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The available energy of a plasma is defined as the maximum amount by which the plasma
energy can be lowered by volume-preserving rearrangements in phase space, so-called
Gardner restacking. A general expression is derived for the available energy of a nearly
homogeneous plasma and is shown to be closely related to the Helmholtz free energy,
which it can never exceed. A number of explicit examples are given.
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1. Introduction

Two previous publications (Helander 2017, 2020) in this journal have discussed the
‘available energy’ of a collisionless plasma, defined as the largest amount by which the
total kinetic energy of the plasma particles can be lowered by any motion subject to
the constraints that follow from the conservation of phase-space volume and adiabatic
invariants. It was proposed that this quantity could serve as a measure of nonlinear
stability, and it was found that it can indeed be useful for deriving stability criteria.
Moreover, the available energy of trapped electrons has more recently been shown
to be correlated with the energy flux in density-gradient-driven turbulence computed
by gyrokinetic simulations (Mackenbach, Proll & Helander 2022; Mackenbach et al.
2023). Different types of stellarators and tokamaks possess quite different amounts of
available energy with respect to instabilities and turbulence that preserve the magnetic
moment and the parallel adiabatic invariant of electrons, and these differences are
reflected in the turbulent energy flux. In particular, the degree to which regions with
low magnetic field strength containing magnetically trapped particles overlap with regions
of unfavourable magnetic curvature (convex field lines) varies greatly between different
magnetic-confinement devices, leading to large differences in available energy and
trapped-electron-mode turbulence. In tokamaks, the regions of magnetic trapping and
unfavourable (or ‘bad’) curvature overlap almost perfectly, both being situated on the
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outboard side of the torus, making the available energy relatively large. In contrast, in the
Wendelstein 7-X stellarator (Wolf et al. 2019), the worst curvature is found in regions with
relatively high field strength, where there are particularly few trapped particles, making
the available energy small. As a result, trapped-electron modes are much more stable in
the Wendelstein 7-X stellarator than in tokamaks (Proll, Xanthopoulos & Helander 2013;
Helander et al. 2015).

The correlation between available energy and turbulent transport has to do with the fact
that the available energy measures the maximum amount of energy that can be converted
into turbulent motion in a plasma without energy input from the surroundings. Consider,
for example, a plasma occupying a finite region of space with an insulating boundary.
If the distribution function at some initial instant is a Maxwellian with constant density,
constant temperature and zero mean velocity, the available energy vanishes and the plasma
is clearly stable. If the initial density, temperature or flow velocity instead vary slightly,
there is some available energy present in the system, which can be converted into kinetic
energy in turbulent eddies and cause a flux of particles and energy across the domain (but
of course not across the insulating boundary).

The notion of available energy thus bears resemblance to the concept of free energy
in thermodynamics, which quantifies how much of a system’s internal energy can be
converted to work and thus to kinetic energy. In the present paper, we clarify how
available energy is related to free energy. We do so by considering the case of an almost
homogeneous plasma and deriving a general formula for the available energy, which can
be compared with that for the Helmholtz free energy. As we shall see, the latter is an
absolute upper bound on the available energy.

2. Basic notation and equations

We follow the notation of Helander (2017, 2020) and denote the phase-space
coordinates by the vector x and their Jacobian by

√
g(x), so that the phase-space volume

element is
√

gdx. If adiabatic invariants y are conserved, some of the coordinates x will be
chosen to be equal to these while the remaining ones are denoted by z, so that x = (y, z).
The particle energy is some function of the phase-space coordinates, which we denote
by ε(x) and is typically equal to ε = mv2/2. The volume of the region of phase space at
constant y in which the energy is at most equal to some value w is

Ω(w, y) =
∫
Θ[w − ε(y, z)]

√
g(y, z) dz, (2.1)

where Θ denotes the Heaviside step function.
In this article, we only consider a single species of plasma particles, which are

distributed in phase space according to some distribution function f (x, t). The total energy
of all these particles is thus equal to

E(t) =
∫
ε(x)f (x, t)

√
g(x) dx. (2.2)

As the distribution function evolves in time in accordance with the Vlasov equation or any
other collisionless kinetic equation describing particles whose motion is Hamiltonian, the
flow in phase space is incompressible. As a result, there is a lower limit to the energy E(t)
(Gardner 1963; Kolmes & Fisch 2020), and its lowest possible value is given by

E0 =
∫
εf0

√
g dx, (2.3)
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where f0 is a distribution function that depends on the arguments as f0(y, z) =
F0[ε(y, z), y].1 As shown by Helander (2017, 2020), F0 is a monotonically decreasing
function of the first argument that is determined by the integral equation∫

Θ[ f (y, z)− F0(w, y)]
√

g(y, z) dz = Ω(w, y), (2.4)

where the variables y are held constant in the integration. The function f0 represents a
minimum-energy state of the species in question, the so-called ground state. The available
energy is the difference between the initial energy and the ground-state energy,

A =
∫
( f − f0)ε

√
g dx. (2.5)

It is important to note that although the ground state is uniquely defined by the initial state,
different initial states in general correspond to different ground states.

3. Available energy close to a ground state
3.1. Ground state corresponding to a given perturbation

We now turn to the central question in this paper and calculate the energy available to a
plasma close to a ground state. To this end, suppose that

f0(x) = F0[ε(x), y], (3.1)

denotes a ground state and
f (x) = f0(x)+ δf (x), (3.2)

a nearby state, where δf � f0. Note that, although f0 is a ground state, it is in general
inaccessible to a plasma with the distribution function f . We thus need to calculate the
ground state corresponding to f , which we write as

F[ε(x), y] = F0[ε(x), y] + δF[ε(x), y], (3.3)

where we expect δF � F0. (As we shall discuss later, the derivatives of δF also need to
be much smaller than those of F0.) In the interest of economy, we write x instead of (y, z)
wherever possible. The functions F0 and δF are then defined by the integral equations∫

Θ[ f0(x)− F0(w, y)]
√

g dz = Ω(w, y), (3.4)∫
Θ[ f0(x)+ δf (x)− F0(w, y)− δF(w, y)]

√
g dz = Ω(w, y). (3.5)

The last equation is now expanded to second order, giving∫ {
Θ[ f0(x)− F0(w, y)] + [δf (x)− δF(w, y)]δ[ f0(x)− F0(w, y)]

+ 1
2

[δf (x)− δF(w, y)]2δ′[ f0(x)− F0(w, y)]
}√

g dz = Ω(w, y). (3.6)

1Although the motion of all particles is assumed to be Hamiltonian, their total energy need not be conserved. Energy
could, for instance, be transferred from the particles to the electric field.
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Since F0(w, y) is a decreasing function of w, we have the relation

Θ[w − ε(x)] = Θ[ f0(x)− F0(w, y)], (3.7)

which can be differentiated with respect to w to give

δ[ f0(x)− F0(w, y)] = −δ[w − ε(x)]
F′

0(w, y)
, (3.8)

where a prime denotes the derivative with respect to the first argument. Differentiating
once more gives

δ′[ f0(x)− F0(w, y)] = 1
F′

0(w, y)
∂

∂w

(
δ[w − ε(x)]

F′
0(w, y)

)
. (3.9)

Substituting these last two equations in (3.6) gives∫ {
δ[w − ε(x)][δf (x)− δF(w, y)] − 1

2
[δf (x)− δF(w, y)]2 ∂

∂w

(
δ[w − ε(x)]

F′
0(w, y)

)}√
g dz = 0,

(3.10)

where we use

Ω ′(w, y) =
∫
δ[w − ε(x)]

√
g dz, (3.11)

to conclude that

δF(w, y) = 1
Ω ′(w, y)

∫ {
δf (x)δ[w − ε(x)] − 1

2
[δf (x)− δF(w, y)]2

∂

∂w

(
δ[w − ε(x)]

F′
0(w, y)

)}√
g dz. (3.12)

The quantity Ω ′(w, y) is equal to the density of states in classical statistical mechanics.

3.2. Available energy
Having thus derived an expression for the ground state that is accurate to second order, we
now turn our attention to the available energy

A =
∫
ε(x)(δf (x)− δF[ε(x), y])

√
g dx

=
∫
ε(x)δf (x)

√
g dx −

∫
dy

∫ ∞

0
δF(w, y)w dw

∫
δ[w − ε(x)]

√
g dz, (3.13)

which is ostensibly of first order in the smallness of δf . However, when (3.12) is substituted
for δF, the first-order terms cancel, since in leading order,∫

δF(w, y)δ[w − ε(x)]
√

g dz �
∫
δf (x)δ[w − ε(x)]

√
g dz. (3.14)

When substituted in (3.13), this result cancels the first term on the right-hand side, and the
available energy thus vanishes in this order. We therefore continue to the next order, where

A = 1
2

∫ √
g dx

∫ ∞

0
w[δf (x)− δF(w, y)]2 ∂

∂w

(
δ[w − ε(x)]

F′
0(w, y)

)
dw. (3.15)

https://doi.org/10.1017/S0022377824000746 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000746


Available energy 5

Focusing on the integral over w, one can make progress by integrating by parts,∫ ∞

0
w[δf (x)− δF(w, y)]2 ∂

∂w

(
δ[w − ε(x)]

F′
0(w, y)

)
dw

= −
∫ ∞

0

{
[δf (x)− δF(w, y)]2 − 2w[δf (x)− δF(w, y)]δF′(w, y)

} δ[w − ε(x)]
F′

0(w, y)
dw,

(3.16)

and the available energy becomes

A = −1
2

∫ ∞

0
dw

∫
dy

F′
0(w, y)∫ {

[δf (x)− δF(w, y)]2 − 2w[δf (x)− δF(w, y)]δF′(w, y)
}
δ[w − ε(x)]

√
g dz.

(3.17)

Since this expression is of second order, the first-order version of (3.6) may now be used
for δF,

δF(w, y) = 1
Ω ′(w, y)

∫
δf (x)δ[w − ε(x)]

√
g dz, (3.18)

whereupon the last term vanishes as a consequence of (3.14),∫ ∞

0
w dw

∫
δF′(w, y)
F′

0(w, y)
dy

∫
[δf (x)− δF(w, y)]δ[w − ε(x)]

√
g dz = 0. (3.19)

We thus obtain the following expression for the available energy:

A = −
∫
(δf (x)− δF[ε(x), y])2

2F′
0[ε(x), y]

√
g dx, (3.20)

where δF is given by (3.18). Since F′
0(w, y) is negative, A is positive definite. Moreover,

it vanishes if and only if δf (y, z) = δF[ε(y, z), y], so that f = f0 + δf only depends on z
through the energy function ε, which is, of course, the condition that f represents a ground
state.

Another useful form for the available energy is obtained by expanding the square in
(3.20) and noting that, to leading order,∫

δf (x)δF[ε(x), y]
2F′

0[ε(x), y]
√

g dx �
∫
δF2[ε(x), y]
2F′

0[ε(x), y]
√

g dx, (3.21)

as follows from∫
δf (x)δF[ε(x), y]

2F′
0[ε(x), y]

√
g dx =

∫ ∞

0
dw

∫
δf (x)δF(w, y)

2F′
0(w, y)

δ[w − ε(x)]
√

g dy dz, (3.22)

where substituting equation (3.14) gives the desired result. We thus find, to the same
accuracy as (3.20),

A = −
∫
δf 2(x)− δF2[ε(x), y]

2F′
0[ε(x), y]

√
g dx. (3.23)
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3.3. Relation to Helmholtz free energy
Let us temporarily assume that f0 is a Maxwellian with spatially constant density n0 and
temperature T0,

f0 = n0

(
m

2πT0

)3/2

e−ε/T0, (3.24)

so that F′
0 = −F0/T0, and let us take the total number of particles contained in the

distribution functions f0 and f to be the same,∫
f0
√

g dx =
∫

f
√

g dx. (3.25)

If we define the difference in entropy and energy carried by the distribution functions f0
and f as

δS = −
∫
( f ln f − f0 ln f0)

√
g dx, (3.26)

δU =
∫
ε(x)( f − f0)

√
g dx, (3.27)

then to second order in δf ,

δS = δU
T0

−
∫
δf 2

2f0

√
g dx, (3.28)

and we conclude that

H = T0

∫
δf 2

2f0

√
g dx = δU − T0δS, (3.29)

denotes the difference in Helmholtz free energy in the two distribution functions. In
plasma physics, this quantity has often been considered in discussions of turbulence, see
e.g. Krommes & Hu (1993), Brizard (1994), Sugama et al. (1996), Garbet et al. (2005),
Schekochihin et al. (2009), Banon Navarro et al. (2011) and Stoltzfus-Dueck & Scott
(2017). It has recently been used to derive upper bounds on gyrokinetic instabilities that are
generally valid irrespective of the geometry of the magnetic field, the number of particle
species, collisions, etc. (Helander & Plunk 2021, 2022; Plunk & Helander 2022)

Equations (3.20) and (3.23) show that the available energy is closely related to, but in
general different from, the Helmholtz free energy. If for some reason δF vanishes, then
these two energies are equal, i.e. H = A if δF = 0, and otherwise the available energy is
smaller than the Helmholtz free energy, i.e. A < H if δF �= 0.

This line of thought can be extended to the case of a non-Maxwellian f0 by considering
a more general entropy functional

S[ f ] =
∫

s( f )
√

g dx, (3.30)

where the function s will be chosen suitably. To second order in δf /f0 we then have

δS = S[ f ] − S[ f0] =
∫ [

s′( f0)δf + s′′( f0)

2
δf 2

]√
g dx, (3.31)
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and the natural generalisation of the Helmholtz energy is

H = T0

∫ [(
ε

T0
− s′( f0)

)
δf − s′′( f0)

2
δf 2

]√
g dx, (3.32)

if the function s and the constant T0 are chosen such that the linear term vanishes. If
f0(x) = F0[ε(x)], this is accomplished by the choice

s′(F0) = ε

T0
, (3.33)

s′′(F0) = 1
T0F′

0(ε)
. (3.34)

The resulting Helmholtz energy,

H = −
∫

δf 2(x)
2F′

0[ε(x)]
√

g dx, (3.35)

coincides with (3.20) and (3.23) if δF = 0. A similar argument was made by Taylor (1963),
see also Kruskal & Oberman (1958).

This construction shows that, if F0 is chosen in such a way that δF =(3.18) vanishes,
then an appropriate definition of the entropy function s( f ) results in a Helmholtz energy
that is equal to the available energy. In this sense, the available energy is always equal to
the Helmholtz free energy with a suitable choice for the unperturbed state and the entropy.
However, in practice, a basic requirement of perturbation theory is that the unperturbed
state, in this case F0, should be simple, which will usually not be the case if one insists
that (3.18) vanishes.

The reason why it is necessary to include δF is that, given a ground state f0 and a nearby
state f = f0 + δf , the former is generally not accessible from the latter through Gardner
restacking. The ground state corresponding to f is instead F = F0 + δF, and the available
energy (3.20) is equal to the generalised free energy associated with a perturbation from
this ground state rather than f0. This circumstance also explains why the available energy
cannot exceed the generalised Helmholtz free energy (3.35). The latter energy would be
released through Gardner restacking of f into f0, if this were possible. Imposing the extra
constraint that the ground state reached by restacking should be accessible from the initial
state can only make the released energy smaller.

4. Available energy in special cases

In this section we illustrate the practical utility of (3.20) and (3.23) by calculating the
available energy in several special cases.

4.1. Bi-Maxwellian with fluctuating density, temperatures and flow
We begin by considering the case of a bi-Maxwellian distribution function, i.e.

f (r, v) = n
(

m
2πT̄

)3/2

exp
(

−m(vx − ux)
2

2T⊥
− m(vy − uy)

2

2T⊥
− m(v‖−u‖)2

2T‖

)
, (4.1)

in Cartesian velocity-space coordinates aligned with the temperature anisotropy. The
quantity T̄ = T1/3

‖ T2/3
⊥ is the geometric mean of the temperatures in the three directions,
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two of which have been taken to be equal. The density, temperatures and flow velocity, are
assumed to be nearly constant,

n = n0[1 + ν(r)], (4.2)

T‖ = T‖,0[1 + τ‖(r)], (4.3)

T⊥=T⊥,0[1 + τ⊥(r)], (4.4)

u = u0 + δu(r), (4.5)

where u0 can be made to vanish by a Galilean transformation. Helander (2017) treated the
case of constant density and temperatures, and showed that the ground state is an isotropic
Maxwellian with temperature T⊥,0 = T‖,0 = T0. The perturbed distribution function thus
becomes f = f0 + δf , with

δf =
[
ν + τ⊥

(
mv2

⊥
2T0

− 1
)

+ τ‖

(
mv2

‖
2T0

− 1
2

)
− m(v · δu)

T0

]
f0(r, v), (4.6)

where v = (vx, vy, v‖) and v2
⊥ = v2

x + v2
y . The function f0 can be chosen so that the

distribution functions f0 and f carry equal amounts of particles and energy,

〈ν〉 =
〈

T̄ − T0

T0

〉
= 0, (4.7)

where angular brackets denote an average over the plasma volume V ,

〈· · · 〉 = 1
V

∫
· · · dr. (4.8)

To leading order we must then have 〈τ‖〉 = −2〈τ⊥〉, and (3.18) becomes

δF(w) = 1
Ω ′(w)

∫
f0τ⊥

(
ε − 3

2

mv2
‖

T0

)
δ(w − ε) dr dv. (4.9)

One can make progress by introducing the coordinates v⊥ = v cosϑ and v‖ = v sinϑ . The
volume element becomes dv = π(2/m)3/2 cosϑ

√
ε dϑ dε, resulting in

δF(w) = π

Ω ′(w)

∫
f0τ⊥

(
2ε
m

)3/2

δ(w − ε)
(
1 − 3 sin2 ϑ

)
cosϑ dϑ dε dr = 0. (4.10)

The available energy is thus equal to the Helmholtz free energy and becomes

A = H = n0T0V
2

〈
ν2 + 1

2
τ 2
‖ + τ 2

⊥ + m(δu)2

T0

〉
. (4.11)

This expression generalises the result found by Helander (2017) to include anisotropic
temperature perturbations and a spatially varying flow.
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4.2. Kappa distribution in any number of dimensions
We next consider the kappa distribution in any integer number d of dimensions. These
functions were originally introduced to model high-energy tails of distribution functions
in astrophysical plasmas that exhibit power-law behaviour (Olbert 1968; Vasyliunas 1968).
Lazar & Fichtner (2021) provide a recent review of their use in modelling various plasmas.
The kappa distribution function is defined by (Livadiotis & McComas 2013)

fκ,d(r, v) = n
( m

2πT

)d/2
Γ

(
κ0 + 1 + d

2

)
κ

d/2
0 Γ (κ0 + 1)

(
1 + 1

κ0

mv2

2T

)−κ0−1−d/2

, (4.12)

where κ0 = κ − d/2, and the normalisation constants have been chosen such that the
integral over velocity space returns the number density,

∫
fκ,d dv = n, (4.13)

and the energy density is ∫
mv2

2
fκ,d dv = nTd

2
, (4.14)

so that each degree of freedom as usual carries the energy nT/2. Note that the tail of
the distribution follows a power-law, fκ,d ∝ v−2κ0−2−d. Furthermore, the limit of κ0 → ∞
corresponds to the usual Maxwellian.

Any spatially constant kappa distribution is trivially a ground state, as it is a
monotonically decreasing function of v2. If the density and temperature are perturbed
by relative amounts ν(r) and τ(r), respectively, the fluctuating part of the distribution
function becomes

δfκ,d = fκ,d,0

⎡
⎢⎢⎣ν + τ

mv2

2T0
(1 + κ0)− κ0d

2
mv2

2T0
+ κ0

⎤
⎥⎥⎦ . (4.15)

Imposing the condition 〈ν〉 = 〈τ 〉 = 0, we find that the ground state vanishes, δF = 0. The
available energy is thus equal to the Helmholtz free energy and is given by

A = H = n0T0V
2

〈
d(ν + τ)2 + κ0(2ν2 + dτ 2)

2 + d + 2κ0

〉
. (4.16)

In the limit of a Maxwellian, κ0 → ∞, the available energy depends on the dimensionality
d as

A = n0T0V
2

〈
ν2 + d

2
τ 2

〉
. (4.17)

Setting d = 3 we recover the result of Helander (2017) for the available energy of a
three-dimensional Maxwellian plasma with slightly varying density and temperature.
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4.3. Magnetic-moment conservation of a bi-Maxwellian
Let us again consider the case of a bi-Maxwellian at rest with slightly varying density and
temperatures, where we now impose the condition that μ = mv2

⊥/2B be conserved, so that
(4.1) becomes

f (r, v) = n(r)
(

m
2πT̄(r)

)3/2

e−ε/T‖(r)+μB(r)[1/T‖(r)−1/T⊥(r)], (4.18)

where T̄ is the geometric mean of the temperatures, as in § 4.1. When the magnetic moment
μ is conserved, any ground state must be of the form f0(r, v) = F0[ε(r, v), μ(r, v)]
with F′

0(w, μ) ≤ 0. (As usual, a prime denotes differentiation with respect to the first
argument.) It follows that, in order for the function

f0 = n0

(
m

2πT0

)3/2

e−ε/T‖,0+μB(r)[1/T‖,0−1/T⊥,0], (4.19)

to be a ground state, the perpendicular and parallel temperatures either must be equal
T⊥,0 = T‖,0 = T0, if B(r) is non-constant, or one may have T⊥,0 �= T‖,0 if B(r) = B0 is a
constant. Let us start by investigating the former case.

4.3.1. Spatially varying magnetic field
In the following calculation we have set T‖,0 = T⊥,0 everywhere. The varying part of the

distribution function, δf , is given in (4.6). The phase-space coordinates are chosen to be
x = (z, μ) = (r, v‖, μ), and the velocity-space volume element becomes

dv = 2πB
m

dv‖ dμ. (4.20)

The density of states is now equal to

Ω ′(w, μ) =
∫
δ

(
w − μB − mv2

‖
2

)
2πB

m
dr dv‖ =

∫
w>μB(r)

4πB dr√
2m3(w − μB)

, (4.21)

and (3.18) becomes

δF(w, μ) = f0(w)
Ω ′(w, μ)

∫ [
ν + τ‖

(
w − μB

T0
− 1

2

)
+ τ⊥

(
μB
T0

− 1
)]

4πB dr√
2m3(w − μB)

.

(4.22)

If the magnetic field varies with r in a way that is correlated with the density or temperature
fluctuations, then δF is generally non-zero and the available energy will then be smaller
than the Helmholtz energy, A ≤ H.

4.3.2. Constant magnetic field
If the magnetic field is constant, B = B0, the perpendicular and parallel temperatures

T⊥,0 and T‖,0 can be different, and will now be taken to be unequal. Under such
circumstances, the fluctuating part of the bi-Maxwellian distribution (4.1) with u = 0
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becomes

δf =
[
ν + τ‖

(
mv2

‖
2T‖,0

− 1
2

)
+ τ⊥

(
μB0

T⊥,0
− 1

)]
f0, (4.23)

where we have perturbed the density and temperatures in the usual manner. The ground
state simplifies to

δF(w, μ) = f0

[
〈τ‖〉

(
w − μB

T‖,0
− 1

2

)
+ 〈τ⊥〉

(
μB
T⊥,0

− 1
)]
, (4.24)

and we have employed 〈ν〉 = 0. The available energy can now be calculated, and becomes

A = n0T‖,0V
2

〈
ν2 + 1

2

(
τ 2
‖ − 〈τ‖〉2) + τ 2

⊥ − 〈τ⊥〉2

〉
. (4.25)

In order to compare this expression with the case without invariants given in (4.11), we set
T⊥,0 = T‖,0 = T0 in (4.25). Under these conditions, the available energy becomes

A = H − n0T0V
2

(
1
2

〈
τ‖
〉2 + 〈τ⊥〉2

)
. (4.26)

We thus conclude that the available energy of an isotropic plasma with constant magnetic
field, where the perturbations satisfy τ⊥ = τ‖ = τ , is equal to the usual Helmholtz free
energy ifμ is conserved, and the introduction of anisotropic perturbations reduces it below
this value unless 〈τ‖〉 = 〈τ⊥〉 = 0.

4.4. Magnetic-moment conservation of a kappa-Maxwellian with fluctuating density and
temperatures

We next consider a plasma distribution function that exhibits non-Maxwellian behaviour
in the direction along a constant magnetic field B = B0, but is Maxwellian in the
perpendicular directions. In order to model such effects, we employ the kappa-Maxwellian
distribution function introduced by Hellberg & Mace (2002),

fκ(r, v) = n
(

m
2πT̄

)3/2
Γ (κ + 1)

κ3/2Γ (κ − 1
2)

√
κ

κ − 3
2

(
1 + mv2

‖
2T‖(κ − 3

2)

)−κ

e−μB0/T⊥, (4.27)

which shares many features with the distribution function discussed in § 4.2. In the limit
κ → ∞ it becomes bi-Maxwellian, and at high parallel velocities it exhibits power-law
behaviour, fκ ∝ v−2κ

‖ . The normalisation is chosen such that the particle number density is
equal to n, and the perpendicular and parallel energy densities are∫

μB0fκ dv = nT⊥, (4.28)

∫ mv2
‖

2
fκ dv = nT‖

2
. (4.29)

One may verify that the spatially constant distribution function is a ground state by setting
mv2

‖/2 = ε − μB0 and taking the derivative(
∂fκ
∂ε

)
μ,r

= − fκκ
ε − μB0 + T‖(κ − 3

2)
. (4.30)
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Hence it is seen that fκ is a decreasing function of particle energy at fixed r for all μ as
long as κ > 3/2. It follows that any spatially constant fκ is then indeed a ground state. We
now slightly perturb the distribution function, so that the fluctuating part becomes

δfκ = fκ,0

[
ν + τ⊥

(
μB0

T⊥,0
− 1

)
+ τ‖

(
κ − 1

2
− T‖,0κ(κ − 3

2)

ε − μB0 + T‖,0(κ − 3
2)

)]
. (4.31)

The ground state may readily be calculated, and becomes

δFκ = fκ,0

[
〈τ⊥〉

(
μB0

T⊥,0
− 1

)
+ 〈τ‖〉

(
κ − 1

2
− T‖,0κ(κ − 3

2)

ε − μB0 + T‖,0(κ − 3
2)

)]
. (4.32)

The integrals required for the available energy can be performed analytically, and result in

A = n0T‖,0V
2κ

〈
1
2
(ν + τ̃‖)2 +

(
κ − 3

2

)(
ν2 + τ̃ 2

‖
2

)
+ (κ − 1)τ̃ 2

⊥

〉
, (4.33)

where τ̃‖ = τ‖ − 〈τ‖〉 and τ̃⊥ = τ⊥ − 〈τ⊥〉. As required, this result is positive definite and
becomes equal to (4.25) in the Maxwellian limit, κ → +∞.

4.5. Conservation of magnetic moment and the parallel invariant
For instabilities and turbulence with wavelengths comparable to the ion gyroradius in the
direction perpendicular to the magnetic field, the frequency is usually much smaller than
that of the motion of electrons along the field. The electron distribution function is then
independent of the position along the field line in each trapping well. Moreover, since
the bounce frequency of magnetically trapped electrons is much larger than that of the
fluctuations, the action integral taken between two consecutive bounce points,

J =
∫ l2

l1

mv‖ dl, (4.34)

is conserved in addition to the magnetic moment. The available energy of the electrons
in a thin flux tube aligned with the magnetic field under the constraint of constant μ and
J was recently calculated by Helander (2020) and Mackenbach et al. (2022, 2023). It is
interesting to note that their results do not agree with the formulae (3.20) or (3.23).

The reason can be traced back to an implicit assumption made in the previous section,
where it was tacitly assumed not only that δf � f0 but also that all derivatives of δf are
smaller than the corresponding ones of f0. This assumption is, in general, violated if the
number of conserved quantities y is so large that only a single coordinate in phase space
is not conserved, i.e. if the vector z only consists of a single component z2. If this is the
case, that component can be expressed as a function of the energy and y, at least locally,
by inverting the function ε(y, z), and it must therefore be possible to write δf as a function

2In the calculation by Helander (2020), the distribution function depends on the phase-space coordinates (ψ,μ, J),
where ψ labels different flux surfaces, and μ and J are conserved. In this case, we thus have y = (μ, J) and z = ψ .
A similar situation arises in the related calculation by Mackenbach et al. (2022) of the available energy in a flux tube,
where the latter is taken to be so slender that the dependence on the coordinates (ψ, α) can be taken to be linear in these
variables.
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of y and ε,
δf (y, z) = δF[ε(y, z), y], (4.35)

where it is expected that δF � F0. However, since the function

f (y, z) = F0[ε(y, z), y] + δF[ε(y, z), y], (4.36)

only depends on z through ε(y, z), it follows that it actually represents a ground state if

∂(F0 + δF)
∂ε

< 0. (4.37)

The perturbed state f is thus a ground state unless |∂δF/∂ε| > |∂F0/∂ε|, which invalidates
the perturbation theory developed in §§ 2 and 3. More generally, in order to verify the
correctness of the perturbation theory, one could check that that ∂δf /∂xi � ∂f0/∂xi as
required.

As a final observation, note that, in the perturbative framework described in § 3, the
available energy is invariant under the substitution δf → −δf , as may be verified from
(3.18) and (3.20). For a fixed background magnetic field, then, the available energy (3.20)
is impervious to the relative sign of the gradient of the magnetic field strength, ∇B, and
the gradient of δf . For instance, if f = f0 + δf is a Maxwellian with a small density
gradient contained in δf , then (3.20) is independent of the sign of ∇n · ∇B. There is
thus no notion of ‘good’ or ‘bad’ curvature, and the expressions (3.20) and (3.23) are
oblivious to curvature-driven modes although available energy can, in fact, be used to
describe trapped-electron modes if μ and J are treated as adiabatic invariants (Helander
2020; Mackenbach et al. 2022, 2023).

5. Conclusions

The present paper can be seen as a continuation of the discussion by Helander
(2017, 2020) of the available energy in a magnetically confined plasma. Here, we
have derived explicit formulae, given in (3.20) and (3.23), for the available energy of
a distribution function f close to a ‘ground state’ f0, a state whose energy cannot be
lowered by Gardner restacking that keeps the invariants y constant. In the special case
of a Maxwellian plasma with small density and temperature fluctuations and no adiabatic
invariants, the available energy (4.11) was calculated already by Helander (2017), but his
calculation, which proceeded directly from the integral equation for the ground state, is
rather complicated. Here, we have found a simpler and more general way, which also
allows for the conservation of adiabatic invariants. The result shows explicitly how the
available energy is related to Helmholtz free energy, which has recently been used to derive
upper bounds on the linear and nonlinear growth of gyrokinetic instabilities (Helander &
Plunk 2022; Plunk & Helander 2022, 2023). The available energy is given by (3.20) and
is closely related to the free energy, which it can never exceed according to (3.23). The
Helmholtz free energy is thus an upper bound on the available energy, and it becomes
equal to the latter (to leading order) if the ground state f0 is accessible from f through
Gardner restacking.

These results have been used to explicitly calculate the available energy in a number
of special cases: the available energy of a Maxwellian with anisotropic temperature
fluctuations and no further constraints was shown to be equal to the Helmholtz free energy,
whereas invoking invariance of μ decreases it below this value. The available energy of
various non-Maxwellian distribution functions with power-law tails was considered too,
and display a dependence on the power-law considered. Finally, in calculations of the
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available energy in plasmas with a sufficiently large number of conserved quantities, it
was shown that the considered asymptotic framework is invalid and the available energy
instead needs to be calculated as by Helander (2020) and Mackenbach et al. (2022).

Our discussion has been limited to the simplest case of a single particle species, but it
would be valuable to extend it to several species which together satisfy the requirement of
quasineutrality.
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