariant, we have

τ k
αg(W )⊆U∗ ⊂W . Since X is the attracting fixed point of g that is covered by U∗,

we must have gτ k
αg(W )⊆U∗ ⊂W . Hence, τ k

αgτ k
αg(W )= (τ k

αg)2(W )⊆U∗ ⊂W ,
which says that (τ k

αg)2(W ) is not a maximal element of Uc.
If g(W ∗)⊂U , then since U is a maximal element of Uα , the map τ k

α keeps U
invariant. Hence τ k

αg(W ∗)⊂U . Clearly, τ k
αg(W ∗) ∩ g(W ∗)= ∅. Now we can also

easily check that (τ k
αg)2(W ∗) ∩ g(W ∗)= ∅. By Lemma 4.3, we see that (τ k

αg)2(W )

is not a maximal element of Uc.
Finally, if W contains both U and U0, then cg ⊂W and W ∗ is disjoint from cg

and U . In this case, we use the same argument as in Case (i) above to conclude that
(τ k
αg)2(W ) is not a maximal element of Uc.
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FIGURE 3. Hyperbolic elements whose axes intersect.

7. Proof of Corollary 1.2

We first prove the following result.

LEMMA 7.1. Let g, h ∈ G be hyperbolic elements. Assume that their axes cg and ch
intersect. Then for all integers r and s, the elements hr gs

∈ G are also hyperbolic,
and their axes intersect both ch and cg .

PROOF. Let {A, B} and {C, D} denote the fixed points of g and h, respectively, where
A and C are the attracting fixed points and B and D are the repelling fixed points; see
Figure 3.

We assume that both r and s are positive. Consider the motion of ξ = hr gs on
S1. Notice that A and C are the attracting fixed points of gs and hr respectively, and
B and D are the repelling fixed points of gs and hr respectively. We also observe that
the motion ξ at A is toward C in the counterclockwise direction, and at C is toward A
in the clockwise direction. Similarly, the motion ξ at B is toward C in the clockwise
direction, and at D is toward A in the counterclockwise direction. Therefore, by
calculus there is an attracting fixed point X for the motion ξ in the arc (AC) and a
repelling fixed point Y for the motion ξ in the arc (B D) (not shown in Figure 3).
Since ξ is a Möbius transformation, it has at most two fixed points on S1. It follows
that ξ has exactly two fixed points X and Y . We conclude that ξ is hyperbolic and its
axis cξ is the geodesic connecting X and Y .

Since X and Y lie on different sides of ch , we see that cξ intersects ch . Similarly,
we note that X and Y also lie on different sides of cg . Thus cξ also intersects cg .
Therefore cξ intersects both ch and cg . 2

From Lemma 7.1, we conclude that the axis chg of hg intersects ch . In particular,
this implies that chg ∩6α 6= ∅ and chg ∩6α0 6= ∅. Hence by Theorem 1.1 we see that
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tα ◦ ϕ∗(hg) is pseudo-Anosov. But since ϕ∗(h)= t−1
α ◦ tα0 , we obtain

tα ◦ ϕ
∗(hg)= tα ◦ (t

−1
α ◦ tα0) ◦ ϕ

∗(g)= tα0 ◦ ϕ
∗(g).

Hence tα0 ◦ ϕ
∗(g) is pseudo-Anosov.

To prove that t−1
α ◦ ϕ

∗(g) pseudo-Anosov, we use Theorem 1.1 once again. By
assumption, chg ∩60 6= ∅. So Theorem 1.1 asserts that t−1

α0
◦ ϕ∗(hg) is pseudo-

Anosov. A computation shows that

t−1
α0
◦ ϕ∗(hg)= t−1

α ◦ ϕ
∗(g).

Hence t−1
α ◦ ϕ

∗(g) is pseudo-Anosov. This proves Corollary 1.2.

8. Examples

In this section we give an example to show that Theorem 1.1 is no longer true if
we drop the assumption that cg ∩6α 6= ∅. We take a simple closed geodesic α on
S that is also nontrivial on S̃. Let f ∈ F(S, a) be an arbitrary element. Then it is
well known (see Masur and Minsky [10], for example) that for a sufficiently large
integer k, the pair {α, f k(α)} fills S. Denote by β the geodesic homotopic to f k(α).
From Thurston [14], for any positive integer i , the mapping class θi induced by

t−i
α ◦ t i

β (8.1)

is pseudo-Anosov. Since it also projects to the identity on S̃, by [7, Theorem 2], there
is an essential hyperbolic element gi ∈ G such that ϕ∗(gi )= θi that is represented
by (8.1).

Let [τα], [τβ ] ∈mod(S̃) be such that ϕ∗([τα])= tα and ϕ∗([τβ ])= tβ . By the same
argument as Lemma 3.4, there exist a maximal element U of Uα and a maximal
element V of Uβ such that U ∩ V 6= ∅, ∂U ∩ ∂V = ∅, and U ∪ V =H. In particular,
it follows that the region

60 =H− {all maximal elements of τα and τβ}

is empty. Now from [17, Theorem 1.2], the axis ci of gi stays in the region U ∩ V .
Since U ∪ V =H, the axis ci does not cross 6α and 6β (defined as in (1.2)). This
implies that ci ∩6α = ∅ and ci ∩6β = ∅ (certainly, the geodesic ci intersects some
nonmaximal elements of τα and τβ since c̃i is a filling closed geodesic that intersects
α̃ = β̃). Now if we choose k = i and consider the mapping class tk

α ◦ ϕ
∗(gi ), then

from (8.1), we obtain

t i
α ◦ ϕ

∗(gi )= t i
α ◦ (t

−i
α ◦ t i

β)= t i
β .

So for any integer i , the mapping class t i
α ◦ ϕ

∗(gi ) is not pseudo-Anosov.
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