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ABSTRACT

Let I be any nonempty set and let (M;, ;);er be any family of nonamenable factors,
endowed with arbitrary faithful normal states, that belong to a large class Canti-free Of
(possibly type III) von Neumann algebras including all nonprime factors, all nonfull
factors and all factors possessing Cartan subalgebras. For the free product (M, ¢) =
x;c1(M;, p;), we show that the free product von Neumann algebra M retains the
cardinality |I| and each nonamenable factor M; up to stably inner conjugacy, after
permutation of the indices. Our main theorem unifies all previous Kurosh-type rigidity
results for free product type II; factors and is new for free product type III factors. It
moreover provides new rigidity phenomena for type III factors.
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1. Introduction and statement of the main theorem

In his seminal article [Oza06], Ozawa obtained the first Kurosh-type rigidity results for free
product type II; factors. Among other things, he showed that whenever m > 1 and My, ..., M,
are weakly exact nonamenable nonprime type II; factors, the tracial free product von Neumann
algebra My * --- % M,, retains the integer m and each factor M; up to inner conjugacy,
after permutation of the indices. Ozawa’s approach to Kurosh-type rigidity for II; factors
was based on a combination of his C*-algebraic techniques [Oza04] and of Popa’s intertwining
techniques [Pop06a, Pop06b] (see also [OP04]). Shortly after, using Popa’s deformation/rigidity
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theory, Ioana et al. obtained in [[PP08] Kurosh-type rigidity results for tracial free products
of weakly rigid type II; factors, that is, II; factors possessing regular diffuse von Neumann
subalgebras with relative property (T) in the sense of [Pop0O6a]. These Kurosh-type rigidity
results for II; factors were then unified and further generalized by Peterson in [Pet09], using his
L2-rigidity techniques, to cover tracial free products of nonamenable L2-rigid type II; factors.
In [Ash09], Asher extended Ozawa’s original result [Oza06] to free products of weakly exact
nonamenable nonprime type II; factors with respect to nontracial states.

Regarding the structure of free product von Neumann algebras, the questions of factoriality,
type classification and fullness for arbitrary free product von Neumann algebras were recently
completely solved by Ueda in [Uedll]. For any free product (M, ¢) = (My, 1) * (Ma, ¢2) with
dimc M; > 2 and (dimg M;,dime M) # (2,2), the free product von Neumann algebra M splits
as a direct sum M = M.® M, where M. is a full factor of type IIj or of type IIIy (with 0 < A < 1)
and My = 0 or My is a multimatrix algebra. Moreover, Chifan and Houdayer showed in [CH10]
(see also [Ued11]) that M, is always a prime factor (see Peterson [Pet09] for the previous work in
the tracial case) and Boutonnet et al. showed in [BHR14] that M, has no Cartan subalgebra (see
Ioana [loal5] for the previous work in the tracial case). Very recently, in our joint work [HU16],
we completely settled the questions of maximal amenability and maximal property Gamma of
the inclusion My C M in arbitrary free product von Neumann algebras. In view of these recent
structural results obtained in full generality, it is thus natural to seek Kurosh-type rigidity results
for arbitrary free product von Neumann algebras.

In this paper, we unify and generalize all the previous Kurosh-type rigidity results to arbitrary
free products (M, p) = *;c7(M;, ;) over arbitrary index sets I, where all M; are nonamenable
factors that belong to a large class of (possibly type III) factors that we call anti-freely
decomposable. In order to state our main theorem, we will use the following terminology.

DEFINITION. We will say that a nonamenable factor M with separable predual is anti-freely
decomposable if at least one of the following conditions holds.

(i) M is not prime, that is, M = M; ® Ms, where M; and My are diffuse factors (e.g. M is
McDuff).

(ii) M has property Gamma, that is, the central sequence algebra M’ N M is diffuse for some
nonprincipal ultrafilter w € S(N)\N (e.g. M is of type IIly; see [Con74, Proposition 3.9]).

(iii) M possesses an amenable finite von Neumann subalgebra A with expectation such that
A'NM = Z(A) and Ny (A)” = M (e.g. M possesses a Cartan subalgebra).

(iv) M is a II; factor that possesses a regular diffuse von Neumann subalgebra with relative
property (T) in the sense of [Pop06a, Definition 4.2.1] (e.g. M is a II; factor with property
(T) [CJ85]).

We will denote by Canti-free the class of nonamenable factors with separable predual that are
anti-freely decomposable in the sense of the above definition.

Recall that the Kurosh isomorphism theorem for discrete groups (see e.g. [CM82, p. 105])
says that any discrete group can uniquely (up to permutation of components) be decomposed
into a free product of freely indecomposable subgroups. It is not clear at all how to capture freely
indecomposable von Neumann algebras practically. However, all the known general structural
results on free product von Neumann algebras suggest that Canti-free is indeed a natural large
class of freely indecomposable factors. Hence, the main theorem of this paper stated below is
indeed a von Neumann algebra counterpart of the Kurosh isomorphism theorem and unifies all
the previous counterparts.
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MAIN THEOREM. Let I and J be any nonempty sets and (M;);cr and (Nj);cs any families of
nonamenable factors in the class Canti-free- For each i € I and each j € J, choose any faithful
normal states @; € (M;) and ¥; € (N;)«. Denote by (M, ) = xje1(M;, ¢;) and (N, ) = *je 1 (Nj,
1;) the corresponding free products.

(1) Assume that M and N are isomorphic. Then |I| = |J| and there exists a bijection o : I — J
such that M; and N, ;) are stably isomorphic for each i € I.

(2) Assume that M and N are isomorphic and identify M = N. Assume moreover that M; is
a type 11 factor for all i € I. Then there exists a unique bijection « : I — J such that M;
and N, are inner conjugate for each i € I.

Our main theorem is new for free products of type III factors. In that case (see item (2)),
our statement is as sharp as all previous Kurosh-type rigidity results for free products of type
II; factors. We point out that for tracial free products, our main theorem is still new in cases
(i), (ii) and (iii) when the index set I is infinite (compare with [Oza06, Pet09, Toal5]).

We now briefly explain the strategy of the proof of the main theorem. We refer to §§ 4 and 5 for
further details. As we will see, the proof builds upon the tools and techniques we developed in our
previous work [HU16] on the asymptotic structure of free product von Neumann algebras. Using
the very recent generalization of Popa’s intertwining techniques in [HI17, § 4], it suffices, modulo
some technical things, to prove the existence of a bijection « : I — J such that M; <p Ny
and Ny =m M; for all « € I. To simplify the discussion, fix ¢ € I. We need to show that there
exists j € J such that M; <y IV;.

Firstly, assume that M is in case (i) or (ii). Exploiting the anti-free decomposability property
of M; (in case (i)) and a new characterization of property Gamma for arbitrary von Neumann
algebras (in case (ii)) (see Theorem 3.1) together with various technical results from our previous
work [HU16], it suffices to prove that for a well-chosen diffuse abelian subalgebra A C M; with
expectation whose relative commutant A’ N M; is nonamenable, there exists j € J such that
A =<p Nj. This is achieved in Theorem 4.4 by using a combination of Popa’s spectral gap
argument [Pop08] together with Connes—Takesaki’s structure theory for type III von Neumann
algebras [Con73, Tak03] and Houdayer and Isono’s recent intertwining theorem [HI17]. Secondly,
assume that M is in case (iii). Then it suffices again to prove that there exists j € J such
that A <p; Nj. The proof is slightly more involved (see Theorem 4.6) and relies on Vaes’s
recent dichotomy result for normalizers inside tracial amalgamated free product von Neumann
algebras [Vael4] (improving Ioana’s previous result [Ioal5] and involving Popa—Vaes’s striking
dichotomy result [PV14]) instead of Popa’s spectral gap argument [Pop08] (see Appendix A).
Thirdly, assume that M; is in case (iv). Then it suffices to prove that there exists j € J such
that A <pr N;, where A C M; is a diffuse regular subalgebra with relative property (T). This is
achieved in Theorem 4.8 by reconstructing [[PP08, Theorem 4.3] in the semifinite setting.

In §6, we prove further new results regarding the structure of free product von Neumann
algebras. In particular, we obtain a complete characterization of solidity [Oza04] for free products
with respect to arbitrary faithful normal states and over arbitrary index sets.

2. Preliminaries

For any von Neumann algebra M, we will denote by Z(M) the centre of M, by zps(e) the central
support of a projection e € M, by U(M) the group of unitaries in M, by Ball(M) the unit ball
of M with respect to the uniform norm || - ||o and by (M,L2(M), JM BM) the standard form
of M. We will say that an inclusion of von Neumann algebras P C 1pM1p is with expectation
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if there exists a faithful normal conditional expectation Ep : 1pM1p — P. We will say that a
o-finite von Neumann algebra M is tracial if it is endowed with a faithful normal tracial state 7.

Background on o-finite von Neumann algebras

Let M be any o-finite von Neumann algebra with unique predual M, and ¢ € M, any faithful
state. We will write ||z, = ¢(z*2)'/? for every x € M. Recall that, on Ball(M), the topology
given by || - ||, coincides with the o-strong topology. Denote by &, € PM the unique representing
vector of . The mapping M — L2(M) : z x€, defines an embedding with dense image such
that [|z|l, = [[2€pll12(ar) for all x € M.

We denote by ¢¥ the modular automorphism group of the state ¢. The centralizer M¥ of
the state ¢ is by definition the fixed point algebra of (M, o¥). The continuous core of M with
respect to ¢, denoted by c, (M), is the crossed product von Neumann algebra M x,» R. The
natural inclusion 7, : M — c,(M) and the unitary representation A, : R — c, (M) satisfy the
covariance relation

Ao (O)To(2) A (8)* = mp(0f () for all z € M and all t € R.

Put L,(R) = A\y(R)”. There is a unique faithful normal conditional expectation Er_(g) :
cp(M) — Ly(R) satisfying Ep_r)(mp(2)As(t)) = p(2)Ay(t) for all 2 € M and all ¢ € R.
The faithful normal semifinite weight defined by f — [ exp(—s)f(s)ds on L>(R) gives rise
to a faithful normal semifinite weight Tr, on L,(R) via the Fourier transform. The formula
Tr, = Try 0 B (r) extends it to a faithful normal semifinite trace on c,(M).

Because of Connes’s Radon-Nikodym cocycle theorem [Con73, Théoreme 1.2.1] (see also
[Tak03, Theorem VIIIL.3.3]), the semifinite von Neumann algebra c, (M) together with its trace
Tr, does not depend on the choice of ¢ in the following precise sense. If ¢ € M, is another
faithful state, there is a canonical surjective *-isomorphism Il : ¢y (M) — c,(M) such that
I, o my = m, and Try, o IL, 4 = Try. Note however that IL,, does not map the subalgebra
Ly(R) C cy(M) onto the subalgebra L,(R) C c, (M) (and hence we use the symbol L,(R)
instead of the usual L(R)).

We start with a rather technical lemma.

LEMMA 2.1. Let M be any o-finite von Neumann algebra endowed with any faithful state
@ € M,. Then, for any projection p € M, there exists a projection ¢ € M¥ such that p ~ q
in M.

Proof. Replacing M with M zp;(p) with the central support zps(p), we may and will assume that
zym(p) = 1. By [KR97, Proposition 6.3.7], one can decompose p = p; + p2 along M = M; @ My
so that p; is finite and ps is properly infinite. Since M is o-finite, ps is equivalent to 1js,, which
clearly belongs to M¥. Hence, we may and will assume that p is finite with zp/(p) = 1 and hence
M is semifinite. Write ¢ = Tr(h-) for some nonsingular positive selfadjoint operator h affiliated
with M and take a maximal abelian subalgebra (MASA) A C M that contains {A'* |t € R} . We
have A C M¥. Since A is a MASA with expectation, A is generated by finite projections in M
(see e.g. [Tom72, Proposition 4.4], but this case can be proved without such a general assertion).
We will prove that p is equivalent in M to a projection in A. Thanks to [Kad84, Corollaries 3.8
and 3.13|, we may and will assume, by decomposing M into the components of type I,,, II; and
II, that M is of type Il. Here is a claim.

CLAIM. For any nonzero finite projection e € M and any nonzero projection f € A such that
zy(e)zar(f) # 0, there exist nonzero projections €' € eMe and f' € Af such that €' is equivalent
to f' in M.
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Proof of the claim. As we observed before, there is an increasing sequence of projections r, € A
that are finite in M and such that r, — 1 o-strongly. By assumption, there exists x € M such
that exf # 0. Then there exists ng so that ex fry, # 0. Taking the polar decomposition of the
element ex fry,,, we can find a nonzero subprojection €’ of e such that ¢’ is equivalent in M to
a subprojection s of fry,. Observe that s may not be in A. Hence, we have to work further.
Consider the MASA Afr,, in the type II; von Neumann subalgebra fr,,M fry,. By [Kad84,
Proposition 3.13], we can find a projection f’ € Afr,, C A that is equivalent to s in M. O

By Zorn’s lemma, let ((p;, ¢;))icr be a maximal family of pairs of projections such that (p;)icr
and (¢;)ier are families of pairwise orthogonal projections, all p; are subprojections of p, all ¢;
are in A and p; ~ ¢; for every i € I. Suppose that e:=p—3 ", .;p; ZOand put f:=1-3%". ;¢
Observe that the central support of f must be equal to 1, since Y ,.;q; ~ > ;c;pi < p is finite
and M is of type Il and hence properly infinite. Therefore, by the above claim, there exist
nonzero projections py, go such that py < e, go < f, g0 € A and py ~ qp, a contradiction to the
maximality of the family ((ps,gi))icr. Consequently, p = > .c;pi ~ > ;c; @ € A. Hence, we are
done. O

The following simple application of the previous lemma will turn out to be useful for Popa’s
intertwining techniques in the type III setting.

PROPOSITION 2.2. Let A C M be any unital inclusion of o-finite von Neumann algebras with
expectation and p € A’ N M any nonzero projection. Then Ap C pMp is also with expectation.

Proof. By assumption, we may choose a faithful state ) € M, such that A is globally invariant
under the modular automorphism group ¢¥ and, in particular, so is A’'NM. Put ¢ := Y| aranr and
observe that (A’ N M)¥ C M¥. Applying Lemma 2.1 to p € A’ N M with ¢, we obtain a partial
isometry v € A’N M such that vv* = p and v*v € (A'NM)¥ C MY, the latter of which shows that
Av*v C v*'vMv*v is with expectation. Since v € A’ N M, the inclusions Av*v C v*vMv*v and
Ap C pMp are conjugate to each other via Ad(v) and hence Ap C pMp is with expectation. O

Recall that for any inclusion of von Neumann algebras A C M, the group of normalizing
unitaries is defined by

Nu(A) ={ueld(M) : uAu* = A}.

The von Neumann algebra Nys(A)” is called the normalizer of A inside M. The next result is a
variation on [Pop06b, Lemma 3.5] and will be used in the proof of Theorem 4.6.

PROPOSITION 2.3. Let M be any o-finite von Neumann algebra and A C M any von Neumann
subalgebra. Assume moreover that A’ M = Z(A). Then, for any nonzero projection p € Z(A),
we have

Noarp(Ap)" = p(Nar(A)")p.

Proof. For any u € Npnp(Ap), we have v :=u+(1—p) € Nay(A) and pvp = u. Thus, Npurp(Ap) C
pNp(A)p and hence the inclusion (C) holds without taking double commutant. Therefore, it
suffices to prove the reverse inclusion relation.

Write N := N (A)” for simplicity. Let u € Nj/(A) be an arbitrary element. Set v :=
pup. Since Ad(u)|4 gives a unital sx-automorphism of A, we have uZ(A)u* = Z(A), so that
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v*v = u*pup and vv* = upu*p are projections in Z(A). In particular, v is a partial isometry.
Moreover, it is plain to see that for each a € A, we have

vav™ = (uau”)(upu®)p € Avv*  and v av = (v au)(u*pu)p € Av*v.
Hence, vAv* = Avv* and v*Av = Av*v. Observe that Z(N) C A’ N M = Z(A).

CLAIM. There exists a partial isometry w € N such that (i) w*w,ww* € Z(A)p, (i) wAw* =
Aww*, w*Aw = Aw*w, (iii)) wv*v = v = vv*w and moreover (iv) with letting z := zy(w*w) =
zy(ww*) € Z(A)p (see the notation at the beginning of this section), there exist orthogonal
projections zi, z2, z3 € Z(N) with z1 + z2 + z3 = 2z so that:

o wwz = z; but ww*z < z1;

o wrwzy S 2o but ww*zy = zo; and

o w*wzz = z3 = ww*z3.

Proof of the claim. To this end, choose a maximal family of partial isometries w; € M such that
(wiw;); and (w;w}); are families of pairwise orthogonal projections, w; Aw;} = Aw;w}, w} Aw; =
Awfw;, wiw; < p—v*v and wyw] < p —ovv*. Then w:= v+ ) w; clearly enjoys (i)-(iii).
Choose a maximal orthogonal family of projections z3; € Z(N)z such that w*wzs; = z3; =
ww*z3;. Set z3 := ) ; z3;. Choose a maximal orthogonal family of projections zo; € Z(N)(2z — 23)
such that ww*z9; = 29;. Set 29 := Zj 29j. By construction, we have w*wz3 = 23 = ww*z3 and
wrwze S 22 = ww*zy. Set 21 := z— 29— 23. Assume that z; # 0; otherwise we are already done. By
the maximality of the families (z9;); and (z3;);, observe that no nonzero projection 2z’ € Z(N)z;
enjoys ww*z’ = z/. This means that the central support of z; — ww*z; in N is equal to z;.
Suppose that w*wz; S z;. Then (21 —ww*z1) N (z1 —w*wz;) # {0} must hold. Hence, there exists
x € N(A) such that (21 —ww*z1)z(z1 —w*wz1) # 0. Observe that z; € Z(N) C A/NM = Z(A).
Thus, the first part (dealing with the v) shows that wg := (21 — ww*z1)z(z1 — w*wz1) € N is a
new nonzero partial isometry such that wjwg € Z(A4)(z1 — w*wz1), wowg € Z(A)(z1 — ww*z1),
woAwi = Awow(y and wiAwy = Awgwy, a contradiction due to the maximality of the family
(w;)i. Hence, w*wz; = 21 (and ww*z; S 21). Thus, we have proved the claim. |

Write wy := wzg, k = 1,2,3. Observe that Z(N) ¢ A’ N M = Z(A) and hence each
wg, in place of w, satisfies (i)—(ii) in the above claim. We will first deal with w; when it is
nonzero. Set e; := z; — wiw] # 0 and e; := w’i_lelwi‘i_l, 1 = 2,3,.... Observe that all the
projections e, are in Z(A)zi, since Ad(wi)|as, defines a unital *-isomorphism between Az
and Awjw] with wijw] € Z(A). We claim that the projections e, are pairwise orthogonal.

P - R T L - o7 M50
Indeed, if i S j, we have 0 < e;e; = wi terw tw] teqwi’ ™ = wiH (eqw] Tew? Hwi! <

W (21 — wiwd) (wiwh))wi ™! = 0, so that e;e; = 0. We also claim that w fw} = f with f :=
21— p>1 en- Indeed, wy fw] = wiwi =3 oen = 21— (z1—w1w]) =D so€n = 21— 51 €n = [
Put wy(n) := wl(Z?;ll ei) +wf”*16n+zi>n+1 ei+wi f+(p—z1). Clearly, all the elements wy (n)
are in Nparp(Ap) and wi(n)z1 = zywi(n) converges to wy as n — oo and hence wy € Nparp(Ap)”.
Similarly, we can prove that wj € Npunp(Ap)”, implying that wo € Npap(Ap)”. Finally, it is
trivial that ws + (p — 23) € Npap(Ap), implying that ws € Nparp(Ap)”. Consequently, we have
v = vv*w = vv* (w1 + w2 + w3) € Npup(Ap)”. Hence, we are done. O

We point out that we do not need to assume the inclusion A C M to be with expectation in
Proposition 2.3.
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Popa’s intertwining techniques
To fix notation, let M be any o-finite von Neumann algebra, 14 and 1 any nonzero projections
in M and A C 14M14 and B C 1gM1p any von Neumann subalgebras. Popa introduced his
powerful intertwining-by-bimodules techniques in [Pop06a] in the case when M is finite and
more generally in [Pop06b] in the case when M is endowed with an almost periodic faithful
normal state ¢ for which 14 € M¥, A C 14M¥14 and 13 € M¥, B C 1gM¥1p. It was shown
in [HV13, Ued13] that Popa’s intertwining techniques extend to the case when B is finite and
with expectation in 1gM1pg and A C 14M1 4 is any von Neumann subalgebra.

In this paper, we will need the following generalization of [PopO6a, Theorem A.1] in the case
when A C 14M14 is any finite von Neumann subalgebra with expectation and B C 1gM1p is
any von Neumann subalgebra with expectation.

THEOREM 2.4 [HI17, Theorem 4.3]. Let M be any o-finite von Neumann algebra, 14 and 1 any
nonzero projections in M and A C 14M14 and B C 1gM1p any von Neumann subalgebras with
faithful normal conditional expectations E4 : 14M14 — A and Eg : 1M 15 — B, respectively.
Assume moreover that A is a finite von Neumann algebra.

Then the following conditions are equivalent.

(1) There exist projections e € A and f € B, a nonzero partial isometry v € eM f and a unital
normal x-homomorphism 60 : eAe — fBf such that the inclusion 0(eAe) C fBf is with
expectation and av = vf(a) for all a € eAe.

(2) There exist n > 1, a projection q¢ € M,,(B), a nonzero partial isometry v € My ,(14M)q
and a unital normal *-homomorphism w: A — ¢M,(B)q such that the inclusion 7(A) C
gM,,(B)q is with expectation and av = vr(a) for all a € A.

(3) There exists no net (w;);cy of unitaries in U(A) such that lim; Eg(b*w;a) = 0 o-strongly for
all a,b € 14M1p.

If one of the above conditions is satisfied, we will say that A embeds with expectation into
B inside M and write A <; B.

Moreover, [HI17, Theorem 4.3] asserts that when B C 1pM1p is a semifinite von Neumann
subalgebra endowed with any fixed faithful normal semifinite trace Tr, then A <;; B if and
only if there exist a projection e € A, a Tr-finite projection f € B, a nonzero partial isometry
v € eM f and a unital normal *-homomorphism 6 : eAe — fBf such that av = vf(a) for all
a € eAe. Hence, in that case, the notation A <;; B is consistent with [Ued13, Proposition 3.1].
In particular, the projection ¢ € M,,(B) in Theorem 2.4(2) is chosen to be finite under the trace
Tr ® try,, when B is semifinite with any fixed faithful normal semifinite trace Tr. We refer to
[HI17, § 4] for further details.

Remark 2.5. Keep the notation of Theorem 2.4.

(1) Proposition 2.2 gives the following useful additional facts to Theorem 2.4: the inclusions
eAevv* C vv*Mov* and O(eAe) v v C v*'vMv*v in (2) are also with expectation. Likewise, the
inclusions Aww* C ww* Mww* and 7(A)w*w C w*wM,, (M )w*w in (3) are also with expectation.

(2) Assume that there exist £ > 1 and a nonzero partial isometry u € M (M) such that
uu* € A N14M1,4 and v*Au =My (M) My (B). Then A <j; B holds. Indeed, there exist n > 1,
a projection ¢ € M, (My(M)), a nonzero partial isometry w € My ,(u*uMy(M))g and a unital
normal x-homomorphism 7 : u*Au — gM,,(My(B))q such that the unital inclusion m(u*Au) C
gM,,(My(B))q is with expectation and yw = wn(y) for all y € u* Au. Define the unital normal
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x-homomorphism ¢ : A - u*Au : a — u*au. Then a simple computation shows that auw =
ww (m o t)(a) for all a € A, where uw € My ,,(1aM)q and vw # 0, To ¢ : A — ¢M,,(B)q
is a unital normal *-homomorphism and the unital inclusion (7 o ¢)(A) C gM,k(B)q is with
expectation. Therefore, we obtain A <;; B.

We are also going to use the following useful technical lemma. This is a generalization of
[Vae08, Remark 3.8].

LEMMA 2.6. Keep the notation of Theorem 2.4. Let B C P C 1pM1p be any intermediate
von Neumann subalgebra with expectation. Assume that A <j; P and A ﬁM B.

Then there exist k > 1, a projection ¢ € My(P), a nonzero partial isometry w € My 1,(14M)q
and a unital normal x-homomorphism 7 : A — qMy(P)q such that the unital inclusion
m(A) C qM(P)q is with expectation, 7(A) Zm,(p) Mi(B) and aw = wr(a) for all a € A.

Proof. Since A <) P, there exist k > 1, a projection ¢ € My (P), a nonzero partial isometry
w € My (1aM)g and a unital normal *-homomorphism 7 : A — ¢My(P)q such that the
unital inclusion m(A) C ¢My(P)q is with expectation and aw = wm(a) for all a € A. We have
w*w € w(A)' N gMy(M)q. Following [Vae08, Remark 3.8], denote by ¢y the support projection
(belonging to ¢My(P)q) of the element Egny, (pyq(w*w) and observe that go € 7(A) NgMy(P)gq.
Observe that Eqn, (p)g((¢ — go)w*w(q — qo)) = 0 and hence w(q — qo) = 0, that is, w = wqp.
Thanks to Proposition 2.2, replacing ¢ and 7 with ¢p and 7(-)qo, respectively, we may assume
without loss of generality that ¢ is equal to the support projection of the element Egyy, ( p)q(w*w).

We claim that we have m(A) An,(p) Mgp(B). Indeed, otherwise there exist n > 1, a
projection r € M,,(My(B)), a nonzero partial isometry v € M ,,(¢My(P))r and a unital normal
s-homomorphism 60 : w(A) — rM,(Mg(B))r such that the unital inclusion (6 o 7)(A) C
rM,, (My(B))r is with expectation and bu = uf(b) for all b € m(A). We moreover have
awu = wu (0 orm)(a) for all a € A. Observe that wu # 0. Indeed, otherwise we have wu = 0
and hence

Enm, (p) (W w)u = En, (v, (p)) (W' wu) = 0.

Since ¢ is equal to the support projection of the element E,ng, (pyq(w*w) and since
u € My ,(gMg(P))r, this implies that gu = 0 and hence v = 0, which is a contradiction.
Therefore, we have wu # 0 and hence A <j; B, which is a contradiction. Consequently, we
obtain w(A) Am, p) Mi(B). 0

We point out that when P C 1pM1p is a semifinite von Neumann subalgebra endowed with
a faithful normal semifinite trace Tr, we may choose the nonzero projection ¢ € My(P) appearing
in Lemma 2.6 to be of finite trace with respect to the faithful normal trace Tr ® trg.

Amalgamated free product von Neumann algebras

Let I be any nonempty set and (B C M;);c; any family of inclusions of o-finite von Neumann
algebras with faithful normal conditional expectations E; : M; — B. The amalgamated free
product (M,E) = g ;cr(M;,E;) is the unique pair of von Neumann algebra M generated by
(M;)ier and faithful normal conditional expectation E : M — B such that (M;);cr is freely
independent with respect to E:

E(xy---x,) =0 whenever a:jEMioj, Uy eveyin €1 and iy #£ -+ # iy,

Here and in what follows, we denote M; := ker(E;). We call the resulting M the amalgamated
free product von Neumann algebra (abbreviated to AFP von Neumann algebra) of (M;, E;)icr
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over B. We refer to the product 1 - - - z,, where x; € Mic;_, i1y...,0inp € T and i1 # -+ # iy, as a
reduced word in M --- My of length n > 1. The linear span of B and of all the reduced words
in M --- M7, where n > 1, i1,...,i, € I and i1 # -+ # ip, forms a unital o-strongly dense

x-subalgebra of M.

When B=C1, E; = p;(-)1 for all i € I and E = ¢(-)1, we will simply write (M, ¢) = ;e (M,
;) and call the resulting M the free product von Neumann algebra of (M;, ¢;)icr-

When B is a semifinite von Neumann algebra with faithful normal semifinite trace Tr and
the weight Tr o E; is tracial on M; for every i € I, the weight Tr o E is tracial on M (see [Pop93,
Proposition 3.1] for the finite case and [Ued99, Theorem 2.6] for the general case). In particular,
M is a semifinite von Neumann algebra. In that case, we will refer to (M, E) = xp ;cr(M;, E;) as
a semifinite amalgamated free product.

Let ¢ € B, be any faithful state. Then, for all t € R, we have JfOE = *iGIUfOEi (see [Ued99,
Theorem 2.6]). By [Tak03, Theorem IX.4.2], for every i € I, there exists a unique poE-preserving
conditional expectation Eyy, : M — M;. Moreover, we have Epy, (z1 - - - ) = 0 for all the reduced
words 7 -+ -z, that contain at least one letter from M7 for some j € I'\{i} (see e.g. [Uedll,
Lemma 2.1]). We will denote M & M; := ker(E;z,). For more on (amalgamated) free product
von Neumann algebras, we refer the reader to [BHR14, Pop93, Ued99, Uedl1, Ued13, Voi85,
VDN92].

The next lemma is a variant of [HU16, Lemma 2.6].

LEMMA 2.7. For each i € {1,2}, let B C M; be any inclusion of o-finite von Neumann algebras
with faithful normal conditional expectation E; : M; — B. Denote by (M,E) = (M, Eq) *p (Mo,
Eg) the corresponding amalgamated free product.

Let ¢ € M, be any faithful state such that ¢ = 1oEyy, . Let (u;)jes be any net in Ball((M;)?)
such that lim; E;(b*uja) = 0 o-strongly for all a,b € M. Then, for all x,y € M, we have
lim; Epr, (y*ujz) = 0 o-strongly.

Proof. We first prove the o-strong convergence when x,y € My U MMy --- M35 M are words of
the form o = ax’c or x = a and y = by'd or y = b with a,b,¢,d € My and 2/,y' € Mg --- M3. By
free independence, for all j € J, we have

Ea, (d*y™* E1(b*uja) 2’c) (= ax'c,y = by'd),
Fas, (v 7) En, (d*y™)Eq1 (b uja) (x = a,y = by'd),

Ei(b*uja)En,(2'c) (x = ax’c,y = b),

Ei(b*uja) (r=a,y=0>

Since lim; E; (b*uja) = 0 o-strongly, we have lim; Ep, (y*ujz) = 0 o-strongly.

We combine now the same pattern of approximation as in the proof of [HU16, Lemma 2.6]
with a trick using standard forms as in the proof of [HU16, Theorem 3.1]. Namely, we will work
with the standard form (M, L2(M), JM M) and denote by ey, the Jones projection determined
by Ejps,. Choose a faithful state ¢ € M, with ¢ = ¢ o E. Denote by &,,&; € PM the unique
representing vectors of ¢, 1, respectively. Observe that ¢ = poE, and hence ey, €, = Enr, (7)€,
holds for every x € M (though we do not have ey, &y = E,(x)&y). The rest of the proof is
divided into three steps.

(First step.) We first prove that lim; [[ens,y*u;é|lr2(ar) = 0 for any § € L2(M) and any word
y € My UM Ms - M3$M,. Indeed, we may choose a sequence (z)i, where each xy is a finite
linear combination of words in My U My Mg --- M3 M, and such that £ — zx&y|lr2a) — O as
k — oo, since those linear combinations of words form a o-strongly dense x-subalgebra of M.
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Then, for all j € J and k € N, we have

lerny wi€llizan < lleany™wzréollrzan + lleany ™ ui(§ — xo)llr2(an)
< B, (Y ujze)ollizan + llooll§ — 2u€ollLz(ar)-

The first part of the proof implies that limsup; [leany wiéllizarn < |Yllooll§ — T llL2(ar) for all
k € N and hence lim; [|enr, y*u;€||r2(ar) = 0.

(Second step.) We next prove that lim; |lerny ujzéyllr2(ary = 0 for any analytic element
x € M with respect to the modular automorphism group ¢¥ and any element y € M. Indeed,

we may choose a sequence (yi)r, where each yj is a finite linear combination of words in M; U
My Mg -+ - M3 My, and such that limg o |y*€y — Yi€pllrz(ar) = 0. Then, for all j € J and k € N,

we have
lerny™ ujayllzoan < lleanyipuzéyllizan + lleas (Y — yi)ujzéyllLz
< lleanyruieéypllizary + 11" — yi)wizsy Lz an
= [lerpyruzéyllLzoan + ||JMU$2(CC)*U§JM(?J*€¢ — o) llL2 ()
< llemsyruzé Lz + Ha%(:r)HooHy*&w — yp&ollrz (s

since u;j € (Mp)¥. The first step implies that lim sup; lerny uirsyllizar < |]0i1§2($)||00||y*§¢ -
Yr€yllrz(an for all k € N and hence lim; |lear,y*u;x€ypllr2(ar) = 0.

(Final step.) We finally prove that lim; |Eaz, (y*u;7)8sll12(ar) = 0 for any elements z,y € M.
Indeed, we may choose a sequence (xy)r in M of analytic elements with respect to the modular
automorphism group o¥ such that limy_, o [|2€, —xk€pllr2(ar) = 0. Then, for all j € J and k € N,
we have

1B, (Y u2)EollLe(ar) = llerny™wizéollz(an
< leany ujznpllzany + lleany uj(@€y — xréy) L2
< leany™ uizeépllLzny + [Yllooll2€e — Tu€pllLzar)-

The second step implies that limsup; [Eas, (v ujz)éollizan < Ylleollzée — zk€yllrz(ar for all
k € N and hence lim; [|[Eps, (y*u;7)€p |12y = 0. Hence, we are done. O

The next lemma will be used in the proof of the main theorem. This can be regarded as a
variant of [Pop83, Corollary 4.3], [Ge96, Lemma 5.1] (in the tracial case), [Ued01, Proposition 6]
(in the nontracial case) and also part of [[PP08, Theorem 1.1] (in the tracial amalgamated free
product case).

LEMMA 2.8. For each i € {1,2}, let (M;,;) be any o-finite von Neumann algebra endowed
with any faithful normal state. Denote by (M, ) = (M, ¢1) * (Ma, p2) the corresponding free
product.

Let 19 € M be any nonzero projection and (Q C 1gMilg be any diffuse von Neumann
subalgebra with expectation. Let n > 1. If a partial isometry v € M;j (M) with vv* € @ or
w* € Q' N1gMlg satisties v*Qu C My, (Ma), then 1gv = 0. In particular, when vv* € Q, we
have v = 0.

Proof. When vv* € @, replacing @) with vv*Quv* we may and will assume that vv* = 1. Hence,

since vv* = 1g € Q or vv* € Q' N1gM1g, we may think of the map Q — M, (Ms) :  — v*zv
as a normal (nonunital) *-homomorphism.
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Since Q@ C 1gMilg is with expectation, we may choose a faithful state 1 € M, such that
Y =1voEy, lg € (M), Q C 1gM1g, is globally invariant under the modular automorphism
group o¥@ and Q¥Q C 1g(M;)¥1g is diffuse, where ¥g = ¥(1g - 1g)/¥(1g). See e.g. the proof
of [HU16, Lemma 2.1].

Write v = [vy - - - vp,] € My (M) and denote by tr,, the canonical normalized trace on M,,(C).
Since Q%@ is diffuse, we can choose a sequence of unitaries (uy)g in U(Q¥?) with limy_, oo u = 0
o-weakly. By Lemma 2.7, we have

n
. 2 . 2
klggo HEMn(Mz)(U*ukv)Hgo@trn = klirgo Z 1Es (’U;'kukvj)Hcp = 0.

2,7=1
Since v*uiv € U(v*Qv) C My (Ms), we have
[0 1Qullpete, = lv urv v 1Qull e, = v urvllegi, = [IEm, (1) (0 ur0) [ o@tr, — 0
as k — oo, implying that 1gv = 0. O

We point out that the above way of proof is applicable even to amalgamated free products
over nontrivial subalgebras under suitable assumptions. Similarly, the same can be said about
[HU16, Proposition 2.7].

Ultraproduct von Neumann algebras
Let M be any o-finite von Neumann algebra and w € §(IN)\N any nonprincipal ultrafilter. Define

Z,(M) = {(zn)n € (N, M) : z, > 0 *-strongly as n — w},
MY (M) = {(zp)n € L°(N, M) : ()0 Lo(M) C Z,(M) and Z,(M) (2n)n C Z,(M)}.

The multiplier algebra M“(M) is a C*-algebra and Z,(M) C M“(M) is a norm closed two-
sided ideal. Following [Ocn85, §5.1], we define the ultraproduct von Neumann algebra M*“ by
MY == M“(M)/Z,(M), which is indeed known to be a von Neumann algebra. We denote the
image of (zy,), € M“(M) by (x,)* € M¥.

For every x € M, the constant sequence (x)y, lies in the multiplier algebra M“(M). We will
then identify M with (M +Z,(M))/Z,(M) and regard M C M* as a von Neumann subalgebra.
The map E,, : MY — M : (z,)* — o-weak lim,,_,, ,, is a faithful normal conditional expectation.
For every faithful state ¢ € M,, the formula ¢* := @ o E,, defines a faithful normal state on MY.
Observe that ¢*((z,)¥) = limp— @(xy,) for all (z,)* € M“.

Following [ConT74, §2], we define

My (M) = {(xn)n € (N, M) : lim [l — pay|| = 0,Yp € M*}.

We have Z,(M) C My(M) C M“(M). The asymptotic centralizer M,, is defined by M, :=
My,(M)/Z,(M). We have M,, C M¥. Moreover, by [Con74, Proposition 2.8] (see also [AH14,
Proposition 4.35]), we have M, = M’ N (M%)¥" for every faithful state ¢ € M,.

Let @ C M be any von Neumann subalgebra with faithful normal conditional expectation
Eg: M — Q. Choose a faithful state ¢ € M, in such a way that ¢ = ¢ 0o Eg. We have {*°(N, Q) C
(>*(N, M), 7,(Q) C Z,(M) and M¥(Q) C M¥(M). We will then identify Q¥ = M“(Q)/Z.,(Q)
with (M“(Q) +Z,(M))/Z,(M) and be able to regard Q“ C M“ as a von Neumann subalgebra.
Observe that the norm || - [[(,),)« on Q¥ is the restriction of the norm |[| - [[,« to Q. Observe
moreover that (Eq(zn))n € Zo(Q) for all (zy,), € Zo,(M) and (Eg(xn))n € MY(Q) for all
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(xn)n € MY(M). Therefore, the mapping Ege : M“ — Q¥ : (x,)* — (Eg(xy))* is a well-defined
conditional expectation satisfying ¢“ o Egw = ¢*. Hence, Egw : M* — Q% is a faithful normal
conditional expectation. For more on ultraproduct von Neumann algebras, we refer the reader
to [AH14, Ocn85].

We give a useful result showing how Popa’s intertwining techniques behave with respect to
taking ultraproduct von Neumann algebras.

PROPOSITION 2.9. Let M be any o-finite von Neumann algebra, 14 and lp any nonzero
projections in M and A C 14M14 and B C 13M1p any von Neumann subalgebras with faithful
normal conditional expectations Eq : 1,M14 — A and Eg : 1gM1p — B, respectively. Assume
moreover that A is a finite von Neumann algebra.
Let w € B(N)\N be any nonprincipal ultrafilter. Define AY C (14M14)* = 1,M%“14 and
BY C (1BMlB)w =1pM%“1p. If A¥ <je BY, then A < B.
Proof. The proof uses an idea of [loal5, Lemma 9.5]. Choose a faithful state ¢ € M, in such a
way that 1p € M?¥ and ppoEp = ¢p with ¢p := ¢(1p - 15)/¢(1p). Assume that A <ps. BY.
By Theorem 2.4, there exist § > 0 and a finite subset F C 14M“1p such that
> |Eps (b ua)||Ze >, Vu € UA). (2.1)
a,beF
For each a € F, write a = (ay)* with a fixed sequence (ay), € 1La4M“(M)1p.
We next claim that there exists n € N such that
> Epe(bhuan)|2e =6, Vu € UAY). (2.2)
a,beF

Assume by contradiction that this is not the case. Then, for every n € N, there exists u,, € U(A“)
such that

> Ege (Bunan)|%e < 6.

a,beF
(n) (n)

Since A is a finite von Neumann algebra, we may write u,, = (uy’)* with a sequence (uy,’ )m €

(N, A) such that u)}, € U(A) for all m € N. Then we have
lim Y |[Ep(buan)||2 <
Y e

for all n € N. Thus, we may choose m,, € N large enough so that v, := uq(m € U(A) satisfies

Z HEB(bZUnan)HZ, < 6.
a,beF
Since A is finite, we may define v := (v,)¥ € U(A¥) and we obtain
> |Eps(b™va)|2e = lim > IEsb)vnan)ll2 < 6. (2.3)
a,beF a,beF

Equations (2.1) and (2.3) give a contradiction. This shows that (2.2) holds. Therefore, up to
replacing the finite subset F C 14,M¥1p with {a, : a € F} C 14M1p, we may assume that
F C14M1p in (2.1). In particular, we obtain

> IEs(rua)|2 =6, VuecU(A).
a,beF
This finally implies that A <p; B. |
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3. A characterization of von Neumann algebras with property Gamma

In this section, we generalize Popa’s characterization of property Gamma for tracial
von Neumann algebras (see [Oza04, Proposition 7] with Ny = M) to arbitrary von Neumann
algebras. This generalization is an unpublished result due to Houdayer—-Raum, which they
obtained through their recent work [HR15].

THEOREM 3.1. Let M be any diffuse von Neumann algebra with separable predual and w €
B(N)\N any nonprincipal ultrafilter. The following conditions are equivalent.

(i)

(ii) The asymptotic centralizer M, is diffuse.

(iii) There exists a faithful state 1 € M, such that M’ N (M¥)“ is diffuse.
)

(iv

The central sequence algebra M' N MY is diffuse.

There exists a decreasing sequence (Ay,), of diffuse abelian von Neumann subalgebras of
M with expectation such that M = \/ n((An) N M).

Proof. Let z, € Z(M) be a sequence of central projections such that ), 2z, = 1, Mz has a
diffuse centre and Mz, is a diffuse factor for all & > 1. The equivalences (i) < (ii) < (iii) &
(iv) are all obvious for Mz, since all conditions actually hold true. Indeed, in order to obtain
(iv), observe that it suffices to take A, = Z(Mzy) for every n € N. It remains to prove the
equivalences for each Mz, with k > 1. Therefore, in order to prove the result and without loss
of generality, we may assume that M is a diffuse factor.

(i) = (ii) (cf. [HR15, Corollary 2.6].) Fix a faithful state ¢ € M,. By [Con74, Proposition 2.8]
(see also [AH14, Proposition 4.35]), we have M, = M’ N (M%)¥". Then M,, is diffuse by [HR15,
Theorem 2.3] (see also [Con74, Corollary 3.8]).

(ii) = (iii) Fix a faithful state ¢ € M,. Since M’ N (M%)¥" = M, is diffuse, we may choose
a projection e € M,, such that ¢“(e) = 27!, Since M is diffuse, we may write e = (e,)¥ with
a sequence of projections (e,), € M¥(M) such that ¢(e,) = 27! for all n € N (see [HR15,
Proposition 2.2]). Observe that o-weak lim,,_,, e, = 271 ,, since M is a factor. Fix a countable
|| - || o-dense subset Y = {y, : n € N} C M.

Since e € M, = M' N (M*“)¥”, there exists n € N large enough so that the projection
po = en € M satisfies p(po) = 27", [lyopo — povoll, < 271 and [lgpo — pogl < 271 Next,
epo € (M' N M“)py C (poMpo)® is a projection satisfying ¢ (epg) = lim, . p(enpo) = 272
because o-weak lim,,_,,, e, = 2717. Since pgMpg is diffuse, we may write epy = (r,)” with a
sequence of projections (ry,), € M%(pgMpg) such that ¢(r,) = 272 for all n € N. Likewise, we
may write epg- = (s,)* for a sequence of projections (s,,), € M*(pg Mpg) such that ¢(s,) = 272
for all n € N. Observe that e = epy + epy = (rn + 8,)% € M’ N (M*)¥". Then there exists
n € N large enough so that p; := 7, + s, satisfies o(p1) = 271, pop1 = p1po, @ (Pop1) = 272,
lysp1 — prysll < 272 for all 0< j < 1 and lops — proo]l < 272

Repeating the above procedure, we construct by induction a sequence of projections (py)n
in M satisfying the following properties.

(P1) @(py) =2"!forall n € N.

(P2) PjPn = pppj for all j,n € N.

(P3) @(pi, ---pi,) =277 for all r > 1 and all r-tuples (i1, ...,4,) of pairwise distinct integers.
(P4) |lyjpn — Puyjll, < 27+ for all 0 < j < n.

(P5) lepn — pagpll <270 for all n € N.
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It follows that (p,), € MY (M) and p := (p,)* € M’ N (M¥)%" satisfies p*(p) = 271

For each pair 0 < m < n, put @, = ij,...,jne{l,J_} P - pit o pi -+ - it € M, and observe
that ¢, is a faithful normal state. For any pair 0 < m < n, using the triangle inequality with
(P2) and (P5), we have

Jn+1 Jn+1

”Spm,n - Spm,nJrlH < H(P - Z Pn+1 PPnr1
Jn+1€{1,1}

<2 ”Qpanrl _anrlSOH < 2—(n+1)'

This implies that for each m € N, the sequence (¢ n)n is Cauchy and hence convergent in M.
Put ®,, = lim;,—, o0 Ym,n € My and observe that ®,, is a normal state. We moreover have

[ — Pl

lle — Pm,n | + ||90m,n — |
2 H‘Ppm _pmSOH + Z ”Som,n - Spm,n—&-lH

n=m

g 27m + Z 27(n+1) — 27(7}’171).

n=m

<
<

This implies that lim,,_ o @, = ¢. Observe that &, p, = pn P, for all 0 < m < n.

We next claim that ®,, is a faithful normal state for all m € N. Indeed, fix m € N and
let z € M™* be such that ®,,(z) = 0. We prove by induction over n > m that ®,(z) = 0.
By assumption, we have ®,,(z) = 0. Assume that ®,(x) = 0 for some n > m. Observe that
0= ®,(x) = ®py1(puapn +prap;). Denote by ¢ € M the support of the normal state ®,,,1. We
have gp,xprqg =0 = qp#xpﬂ;q. This implies that 2'/2p,qg = 0 = xl/zpf;q and hence z'/2¢ = 0,
that is, gxq = 0. Thus, ®,1(x) = 0. Therefore, we have &, (z) = 0 for all n > m and hence
o(x) = limy, 00 @n(x) = 0. Since ¢ is faithful, we obtain z = 0. This shows that ®,, € M, is
faithful for every m € N.

Letting 1 := ®q, we have p, € MY for all n € N and hence p = (p,)* € M’ N (M¥)~. Since
©*(p) = 271, we have p # 0, 1. This implies that M’ N (M¥)% is diffuse. Indeed, proceeding as in
the proof of [Con74, Corollary 3.8], let f € M’ N (M¥)“ be any projection such that ¥ (f) = A
with A # 0, 1. Write f = (f,)“, where f, € MY is a projection for every n € N. Observe that since
M is a factor, we have o-weak lim,_,., fr, = Alps. We can construct by induction an increasing
sequence of integers k, € N satisfying the following properties.

(P1) [(fufr,) = Mp(fu)l < (n+1)7" for all n € N.
(P2) | fafrn — frnfully < (n+1)7! for all n € N.
(P3) 1y)frn — frayilly < (n+1)"" forall 0 < j < n.
It follows that 7 := (f,fx,)* € M' N (MY)¥ is a projection satisfying » < f and ¥(r) = \2.
This shows that f € M’ N (MY)® is not a minimal projection and hence M’ N (MY¥)* is diffuse.
(iii) = (iv) The proof of this implication is entirely analogous to the one of [Oza04,
Proposition 7] with Ay = M, but we give the details for the sake of completeness. Fix a countable
| - ||ly-dense subset Y = {y,, : n € N} C M. Since M’ N (M%)~ is diffuse (note that MY is
also diffuse), the proof of (ii) = (iii) shows that we can construct by induction a sequence of
projections p, € MY satisfying the following properties.

(P1) (pn) =27 " for all n € N.

(P2) p;pn = pup; for all j,n € N.

(P3) (psy -+ -pi,) =277 for all r > 1 and all r-tuples (i1,...,i,) of pairwise distinct integers.
(P4) |lyjpn — puyjlle <27+ for all 0 < j < n.

2474

https://doi.org/10.1112/50010437X16007673 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X16007673

RIGIDITY OF FREE PRODUCT VON NEUMANN ALGEBRAS

For each k € N, define Dy, := CpkEBCpé. For each pair 0 < m < n, define A, ,, := vmgkgn Dy,
and A,, := \/mgk Dy = \/mgn Ay,. Observe that A, ,, Ap, C MY for all 0 < m < n. We also have
that (A,,)m is a decreasing sequence of diffuse abelian von Neumann subalgebras of MY by
(P2) and (P3). Fix j € N and let n > m > j. Whenever C' C M is a von Neumann subalgebra
globally invariant under the modular automorphism group ¥, denote by Elé : M — C the unique
y-preserving conditional expectation. We have A, 41 = Ay V Dpp1 C M v EY

(Amnt1)'NM —
El(pAm,n)’mM o EEpDHl)’mM (see e.g. [Pop83, Lemma 1.2.2]) and

Byt W)l = IECs, yons (B, e () = 93)ls

<IE{, ., yons @) = il
< 2||pnt1ys — Yipnaafly < 27D,

¥
”E(Am’nﬂ)/mM(yj) -

By [Pop81, Lemma 1.2 1°], we have ||y; —E?Am),mM(yj)Hw =limp o [|y; _E?Am,n)'mM(yj)”ib and
hence

195 = B yens @)l =i s = EC, e (0 o

<Ny =By, yomr @l + D MG yenr @) = Bla, o @)l

n=m
< 2lpmy; — yipmlly + IIE?AmmH)/HM(yj) — Bl o)l

n=m

<2 427 m = 9= (m=1)

It follows that lim,, ||y; — E?}Am)’ﬁM(yj)Hd’ =0 for all j € N. Since Y C M is | - ||4-dense, this

implies that lim,, ||y — El(pAm),mM(y)Hw =0 for all y € M and hence M =/, .n((4,) N M).
(iv) = (i) For every n € N, choose a projection p, € A, C Ag such that ¢(p,) = 2%
Then p := (p,)* € M’ N M* and ¢*(p) = 2~*. Therefore, M’ N M* # C1 and hence M’ N M¥
is diffuse, since M is a factor (see e.g. [HR15, Corollary 2.6] or the final part of the proof of
(i) = (iii)). O

4. Structure of AFP von Neumann algebras over arbitrary index sets

In this section, we prove key results regarding the position of finite von Neumann subalgebras
with expectation and with either nonamenable relative commutant (see Theorem 4.4) or
nonamenable normalizer (see Theorem 4.6) inside arbitrary free product von Neumann algebras
over arbitrary index sets.

Semifinite AFP von Neumann algebras over arbitrary index sets
We will be using the following notation throughout this section.

Notation 4.1. Let I be any nonempty set and (B C M,;);cs any family of inclusions of semifinite
o-finite von Neumann algebras with faithful normal conditional expectations E; : M; — B,
where B has a faithful normal semifinite trace Tr such that Tr o E; is tracial on M; for
every i € I. Assume moreover that B is amenable. Denote by (M,E) = xpc1(M;, E;) the
corresponding semifinite amalgamated free product. For each nonempty subset G C I, put
(Mg,Eg) = *picg(M;, E;). By convention, put My := B. In this context, any trace means
(an amplification Tr, := Tr ® tr,, of) the trace Tr := Tro E or Tr o Eg.
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The next proposition will be used to reduce the problem of locating subalgebras inside
arbitrary semifinite amalgamated free product von Neumann algebras over arbitrary index sets

to finite index sets.

PropoOSITION 4.2. Keep Notation 4.1. Let p € M be any nonzero finite trace projection and
Q C pMp any von Neumann subalgebra. Assume that for any nonzero projection z € Q' NpMp

and any nonempty finite subset F C I, we have Qz <a Mxzc. Then Q is amenable.

Proof. The proof uses an idea due to loana. By contradiction, assume that Q is not amenable.
Up to cutting down by a nonzero central projection in Z(Q) if necessary, we may assume without
loss of generality that @ has no amenable direct summand and that for any nonzero projection
z € @' NpMp and any nonempty finite subset F C I, we have Qz <ys Mrc. By assumption and

using [HI17, Lemma 4.11], for every nonempty finite subset F C I, there exist nr >

trace projection gr € M, . (Mxc), a nonzero partial isometry wr € My, (pM)gr and a unital
normal *-homomorphism 7r : @ — ¢rM,, - (M re)qr such that awr = wrmr(a) for alla € Q and

limrwrwzs* =p=1g. Observe that wrwzs* € Q' NpMp and wr*wr € 7£(Q) NgrM,, .
Since mx(Q) has no amenable direct summand and B is amenable, we have mx(Q

M, (B) and hence [BHR14, Theorem 2.5] shows that wr*wr € ¢rM, (Mgec)qr for all F.
Thus, we may assume that ¢r = wr*wr € M, (Mze) for all F. It follows that wr*Qur C

Q]:Mn]_-(./\/l]:c) qr for all F.

Put M := M x5 M, where we regard the left-hand copy of M as the original M, and denote
by © € Aut(M) the free flip (trace- preserving) automorphism. Likewise, for every F, put Mz =
Mrxp Mg and denote by © r € Aut(M r) the free flip (trace-preserving) automorphism. Regard

Or € Aut(M) by letting @_7:|'MVFC = idﬂ}_c

, where M zec := M zexg Mxze. We have limr O r = ©

in Aut(Mv). Observe that since wr*Qur C grM,, . (M re)qr, we have (id,, ® O F)(wrawr) =

wr*awgr for all a € Q. Letting {7 := (id,» ® OF)(wr)wr*, for all a € Q, we have

Or(a)ér = Ox(a) (idn]_- & @f)(w;)w;*
= (idn}. & 9]:)(0,10]:)11)]:*
— (idny © ©5)(
= (idp, ® OF)(wr) (1dnf ®Or)(wrfawr) wr*
= (idp, ® O5)(wr) wrawr wr*
= (idn, ® OF)(wr)wr" a
=¢{ra.

Endow H := L2(Mv) with the M-M-bimodule structure given by z -7 -y := O(x)ny for all
r,y € M and all € L2(M). By construction and using [Ued99, § 2], there exists a B-B-bimodule

L such that we have
H = L*(M) ®p L ®p L*(M)

as M-M-bimodules. (Indeed, for any amalgamated free product (M, E) = (M1, Eq) xp (M2, E3),
we have L2(M) = L2(My) @ g K®@p L2(M;) as Ma-M;j-bimodules with K := L2(B) @ (L}(M?) ®p
L2(MS)) @ - & (L2(M?)®p --- @ L2(MS)) @ ---.) Since B is amenable, [Ana95, Lemma 1.7]
shows that the M-M-bimodule # is weakly contained in the coarse M-M-bimodule L?(M) ®
L2(M). This implies (see the proof of [CH10, Proposition 3.1]) that the pMp-pMp-bimodule

p-H - pis weakly contained in the coarse pMp-pMp-bimodule L?(pMp) @ L2(pMp).
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Regard £ € H and put nr:=p-&x-p € p-H - p. First, we have

InF —&xllz = [1©(p) EF — fsz (since nF = O(p) {F)
< [[(©(p) —Ox(p) Exllz  (since OF(p) §r = Erp = EF)
< [18() — Ox®)2 I€#]l
< |19(p) — Ox(p)ll2 = 0 as F — .

Then we have

1€x]I5 = Tr(wr (idny @ OF)(wrwr) wr")
= Trpz ((idny ® OF)(wr wr) wrwr)
=Tr, . (wrwr) (since wrwr € Mn]_-(_//\\/l/fc>)
= Tr(wrwr*) — Tr(p) as F — oo.

Since limg ||[nr — &x||2 = 0, this implies that lim £ ||nx||2 = ||p||2. For all x € pMp and all F, we
have

lz - nrll2 = 10(@)nrllz2 < 10@)|2 17l < |22

For every a € Q, we have

la-&r — &F - all2 = [|8(a) &7 — & a2
<[[(©(a) —O©x(a))Exll2  (since Of(a)r = EFa)
< [18(a) — ©x(a)ll2 [[EF] 0
< [|0(a) — Ox(a)ll2

and hence limr ||a-{x — &x - al|2 = 0. Since limg ||nr — 7|2 = 0, this implies that limr ||a - nr —
nr - all2 =0 for all a € Q. By Connes’s characterization of amenability [Con76] applied to the
finite von Neumann algebra Q and the net (nz)r in p-H - p (see also [loal5, Lemma 2.3]), it
follows that Q has an amenable direct summand, which is a contradiction. O

Relative commutants inside AFP von Neumann algebras
We begin by studying relative commutants inside semifinite amalgamated free product
von Neumann algebras.

THEOREM 4.3. Keep Notation 4.1. Let p € M be any nonzero finite trace projection and
Q C pMp any von Neumann subalgebra with no amenable direct summand and such that
Q' NpMp ﬁM B. Then there exists i € I such that Q <4 M;.

Proof. Since Q' N pMp £y B, we have (Q' N pMp)“ £, B by Proposition 2.9. Since
(@ NpMp)¥ € Q@ N (pMp)*, we also have Q' N (pMp)“ £ .. B*. For each nonempty finite
subset F C I, regard M = Mx xp Mxc. By [HU16, Corollary 4.2], for every nonzero projection
z € @ NpMp, we have Qz < Mx or Qz <p; Mxec. Since Q has no amenable direct summand,
there exist a nonzero projection z € @ N pMp and a nonempty finite subset F such that
Qz =am Mz by Proposition 4.2. Therefore, we have Q <y Mz. Put P := Q V (Q' N pMp).
Since Q A B, we also have that P < Mz by [BHR14, Proposition 2.7].

Then there exist n > 1, a finite trace projection ¢ € M, (M x), a nonzero partial isometry
w € Mj,(pM)g and a unital normal s-homomorphism 7 : P — ¢M,(Mr)g such that
aw = wr(a) for all a € P. Observe that ww* € P'NpMp = Z(P) and w*w € 7(P)' NgM,,(M)q.
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Since P has no amenable direct summand, we have 7(P) Zm, (m-) Mn(B). This implies that
w*w € gM,, (M x)q by [BHR14, Theorem 2.5] and hence we may assume that ¢ = w*w. We obtain
w*Pw C gM,, (M x)q. Observe that w* Quw and w*(Q'NpMp)w are commuting unital subalgebras
of w*Pw such that w*Qw has no amenable direct summand and w*(Q" N pMp)w An, (M)
M,,(B) by Remark 2.5(2) (recall that Q" N pMp Ay B). Observe that for each i € F,
w*Qw 2, (My) Mn(M;) leads to @ Zp M; by Remark 2.5(2). Therefore, we have shown
that in order to prove Theorem 4.3, we may assume that the index set I is finite.

When the index set I is finite, a straightforward induction procedure over k := |I| using a
combination of the above reasoning with [HU16, Corollary 4.2] proves the result. Indeed, assume
that the result is true for any set I such that |I| = k with & > 1. Next, let I be any set such that
|I| = k+ 1. Simply denote I = {1,...,k+1}. Regard M = Mz *3 M1, where F = {1,... k}.
The same reasoning as in the first paragraph above shows that Q <y Mx or Q@ <\ Mpgy1.
If Q Sy Mpyq, we are done. If Q <y Mx, the same reasoning as in the second paragraph
above shows that with letting P := Q V (Q' N pMp), there exist n > 1, a finite trace projection
q € M,,(Mr), a nonzero partial isometry w € My ,(pM)q and a unital normal *-homomorphism
7 : P — gM,(Mr)q such that aw = wr(a) for all a € P. We may moreover assume that w*w = q.
Then w*Qw and w*(Q' N pMp)w are commuting unital subalgebras of w*Pw such that w*Qu
has no amenable direct summand and w*(Q" N pMp)w Zm, (my) Mn(B). Using the induction
hypothesis, there exists i € 7 = {1,..., k} such that w*Quw =, (A1) Mn(M;). Then Q < M;
holds by Remark 2.5(2). This finishes the proof of the induction procedure and completes the
proof of Theorem 4.3. a

We now prove a general result locating finite subalgebras with expectation and with
nonamenable relative commutant inside arbitrary amalgamated free product von Neumann
algebras. This result will be used in the proof of the main theorem (cases (i) and (ii)).

THEOREM 4.4. Let I be any nonempty set and (B C M;);cr any family of inclusions of o-finite
von Neumann algebras with faithful normal conditional expectations F; : M; — B. Assume
moreover that B is amenable. Denote by (M, E) = xp jc1(M;, E;) the corresponding amalgamated
free product.
Let 14 € M be any nonzero projection and A C 14M 1 4 any finite von Neumann subalgebra

with expectation. Then at least one of the following conditions holds true.

e There exists i € I such that A <Xp; M;.

e The von Neumann subalgebra A’ N1,M1, is amenable.

Proof. Put A = A® C(1y; — 14) and denote by Ey: M — A a faithful normal conditional

expectation. Choose a faithful trace 7; € Ax and put ¢ = 77 0o E5. Observe that 14 € MY and
the von Neumann subalgebras A and A’ N 14M14 are globally invariant under the modular
automorphism group %4 of 4 := (14 - 14)/9(14).

Assume that A’ N 14M14 is not amenable. Observe that if A <; B, we are done. Hence,
we may further assume that A A5 B. Choose a nonzero central projection z € Z(A'N14M1y)
such that (A’ N 14M14)z has no amenable direct summand. Observe that z € M ¥ and the
von Neumann subalgebras Az and (A’ N 14M14)z are globally invariant under the modular
automorphism group %= of 1, := (2 - 2)/1(z). Then cy_((A’ N 14M14)z) has no amenable
direct summand by [BHR14, Proposition 2.8].

Fix a faithful state ¢ € B, and put B := c,(B), M := cuop(M) and M; = cyog, (M;) for
every i € I. Let ¢ € Ly(R) be any nonzero finite trace projection and put p := Il 4(g) and
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Q =11,y (gcy, (A’ N 14M14)z)q). Then Q C pMp has no amenable direct summand. Since
A Am B, we have Az Ay B by [HI17, Remark 4.2(2)]. By [HU16, Lemma 2.4], we obtain
I (my (Az)q) Zaa B. Since I, 4 (14 (Az)q) C Q' N pMp, we conclude that Q' NpMp A B.
By Theorem 4.3, there exists ¢ € I such that Q@ <3¢ M;. Since Q ﬁ/\/l B (recall that
¢y, ((A' N 14M14)z) has no amenable direct summand), we also have Q" N pMp <4 M; by
[BHR14, Proposition 2.7] and hence II, (7 (Az)q) =p M;. By [HU16, Lemma 2.4], this implies
that Az <j; M; and hence A <j; M; by [HI17, Remark 4.2(2)]. O

Normalizers inside AFP von Neumann algebras

We begin by studying normalizers inside semifinite amalgamated free product von Neumann
algebras. For a technical reason, we only deal with amalgamated free products of type Il
factors. This result will be sufficient for our purposes.

THEOREM 4.5. Keep Notation 4.1. Assume moreover that B is a diffuse subalgebra and Mg
is a type Il factor for every nonempty subset G C I. Let p € M be any nonzero finite trace
projection and A C pMp any amenable von Neumann subalgebra such that A A4 B. Put
Q = Npamp(A)” and assume that Q has no amenable direct summand. Then there exists i € I
such that Q <4 M,;.

Proof. For each nonempty finite subset F C I, regard M = Mz x5 Mxec. Let z € Q' NpMp be
any nonzero projection. Since M is a type Il factor and since B C M is a diffuse subalgebra
with trace-preserving conditional expectation, there exists u € U (M) such that uzu* € B. Since
the unital inclusion wAzu* C uQzu* is regular and since uAdzu* A m B by assumption (and
Remark 2.5(2)), we have uQzu* <y Mg or uQzu* <y Mzpe by Theorem A.4 (together with
the comment following it) and [BHR14, Proposition 2.7]. Accordingly, we have Qz <xf Mr or
Qz <pm Mge (by Remark 2.5(2)). Since Q has no amenable direct summand, Proposition 4.2
ensures that there exist a nonzero projection z € Q' NpMp and a nonempty finite subset F such
that Qz <y Mgx. Therefore, we have that Q <y Mr.

Then there exist n > 1, a finite trace projection g € M,,(M£), a nonzero partial isometry
w € M ,(pM)g and a unital normal x-homomorphism 7 : Q — ¢gM,(Myr)g such that
aw = wr(a) for all a € Q. Observe that ww* € Q' N pMp and w*w € 7(Q) N ¢gM,,(M)q.
Since Q has no amenable direct summand, we have 7(Q) Zwm, (Mm») Mn(B). Then [BHRI4,
Theorem 2.5] implies that w*w € ¢M,(Mx)q and hence we may assume that ¢ = w*w. We
obtain w*Qw C ¢M,,(Mx)q.

Since ww* € Q' NpMp, it follows that the unital inclusion w* Aw C w* Quw is regular, w*Quw
has no amenable direct summand and w* Aw £, (pm,) Mn(B) (by Remark 2.5(2) and A A B).
By Remark 2.5(2), w*Quw =, (m1,) Mn(M;) implies that Q@ < M; for every i € F. Therefore,
since M,,(Myg) is a type Il factor for every nonempty subset G C F and since M,,(B) is diffuse,
we have shown that in order to prove Theorem 4.3, we may assume that the index set [ is finite.

When the index set [ is finite, a straightforward induction procedure over k := |I| using a
combination of the above reasoning with the assumptions that Mg is a type Il factor for every
nonempty subset G C I and B is diffuse and with Theorem A.4 proves the result (see the last
paragraph of the proof of Theorem 4.3). O

We now prove a result locating certain finite subalgebras with expectation and with
nonamenable normalizer inside arbitrary free products of o-finite factors. This result will be
used in the proof of the main theorem (case (iii)).
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THEOREM 4.6. Let I be any nonempty set and (M;, p;)icr any family of o-finite factors endowed
with any faithful normal states. Denote by (M, @) = *;c1(M;, ¢;) the corresponding free product.
Let 14 € M be any nonzero projection and A C 14M 14 any amenable finite von Neumann
subalgebra with expectation such that A’ 14M14 = Z(A). Then at least one of the following
conditions holds true.
e There exists i € I such that A <Xp; M;.
e The von Neumann subalgebra Ni i ,(A)” is amenable.

Proof. Denote by R« the unique amenable type III; factor. Put B=Cly ® Roo, M =M% Ry
and E = p ® idr, and M; = M; ® Rs and E; = ¢; ® idgr_ for every i € I. We may and will
naturally regard the pair (M, E) as

(M, E) = *E,iEI(Mi’ El)

Observe that ]\Z = M;® Ry is a type III; factor for every ¢ € I. (This is well known
without explicit reference and can be confirmed by computing the (smooth) flow of weights; see
[CT77, Corollary 6.8].) For every nonempty subset G C I, Mg is a factor by [Ued11, Theorem
4.1] and hence Mg = Mg ® R is a type I1I; factor by the same reasoning as above.

Fix an irreducible type II; subfactor R C R with expectation (whose existence is explained
in e.g. [Haa86, Example 1.6]). Put A = (A & C(1y — 14)) ® R and denote by Ej: M- Aa
faithful normal conditional expectation. Choose a faithful trace 73 € A, and put ¢ =770E ;. We
will simply denote D := (14 ® 1g)A(14 ® 1) and 1p := 14 ® 1. Observe that D' N 1pM1p =
Z(D), the unital inclusion (N7, a1,(A)” @ C(1yr — 14)) ® Clg C M is with expectation and
also so is

NlAMlA(A)”®ClR = ID((NlAMlA(A)H @®C(ly —14))®Clg)lp C NIDMID(D)/I'

Moreover, we have 1 € M¥ and the von Neumann subalgebras D and N v (D)" are globally

invariant under the modular automorphism group o¥? of ¥p :=(1p - 1p)/¥(1p).
Observe that we have

Cyp (N

1pM1p (D)”) cN

Cyp

(1pMl1p) (C¢D (D))”

Indeed, let u € N1DJ\71D

uaf)D (u*)a = uol’bD (u*au) O‘Z/)D (u)* = uu*au Uf)D (u)* = auaf)D (u)*.

(D) and t € R. For every a € D, we have

This shows that uo}? (u)* € D' N 1pM1p = Z(D) and hence we have T (W) Ay () Ty, (1) €

Ty (Z2(D)) Ay (t). Therefore, we obtain that ¢y, (V) 77, (D)") C /\/% (cyp (D))" and

this inclusion is with trace-preserving conditional expectation.
Assume that Nj a1, (A4)” is not amenable. Observe that if A <); B, we are done. Hence,
we may further assume that A Ay B. Then NlD J\71D(D)H is not amenable (since it contains

N, (A)"® Clyg with expectation) and D A7 B by [HI17, Lemma 4.6]. Choose a nonzero

projection z € Z(NlDJ%D(D)N) such that NIDMID(D)//Z has no amenable direct summand.

Observe that z € MY, Dz C zM¥z and N 7. (Dz)" = NlD]/\ZlD(

the modular automorphism group 0¥+ of 1, = (2 - 2)/1(z). Then cy, (N 37,(Dz)") has no
amenable direct summand by [BHR14, Proposition 2.8].

,(1pM1p)

D)"z is globally invariant under
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Fix a faithful state x € (R )« and put B := ¢\ (B), M = c¢®X(M) and M; := c%@X(Z\Z)
for every ¢ € I. Observe that B C M is a diffuse subalgebra with trace-preserving conditional
expectation and Mg is a type Il factor for every nonempty subset G C I. Let ¢ € Ly(R)
be any nonzero finite trace projection. Put p := Il gy, (q) € M, A := Il gy (cy. (Dz)q) and
Q = Mygyp(gey, (N 7. (D2)")q). Since Dz C zM¥z and L(R) is a MASA in B(L2(R)), we
have cy_(Dz)" N c%(zﬂz) = Z(cy,(Dz)) and hence

4N, (o1 (€. (D2)))g = N,

qey, (zMz)q (cy. (Dz)q)"

by Proposition 2.3. Then we have Q = N,up(A)”, Q has no amenable direct summand and
A A B by [HU16, Lemma 2.4], since Dz fﬁ B. By Theorem 4.5, there exists i € I such that

A =< M;. Then [HU16, Lemma 2.4] shows that Dz <= M; and hence D < M;. Finally, [HI17,
Lemma 4.6] guarantees that A <p; M;. O

We point out that when dealing with tracial free product von Neumann algebras, Theorem
4.6 holds true for any family (M;, 7;);cr of tracial von Neumann algebras and any amenable von
Neumann subalgebra A C 14M1 4.

Relative property (T) subalgebras inside AFP von Neumann algebras
Recall from [Pop06a, Definition 4.2.1] that an inclusion of tracial von Neumann algebras A C N
with a faithful normal tracial state 7 is said to have relative property (T) if for every net
(®; : N - N);er of subtracial subunital completely positive maps such that lim; ||®;(z)—z||2 =0
for all z € N, we have
lim  sup [[®i(y) —yll2 =0.
v yeBall(4)

We begin by locating relative property (T) subalgebras inside semifinite amalgamated free

product von Neumann algebras. This is a semifinite analogue of [IPP08, Theorem 4.3].

THEOREM 4.7. Keep Notation 4.1. Let p € M be any nonzero finite trace projection and
A C pMp any von Neumann subalgebra with relative property (T). Then there exists i € I
such that A <xq M,;.

Proof. For each nonempty finite subset 7 C I, regard M = Mz x5 Mz and denote by Ep :
M — M £ the unique trace-preserving conditional expectation. Define the net ® x : pMp — pMp
of subtracial subunital completely positive maps by ® z(x) = pE - (x)p for all z € pMp. Observe
that limz || ®r(z) — z|j2 = 0 for all x € pMp.

By relative property (T) of the inclusion A C pMp, there exists a nonempty finite subset
F C I such that

IEats(w)ll2 = [IPEap (wpll2 = |02 (u)ll2 > 3llpl2, Yu € UA).

If A Ay Mg, then, by Theorem 2.4, there exists a net (u;)jes in U(A) with lim; [|Ex, (u;)]]2
= 0, contradicting the above inequality. Hence, we obtain A <4 M £.

If A< B, then A <4 M; for any i € I and we are done. If A A B, then Theorem 2.4
and Lemma 2.6 enable us to choose n > 1, a finite trace projection ¢ € M, (Mf), a nonzero
partial isometry w € M ,(pM)g and a unital normal *-homomorphism 7 : A — ¢M,,(Mr)q
such that 7(A) Zm, (M) Ma(B) and aw = wn(a) for all a € A. By [BHR14, Theorem 2.5], we
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have w(A) N ¢M,,(M)q = 7(A) N gM,,(Mx)q. Then we have w*w € w(A) N ¢M,,(Mx)q and
so we may assume that ¢ = w*w and w* Aw = 7(A) C ¢M,,(Mr)q.

By relative property (T) of the inclusion A C pMp and [PopO6a, Proposition 4.7], the unital
inclusion w* Aw C ¢M,,(M)q has relative property (T). Consider

My, (M) = (M, (8),ie7Mn (M) *,, (5) Mn(Mre).
Since A Aam B, we have w*Aw ZAm,(vm) Mn(B) by Remark 2.5(2). Since moreover w* Aw C
M, (M x)q, we have w* Aw £, (m) Mn(Mze) by Theorem 2.4 with the help of Lemma 2.7.
Since the unital inclusion w*Aw C gM,(M)g moreover has relative property (T), [BHR14,
Theorem 3.3] (whose proof works well for semifinite amalgamated free products of finitely many

algebras) shows that there exists i € F such that w* Aw =Zm, (vm) Ma(M;). By Remark 2.5(2),
this implies that A <4 M;. O

We point out that we do not need to assume B to be amenable in Theorem 4.7. We finally
deduce the following result that will be used in the proof of the main theorem (case (iv)).

THEOREM 4.8. Let I be any nonempty set and (B C M;);c; any family of inclusions of o-finite
von Neumann algebras with faithful normal conditional expectations E; : M; — B. Denote by
(M,E) = *picr(M;, E;) the corresponding amalgamated free product.

Let 1g € M be any nonzero projection and Q C 1oM1¢ any finite von Neumann subalgebra,
with expectation that possesses a von Neumann subalgebra A C @ with relative property (T).
Then there exists i € I such that A <y M;.

Proof. Put @ =Q®C(1y—1¢) and let E@ M — @ be a faithful normal conditional expectation.

Choose a faithful trace 5 € (@)* and put ¢ = TQ“OE@. Observe that 1g € MY and Q C 1QM’/’1Q.

Fix a faithful state ¢ € B, and put B := c,(B), M := cpor(M) and M; 1= cyor, (M;) for
every i € I. Fix a nonzero finite trace projection ¢ € Ly(R) and put p := IL, 4 (¢q) € M and
A =10, 4 (my(A)g) C pMp. Since the inclusion A C Q has relative property (T) and since

(I (my(A)g) C My p(my(Q)q)) = (A C Q)
and
A =1L, y(my(A)g) C Uy y(my(Q)g) C pMbp,

the inclusion A C pMp also has relative property (T). By Theorem 4.7, there exists i € I such
that A < M; and hence A <j; M; by [HU16, Lemma 2.4]. O

5. Proof of the main theorem

Assume that M and N are isomorphic and identify M = N. Note however that we cannot
identify ¢ with .

Fix an arbitrary ¢ € I. We first prove the following intermediate assertion.

(&) There exist j = a(i) € J, n; > 1 and a nonzero partial isometry v; € My, (M) such
that viv; € My, (N;), vju; € M; and v;Mv; C vjv;My,(Nj)vjvj. Observe that the unital
inclusion vjv*Mivjv;‘ C vjv;Mwv;v; is with expectation and hence so is the unital inclusion
v Mivj C vjv;My,, (M)vjv;. Therefore, the unital inclusion v;M;v; C vjv;My,(Nj)vjv; is with
expectation. When N is semifinite, we will be able to choose the partial isometry v; € My ,,; (M)
in such a way that viv; € My, (N;) has finite trace. This is because we are going to use Theorem
2.4 and show, as a crucial step, that A <;; IV; for a well-chosen finite von Neumann subalgebra
A C M; with expectation.

We will treat cases (i), (ii), (iii) and (iv) separately as follows.
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Case (i). Assume that M; is not prime. Hence, we may write M; = P; ® P, with diffuse factors
P, and P,. We may assume without loss of generality that P» is not amenable. Choose a faithful
state x1 € (P1)« such that (Pp)¥ is diffuse (see [HS90, Theorem 11.1]) and a faithful state
X2 € (P2)4, and put x = x1 ® x2. Observe that there exists a diffuse abelian von Neumann
subalgebra A; C (P;)X!, and put A = A; ® C1. Since P, is not amenable and since the unital
inclusion C1® P, C A'N M is with expectation (observe that C1® P, C M is with expectation),
A’'N M is not amenable either. By Theorem 4.4, there exists j = a(i) € J such that A <ps Nj.

There exist n; > 1, a projection g; € My, (IN;), a nonzero partial isometry v; € My, (M )
and a unital normal *-homomorphism 7 : A — ¢;M,;(N;)g; such that the unital inclusion
m(A) C ¢;My;(Nj)q; is with expectation and av; = vjm(a) for all a € A. By Proposition 2.2
(see Remark 2.5(1)), the unital inclusions Avjvi C vjviMuv;vi and viAv; = w(A)vjv; C
viv My, (M)viv; are with expectation. By [HU16, Proposition 2.7(2)], we have vjvf € A'NM =
A" M, viv; € My, (Nj) and v} (A" N M;)vj C vjo;My,; (Nj)viv;.

Observe that A’N M; = ((A1)' N P1) ® P,. By the same reasoning as in the proof of [HI17,
Lemma 4.13] and by Lemma 2.1, there exist nonzero projections p; € (A1)’ N (P)X* and
Py € (PQ)X2 such that pips 3 ’U] v} in A" N M;. Let u € A’ N M; be a partial isometry such
that uu* = pip2 and uw*u < vjv;. We have auv; = uv;m(a) for all @ € A and (uvj)(uv;)* =
uvjvju* = pip2 and (uv;)* (uvj) = viutuv; € M n; (Nj). So, up to replacing v; with uv;, we may
assume that v;v} = pips.

Observe that the unital inclusion paPepap; C p1pa2Mpips is with expectation and so is the
unital inclusion v} Pap1v; C vjv; My, (Nj)viv; (recall that vi(A" N M;)v; C viv; My, (Nj)viv)).
Then [HU16, Proposition 2.7(1)] shows that
)" N (v; M)

) Nvju; My, (M)v}
= (v} Pap1vj) N vju; My, (Nj)vjv;

C U;UjMnj (Nj)v;fvj.

v;‘-‘Plpgvj = (U;ngw]
(

= (vj Pyprv; vj

Since vaZv] = V] Pipavj Vv ijQplvj, we obtain v; M;v; C vjv]Mnj (N])vjv].

Case (ii). Assume that M; has property Gamma, that is, the central sequence algebra (M;)" N
(M;)¥ is diffuse. By Theorem 3.1, there exists a decreasing sequence (A,), of diffuse abelian
subalgebras of M; with expectation such that M; =/, ((A») N M;). Since M; is not amenable,
there exists n € N such that (A4,)" N M; is not amenable. Observe that (A,) N M; = (4,)' N M
by [HU16, Proposition 2.7(1)]. By Theorem 4.4, there exists j = a(¢) € J such that A, <y Nj.
There exist n; > 1, a projection ¢; € My,;(N;), a nonzero partial isometry v; € My, (M) and
a unital normal *-homomorphism 7 : A, — ¢; M, (N;)g; such that the unital inclusion 7(4,) C
qiM,,; (Nj)g; is with expectation and cw] =v;m(a) for all a € A,,. By [HU16, Proposition 2.7(2)],
we have v;v] € (4,)'NM = (An)'NM;, vjv; € My, (N;) and v} ((An) NM;)vj C vjvMy,, (Nj)viv;.
Observe that w(Ay) C m(Ay) is with expectation for every k > n (since A, is abelian). Hence, the
inclusion 7(Ax) C ¢; My, (N;)q; is with expectation for every k > n. As in the second paragraph
in case (i), we observe that v ((Ar)' N M;)vj C viviMy, (Nj)viv; for every k > n. Since M; =

Vopen((An)" N M;), we finally obtam vi Mivj C viv My, (N;)vjv;.

Case (iii). Assume that M, possesses an amenable finite von Neumann subalgebra A with
expectation such that A’ N M; = Z(A) and Ny, (A)” = M;. Since M; is not a type I factor,
it is easy to see that A is necessarily diffuse and hence [HU16, Proposition 2.7] shows that
ANM=AnM=2(A) and Ny(A)" = Ny, (A)” = M;. By Theorem 4.6, there exists

k3
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Jj = a(i) € J such that A <)y N;. Namely, there exist n; > 1, a projection gq; € M, (Nj),
a nonzero partial isometry v; € Ml,nj (M) and a unital normal *-homomorphism 7 : A —
q;M,,;(Nj)g; such that the unital inclusion w(A) C ¢;M,;(N;)g; is with expectation and
avj = vjm(a) for all a € A. By [HU16, Proposition 2.7], we have vjvf € AN M = A" N M,
and vjv; € My, (N;) and hence v;M;v; C viviM,, (Nj)vjv;.

Case (iv). Assume that M; is a II; factor that possesses a regular diffuse von Neumann subalgebra
A C M; with relative property (T). By Theorem 4.8, there exists j = a(i) € J such that A <5 N;.
In the exactly same way as in the proof of case (iii), we conclude that there exist n; > 1 and
a nonzero partial isometry v; € My, (M) such that viv; € My, (N;), vjvj € M; and vjM;v; C
vivi My, (Nj)viv;.

We have completed the proof of the desired intermediate assertion ().

By symmetry, for any given j € J, there exist i = §(j) € I, m; > 1 and a nonzero
partial isometry w; € My, (M) such that wiw; € M,,,(M;), wyw! € N; and w!Njw; C
wiw;Myy,, (M;)wfw;. Moreover, the unital inclusion wNjw; C wiw;My,, (M;)w;w; is with
expectation.

(Pa(iy)

For every i € I, put w; = wi @ ln,,

Observe that win“(“)(wgna(i)))* = wiw; ® 1

Lnagy € Mnggym (Mp(agy)) and

€ Mym (M) @ My, ((C) ): ]'v'([na(i))ma(i)mi (M).
€ My, (Na@i)), (w; @y " =t @

Na (i) 7

na(i)mi

(nai)* (az)
(w;" ") My (Nagyw; ™" = w Nogywi © M, (C)

C wzwlM (Mﬂ( ()))w w; @ M, T i) (C)

(naz) (naz) (az) (az)
= (w3 w0 Mo oy (Mpay)) (w0, ) 0,

7

Since the inclusion w; Ny wi C wiw;M,, (Mg(q)))w;w; is with expectation, so is the above
inclusion.

Since M; and N,(; are diffuse factors and since the projection (vq(;y)*v, Ny
has finite trace if N,(;) is semifinite as claimed in the first paragraph of the proof) up
shrinking v, (;)(va(i))* € M; if necessary, we may further choose the partial isometry va(l)
Min, ;) (M) so that (vagi)) vag) < wgn“(“)(wgna“)))* in My, (Naiy)- Since Ny is a factor,
we can find a nonzero partial isometry u € My, (Naiy) such that uu® = (v4())*va() and
Ma(i)

u*u < wEn““))(wgna(i)))*. Then v := vy uw; is a nonzero partial isometry in My m, (M)
such that
* (na(iy) (Ma(i)) * %k * * * *
w0 = vayuw; " (wp ) U (Va@)) " = Vet (Va(i)* = Vagi) (Va@)" € Mi,
* (Pa(i)) % *u (Pas)) (Pa(i))\s (Ra(s))
vo = (w; ) U (Vo)) va@uw; " = (w; ) w7 € Mo, ms (Mp(agy))
and
* (Magi))yx, * x s (Na(s))
v Mv = (w; ) U (Vo))" Mi vag)uw;
( Nai))\+ (Nai))
C (w, @ ) u Mna(i)(Na(i))uwi @
C U*UMna(i>mi(Mﬁ(a(i)))v*v' (51)

Note that the inclusions in (5.1) are with expectation.

By Lemma 2.8, we have B(«a(i)) =i for every i € I. Since the inclusions in (5.1) are with
expectation and since vv* € M; and v*v € My, ;ym, (M;), we necessarily have v € Ml,na(i)mi(Mi)
by [HU16, Proposition 2.7(1)]. Therefore, (5.1) must be an equality with S(«a(i)) = 1.
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This implies that vy(;u = v(w(na(i)))* € M, ,, (M) with (va(iyu) (Va@u)* = v(wgn“(i)))*wgnam)v*
€ M;, (va(iyu)*(vau) = w*u € My, (Nag)) and w*(vagi))* Mivau = wuMy, ) (Na))u u.
By symmetry, we have a(3(j)) = j for every j € J. This shows that o : I — J is indeed a
bijection and M; and N, ;) are stably isomorphic to each other for every i € I. Hence, we have
proved item (1) of the main theorem.

Assume moreover that M; is a type III factor for every ¢ € I. This forces N; to be a type III
factor for every j € J. Therefore, up to conjugating by partial isometries in M; and N ;, we
may assume that n,;) = 1 and that there exists a unitary u; € U(M) such that u; M;u; = Ny
for every ¢ € I. The uniqueness of the bijection v : I — J as in item (2) of the main theorem is
guaranteed by Lemma 2.8. Therefore, we have completed the proof of the main theorem.

~

6. Further results

Following [Oza04, VV07], we say that a o-finite diffuse von Neumann algebra M is solid if for
any diffuse von Neumann subalgebra A C M with expectation, the relative commutant A’ N M
is amenable. More generally, we will say that a o-finite (not necessarily diffuse) von Neumann
algebra M is solid if either M is atomic or if its nonzero diffuse direct summand is solid. Recall
that whenever M is a diffuse solid von Neumann algebra, pM,,(M)p is also solid for every
n > 1 and every nonzero projection p € M, (M) (see e.g. [HR15, Proposition 3.2] for a similar
statement and its proof). The class of solid von Neumann algebras includes bi-exact group
von Neumann algebras [BO08, Oza04], free quantum group von Neumann algebras [VV07] and
free Araki-Woods factors [Hou07].

Part of the technology provided for proving the main theorem also enables us to prove the
following characterization of solidity for free products with respect to arbitrary faithful normal
states and over arbitrary index sets. It moreover generalizes the main result of [GJO07].

THEOREM 6.1. Let I be any nonempty set and (M;, ¢;)ic; any family of von Neumann algebras
endowed with any faithful normal states. Then, for the corresponding free product (M, y) =
x;c1(Mj, p;), the free product von Neumann algebra M is solid if and only if so are all M;.

Proof. (The only if part.) Assume that some M; is not solid. By definition, there exist a nonzero
projection z € Z(M;) and a diffuse von Neumann subalgebra P C M,z with expectation such that
the relative commutant P’ N M,z is nonamenable. Since the unital inclusion P’ N\ M,z C zM;z is
with expectation, so is the unital inclusion P'NM;z C zM z. This implies that the unital inclusion
P'NM;z C PN zMz~z is with expectation and hence P’ N zM z is nonamenable. Therefore, M z
is not solid and neither is M.

(The if part.) Assume that all M; are solid. Suppose on the contrary that M is not solid.
Then there exists a diffuse von Neumann subalgebra Q C 19M1g with expectation such that
the relative commutant @' N 1gM1g is nonamenable. As in the proof of [HU16, Lemma 2.1],
choose a faithful state 1 € M, such that 19 € M Y. @ is globally invariant under the modular
automorphism group %@, where g = ¥(1lg - 19)/¥(1lg), and A := Q¥< is diffuse. Since Q' N
1logM1g C A'N 1oM1g with 1g = 14 is with expectation, A" N14M1,4 is also nonamenable.
Up to cutting down by a suitable nonzero central projection z € Z(A’ N 14M1,4), for which
(A’N14M1y4)z has no amenable direct summand, and up to replacing A with Az (note that
z€ MY and Az C zMz is with expectation), we may further assume without loss of generality
that the relative commutant A’ N 14M14 has no amenable direct summand. By Theorem 4.4,
there exists ¢ € I such that A <;; M;.
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Then there exist n > 1, a projection ¢ € M, (M;), a nonzero partial isometry w €
M, ,(14M)g and a unital normal *-homomorphism 7 : A — ¢M,(M;)q such that the
unital inclusion 7(A) C gM,,(M;)q is with expectation and aw = wn(a) for all a € A. By
Remark 2.5(1), both of the inclusions Aww* C ww*Mww* and 7(A)w*w C w*wM,(M)w*w
are with expectation. Proceeding as in the proof of the main theorem (case (i)), we have w*w €
gM,,(M;)q and w*Aw and w*(A’ N 14M14)w are commuting subalgebras of w*wM,,(M;)w*w
with expectation. Since w* Aw is diffuse and w*(A’'N14 M1 4)w is not amenable, w*wM,, (M;)w*w
is not solid. This however contradicts the solidity of M;. O

The first part of the above proof actually shows that any von Neumann subalgebra of a solid
von Neumann algebra with expectation must be solid.

Remark 6.2. Recall that a tracial von Neumann algebra M is strongly solid if for any amenable
diffuse von Neumann subalgebra A C M, the normalizer Nj;(A)” is amenable. Using a
combination of the proofs of Theorem 6.1 and [Ioal5, Theorem 1.8] with Theorem 4.6 (for
tracial von Neumann algebras; see the remark after its proof) in place of Theorem 4.4, we can
also show that a given tracial free product von Neumann algebra over an arbitrary index set is
strongly solid if and only if so are all the component algebras.

We point out that we can then obtain examples of strongly solid II; factors that do not have
the weak* completely bounded approximation property (CBAP). Indeed, for every n > 1, take
a lattice I';, < Sp(n,1) and denote by (M, 7) = *peny {03 (L(Tn), 7r,,) the canonical tracial free
product II; factor. By [CS13, Theorem B] and the above fact, M is a strongly solid II; factor.
Moreover, it follows from [CH89] that M does not have the weak* CBAP.

Remark 6.3. Any diffuse solid von Neumann algebra M with property Gamma (and with
separable predual) is necessarily amenable. Indeed, by Theorem 3.1, there exists a decreasing
sequence (A;), of diffuse abelian von Neumann subalgebras of M with expectation such that
M =\, en((Ar) N M). By solidity, (A,)’ N M is amenable for every n € N and hence M is
amenable.

ACKNOWLEDGEMENTS

The first named author is grateful to Sven Raum for allowing him to include in this paper their
joint result (Theorem 3.1) obtained through their recent work [HR15]. He also warmly thanks
Adrian Ioana for sharing his ideas with him and for thought-provoking discussions that led to
Proposition 4.2.

Appendix. Normalizers inside semifinite AFP von Neumann algebras

Ozawa—Popa’s relative amenability in the semifinite setting

Let (M, Tr) be any semifinite o-finite von Neumann algebra endowed with a faithful normal
semifinite trace and B C M any von Neumann subalgebra with trace-preserving conditional
expectation Ep : M — B. Denote by (M, B) the basic extension associated with Ep and by ep
the canonical Jones projection. Then there exists a faithful normal semifinite operator-valued
weight, called the dual operator-valued weight, Ep: (M, B)y — M, satisfying EB(eB) =1 (see
e.g. [ILP98, §2.1]). Moreover, the linear span of MepM forms a o-strongly dense x-subalgebra
of (M, B) and 0, "°"5 (ep) = ep for all t € R. Thus, Trar,B) = TroEp becomes a faithful normal
semifinite trace on (M, B).
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THEOREM A.1 [OP10, Theorem 2.1]. Let p € M be any nonzero projection with Tr(p) < 400
and A C pMp any von Neumann subalgebra. Write 7 := (1/Tr(p))Tr|parp. The following
conditions are equivalent.

(1) There exists an A-central state ¢ on p(M, B)p such that p|pnp = 7.
(2) There exists an A-central state ¢ on p(M, B)p such that ¢|pnrp is normal and such that
ol z(arnpmp) is faithful.
(3) There exists a conditional expectation ® : p(M, B)p — A such that ®|,nrp, gives the unique
T-preserving conditional expectation from pMp onto A.
(4) There exists a net (&)ie of vectors in L*((M, B), Tr(ys py) such that:
o p&p=¢; foralliel;
. limi<x§i,§i>Tr<M’B> = 7(x) for all x € pMp; and
o lim;||a&; — &a |27TI(M,B> =0 for all a € A.

We will say that A is amenable relative to B inside M if one of the above equivalent conditions
holds.

Proof. Observe that we have a natural identification of L*(p(M, B)p, Tr(as, gy lpov, Byp) with p -
L2((M, B), Triar,B)) - p as pMp-pMp-bimodules. Then the proof of [OP10, Theorem 2.1] applies
mutatis mutandis. O

LEMMA A.2 ([OP10, Corollary 2.3] and [Ioalb, Lemma 2.3]). Let p € M be any nonzero
projection with Tr(p) < +oo and A C pMp any von Neumann subalgebra. Let L be any
B-M-bimodule. Assume that there exists a net (£;);e; of vectors in pH with H := L?(M, Tr)®g L
such that the following conditions hold:

o limsup; ||2&|n < ||z||2,- for all x € pMp;

e limsup; [l > 0; and

o lim; |[a&; — &ally =0 for all a € A.

Then there exists a nonzero projection z € Z(A' N pMp) such that Az is amenable relative

to B inside M.

Proof. Observe that (M, B) = (JM BJM) NB(L?(M)) also acts naturally on 7 in this semifinite
setting, where JM is the modular conjugation on the standard form L2(M). Then the proof of
[loal5, Lemma 2.3] applies mutatis mutandis to obtain item (2) in Theorem A.1. a

Vaes’s dichotomy result in the semifinite setting
Let (M,E) = (M1,E;1) *p (M2, E2) be any semifinite amalgamated free product endowed with
a faithful normal semifinite trace Tr on M such that Tr o E = Tr. Let ¢ € B be any nonzero
projection such that Tr(q) < +oco. Up to replacing Tr with (1/Tr(q))Tr if necessary, we may and
will assume that Tr(q) = 1.

Denote by Fg = (1, 72) the free group on two generators and put

(;AZ, ~E) = (M, E) xg (BRL(F2),id ® 7p,),
(MZ,EZ) = (M“EZ) *B (B@L(<’}/Z>),ld & T(W>), 1€ {1,2}

~

Denote by Fo — L(F2) : v — A, the canonical unitary representation and regard L(Fg) =
Clp ® L(F2) C M. Then we can naturally identify (M, E) = (Ml,ﬁll) *B (MQ,EQ). Following
[IPPO8, §2], we can construct a one-parameter unitary group u! in L((y;)) C M; C M such that
uj = Ay, and 7,y (u}) = sin(xt) /7t for all t € R.
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Fix an arbitrary faithful state x € B,. Then o}°% = ¢} « (06X ® id) (see [Ued99,
Theorem 2.6]) and hence u! lies in the centralizer of y o E; for all ¢ € R. Therefore, we
have x o E; = (x o E;) o Ad(ul), implying that E; = E; o Ad(u!) for all ¢ € R. Consequently,

0 := Ad(u)) * Ad(uh) € Aut(M) is well defined for all ¢ € R. A similar consideration shows

that o, "7°F = 6% & (6'% © id) = id with Trp := Tr|p, so that Tr := Trp o E gives a faithful

normal semifinite trace on M extending Tr naturally. The triple (M C M , ﬁ, 0;) is the semifinite
analogue of Popa’s malleable deformation for tracial amalgamated free product von Neumann
algebras as defined in [IPP08, §2]. The basic inequalities such as [Vael4, (3.1) and (3.2)] hold
true as they are (see e.g. [BHR14, §3.1] with the necessary refinement along [Vael4, §3.1]).
Observe that 0;(q) = ¢ for every t € R, so that 6;(p) < ¢ for every projection p € ¢Mg and every
teR.

Recall that the key observation of [loal5] is that the von Neumann algebra N :=
\/7€F2 Ay M is identified with the amalgamated free product of infinitely many copies of (M, E)

over Fy as index set and that M admits the crossed product decomposition M = N x Ad() Fa2
whose canonical conditional expectation is denoted by Ey : M — N. Moreover, ¢Mq =
qNgq X aq(x) Fa2 holds naturally and the canonical conditional expectation E ng : ¢Mq — gNg

coincides with the restriction of Ey : M — N to qNgq, sinceq € BC N C M and thus Ay,ql =0
for all v € Fy.

THEOREM A.3 [Vael4, Theorem 3.2]. Let p € ¢Mq be any nonzero projection and A C pMp
any von Neumann subalgebra. Assume that for all t € (0,1), 6;(A) is amenable relative to ¢Nq
inside qM q. Then at least one of the following conditions holds.

e Fither A <p; My or A <y My holds.

e A is amenable relative to B inside M.

Proof. The proof is identical to the one of [Vael4, Theorem 3.2] with only minor modifications.
This is why we will only sketch it. The most essential part of Vaes’s proof is done at the Hilbert
space level and hence it suffices to explain how to provide the right framework to modify the
proof accordingly. - -

The functional 7 := Tr|qu defines a faithful normal tracial state on ¢Mq = qNg X pq(x) F2,

since Tr(gq) = 1. Denote by <qu, qN¢q) the basic extension of qMgq by Eqng : qMq — qNgq with
Jones projection eqng4. To simplify the notation, we will simply write Tr := 7 o E;n4, where

—
~

Eqng : (¢Mq,qNq)+ — qMq,

is the dual faithful normal semifinite operator-valued weight satisfying Equ (eqNg) = lgng = ¢
Let I be the set of all the quadruplets ¢ = (X,Y,d,t) with finite subsets X C ¢Mgq and
Y CU(A),0<d<1and 0 <t <1 The set I becomes a directed set with the order relation
(X,Y,0,t) < (X', Y',0',t') defined by X C X', Y CY’, 6 >¢"and t > t'. Since 6;(A) is amenable
relative to ¢N¢ inside ¢Mgq, for each i = (XY, 6,t) €1, [OP10, Theorem 2.1 and the remark
following it] enables us to find a vector & € L?((¢Mgq,qNg)) in such a way that [|&|sm < 1,

[(@&i, &) — T(2)| <6 forall x € X U{(0:(y) —y)"(0e(y) —y) |y €Y},
10:(y)&i — &iOr(Y) |2 <0 forally €Y.

Observe that lim;(x&;, &) = 7(x) for all z € qu and lim; [|y&; — &ylla = 0 for all y € A.
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Denote by K C L2((q]\7 ¢,qNq)) the closed linear subspace generated by {zA eqngAS | 7 €

gMq,v € Fa} and by e : L2(<q]\7q, qN¢q)) — K the orthogonal projection. Note that e € (¢Mg)' N
B(L2(¢Mq)). Thus, the net & := p(1 — e)&; satisfies lim sup, |zl l|2m < ||z]2,+ for all x € pMp
and lim; ||a&} — &all2, e = 0 for all a € A.

Suppose that A Ay M1 and A Ay Ms. What we have to show is that A is amenable relative
to B inside M. By contradiction and proceeding as in the first paragraph of the proof of [Vael4,
Theorem 3.2], we may and do assume that no corner of A is amenable relative to B inside M,
that is, Az is not amenable relative to B inside M for any nonzero prOJectlon z€ Z(ANpMp).

Observe that <qu, qNq) = q(M N)q with eqng = gen (= enq), where <M N> is the basic
extension of M by the canonical trace-preserving conditional expectation Ey : M — N and
also that the traces Tr on (qu, qu) and Tr o Ey on (M N) with the dual operator-valued
weight Ex agree since EN(qu) = qEN(eN) = ¢. (It is then natural to denote the latter trace
by the same symbol Tr.) Thus, L2({(¢Mq,qNgq)) can be identified with ¢ - L2((M, N)) - q. If
we identify M with the yth free product component A, MAZ, then we have the decomposition
L2(N)=L1L3(M)® (L*(M) ®p X @3 L?(M)) as M-M-bimodules for some B-B-bimodule X (see
[Ued99, §2]). Then we see, in the same way as in the proof of [loal5, Lemma 4.2], that L%(qﬁq,
qNq))SK is identified, as a ¢M g-¢M g-bimodule, with ¢ - (L?(M)®pL)-q C L2(M)®p L for some
B-M-bimodule £. Thus, Lemma A.2 implies that lim; ||£||2, v = 0, namely lim; ||p&; — ep&; |2
= 0.

As in the proof of [Vael4, Theorem 3.4], we can construct an isometry U : L2(¢Mq) ®
(2(Fy) — L2({(gMgq, ¢Ng)) in such a way that UU* = e and that U((z®1)n(y®1)) = z(Un)y for
all z,y € gMqand all € LQ(qu)®€2(F2) Put ¢; :=U"p¢; € pL2(qMq)®?(Fs) for every i € 1.
Since L2(gMg) @2 (F) C L(gMq)@(Fy) = (q ©1)- (L2 (M) @2 (F3))-(g 91) C (M@ (),
we can follow line by line the rest of the proof of [Vaeld, Theorem 3.4, pp. 704-709] inside
L2(M ) ® (?(F3) with the following remarks.

(1°)  L2(M) =L%(M)® (L3A(M) ®p Y @5 L2(M)) as M-M-bimodules for some B-B-bimodule
Y and hence L2(M) & L2(M) = L2(M) ®5 £’ with some B-M-bimodule £’.

(2°) A key formula [Vael4, Lemma 3.2] (essentially due to Ioana) holds even in the semifinite
setting (whose proof goes along that of [BHR14, Lemma 3.5]).

(3°)  The semifinite counterpart of [Vael4, Theorem 3.1] (that is essentially due to Ioana
et al. [IPP08]) was already provided by Boutonnet et al. [BHR14, Theorem 3.3] and
we need to use it in place of [Vael4, Theorem 3.1].

Following line by line the proof of [Vael4, Theorem 3.4, pp. 704-709], we can then reach a
contradiction. Giving the full details is just a task of understanding Vaes’s argument modulo the
above three remarks. a

Let p € ¢Mq be any nonzero projection and A C pMp any von Neumann subalgebra. Assume
that A is amenable relative to M; inside M for some i € {1,2}. Then, by checking Theorem A.1(4)
and regarding L2(M) as a subspace of L2(M) naturally, we see that A is amenable relative
to M; inside M. For every t € (0,1), 0:(A) is amenable relative to 6,(M;) = utM;ul" inside
M. The Jones projection e, (M) coincides with ulensul”, so that <M, 0,(M;)) = (]\A/.f, M;) and
hence 6;(A) is amenable relative to M; and also to N since M; C N. Since <qu, qNgq) = q(M,
N)q (see the proof of Theorem A.3), 6;(A) is amenable relative to ¢Ng inside Mg thanks to
Theorem A.1(1). Applying Popa—Vaes’s dichotomy result [PV14, Theorem 1.6 and Remark 6.3]
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to 0:(A) C q]\7 q = qNgq X aq(n) F2, we have that at least one of the following conditions holds:
0:(A) = 37, 1N or 0:(Nparp(A)”) (C Net(p)]mt(p) (6:(A))") is amenable relative to ¢Ngq inside

qM q. Since this is true for every ¢ € (0,1), at least one of the following conditions holds:
(A) 6:,(A) = a7, 9V¢q and hence 0¢(A) 257 N for some ¢t € (0, 1); or
(B) 0:(Nparp(A)”) is amenable relative to ¢Ng inside qMg for every t € (0,1).

In case (A), we use [BHR14, Theorem 3.4] (whose proof actually works even when the
projection p there lies in Projs(M) rather than Projs(B) with the notation there) and the
consequence is that A <pr B or Nparp(A)” <ar M; for some i € {1,2}. In case (B), Theorem A.3
implies that Ny, (A)” <ar M; for some i € {1,2} or Nparp(A)” is amenable relative to B inside
M. Consequently, we obtain the following result.

THEOREM A.4. Let p € qMq be any nonzero projection and A C pMp any von Neumann
subalgebra. Assume that A is amenable relative to one of the M; inside M. Then at least one of
the following holds.

o A=<y B.

o Either Npnrp(A)” =p My or Nppp(A)” <ar Moy holds.

o Npump(A)” is amenable relative to B inside M.

Suppose that A is amenable. Then A is amenable relative to any von Neumann subalgebra
with expectation inside M. Hence, the above dichotomy holds. Suppose moreover that B is also
amenable but Mya,(A)” is not. Then it is impossible that Nparp(A)” is amenable relative to
B inside M. In fact, there exists a (nonnormal) conditional expectation from B(pL?(M)) onto
p(M, B)p since B is amenable and thus N, (A)” must be amenable, which is a contradiction.
Therefore, the dichotomy becomes that one of A <ps B, Nparp(A)” < My and Npprp(A)” <
M5 holds true.
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