A RIGIDITY PROPERTY OF PLURIHARMONIC MAPS FROM PROJECTIVE MANIFOLDS

CHE-HUNG HUANG

(Received 8 August 2022; accepted 6 September 2022; first published online 13 October 2022)

Abstract

Suppose *M* is a complex projective manifold of dimension ≥ 2 , *V* is the support of an ample divisor in *M* and *U* is an open set in *M* that intersects each irreducible component of *V*. We show that a pluriharmonic map $f: M \to N$ into a Kähler manifold *N* is holomorphic whenever $f|_{V \cap U}$ is holomorphic.

2020 Mathematics subject classification: primary 58E20.

Keywords and phrases: harmonic mappings.

Sampson [4] proved a unique continuation theorem for harmonic mappings of Riemannian manifolds. Siu [5] showed that a harmonic mapping of connected Kähler manifolds $f: M \to N$ is holomorphic whenever $f|_U$ is holomorphic for some nonempty open set $U \subset M$. It is not difficult to see that, in general, U cannot be replaced by an analytic hypersurface $V \subset M$. For example, take $f = \phi \times \psi$, where $\phi: X \to Y$ is a holomorphic mapping of connected Kähler manifolds and $\psi: S \to Y$ is a harmonic map from a Riemann surface S. If ψ is not holomorphic, then f is not holomorphic, but $f|_{X \times \{p\}}$ is holomorphic for every $p \in S$.

Siu's unique continuation theorem is a basic ingredient in the proof of the strong rigidity theorem for compact Kähler manifolds [5, Theorem 2]. Suppose $M \subset \mathbb{P}^k$ is a projective manifold of dimension ≥ 2 and V is a smooth hyperplane section of M. We shall see that if $f: M \to N$ is a pluriharmonic map into a Kähler manifold N such that $f|_V$ is holomorphic, then f is holomorphic. This result is motivated by the application of Toledo's theorem on plurisubharmonicity of the energy to rigidity theory [2, 6]. Note that we may weaken the assumption that $f|_V$ is holomorphic by applying Siu's unique continuation theorem.

The main purpose of this note is to establish the following result.

PROPOSITION 1. Suppose $f: M \to N$ is a pluriharmonic map from a projective manifold M into a Kähler manifold N, with dim $M \ge 2$. Suppose $D = \sum_{i=1}^{k} a_i V_i$ is an ample divisor in M, where $a_i \in \mathbb{Z}$, $a_i \ne 0$, and V_i is an irreducible hypersurface in M,

[©] The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Pluriharmonic maps

for i = 1, ..., k. Let V be the support of D and let U be an open set in M such that $V_i \cap U \neq \emptyset$ for each i. If $f|_{V \cap U}$ is holomorphic, then f is holomorphic.

REMARK 2. Proposition 1 generalises the following result due to Gromov [2, Section 4.6] (see also [6, Theorem 5]). Suppose $f : M \to N$ is a pluriharmonic map from a smooth projective surface M into a quotient $N = \Omega / \Gamma$ of an irreducible bounded symmetric domain Ω . If $f|_V$ is holomorphic for some general element V of a Lefschetz pencil on M, then f is holomorphic.

PROOF OF PROPOSITION 1. Let ω be a Kähler form on M representing the first Chern class $c_1(O(D))$ associated to D and let $\omega_N = \sqrt{-1} h_{\alpha\overline{\beta}} dw^{\alpha} \wedge d\overline{w^{\beta}}$ denote the Kähler form on N. If $\phi : X \to N$ is a smooth map from an n-dimensional complex submanifold $X \subset M$ into N, we let $\omega_X = \omega|_X$ and $\varepsilon''(\phi) = \sqrt{-1} h_{\alpha\overline{\beta}} \partial\overline{\phi^{\beta}} \wedge \overline{\partial}\phi^{\alpha}$, which are real (1, 1)-forms on X such that

$$\varepsilon''(\phi) \wedge \omega_X^{n-1}/(n-1)! = |\overline{\partial}\phi|^2 \omega_X^n/n! \quad \text{if } n \ge 1,$$

and we define $E''(\phi) = \int_X |\overline{\partial}\phi|^2 dV_{\omega_X}$ provided that the integral is finite. Since $c_1(O(D)) = [\omega]$ is the Poincaré dual of the fundamental homology class [D]

Since $c_1(O(D)) = [\omega]$ is the Poincaré dual of the fundamental homology class [D] of D,

$$E''(f) = \int_{M} \varepsilon''(f) \wedge \frac{\omega^{m-1}}{(m-1)!} = \sum_{i=1}^{k} a_{i} \cdot \int_{D_{i}} \varepsilon''(f|_{D_{i}}) \wedge \frac{\omega_{D_{i}}^{m-2}}{(m-2)!} = \sum_{i=1}^{k} a_{i} E''(f|_{D_{i}}),$$
(1)

where $m = \dim M$ and D_i is the smooth locus of V_i for $1 \le i \le k$. Note that $\varepsilon''(f|_{D_i}) = \varepsilon''(f)|_{D_i}$ for each *i*, and that $\varepsilon''(f)$ is closed because *f* is pluriharmonic [3, Lemma 3.10]. Since $f|_{V \cap U}$ is holomorphic, $f|_{D_i}$ is holomorphic for each *i* (see [5, pages 88–89]) and we conclude from (1) that *f* is holomorphic.

We shall see that the analogue of (1) holds for the Dirichlet energy E(f). Suppose that $f: M \to N$ is a pluriharmonic map from a projective manifold M of dimension $m \ge 2$ into a Riemannian manifold $(N, h = h_{ij} dy^i \otimes dy^j)$. We fix a Kähler form ω on M with integral cohomology class and choose a divisor $D = \sum_{i=1}^{k} a_i V_i$ such that $c_1(O(D)) = [\omega]$, where a_i is a nonzero integer and V_i is an irreducible hypersurface in M with smooth locus D_i for each i.

Recall that if $\phi : X \to N$ is a smooth map from a Kähler submanifold $X \subset M$, with Kähler form $\omega_X = \omega|_X$, then the energy density $e(\phi)$ of ϕ is given by $e(\phi) = \frac{1}{2}|d\phi|^2 = \langle \varepsilon(\phi), \omega_X \rangle$, where $\varepsilon(\phi) = \sqrt{-1} h_{ij} \partial \phi^i \wedge \overline{\partial} \phi^j$ is a real (1,1)-form on *X*, and the energy $E(\phi)$ of ϕ is given by $E(\phi) = \int_X e(\phi) dV_{\omega_X}$.

Since f is pluriharmonic, the (1, 1)-form $\varepsilon(f)$ is closed (see, for example, [3, Lemma 2.2]). For i = 1, ..., k, $\varepsilon(f)|_{D_i} = \varepsilon(f|_{D_i})$. Since $c_1(O(D)) = [\omega]$ is the Poincaré dual of [D], it follows that

$$E(f) = \int_{M} \varepsilon(f) \wedge \frac{\omega^{m-1}}{(m-1)!} = \sum_{i=1}^{k} a_{i} \cdot \int_{D_{i}} \varepsilon(f|_{D_{i}}) \wedge \frac{\omega_{D_{i}}^{m-2}}{(m-2)!} = \sum_{i=1}^{k} a_{i} E(f|_{D_{i}}).$$
(2)

C.-H. Huang

EXAMPLE 3. Suppose *S* is a compact Riemann surface of genus $g \ge 2$. The Jacobian J(S) of *S* is an Abelian variety with a principal polarisation $[\omega] = c_1(O(\Theta))$, where Θ is a theta divisor in J(S), that is, a translate of the zero locus of the Riemann theta function. Put M = J(S) and let $f : M \to N$ be a pluriharmonic map into a Kähler manifold *N*. Then Proposition 1 shows that if $f|_G$ is holomorphic for some nonempty open subset *G* of Θ , then *f* is holomorphic.

Let $W = \mu(S)$ be the image of S under the Abel–Jacobi map $\mu : S \to J(S)$. We have

$$E''(f) = \int_M \varepsilon''(f) \wedge \frac{\omega^{g-1}}{(g-1)!} = \int_W \varepsilon''(f|_W) = E''(f|_W),$$

since $[(1/(g-1)!) \omega^{g-1}]$ is the Poincaré dual of [W] (see, for example, [1, page 350]). Similarly, $E(f) = E(f|_W)$. Using (1) and (2), we conclude that

$$E''(f) = E''(f|_{\Theta^*}) = E''(f|_W)$$
 and $E(f) = E(f|_{\Theta^*}) = E(f|_W)$,

where Θ^* denotes the smooth locus of Θ . As in the proof of Proposition 1, it follows that if $f|_G$ is holomorphic for some nonempty open subset G of W, then f is holomorphic.

References

- [1] P. Griffiths and J. Harris, Principles of Algebraic Geometry (Wiley, Hoboken, NJ, 1978).
- [2] M. Gromov, 'Super stable Kählerian horseshoe?', in: *Essays in Mathematics and Its Applications* (eds. P. M. Pardalos and T. M. Rassias) (Springer, Berlin–Heidelberg, 2012), 151–229.
- [3] Y. Ohnita and S. Udagawa, 'Stability, complex-analyticity and constancy of pluriharmonic maps from compact Kähler manifolds', *Math. Z.* 205 (1990), 629–644.
- [4] J. H. Sampson, 'Some properties and applications of harmonic mappings', Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 211–228.
- [5] Y.-T. Siu, 'The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds', *Ann. of Math. (2)* **112** (1980), 73–111.
- [6] D. Toledo, 'Hermitian curvature and plurisubharmonicity of energy on Teichmüller space', *Geom. Funct. Anal.* 22 (2012), 1015–1032.

CHE-HUNG HUANG, Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA e-mail: huan1160@purdue.edu