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Abstract

Grass seeds play a critical and fundamental role in grass breeding and production. Elymus
sibiricus L. is a widespread Poaceae forage grass in northern Eurasia which is used for eco-
logical restoration and forage production. Sucrose is the main source of substrate and energy
required for starch synthesis in the seeds, so the hydrolysis of sucrose determines and influ-
ences starch synthesis and filling in the seeds, especially Poaceae. However, the process behind
carbohydrate metabolism during E. sibiricus seed development remains unclear. This study
addresses a significant gap in our understanding of the carbohydrate metabolism during
seed development in E. sibiricus by employing full-length transcriptome sequencing across
five developmental stages for the first time. Full-length transcriptome sequencing was per-
formed on E. sibiricus seeds at five developmental stages (S5, S9, S15, S20, S25) to get better
molecular insights. We identified 13,205 differentially expressed genes, with 7,471 up-regu-
lated and 5,734 down-regulated. Through KEGG enrichment analysis, genes were enriched
in ‘starch and sucrose metabolism’, ‘photosynthetic-related’ and ‘hormone signal transduc-
tion’ pathways. Gene ontology enrichment analysis showed that genes were enriched in the
‘beta-amylase activity’ term of molecular functions. In addition, top 21 transcription factor
families were identified as involved in seed development. The homologous genes of
ABSCISIC ACID-INSENSITIVE 3 (ABI3), NUCLEAR FACTOR-YB1 (NF-YB1), STARCH
SYNTHASE I (SSI) were identified as candidate genes of seed development in E. sibiricus.
Combined with physiological index, transcriptome analyses, weighted gene co-expression net-
work analysis and real-time quantitative PCR, the mechanism of starch and sucrose content of
seed development was revealed and ten hub genes were identified. Overall, this study provides
the molecular bases to understand seed development and starch and sucrose metabolism at
the different seed developmental stages in E. sibiricus.

Introduction

Seeds are crucial to protect and nourish the developing embryos that represent the next sporo-
phytic generation in flowering plants (Pradhan et al., 2014). Seed quality is usually measured
by germination ability or physicochemical attributes of seeds which is gaining greater import-
ance in agriculture field due to its critical and fundamental role in plant breeding and produc-
tion. High-quality seeds have been reported to initiate successful plant growth which results in
abundant yield/production (Feng et al., 2019). High quality and high yield have always been
the main goals of seed production, and only by deeply understanding the dynamic changes
of seed development can this goal be better achieved. Generally, seed development consists
of three stages: embryogenesis, seed formation, maturation and desiccation (Garg et al.,
2017). A series of complex and dynamic developmental, biochemical and metabolic processes
are involved in seed development including cell division and differentiation, carbohydrate,
protein, cell wall, lipid, amino acid, hormone and secondary metabolite biosynthesis (Baud
et al., 2002). Starch is the main energy storage substance in seed development, and sucrose
is one of the main sources of energy (Aguirre et al., 2018). Sucrose hydrolysis affects starch
synthesis and thus seed filling and size (Weber et al., 2005).

Understanding the regulatory mechanisms of seed formation is essential to identify the
molecular basis of seed development. Transcript profiling of developing seeds has become a
popular method to identify key candidate genes and their associated regulatory pathways
that can be used as breeding tools to improve seed quality traits. Previously, storage compound
synthesis and expression pattern of responsible genes have been reported in Arabidopsis thali-
ana during seed development (Baud et al., 2002; Peng and Weselake, 2011). In A. thaliana
ecotype Wassilewskija, starch accumulates during the morphogenesis stage of seed develop-
ment, with a subsequent decrease coinciding with sucrose accumulation during late
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maturation (Baud et al., 2002). Transcription factors (TFs), such
as LEAFY COTYLEDON 1 (LEC1), LEC2, ABSCISIC ACID-
INSENSITIVE 3 (ABI3), FUSCA 3 (FUS3) and others from the
CCAAT, bZIP (basic leucine zipper) and bHLH (basic
helix-loop-helix) families, form a complex regulatory network
essential for Arabidopsis seed development (Le et al., 2010;
Verma et al., 2022). Similarly, these seed-specific TFs were also
reported in Oryza sativa which are involved in hormone response,
cellular organization processes and metabolism regulation (Xue
et al., 2012). In Triticum aestivum, the overexpression of
TaNAC100 increased starch content, seed size and 1000-grain
weight. In the meanwhile, key starch synthesis-related genes
TaGBSSI (GRANULE BOUND STARCH SYNTHASE I) and
TaSUS2 (SUCROSE SYNTHASE 2) respond to TaNAC100 expres-
sion (Li et al., 2021). Barley is also an important source of carbo-
hydrates in the diet. The known genes NUCLEAR FACTOR-YB
(NF-YBs) are also found in Hordeum vulgare. AGPase
(Hvulgare_GLEAN_10033640 and Hvulgare_GLEAN_10056301),
as well as SBE2b (Hvulgare_GLEAN_10018352) may specifically
participate in starch biosynthesis during seed development
(Tang et al., 2017). Studies on the molecular mechanism of
seed development have also been carried out in a few forage
grasses. In a study to alter the nutritional value of legume forage
seeds, it was found that enzymes involved in methionine biosyn-
thesis were significantly compartmentalized between seed tissues
in Medicago truncatula (Gallardo et al., 2007). By performing
transcriptome sequencing on Leymus chinensis seeds at 14, 28
and 42 days after pollination, a total of 18,927 differentially
expressed genes (DEGs) and TFs NAC48, WRKY80 and C3H14
were involved in L. chinensis seed development, and thereby
appeared to influence germination rate (Li et al., 2019). The
molecular regulatory mechanisms and accumulation patterns of
oils and fatty acids of Artemisia sphaerocephala seeds at seven dif-
ferent development stages after flowering were revealed by
RNA-seq, and FUS3 and bHLH family TFs played a vital role
in this process (Nan et al., 2021). There are few studies on
genes involved in starch and sucrose metabolism during forage
seed development.

Elymus sibiricus (Siberian wild rye) is an economically signifi-
cant, perennial, cold-season, self-pollinating and allotetraploid
forage grass, indigenous to northern Asia and integral to
Qinghai-Tibetan Plateau’s agriculture due to its high protein con-
tent and robust adaptability (Xie et al., 2015; Zhao et al., 2017). In
this context, E. sibiricus can be widely employed in establishing
sown grasslands to develop stock raising and participate in eco-
logical restoration (Yan et al., 2007). Despite its agricultural
value, E. sibiricus faces challenges in seed shattering and variety
development, hindering its cultivation and application.
Moreover, there is a lack of comprehensive molecular studies con-
necting transcriptomic profiles to seed developmental stages in
E. sibiricus (Lei et al., 2014; Zhao et al., 2019). Previous studies
only focused on the morphological changes, physiological
mechanisms and biochemical processes during seed development
in E. sibiricus (Zhao et al., 2017; Lei et al., 2020). Meanwhile, the
transcript profiling was mainly reported in relation to seed shat-
tering and flowering time (Xie et al., 2017; Zhang et al., 2019;
Zheng et al., 2022). There are no studies showing a connecting
transcript gene expression profiles to seed developmental stages
in E. sibiricus. To address this, we have utilized an integrated
sequencing approach that combines next-generation sequencing
(NGS) with advanced long-read sequencing technologies to con-
struct a comprehensive transcriptome for E. sibiricus. In absence

of a published E. sibiricus genome annotation, our study performs
full-length transcriptome sequencing across different seed devel-
opmental stages. By constructing a weighted gene co-expression
network analysis (WGCNA), we aim to uncover the genes and
molecular mechanisms that regulate seed development in E. sibir-
icus, providing novel insights and a valuable resource for future
breeding efforts.

Materials and methods

Sample collection and physiological indices measurement

The wild E. sibiricus germplasm LQ06 was used for this study,
which was collected from Luqu, Gansu province of China (lati-
tude 34°05′39′′ N, longitude 102°37′55′′ E, elevation 3,380 m).
The seeds were germinated on two layers of filter paper and
placed in a controlled environment chamber set at 25°C and
8 h in the dark/16 h in the light. Thirty healthy seedlings were
grown in a greenhouse and were transplanted to the experimental
field at the Yuzhong campus of Lanzhou University, Gansu,
China (latitude 35°34′ N, longitude 103°34′ E, elevation
1,720 m) when two tillering buds have developed. Spikelets that
flowered simultaneously were tagged at full bloom, and the flow-
ering date was recorded. Seeds from spikelets with comparable
developmental stages were collected at 5, 9, 15, 20 and 25 days
post-anthesis (DPA), hereinafter referred to as S5, S9, S15, S20
and S25, respectively. Each sample was collected in triplicate,
flash-frozen in liquid nitrogen and stored at −80°C for further
analysis. Immediately after harvest, samples were analysed for
starch and soluble sugar content using Suzhou Comin
Biochemical Test Kits according to the manufacturer’s protocol.

RNA isolation, PacBio and Illumina library construction and
sequencing

Total RNA was isolated using TRIzol® Reagent (Invitrogen®
Thermo Fisher Scientific, Waltham, MA, USA). The purity and
integrity of RNA were assessed by using a Nanodrop and 2100
Bioanalyzer (Agilent Technologies®, Santa Clara, CA, USA). Agarose
gel electrophoresis was used to detect genomic DNA contamination.
The purified RNA samples from the collected tissues were used for
PacBio and Illumina library construction and sequencing.

Procedure of full-length transcriptome sequencing: (1)
Full-length cDNA of mRNA was synthesized using SMARTer™
PCR cDNA Synthesis Kit (Clontech, Mountain View, CA,
USA). (2) Amplification of full-length cDNA by PCR. (3) End
repair of full-length cDNA. (4) Connect SMRT dumbbell con-
nector. (5) Exonuclease digestion was performed to obtain
sequencing library. (6) Library quality control. (7) After passing
the on-machine sequencing library check, full-length transcrip-
tome sequencing was performed using PacBio (Sequel II) instru-
ment according to the target on-machine data volume. In this
study, all samples were mixed for full-length transcriptome
sequencing without replicate for comparative analysis.

Procedure of second-generation transcriptome sequencing: (1)
Enrichment of eukaryotic mRNA with magnetic beads with Oligo
(dT). (2) mRNA was randomly interrupted by Fragmentation
Buffer. (3) mRNA was used as template to synthesize the first
cDNA strand with six-base random hexamers, and then the
second cDNA strand was synthesized by adding buffer, dNTPs,
RNase H and DNA polymerase I. cDNA was purified by
AMPure XP beads. (4) The purified double-stranded cDNA was
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then end-repaired, A-tail was added and sequencing joints were
connected, and AMPure XP beads were used for fragment size
selection. (5) cDNA library was obtained by PCR enrichment.
(6) Library quality control. (7) After the on-machine sequencing
library is checked, different libraries are pooled according to the
target on-machine data amount and sequenced by Illumina
NovaSeq 6000 platform. In this study, samples of five stages
were used for second-generation transcriptome sequencing with
three replicates.

PacBio Iso-Seq data processing and read correction

Raw sequencing data were processed using the SMRTlink4.0
software through the standard Iso-Seq protocol. The full-length
non-chimeric and non-full-length (nFL) reads were obtained by
filtering, polishing and sorting. Error correction was performed
using an Illumina RNA-seq dataset (Chen et al., 2019).
Considering the limitation of the construction of the cDNA
library, the consensus sequence screened may be an nFL sequence
due to the deletion of the 5′end sequence. Therefore, we merged
the sequences where only 5′end exons differ, and the other exons
are consistent. The longest sequence is taken as the final transcript
sequence, and second-generation data are used to quantify and
differentiate new transcript sequences.

Mapping reads from the PacBio library and annotation
analysis

After sequencing quality control checks, low-quality conforming
sequences were corrected using Illumina high-throughput
sequencing results. Clean reads were separated from the raw
data by removing adapter sequences and low-quality reads, the
high-quality clean reads were then used as a reference for further
transcriptome data analysis, and PacBio data were applied to
modify the reference genome using Bowtie (v2.2.3). The gene
expression levels were quantified by the RSEM software package
(v1.3.1) (Li and Dewey, 2011) and were normalized by the
FPKM method (Trapnell et al., 2010). All expressed transcript
functions were annotated to eight public databases using
BLAST software (v2.2.26): the NCBI non-redundant (Nr) protein,
Protein Family (Pfam), SwissProt (which contains manually
annotated and reviewed protein sequences), Clusters of
Orthologous Groups of proteins (KOG/COG/eggNOG), GO and
KEGG databases.

Identification of differentially expressed genes (DEGs) and
transcription factors (TFs)

The expression level of transcripts was calculated by quantifying
the reads according to the fragments per kilobase of transcript
per million mapped reads (FPKM) values (Mortazavi et al.,
2008). The transcript fold change was calculated by the formula
of log2(FPKM treatment/FPKM control) using an MA plot-based
method with the random sampling model via the R package
DEGseq (Wang et al., 2010). The DEGs that conformed to both
|fold change|≥ 2 and a false discovery rate < 0.01 conditions
were used for subsequent analysis. Cluster analysis was performed
and DEG expression patterns were assessed using the Biomarker
(BMK) Cloud platform (Chang et al., 2017). The expression level
(FPKM) of mutually expressed genes among different treatments
was analysed using TBtools (Chen et al., 2020). Venn diagrams
were generated using the Venny 2.1 tool (https://bioinfogp.cnb.

csic.es/tools/venny/index.html). GO and KEGG pathway enrich-
ment analyses of the DEGs were performed via the OmicShare
Tools online platform. The potential TFs were identified by the
PlantTFDB database with the default parameters (https://
planttfdb.gao-lab.org/blast.php).

Establishment of the gene co-expression network

WGCNA was conducted using the R packages (Langfelder and
Horvath 2008). Expression correlation coefficients were calculated
for gene networks using the scale-free topology model (Wang
et al., 2018). Then, the WGCNA modules (co-expression net-
work) of eigengenes were identified and the networks correlated
with physiological indices were identified with the criterion of sta-
bility correlation P≤ 0.05. The resulting networks were visualized
with Cytoscape(v3.7.1) and MCODE (Bader and Hogue, 2003).

Real-time quantitative PCR (qRT-PCR) analysis

cDNA was synthesized from 500 ng of total RNA using ReverTra
Ace® qPCR RT Master Mix (with DNase) (Toyobo Biotech Co.,
Ltd., Shanghai, China) according to the manufacturer’s instruc-
tions. Ten sequences of hub genes derived from WGCNA were
used to synthesize primers via a tool on the NCBI website
(https://www.ncbi.nlm.nih.gov/tools/primer-blast/). The qRT-
PCR analysis was performed on a CFX 96 Real-Time PCR system
(Bio-Rad) using 2xSG Fast qPCR Master Mix (Sangon Biotech,
Shanghai, China). The qRT-PCR analyses were performed in
three biological replicates with three technical replicates in
96-well plates. The thermal cycling conditions were as follows:
95°C for 3 min, followed by 40 cycles of 3 s at 95°C and 30 s at
60°C. The relative gene expression levels were calculated accord-
ing to the 2−ΔΔCt method (Arocho et al., 2006).

Results

Morphological changes at different seed development stages

Morphological changes in developing seeds were monitored from
5 DPA (S5) to 25 DPA (S25) (Fig. 1). After 5 days of flowering
(S5), the seeds were short, shrivelled and bright green. After 9
days (S9), the seeds grew longer, bright green and gradually full.
At 15 DPA (S15), the seed colour changed from green to yellow,
the middle of the seed appeared brown and the seed became wide
and full. At 20 DPA (S20), most of the seeds became reddish-
brown in colour, while the seeds extended and the seed-coat

Figure. 1. Seed tissues at five different developmental stages (S5, S9, S15, S20 and
S25 represent corresponding days of post-anthesis).
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wrinkled. At 25 DPA (S25), seeds turned brown and gradually lost
water content. These results indicate that the seed colour of E.
sibiricus transitions from bright green to brown as they mature,
with a noticeable increase in size up until S25. In addition, the
seed coat changed from crinkled to full to crinkled.

Change in sugar content at different seed development stages

In this study, the starch and sucrose content were determined by
the standard curve method at five seed development stages.
Non-structural carbohydrate (NSC) content was obtained by cal-
culating the sum of starch and soluble sugar concentration. The
sucrose content significantly decreased from 67.12 mg/g at 5
DPA (S5) to 61.84 mg/g at 15 DPA (S15), then remained rela-
tively stable from 15 to 25 DPA (S15–S25). Starch content
increased from 35.03 mg/g at 5 DPA (S5) to 105.43 mg/g at 20

DPA (S20), with the most rapid accumulation occurring between
9 and 15 DPA. After 20 DPA (S20), the starch content declined.
The trend in NSC content mirrored that of the starch content
(Fig. 2), suggesting that the period between 9 and 15 DPA is crit-
ical for seed development, characterized by sucrose decompos-
ition and rapid starch accumulation in E. sibiricus.

High-throughput RNA-seq and global analysis of gene
expression

A total of 105,508 full-length transcripts were generated from a
library of 1–6 kb in length (Supplementary Fig. S1). The
Illumina results were mapped to the PacBio library, and mapping
ratios were calculated, as shown in Table 1. Among them, the Q30
values of the sequences in the 15 libraries reached 90%, and all of
the total mapping ratios were greater than 60% (Table 1). In total,
82,438 redundant transcripts were annotated against eight public
databases (the Nr, SwissProt, eggNOG, COG, KOG, Pfam, GO
and KEGG databases) (Table 2). Among them, 78.13% of tran-
scripts from SMRT were annotated in at least one database. The
number of transcripts annotated in the eight databases ranged
from 26,862 (25.46%, COG) to 81,986 (77.71%, Nr).

Differentially expressed genes (DEGs) during seed development

A total of 13,205 DEGs were identified at five stages of seed devel-
opment. Among them, 6,196 (2,923 up, 3,273 down), 4,853 (3,423
up, 1,430 down), 746 (440 up, 306 down) and 1,410 (685 up, 725
down) DEGs were identified in S5 vs S9, S9 vs S15, S15 vs S20 and
S20 vs S25, respectively (Fig. 3A–D). It appeared that transcrip-
tion events of seed development occurred actively during S5–
S15 and S20–S25. The Venn result showed nine overlap DEGs
expressed in the overall comparison sets. The specific DEGs

Figure. 2. Sugar content of different development stages.

Table 1. The Illumina high-throughput sequencing results and mapping ratio

Clean data Mapped reads (ratio)

Sample names Read sum (M) Base sum (M) GC (%) Q30 (%) Total mapped Uniquely mapped Multiple mapped

S5-1 31.37 9,374.18 56.42 92.85 67.74% 38.66% 26.82%

S5-2 32.48 9,711.71 56.45 93.51 69.23% 38.25% 27.88%

S5-3 27.28 8,146.86 56.37 93.82 68.38% 38.19% 27.59%

S9-1 29.03 8,680.15 54.63 92.09 66.02% 30.36% 27.41%

S9-2 21.07 6,307.19 54.83 92.24 67.44% 31.23% 28.88%

S9-3 23.29 6,961.42 55.36 92.31 66.89% 33.90% 27.13%

S15-1 25.74 7,689.36 53.71 92.08 68.97% 23.38% 32.85%

S15-2 19.92 5,911.14 51.76 91.41 63.54% 17.71% 29.03%

S15-3 30.38 9,059.35 53.73 91.40 66.96% 22.53% 32.50%

S20-1 29.42 8,778.24 54.31 90.01 64.67% 21.60% 30.66%

S20-2 23.65 7,046.25 53.80 90.12 63.65% 19.46% 31.39%

S20-3 24.73 7,393.29 54.51 88.65 58.99% 20.43% 27.62%

S25-1 31.92 9,525.74 54.90 91.10 66.43% 22.11% 35.23%

S25-2 29.11 8,693.97 54.97 90.77 64.51% 22.95% 31.48%

S25-3 24.89 7,434.04 53.98 90.69 63.12% 21.24% 30.94%
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were 5,352 (48.3%), 3,906 (35.3%), 441(4%), 273(2.5%) in S5 vs
S9, S9 vs S15, S15 vs S20 and S20 vs S25, respectively (Fig. 3E).

Hierarchical clustering of all 13,205 DEGs was performed,
using the Pearson correlation method associated with average
linkage clustering. As a result, eight clusters were identified for
expression pattern analysis, namely cluster 1–8 (Fig. 4). On
the whole, each cluster showed a peak in a certain stage.
Cluster 1 and 6 contained high-expressed DEGs at S5. Cluster
3 contained high-expressed DEGs at S9. Cluster 2 contained
high-expressed DEGs at S15. Cluster 4, 7 and 8 contained high-
expressed DEGs at S20. Cluster 5 and 7 contained high-
expressed DEGs at S25. The classification results were beneficial
to the study of genes with the same expression pattern in seed
development.

GO and KEGG enrichment analysis of DEGs

Gene ontology (GO) assignments were used to classify functions
of the predicted seed developing DEGs in E. sibiricus. Among
them, DEGs were categorized into three main divisions (biological
process, cellular components and molecular functions). The top
20 enriched GO terms during the five seed development stages
were identified (Fig. 5). All these terms were directly or indirectly
related to seed development and starch and sucrose metabolism of
E. sibiricus. The term ‘vacuole’ contained 335 DEGs belonging to
cellular components. Vacuoles store carbohydrates, proteins and
fats needed for growth, providing a source of nutrients for seed
development (Shimada et al., 2018). The term ‘xylan catabolic
process’ contained 55 DEGs belonging to biological process
which is the chemical reactions and pathways resulting in the
breakdown of xylan, a polymer containing a beta-1,4-linked
D-xylose backbone. These DEGs of ‘xylan catabolic process’
were involved in seed maturation (Shen et al., 2022).
The beta-amylase activity reaction was the hydrolysis of
1,4-alpha-glucosidic linkages in polysaccharides so as to remove
successive maltose units from the non-reducing ends of the
chains. This term involves in seed germination and maturation
process (Gong et al., 2013). The term ‘beta-amylase activity’ con-
tained 56 DEGs belonging to molecular functions and the expres-
sion values are shown in Fig. 6. The annotation results of the
Pfam dataset indicated that these DEGs were from the
GLYCOSYL HYDROLASE FAMILY 14, and BETA-AMYLASE 1
(BMY1) was a representative gene in this family. The homologs
of BMY1, F01_transcript_191270 and F01_transcript_98193 were

down-regulation from S5 to S25. However, F01_transcri
pt_128398, F01_transcript_150576, F01_transcript_180023, F01_
transcript_8657, F01_transcript_90591 and F01_transcript_97370
were up-regulated.

From the identified differential developmental stages of the
seeds and the associated DEGs group, further annotation was
done by utilizing KEGG database. As a result, DEGs were categor-
ized into three main divisions (metabolism, genetic information
processing and environmental information processing).
Similarly, the top 20 enriched KEGG pathways during the five
seed developmental stages were identified (Fig. 7). In top 20
enriched KEGG pathways, the ‘photosynthesis’ pathway con-
tained 115 DEGs. In the process of seed maturation, the genes
involved in photosynthesis were down-regulated, photosynthesis
in the seeds was inhibited, and the seeds turned yellow (Shen
et al., 2022). The ‘plant hormone signal transduction’ pathway
contained 190 DEGs. Many plant hormones are involved in the
regulation of seed dormancy and germination, of which abscisic
acid (ABA) and gibberellin are the two most important regulation
hormones (Kozaki and Aoyanagi, 2022). The ‘starch and sucrose
metabolism’ pathway contained 246 DEGs. According to annota-
tion results, DEGs related with sucrose synthase, alpha-amylase,
UDP-glucose 6-dehydrogenase, UDP-glucuronate 4-epimerase,
UDP-glucuronic acid decarboxylase, starch synthase and beta-
glucosidase were selected and the expression values are shown
in Fig. 8.

Transcriptional networks controlling seed development

To identify the different co-expressed modules in seed develop-
ment, a WGCNA with the DEGs was constructed. The min-
imum number of genes in each module was set to 100, and a
0.85 threshold was used to merge similar modules. In total, 19
distinct modules with various colours were ultimately identified
(Fig. 9A). To identify the modules that were significantly asso-
ciated with sugar content, each module was subjected to a correl-
ation interaction analysis based on the P-value, the midnight
blue module had a positive correlation with total starch (r =
0.87, P = 0.0004) and NSC content (r = 0.88, P = 0.0004)
(Fig. 9B). The midnight blue module contained 1159 DEGs.
For visualization, 64 hub genes interaction networks with scores
>10 were obtained through MCODE (Supplementary Table S1).
The colour and size of the circle were related to the score of the
hub genes. Darker colours and larger circles indicated that the
gene is strongly involved in sugar regulation (Fig. 10). The top
ten hub genes were detected closely related to the sugar metab-
olism of seed development in E. sibiricus, including RING-H2
finger protein ATL8 (F01_transcript_104493), a member of
SCP-2 sterol transfer family (F01_transcript_142764), protein
TIFY 10A (F01_transcript_170863), ubiquitin-conjugating
enzyme E2 34 (F01_transcript_184778), transmembrane emp24
domain-containing protein p24beta2 (F01_transcript_30051),
ras-related protein Rab7 (F01_transcript_30832), ubiquitin-
conjugating enzyme E2 11 (F01_transcript_32363),
multiprotein-bridging factor 1a (F01_transcript_33926), eukary-
otic translation initiation factor 5A-2 (F01_transcript_34235)
and 60S acidic ribosomal protein P2B (F01_transcript_38379)
(Table 3). In the meanwhile, the ten hub genes were used for
qRT-PCR to validate their expression levels at five stages of
seed development in E. sibiricus. The expression levels of the
hub genes were generally consistent with the FPKM value by
transcription sequencing, suggesting relative rationality and

Table 2. The transcripts functional annotation results

Anno_Database Annotated_Number Percentage (%)

COG_Annotation 26862 25.46

GO_Annotation 65471 62.05

KEGG_Annotation 29573 28.03

KOG_Annotation 40887 38.75

Pfam_Annotation 57745 54.73

Swissprot_Annotation 53008 50.24

eggNOG_Annotation 70405 66.73

nr_Annotation 81986 77.71

All_Annotated 82438 78.13
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accuracy of the transcriptome analysis in this study (Fig. 11).
The expression levels of F01_transcript_170863,
F01_transcript_184778, F01_transcript_30051 and

F01_transcript_33926 were gradually rising during S5–S10 and
decreasing during S20–S25. The expression of other hub genes
increased during the whole experiment stage.

Figure. 3. Volcano plot and Venn diagram of DEGs
in E. sibiricus seed embryos. (A) S5 vs S9. (B) S9 244
vs S15. (C) S15 vs S20. (D) S20 vs S25. (E) Venn dia-
gram represents the number of overlapping DEGs
245 between S5, S9, S15, S20, S25.
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Identification of transcription factors (TFs) associated with
seed development

TFs are powerful regulators in controlling gene expression in every
aspect of plant growth and development (Riechmann and Ratcliffe,
2000; Franco-Zorrilla et al., 2014). To gain insight into the involve-
ment of TFs and to determine how they regulate seed development
in E. sibiricus, all the differentially expressed TF-encoding genes
were identified. In total, 54 TF families were identified in the pro-
cess of seed development, and the top 21 families were filtered out,
including NAM, ATAF1/2, CUC1/2 (NAC (63)), APETALA2/

ethylene responsive factor (AP2/ERF (51), bZIP (43), v-myb
avian myeloblastosis viral oncogene homolog (MYB, 43), bHLH
(38)) and C2H2 zinc finger proteins (C2H2, 37), WRKY (37),
MYB-related (22), GAI, RGA, SCR (GRAS, 18), C3H zinc finger
proteins (C3H, 17) and NF-YB (7) (Fig. 12). In plants, bZIP TFs
regulate processes such as pathogen defence, light and stress signal-
ling, seed maturation and flower development (Jakoby et al., 2002).
According to annotation results, TFs involved in seed dormancy
control and the homologs of ABI5 in the bZIP family. In addition,
TFs from C2C2-Dof and NF-YB also were concerned and the
expression patterns are shown in Fig. 13.

Figure. 4. The DEGs expression pattern analysis of five E. sibiricus developing stages

Figure. 5. The GO enrichment analysis of DEGs. The colour from the light pink to dark red module represents –log10 (P-value), the number on the module repre-
sents the number of genes enriched in the pathway and the number on the purple module represents the number of genes in the pathway. And the fan length on
the pathway represents the enrichment factor.
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Discussion

Full-length transcriptome sequencing is a useful tool for genes
selecting

Full-length transcriptome sequencing has the advantages of com-
prehensively identifying alternative splicing, discovering more
new genes and identifying more lncRNAs (Grabherr et al.,
2011). In this study, we provided a comprehensive transcriptomic

profile of the seed-developing network in different stages and
identified a total of 105,508 full-length transcripts in 15 sample
libraries and 13,205 DEGs at five stages. Among these transcripts,
more than 78% were significantly similar (in terms of their
sequence) to genes in public databases, the percentage of which
was lower than drought research in E. sibiricus using full-length
sequencing (96.75%) (Yu et al., 2023), but greater than a previous
study in E. sibiricus using NGS (46.69%) (Xie et al., 2017). For

Figure. 6. The expression heatmap of DEGs involved in beta-amylase activity

Figure. 7. The KEGG enrichment analysis of DEGs. The colour from the light pink to dark red module represents –log10 (P-value), the number on the module
represents the number of genes enriched in the pathway and the number on the purple module represents the number of genes in the pathway. And the fan length
on the pathway represents the enrichment factor.
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forage grasses, full-length transcriptomics has been widely used in
recent years. A first full-length transcriptome database under
300 mM NaCl treatment at different time points was constructed
for Bromus inermis L. revealing the molecular regulation response
to salt stress (Li et al., 2022). In Trifolium ambiguum M., DEGs
were identified in five tissues using full-length and NGS to pro-
vide insight in its growth and development (Yin et al., 2020). In
Pennisetum giganteum, leaf and root tissues under room and chil-
ling temperature were used for comprehensive full-length tran-
scriptome analysis to explore the cold stress response
mechanism (Li et al., 2020). However, there are no studies on
the use of full-length sequencing to explore forage grass seed
development. Our research opened a new horizon for the study
of forage seeds.

Key stage determination of seed development in E. sibiricus

According to morphological observations, three key seed devel-
opmental stages could be determined: embryogenesis before 5
DPA, seed formation between 5 and 15 DPA, followed by mat-
uration and desiccation around 20 DPA. In rice seeds, cellular-
ization of endosperm was completed before 6 DPA, seeds were
formed at 6–10 DPA and embryos matured at 11–20 DPA
(Xue et al., 2012). The seeds of soybean mature and increase
dry weight at 20–30 DPA (Yao et al., 2023). In addition, seed
shattering is a sign that seed development has entered the
maturity stage. Our previous study found that seed shattering
occurred at 28 days after heading in E. sibiricus (Xie et al.,
2017). In the current study, the DEGs linked to
development and cell death such as F01_transcript_110107,

Figure. 8. The expression heatmap of DEGs involved in starch and sucrose metabolism

Figure. 9. Weighted gene co-expression network analysis (WGCNA). (A) Clustering dendrograms of genes. (B) Module correlations and corresponding P-values (in
parentheses) of starch, sucrose and NSC. The colour scale on the right shows module–trait correlation from –1 (blue) to 1 (red).
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F01_transcript_18619 reached maximum expression at S20.
Above all, the seed development time differences were due to
the developmental difference of the species itself, the seed
maturity stage of E. sibiricus was S20.

Key GO term and KEGG pathway involving in seed
development

A key term ‘beta-amylase activity’ was obtained by GO enrich-
ment. Beta-amylase activity increased with seed development to

Figure. 10. Hub genes co-expression network analysis in midnight blue module

Table 3. The annotation information of ten hub genes in midnight blue module based on database

Gene ID Pfam annotation Swissprot annotation

F01_transcript_104493 Zinc finger, C3HC4 type RING-H2 finger protein ATL8

F01_transcript_142764 SCP-2 sterol transfer family –

F01_transcript_170863 tify domain, divergent CCT motif Protein TIFY 10A

F01_transcript_184778 Ubiquitin-conjugating enzyme Ubiquitin-conjugating enzyme E2 34

F01_transcript_30051 emp24/gp25L/p24 family/GOLD Transmembrane emp24 domain-containing protein p24beta2

F01_transcript_30832 Ras family, Gtr1/RagA G protein conserved region Ras-related protein Rab7

F01_transcript_32363 Ubiquitin-conjugating enzyme Ubiquitin-conjugating enzyme E2 11

F01_transcript_33926 Multiprotein bridging factor 1, helix-turn-helix Multiprotein-bridging factor 1a

F01_transcript_34235 Eukaryotic elongation factor 5A hypusine, DNA-binding OB fold Eukaryotic translation initiation factor 5A-2

F01_transcript_38379 60s acidic ribosomal protein 60S acidic ribosomal protein P2B
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improve grain quality, and BETA-AMYLASE 1 (BMY1) was a rep-
resentative gene in this term (Gong et al., 2013). In this study, the
homologs of BMY1, F01_transcript_191270 and F01_tra
nscript_98193 were down-regulated between S5 and S25.
However, F01_transcript_128398, F01_transcript_150576,
F01_transcript_180023, F01_transcript_8657, F01_transcript
_90591 and F01_transcript_97370 were up-regulated. Most tran-
scripts were up-regulated, which is consistent with a previous
study in barley. Vinje et al. analysed the expression of the
BMY1 gene in barley, which rose sharply between 5 and 17
DPA, peaking at 25 DPA (Vinje et al., 2019). The down-regulated
expression trends of F01_transcript_191270 and
F01_transcript_98193 may be related to intron polymorphism.
Wu et al. found that intron 3 of BMY1 was polymorphic, and

the presence of three alleles had different effects on beta-amylase
activity (Wu et al., 2022).

Photosynthesis and hormone signal transduction pathways
play significant roles in seed development of E. sibiricus. In this
study, the annotation results of DEGs contained photosystem I
reaction centre, photosystem II reaction centre and
oxygen-evolving enhancer protein. Photosynthesis is a basic bio-
logical process that requires energy for plant growth and develop-
ment. Seeds as non-foliar green tissues also can contribute energy
(Simkin et al., 2020). In soybean, photosynthesis of the pod and
seed can provide 13–14% of the energy for seed maturation
(Cho et al., 2023). In T. aestivum, the contribution of seed photo-
synthesis to yield ranged from 12 to 42% (Maydup et al., 2010).
However, photosynthesis is not necessary in the final stage of
seed maturation. If chlorophyll degradation is not complete, it
will lead to ‘green seed problems’ and affect the yield
(Smolikova and Medvedev, 2016). In Chenopodium quinoa, the
‘photosynthesis’ pathway also was identified during seed matur-
ation using proteomic analysis (Shen et al., 2022).

In hormone signal transduction, ABA is the main hormone
regulating seed development. The accumulation of ABA occurred
in two stages, the early stage and the middle stage of seed devel-
opment (Kozaki and Aoyanagi, 2022). The key gene ABI3 is
expressed during seed development and interacts with ABI5 in
relation to ABA signalling (Collin et al., 2021). In this study,
the homologs of ABI3 and ABI5 were identified and the putative
flow chart of ABI3 and ABI5 participating in the ABA signalling
pathway is shown in Fig. 14. Expression of the homologs of ABI3,
F01_transcript_170113, F01_transcript_96236, F01_transcript
_23598 and F01_transcript_62821, was up-regulated. The homo-
logs of ABI5 divided into two groups, up-regulated and down-
regulated. Expression of ABI3 and ABI5 inhibits seed germin-
ation, while mutation of ABI3 may reduce seed dormancy

Figure. 11. qRT-PCR confirmation of ten hub genes

Figure. 12. Distribution of the top 21 TF families involved in seed development of E.
sibiricus
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(Verma et al., 2022). ABI3 was up-regulated in E. sibiricus, and
the seeds may mature into dormancy. The function of these
two genes can be studied by seed dormancy and germination
experiments in the future.

Transcript factors regulating seed development of E. sibiricus

In our dataset, about 50% of the TFs were found to be differen-
tially expressed between different developmental stages. The TFs
from the bZIP, C2C2-Dof and NF-YB families were found to
be related with seed development in E. sibiricus. In the bZIP fam-
ily, TFs involved in seed dormancy control and the homologs of
ABI5 were identified. The homologs of ABI5 were consistent with
what was identified in the ABA signalling pathway. TFs involved
in seed dormancy control contained the homologs of HISTONE

BINDING PROTEIN-1B (HBP-1b) and TGACG-SEQUENCE-
SPECIFIC DNA-BINDING PROTEIN (TGA). In this study, the
expression of HBP-1b homologs F01_transcript_1184177 peaked
at S20 and F01_transcript_152704 peaked at S25. Studies on
HBP-1b are scarce, the transcript and protein abundance of
HBP-1b were significantly increased during embryo germin-
ation in rice (Sano et al., 2022). TGA plays an important role
in plant defence but other functions have not been studied
(Ullah et al., 2019). TGAs were also identified in studies of
wheat seed storage protein gene regulators, but their functions
were not verified (Luo et al., 2021).

Ten TFs were identified from the C2C2-dof family, five of
which were down-regulated and five TFs were down-regulated
after up-regulation. In rice, 30 Dof TFs were divided into four
groups based on their expression pattern during seed

Figure. 13. The expression heatmap of TFs from bZIP, C2C2-Dof and NF-YB families.
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development (Gaur et al., 2011). In the NF-YB family, the expres-
sion of F01_transcript_119377 (NF-YB3) peaked at S5 and
F01_transcript_38918 (NF-YB1) peaked at S9. OsNF-YB1 was
shown to be involved in the regulation of seed size and also
affected seed starch characteristics and grain filling rate in rice
(Xu et al., 2016). Combined with physiological results, the content
of starch in seeds increased rapidly in S9–S15, and
F01_transcript_38918 may be involved in regulation.

The mechanisms of starch and sucrose during seed
development in E. sibiricus
During this study, starch and sucrose were the focus of attention.
Starch is the main polysaccharide stored in seeds (Aguirre et al.,
2018). Sucrose is the main product of photosynthesis, and the
accumulation of storage compounds in seeds depends on their
ability to import sucrose from their parent tissues (Weber et al.,
2005). Sugar contents determination implied that starch content

Figure. 14. The putative flow chart of ABI3 and ABI5 participated in ABA signalling pathway

Figure. 15. The putative mechanism of starch and sucrose metabolism pathway
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increased from S5 to S20 and then decreased at S25, and sucrose
content decreased from S5 to S15 and then increased. The vari-
ation range of sucrose content increased after an initial decline.
In T. aestivum, the accumulation of starch was reported to grad-
ually increase in the later stages of seed development, while
sucrose is gradually consumed with the progress of seed develop-
ment (Shewry et al., 2009; Weichert et al., 2010). In this study, the
change of sugar content from S5 to S20 was consistent with T. aes-
tivum, but the change at S25 was different. This may be due to a
slower rate of starch accumulation or a blockage of sucrose con-
version. In triticale (x Triticosecale Wittmack), the endosperm
underwent programmed cell death at 21 DPA with a decrease
in starch accumulation (Li et al., 2010). We also found the expres-
sion of genes that cause cell death at S20. In H. vulgare, pro-
grammed cell death was affected, resulting in impaired sucrose
distribution and less starch accumulation (Radchuk et al., 2021).

Based on the result of ‘starch and sucrose metabolism’ pathway,
we constructed a putative mechanistic model of starch and sucrose
metabolism in E. sibiricus (Fig. 15). In this model, 14 DEGs are
involved, including two DEGs regulating the hydrolysis of sucrose
to D-fructose, one DEG regulating the conversion of D-glucose-6P
and α-D-glucose-1P, one DEG regulating the production of
ADP-glucose, six genes regulating starch synthesis, two genes regu-
lating the production of α-D-glucose-1P from starch and two genes
regulating the production of UDP-glucose. Many studies have
shown that ADP-glucose pyrophosphorylase mediates key control
steps in the starch synthesis pathway through SOLUBLE
STARCH SYNTHASE (SS) and STARCH BRANCHING ENZYME
(SBE) genes (Wei et al., 2017; Ferrero et al., 2020; Prathap and
Tyagi, 2020). In this study, F01_transcript_147469,
F01_transcript_112197 and F01_transcript_1665467, which are
homologs of WHEAT STARCH SYNTHASE I (SSI) (Fujita et al.,
2011), were highly expressed at S9–S15. F01_transcript_113004
was highly expressed at S9 and F01_transcript_1146147 was highly
expressed at S15. Both are homologs of STARCH BRANCHING
ENZYME I (SBEI) (Utsumi et al., 2022). The homolog of SBEII,
F01_transcript_116926, was highly expressed at S9. It can be seen
that S9–S15 is the stage of rapid starch accumulation. The pattern
of gene expression corresponds to physiological results. Ten hub
genes related with change of starch and sucrose were identified
by WGCNA (Table 3). The highest correlation genes are
F01_transcript_104493, F01_transcript_142764, F01_transcript_32
363 and F01_transcript_38379. F01_transcript_104493 is a homo-
log of RING-H2 FINGER PROTEIN ATL8. ATL8 plays a role in
the embryonic development of rice and Arabidopsis (Serrano et
al., 2006). F01_transcript_142764 is a member of the SCP-2
STEROL TRANSFER family. F01_transcript_32363 is related to
UBIQUITIN-CONJUGATING ENZYME E2 11. F01_transcript_38
379 may be the homolog of 60S ACIDIC RIBOSOMAL PROTEIN
P2B. However, none of these have been reported to be related to
seed development. In this study, qRT-PCR was used to verify
expression patterns of ten hub genes and, subsequently, these
genes could be verified by overexpression, knockout and gene edit-
ing in E. sibiricus to confirm that sugar accumulation and metab-
olism in seeds is affected.

Conclusion

This study aimed to investigate the molecular mechanisms under-
lying seed development, with a focus on differences in starch and
sucrose content. We utilized full-length transcriptome sequencing
on E. sibiricus seeds from five developmental stages. Key Go term

‘Beta-amylase activity’, and Key pathways such as ‘Starch and
sucrose metabolism’, ‘photosynthetic-related’ and ‘hormone sig-
nal transduction’ were identified. Additionally, specific genes
including F01_transcript_104493, F01_transcript_142764, F01_tr
anscript_32363, F01_transcript_38379, F01_transcript_170113,
F01_transcript_119377 and F01_transcript_147469 were found
to be potentially involved in seed development and sugar content
accumulation. These pathways and genes were identified as poten-
tially significant through annotation and WGCNA, and their roles
were further supported by additional analyses. These findings not
only advance our understanding of seed development in E. sibir-
icus, but also provide valuable information for future seed produc-
tion and breeding programmes, potentially leading to improved
crop yields and quality.
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