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that T : A → B compactly for a certain class of spaces A which are intermediate with respect to A0 and
A1. We investigate to what extent such results can hold for arbitrary intermediate spaces A. The ‘dual’
case of an operator S such that S : X → Y0 boundedly and S : X → Y1 compactly, is also considered,
as well as similar questions for other closed operator ideals.
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1. Introduction

This paper deals with compactness results for interpolated operators in the style of those
established by Lions and Peetre [14] in 1964 (see also the lecture by Gagliardo [10]). Lions
and Peetre deal with two situations. One of these is the case of a linear operator T which
is a bounded map of both of the spaces A0 and A1 of a Banach couple Ā = (A0, A1)
into the same Banach space B with the additional assumption that T : A1 → B is
compact. The other is the ‘dual’ case of an operator T which maps a given Banach space
A boundedly into both of the spaces of a Banach couple B̄ = (B0, B1), and here it is
always assumed that T : A → B1 is compact. In the first case, Lions and Peetre show
that if A is a space of the class CK(θ, Ā) for some θ ∈ (0, 1), then T : A → B is also
compact. In the ‘dual’ case, they prove that T : A → B is compact for each space B of
the class CJ(θ, B̄). (We shall recall the meaning of the notation used here in § 2.)

Compactness results of Lions–Peetre type have interesting applications to function
spaces (for example, to Sobolev spaces). Several authors have also investigated them
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from other points of view. For example, a quantitative version of Lions–Peetre results in
terms of entropy numbers can be found in the book by Pietsch [17, Propositions 12.1.11
and 12.1.12]. Similar results in terms of the measure of non-compactness were established
by Edmunds and Teixeira [20]. More abstract versions that work for injective surjective
closed operator ideals are due to Heinrich [12, Propositions 1.6 and 1.7].

Lions–Peetre type compactness results are also important tools for establishing a num-
ber of other compactness theorems in interpolation theory (see, for example, the papers
by Persson [16], Cobos and Peetre [7], and Cobos, Kühn and Schonbek [5]).

Just as in [14], also in the other corresponding results mentioned above (see [17], [20]
and [12]), the spaces A and B are required to satisfy A ∈ CK(θ, Ā) or B ∈ CJ(θ, B̄). These
are, in fact, rather strong restrictions on A and B. It has been pointed out by Masty lo
(see [15, Theorem 1]) that the Lions–Peetre results hold under weaker conditions than
these, i.e. the compactness of T : A → B can also be proved when A or B, respectively,
belong to other classes which generalize CK(θ, Ā) or CJ(θ, B̄). The sufficient conditions
formulated in [15] amount to requiring either that A is not ‘too close’ to A0, or that B
is not ‘too close’ to B0, in some appropriate sense. More precisely, they can be expressed
as

lim
t→0

sup
{
K(t, a; Ā)

‖a‖A
: 0 6= a ∈ A

}
= 0 (1.1)

and

lim
t→∞ inf

{
J(t, b; B̄)

‖b‖B
: 0 6= b ∈ B0 ∩B1

}
= ∞, (1.2)

respectively.
There are other very simple conditions that are sufficient for T : A → B to be compact.

If we also have compactness at the other ‘endpoint’, i.e. if

T : A0 → B is compact (1.3)

in the first case, or, analogously,

T : A → B0 is compact (1.4)

in the dual case, then it follows immediately that T : A0 + A1 → B is compact, or, in
the dual case, that T : A → B0 ∩ B1 is compact. This in turn means that T : A → B is
compact, in the first case, for all interpolation spaces A with respect to Ā, and in the
second case for all interpolation spaces B with respect to B̄.

Remark 1.1. In fact, to obtain the compactness of T : A → B when T is compact
at both ‘endpoints’, it is not even necessary to require A or B, respectively, to be an
interpolation space. A weaker condition, namely A ↪→ A0 + A1 or B0 ∩ B1 ↪→ B, is all
that is needed.

In this paper we obtain a quantitative version of the Lions–Peetre Lemma and Theo-
rem 1 of [15], in terms of the measure of non-compactness. We also investigate whether
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it is possible to obtain the results of Lions and Peetre without invoking either of the
sufficient conditions discussed above, i.e. what can be said if A is merely an interpolation
space with respect to Ā in the first context, or B is merely an interpolation space with
respect to B̄ in the dual setting? As we show in § 3, these minimal assumptions lead to
the conclusion that either T : A → B is compact, or a certain relation holds between A

and A0 or, respectively, between B and B0. Furthermore, under mild additional condi-
tions on the couple Ā or B̄, respectively, the compactness of T : A → B turns out to be
equivalent to requiring one or both of the above sufficient conditions (1.1) and (1.3) (or,
respectively, (1.2) and (1.4)) to hold. This shows that in some sense these conditions are
optimal.

Note that the preceding results are formulated for specific choices of the range space
or, respectively, the domain space. But we also show another aspect of the optimality
of conditions (1.1) and (1.2) in the context where compactness is required to hold for
all possible range spaces or domain spaces, respectively. We prove (again under mild
additional assumptions) that, for given A0, A1 and A, condition (1.1) is necessary and
sufficient for T : A → B to be compact for all Banach spaces B and all operators T that
map A0 to B boundedly and A1 to B compactly. We obtain a corresponding dual result
about the optimality of condition (1.2) without requiring any additional assumptions.

We also show, in § 4, that this sort of behaviour is not an exclusive property of compact
operators: similar results hold for operators belonging to any other injective surjective
closed operator ideal.

The conditions A ∈ CK(θ, Ā) and B ∈ CJ(θ, B̄) do not in fact stipulate that A is an
interpolation space with respect to Ā nor that B is an interpolation space with respect
to B̄. Furthermore, Remark 1.1 provides a further hint that it is not entirely natural to
require A or B to be interpolation spaces in the context of the questions being considered
here. It turns out, in fact, that most of our results apply when A and B are in the larger
class of interpolation spaces with respect to rank-one operators, or, in some cases, when
they are merely intermediate spaces.

2. Notation and preliminaries

We recall several standard notions from interpolation theory (cf. [1], [2] and [4]). Let
Ā = (A0, A1) be a Banach couple, that is, two Banach spaces Aj , j = 0, 1, which are
continuously embedded in some Hausdorff topological vector space. For each t > 0 we
put

J(t, a) = J(t, a; Ā) = max{‖a‖A0 , t‖a‖A1}, for each a ∈ A0 ∩A1,

and

K(t, a) = K(t, a; Ā)

= inf{‖a0‖A0 + t‖a1‖A1 : a = a0 + a1, aj ∈ Aj}, for each a ∈ A0 +A1.

Then {K(t, ·)}t>0 is a family of norms on A0 +A1, any two of which are equivalent. The
family {J(t, ·)}t>0 has similar properties on A0 ∩A1.
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Let B̄ = (B0, B1) be a second Banach couple. Then the notation T : Ā → B̄ means
that T is a linear operator from A0 + A1 into B0 + B1, whose restriction to Aj defines
a bounded operator from Aj into Bj for j = 0 and j = 1. We denote the space of all
such operators by L(Ā, B̄), just as L(A,B) denotes, as usual, the space of all bounded
operators mapping a Banach space A into a Banach space B.

For each T ∈ L(Ā, B̄) we introduce the norm

‖T‖Ā,B̄ := max{‖T‖A0,B0 , ‖T‖A1,B1}.

If one of the couples Ā or B̄ reduces to a single Banach space, i.e. if A0 = A1 = A or
if B0 = B1 = B, then we write T : A → B̄ and T ∈ L(A, B̄) and denote the norm by
‖T‖A,B̄ or, respectively, T : Ā → B and T ∈ L(Ā, B) with norm ‖T‖Ā,B .

A Banach space A is said to be an intermediate space with respect to Ā if

A0 ∩A1 ↪→ A ↪→ A0 +A1,

where, as usual, the notation ↪→ means continuous inclusion. To each intermediate space
A it is possible to associate two other intermediate spaces. The first of these, denoted by
A◦ and termed the clintersect of A, is the closed subspace of A generated by A0 ∩ A1.
The second, denoted by Av and termed the Gagliardo completion of A, consists of all
those a ∈ A0 + A1 for which there exists a sequence {an}n∈N in some bounded subset
of A which converges to a in A0 + A1. It is normed by an appropriate infimum over all
such sequences, i.e.

‖a‖Av = inf
{an}

{sup
n∈N

{‖an‖A}}

(see [10], [2] or [1]).
An intermediate space A is an interpolation space if, given any T : Ā → Ā, the restric-

tion of T to A defines a bounded operator from A into itself. It is a classical result of
Aronszajn and Gagliardo (see [2, Theorem 2.4.2, p. 28]) that for each such space A there
exists a constant C = C(A, Ā) such that

‖T‖A,A 6 C‖T‖Ā,Ā (2.1)

for all operators T : Ā → Ā.
The most familiar examples of interpolation spaces with respect to a given couple

Ā = (A0, A1) are the real interpolation spaces (A0, A1)θ,q and the complex interpolation
spaces [A0, A1]θ, which are defined for each θ ∈ (0, 1) and q ∈ [1,∞]. Furthermore,
(A0, A1)θ,q and [A0, A1]θ are examples of spaces A that are in both of the classes CJ(θ, Ā)
and CK(θ, Ā). In other words, for some constant C and for all t > 0 they satisfy each of
the two conditions

‖a‖A 6 Ct−θJ(t, a), for all a ∈ A0 ∩A1 (2.2)

and

K(t, a) 6 Ctθ‖a‖A, for all a ∈ A. (2.3)
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Condition (2.2) is equivalent to the continuous inclusion (A0, A1)θ,1 ↪→ A and (2.3) is
equivalent to A ↪→ (A0, A1)θ,∞ (see [2, § 3.5]). However, there are also other interpolation
spaces that do not satisfy one or both of these properties for any value of θ ∈ (0, 1).
Obviously, these include the ‘endpoint’ spaces A0 and A1 themselves. There are also two
other examples of such interpolation spaces which will play special roles in our results
here. The first of these is Av

0 , the Gagliardo completion of A0. It is easy to show (see,
for example, [1, Theorem 5.1.4]) that

‖a‖Av
0

= lim
t→∞K(t, a; Ā).

(Note that, analogously, the norm of the Gagliardo completion of A1 satisfies ‖a‖Av
1

=
limt→0(1/t)K(t, a; Ā).)

Our second example of such an interpolation space is A◦
0, the clintersect of A0.

As mentioned in § 1, it turns out to be natural for our purposes here to work with
another class of intermediate spaces that includes the interpolation spaces as a subclass.
This class is defined with the help of rank-one operators T : Ā → Ā of the form T = f⊗a,
i.e. Tx = f(x)a, where a is a fixed element of A0 ∩ A1 and f is a fixed bounded linear
functional on A0 + A1. Obviously, each such T is bounded on A0 and A1 and on each
intermediate space A with respect to Ā. But its norms on each of these spaces depend on
the particular choices of a and f . We shall say that an intermediate space A with respect
to the couple Ā is a rank-one interpolation space if, for some constant C depending only
on A and Ā, it satisfies (2.1) for all T of the special form T = f ⊗ a.

Rank-one interpolation spaces have been used in a number of papers, [9] and [19] for
example, where they are referred to as ‘partly interpolation spaces’.

We shall need to use two functions which in some sense measure the ‘position’ of a given
intermediate space within a Banach couple. These are variants of functions which have
been introduced and studied by Dmitriev and by Pustylnik (see [9], [18, pp. 333–334]
and [19, p. 307]). They are defined as follows.

Definition 2.1. Let Ā = (A0, A1) be a Banach couple and let A be an intermediate
space with respect to Ā. For each t > 0 set

ψ(t) = ψ(t, A, Ā) := sup{K(t, a) : ‖a‖A = 1}

and
ρ(t) = ρ(t, A, Ā) := inf{J(t, a) : a ∈ A0 ∩A1, ‖a‖A = 1}.

Clearly, ψ(t) and ρ(t) are strictly positive, and they are also both non-decreasing,
while ψ(t)/t and ρ(t)/t are non-increasing. We note that these functions are related to
the ‘embedding functions’ C(α, β) and D(α, β) of [19, p. 307] by

C(α, β) =
1

(1/α)ρ(α/β)
and D(α, β) =

1
(1/α)ψ(α/β)

. (2.4)

We also note that the conditions (1.1) and (1.2) stated in the introduction correspond
to limt→0 ψ(t, A, Ā) = 0 and limt→∞ ρ(t, B, B̄) = ∞, respectively.
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We refer to [19] for some examples indicating the behaviour of the functions C and D
in specific cases.

It is possible to characterize rank-one interpolation spaces A by a simple condition
on the functions ψ(t, A, Ā) and ρ(t, A, Ā). This was done by Dmitriev [9] under some
additional hypotheses and, in general, by Pustylnik [19]. The following theorem is almost
the same as Theorem 1 in [19, p. 309].

Theorem 2.2. Let Ā = (A0, A1) be a Banach couple and let A be an intermediate
space with respect to Ā. Then A is a rank-one interpolation space if and only if there
exists a constant C depending only on A and Ā such that

ψ(t, A, Ā) 6 Cρ(t, A, Ā), for all t > 0. (2.5)

Proof. In view of (2.4), the proof is a very slight and obvious modification of the
proof given in [19]. �

3. Compactness results

As pointed out by Masty lo, the proof of the generalized Lions–Peetre compactness
Lemma, assuming the weaker conditions (1.1) and (1.2) instead of A ∈ CK(θ, Ā) and
B ∈ CJ(θ, B̄), is essentially the same as the proof of the original lemma (cf. [2, pp. 56–
57]).

Here, however, we shall adopt a quantitative approach. The following two theorems
describe interpolation properties of the measure of non-compactness. They can be applied
in fact to any intermediate space and imply the generalized compactness lemma. Their
estimates also point the way to results to be presented in § 4.

Let us recall that the (ball) measure of non-compactness β(T ) = β(TA,B) of an operator
T ∈ L(A,B) is defined to be the infimum of the set of all numbers σ > 0 for which there
exists a finite subset B(σ) ⊂ B such that

T (UA) ⊂
⋃

b∈B(σ)

(b+ σUB).

Here, UA (respectively, UB) denotes the closed unit ball of A (respectively, B). Of
course, T is compact if and only if β(T ) = 0.

Theorem 3.1. Let Ā = (A0, A1) be a Banach couple, let A be an intermediate space
with respect to Ā and let B be another Banach space. Then, for each T ∈ L(Ā, B):

(a) if β(TA0,B) = 0, then

β(TA,B) 6 β(TA1,B) · lim
t→∞

ψ(t, A, Ā)
t

;

(b) if β(TA1,B) = 0, then

β(TA,B) 6 β(TA0,B) · lim
t→0

ψ(t, A, Ā);

and
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(c) if β(TAi,B) > 0 for i = 0, 1, then

β(TA,B) 6 2β(TA0,B)ψ
(
β(TA1,B)
β(TA0,B)

, A, Ā

)
.

Proof. For each ε > 0 and for i = 0, 1 there exists a finite set B(ε, i) ⊂ B such that

T (UAi
) ⊂

⋃
b∈B(ε,i)

(b+ (ε+ β(TAi,B))UB). (3.1)

Now, consider an arbitrary element a ∈ UA and fixed positive numbers t and δ. Since
K(t, a) < δ + ψ(t), there exists a decomposition a = a0 + a1 with ai ∈ Ai for i = 0, 1
such that ‖a0‖A0 + t‖a1‖A1 < δ + ψ(t). Thus,

ai ∈ t−i(δ + ψ(t))UAi
, for i = 0, 1.

Consequently, by (3.1), for some bi ∈ B(ε, i), we have

Tai ∈ t−i(δ + ψ(t))bi + t−i(δ + ψ(t))(ε+ β(TAi,B))UB , for i = 0, 1,

which implies that

Ta ∈ (δ + ψ(t))
(
b0 +

1
t
b1

)
+ (δ + ψ(t))

(
ε+ β(TA0,B) +

1
t
(ε+ β(TA1,B))

)
UB .

Since the subset of B consisting of all elements of the form (δ+ψ(t))(b0 + (1/t)b1) for
some b0 ∈ B(ε, 0) and b1 ∈ B(ε, 1) is of course finite, we have shown that

β(TA,B) 6 (δ + ψ(t))
(
ε+ β(TA0,B) +

1
t
(ε+ β(TA1,B))

)
.

This in turn implies, since ε and δ can both be chosen arbitrarily small, that

β(TA,B) 6 ψ(t)
(
β(TA0,B) +

1
t
β(TA1,B)

)
, for all t > 0. (3.2)

We can now immediately obtain cases (a) and (b) of the theorem by substituting
β(TAi,B) = 0 in (3.2) for i = 0 or 1, and using the facts that ψ(t) is non-decreasing
and ψ(t)/t is non-increasing. Case (c) also follows from (3.2) by simply substituting
t = β(TA1,B)/β(TA0,B). �

Now we turn to the analogous theorem for the ‘dual’ situation.

Theorem 3.2. Let B̄ = (B0, B1) be a Banach couple, let B be an intermediate space
with respect to B̄ and let A be another Banach space. Then, for each operator T ∈
L(A, B̄):

(a) if β(TA,B0) = 0, then

β(TA,B) 6 2β(TA,B1) · lim
t→0

t

ρ(t, B, B̄)
;
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(b) if β(TA,B1) = 0, then

β(TA,B) 6 2β(TA,B0) · lim
t→∞

1
ρ(t, B, B̄)

;

and

(c) if β(TA,Bi
) > 0 for i = 0, 1, then

β(TA,B) 6 2β(TA,B0)
ρ(β(TA,B0)/β(TA,B1), B, B̄)

.

Proof. For each fixed ε > 0 there exist finite subsets B(ε, 0) of B0 and B(ε, 1) of B1

such that

T (UA) ⊂
⋃

b∈B(ε,i)

(b+ (ε+ β(TA,Bi
))UBi

), for i = 0, 1. (3.3)

Let us now construct a new set B̃(ε) of elements of B0 ∩B1 in the following way: For
each choice of b0 ∈ B(ε, 0) and b1 ∈ B(ε, 1), if the set E(b0, b1) = (b0+(ε+β(TA,B0))UB0)∩
(b1 + (ε + β(TA,B1))UB1) is non-empty, choose exactly one element w(b0, b1) from this
set, i.e. we set

B̃(ε) = {w(b0, b1) : b0 ∈ B(ε, 0), b1 ∈ B(ε, 1), E(b0, b1) 6= ∅}.
Clearly, B̃(ε) is a non-empty finite set.

Given an arbitrary fixed element a ∈ UA, it follows from (3.3) that there exist b0 ∈
B(ε, 0) and b1 ∈ B(ε, 1) such that Ta ∈ (b0+(ε+β(TA,B0))UB0)∩(b1+(ε+β(TA,B1))UB1).
Hence, E(b0, b1) 6= ∅, and so the element w = w(b0, b1) ∈ B̃(ε) must satisfy

‖Ta− w‖B0 6 ‖Ta− b0‖B0 + ‖b0 − w‖B0 6 2(ε+ β(TA,B0)),

and also
‖Ta− w‖B1 6 ‖Ta− b1‖B1 + ‖b1 − w‖B1 6 2(ε+ β(TA,B1)).

Consequently, for each t > 0,

‖Ta− w‖B 6 1
ρ(t, B, B̄)

J(t, Ta− w; B̄)

6 2
ρ(t, B, B̄)

max{ε+ β(TA,B0), t(ε+ β(TA,B1))}.

It follows that

β(TA,B) 6 2
ρ(t, B, B̄)

max{ε+ β(TA,B0), t(ε+ β(TA,B1))},

and so, since ε is arbitrary, we obtain

β(TA,B) 6 2
ρ(t, B, B̄)

max{β(TA,B0), tβ(TA,B1)}. (3.4)
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To deal with cases (a) and (b) of the theorem, we simply substitute β(TA,Bi) = 0
for i = 0 or i = 1 in (3.4) and use the facts that 1/ρ(t) is non-increasing and t/ρ(t) is
non-decreasing. We obtain case (c) by substituting t = β(TA,B0)/β(TA,B1). �

Now that we have prepared a number of tools, we can begin looking more closely at
various ways in which natural generalizations of the Lions–Peetre compactness results
may fail to hold.

Let us first consider the setting where we have T : Ā → B and T : A1 → B is
compact. If T : A0 → B is not compact, then there may exist intermediate spaces or
even interpolation spaces A such that T : A → B is not compact. One trivial example
is to take A = A0. But the following example is more relevant to the general result that
we shall obtain.

Example 3.3. Let Ā = (A0, A1) = (`∞, `∞(2n)), where `∞ is the usual space of scalar
sequences ξ = {ξn}n∈N satisfying ‖ξ‖`∞ := supn∈N |ξn| < ∞ and `∞(2n) is the corre-
sponding ‘weighted’ space of those sequences ξ for which ‖ξ‖`∞(2n) := supn∈N |2nξn| < ∞.
We choose A = c0, the subspace of sequences in `∞ that converge to zero. This is an
interpolation space since A = A◦

0. Then we take B = `∞ and let T be the identity
operator Tξ = ξ. Clearly, T : Ā → B and also T : A1 → B is compact. Nevertheless,
T : A → B is the inclusion from c0 into `∞ which is not compact.

Remark 3.4. Note that whenever we have, as in the preceding example, that

A◦
0 ↪→ A, (3.5)

and also that T : A◦
0 → B is not compact, then of course T : A → B cannot be compact.

Let us now consider the ‘dual’ situation, where T : A → B̄ and T : A → B1 is compact.
Analogously to before, if T : A → B0 is not compact, then T : A → B will not be compact
in general for all intermediate spaces or even interpolation spaces B. Again, in addition
to the obvious example B = B0, we have another example that is more relevant for the
results that we shall soon formulate.

Example 3.5. Let

B̄ = (B0, B1) = (c0, `∞(2−n)), where ‖ξ‖`∞(2−n) := sup
n∈N

|2−nξn|,

and let B = `∞. It is easy to see that `∞ is the Gagliardo completion of B0 = c0 in
B0 +B1 = `∞(2−n). Thus, B is an interpolation space with respect to B̄. We now choose
A = c0 and again let T be the identity operator. Then T : A → B̄ and T : A → B1 is
compact, but T : A → B is not compact because (as in the previous example) it is the
inclusion from c0 into `∞.

Remark 3.6. The condition analogous to (3.5) in this case is

B ↪→ Bv
0 . (3.6)

Whenever it holds (as it does of course in Example 3.5) and T : A → Bv
0 is not compact,

then T : A → B cannot be compact. We shall soon see, in fact, that the only mechanisms
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that can prevent a compactness result of Lions–Peetre type from holding for an arbitrary
interpolation or rank-one interpolation space are those described in this remark and in
Remark 3.4.

The next two lemmas will sometimes enable us to deduce that the conditions mentioned
in Remarks 3.4 and 3.6 hold when either A or B, respectively, is a rank-one interpolation
space.

Lemma 3.7. Let Ā = (A0, A1) be a Banach couple and let A be a rank-one interpo-
lation space with respect to Ā.

(i) If limt→0 ψ(t, A, Ā) > 0, then A◦
0 ↪→ A.

(ii) If limt→∞(ψ(t, A, Ā)/t) > 0, then A◦
1 ↪→ A.

Proof. Suppose limt→0 ψ(t) > 0. Then, by Theorem 2.2, we have limt→0 ρ(t, A, Ā) =
M > 0. Since ρ is non-decreasing, it follows that M 6 (J(t, a)/‖a‖A) for all t > 0
and all a ∈ A0 ∩ A1. Therefore, ‖a‖A 6 (1/M) max{‖a‖A0 , t‖a‖A1}. Since we may
choose t = ‖a‖A0/‖a‖A1 , this implies that ‖a‖A 6 (1/M)‖a‖A0 for all a ∈ A0 ∩A1, and,
consequently, A◦

0 ↪→ A.
The proof of (ii) is similar. �

Lemma 3.8. Let B̄ = (B0, B1) be a Banach couple and let B be a rank-one interpo-
lation space with respect to B̄.

(i) If limt→∞(1/ρ(t, B, B̄)) > 0, then B ↪→ Bv
0 .

(ii) If limt→0(t/ρ(t, B, B̄)) > 0, then B ↪→ Bv
1 .

Proof. Assume that limt→∞(1/ρ(t)) > 0. Then, by Theorem 2.2, we have that
limt→∞ ψ(t, B, B̄) = M < ∞. Consequently, each b ∈ B satisfies

‖b‖Bv
0

= lim
t→∞K(t, b; B̄) 6 lim

t→∞ψ(t)‖b‖B = M‖b‖B ,

and so B ↪→ Bv
0 .

Case (ii) can be treated analogously. �

We can now give a precise formulation of our claim made at the end of Remark 3.6.
This is done in the following two theorems, which are almost immediate consequences of
the preceding results.

Theorem 3.9. Let Ā = (A0, A1) be a Banach couple, let A be a rank-one interpo-
lation space with respect to Ā and let B be another Banach space. Let T : Ā → B be
a linear operator such that T : A1 → B is compact. Then at least one of the following
conditions must hold.

(i) T : A → B is compact.

(ii) A◦
0 ↪→ A.
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Proof. Since β(TA1,B) = 0, Theorem 3.1 implies that

β(TA,B) 6 β(TA0,B) · lim
t→0

ψ(t, A, Ā).

Consequently, either T : A → B is compact, i.e. β(TA,B) = 0, or, alternatively, we
have β(TA,B) > 0. In this latter case we must have limt→0 ψ(t, A, Ā) > 0, which, by
Lemma 3.7, implies that A◦

0 ↪→ A. �

Here is the analogous result for the ‘dual’ situation.

Theorem 3.10. Let B̄ = (B0, B1) be a Banach couple, let B be a rank-one interpo-
lation space with respect to B̄ and let A be another Banach space. Let T : A → B̄ be
a linear operator such that T : A → B1 is compact. Then at least one of the following
conditions must hold.

(i) T : A → B is compact.

(ii) B ↪→ Bv
0 .

Proof. According to Theorem 3.2 we have

β(TA,B) 6 2β(TA,B0) · lim
t→∞

1
ρ(t, B, B̄)

.

So, if T : A → B is not compact, we must necessarily have

0 < β(TA,B) 6 2β(TA,B0) · lim
t→∞

1
ρ(t, B, B̄)

,

and, consequently, by Lemma 3.8, B ↪→ Bv
0 . �

Now, it is easy to show that, under mild additional conditions on the Banach couples,
the known sufficient conditions for T : A → B to be compact are also necessary.

Corollary 3.11. Let Ā = (A0, A1) be a Banach couple such that A◦
0 = A0, let A be a

rank-one interpolation space with respect to Ā and let B be another Banach space. Let
T : Ā → B be a linear operator such that T : A1 → B is compact. Then T : A → B is
compact if and only if at least one of the following conditions hold.

(i) limt→0 ψ(t, A, Ā) = 0.

(ii) T : A0 → B is compact.

Proof. From Theorem 3.1 (b) it is clear that either of conditions (i) and (ii) is sufficient
to ensure that T : A → B is compact. Conversely, if T : A → B is compact and if (i)
does not hold, then we deduce from Lemma 3.7 that A◦

0 ↪→ A, which in turn implies that
T : A◦

0 → B is compact. Since A◦
0 = A0 we obtain (ii), completing the proof. �

Corollary 3.12. Let B̄ = (B0, B1) be a Banach couple such that Bv
0 = B0, let B be

a rank-one interpolation space with respect to B̄ and let A be another Banach space.
Let T : A → B̄ be a linear operator such that T : A → B1 is compact. Then T : A → B

is compact if and only if at least one of the following conditions hold.
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(i) limt→∞ ρ(t, B, B̄) = ∞.

(ii) T : A → B0 is compact.

Proof. The argument is analogous to the proof of the preceding corollary. By Theo-
rem 3.2 (b) each of conditions (i) and (ii) is sufficient for the compactness of T : A → B.
Conversely, if T : A → B is compact and (i) does not hold, then Lemma 3.8 gives that
B ↪→ Bv

0 = B0, which implies (ii). �

Remark 3.13. It is easy to see that the last two corollaries cannot be sharpened to
hold without the condition A◦

0 = A0 or Bv
0 = B0, respectively. For example, suppose,

in the context of Corollary 3.11, that A1 ↪→ A0 and that A is also an interpolation
space with respect to the couple (A◦

0, A1). Then the behaviour of T on the space A

is completely determined by the behaviour of T on A◦
0, and it is completely irrelevant

to ask whether or not T maps the larger space A0 compactly into B. The following
example can illustrate this more explicitly. Suppose that Ē = (E0, E1) is a Banach
couple such that E1 ↪→ E0 = E◦

0 . Define a new Banach couple Ā = (A0, A1) by setting
A0 = E0 ⊕ Y and A1 = E1 ⊕ {0}, where Y is an infinite-dimensional Banach space and
{0} denotes its trivial subspace. (The norms for A0 and A1 may be taken, say, to be
‖(x, y)‖A0 = max{‖x‖E0 , ‖y‖Y } and ‖(x, 0)‖A1 = ‖x‖E1 .) Each operator S : Ā → Ā can
be decomposed into a 2 × 2 ‘matrix’

S =

(
S11 S12

S21 S22

)
,

i.e. S(x, y) = (S11x + S12y, S21x + S22y) for all (x, y) ∈ E0 ⊕ Y . Since S : A0 → A0

is bounded, it follows that each of the four operators S11 : E0 → E0, S12 : Y → E0,
S21 : E0 → Y and S22 : Y → Y is bounded. Since S : A1 → A1 is also bounded, we
deduce that S11 : E1 → E1, i.e. that S11 : Ē → Ē, and also that S21 = 0. From this
description of the operator S it follows that whenever E is an interpolation space with
respect to Ē, then A = E ⊕ {0} is an interpolation space with respect to Ā.

Now, let B be another infinite-dimensional Banach space and consider a bounded
operator T : A0 → B such that T : A1 → B is compact. This means that T has the
form T (x, y) = T1x + T2y for all x ∈ E0 and y ∈ Y , where T1 : E0 → B is bounded,
T1 : E1 → B is compact, and T2 : Y → B is bounded. If A is an interpolation space
of the form A = E ⊕ {0}, then T : A → B is compact if and only if T1 : E → B

is compact. Consequently, we can apply Corollary 3.11 to the operator T1 : Ē → B.
We obtain that T : A → B is compact if and only if either limt→0 ψ(t, E, Ē) = 0 or
T1 : E0 → B is compact or both of these conditions hold. The latter condition is the
same as the compactness of T : A◦

0 → B, since A◦
0 = E0 ⊕ {0}. It is now quite clear that

in this case the compactness of T : A0 → B is irrelevant: the compactness of T : A0 → B

is equivalent to the condition that both of the operators T1 : E0 → B and T2 : Y → B

are compact, but the behaviour of T2 has no effect on the compactness of T : A → B.

In the last two results of this section we do not have to confine ourselves to rank-
one interpolation spaces. Instead we can deal with all intermediate spaces. But, before
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stating those results, we give the details of an example, kindly pointed out to us by
Evgeniy Pustylnik, which shows that there is necessarily a difference between the case of
rank-one interpolation spaces and general intermediate spaces. More specifically, it shows
that we cannot obtain a result analogous to Theorem 3.9 if we assume that A is merely
an intermediate space rather than a rank-one interpolation space.

Example 3.14. Let Ā = (A0, A1) = (Lp(0, 1), Lq(0, 1)), where 1 < p < q < ∞. Let
A be the Lorentz space Lp,1(0, 1), which is an intermediate space with respect to Ā but
not a rank-one space. (This latter claim can also be deduced from what is to follow.) Set

λ = 1 +
1
q

− 1
p

and consider the potential operator T defined by

Tx(t) =
∫ 1

0

x(s)
|t− s|λ ds.

As was shown in [11], T : Lp → Lq boundedly, and, consequently, we also have T :
Lq → Lq boundedly. Moreover, by [13, Theorem 2.8.1], T : Lq → Lq is also compact.
Despite these properties of T , neither of conditions (i) and (ii) in Theorem 3.9 holds
for this example. First, we have A◦

0 = A0 = Lp, which is not contained in A = Lp,1.
Furthermore, the sequence

xk(t) =

{
k1/p, if 0 < t < (1/k),

0, if t > (1/k),
for all k ∈ N

is bounded in Lp,1 because

‖xk‖Lp,1 =
∫ 1

0
t(1/p)−1x∗

k(t) dt = k1/p

∫ 1/k

0
t(1/p)−1 dt = p,

but, for any t ∈ (0, 1/k), we have

Txk(t) = k1/p

∫ 1/k

0

ds
|t− s|λ >

(
1
p

− 1
q

)−1

k(1/p)+λ−1

=
(

1
p

− 1
q

)−1

k1/q,

and, thus,
‖Txkχ(0,1/k)‖Lq

> 1, for all k ∈ N.

This means that the functions Txk do not possess equi-absolutely continuous norms in
Lq as k → ∞. As was shown in [13], such a sequence of functions is not compact in Lq.
Thus, T : Lp,1 → Lq is not compact.

Our first result for the case of general intermediate spaces is an analogue of Corol-
lary 3.11, where we simultaneously consider all possible range spaces B.

https://doi.org/10.1017/S0013091598001163 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091598001163


166 F. Cobos, M. Cwikel and P. Matos

Theorem 3.15. Let Ā = (A0, A1) be a Banach couple and let A be an intermediate
space with respect to Ā. Suppose that either A ∩ A1 is dense in A, or that A0 ∩ A1 is
dense in A0, or that

lim
t→0

K(t, a; Ā) = 0, for all a ∈ A. (3.7)

Then the following are equivalent.

(i) limt→0 ψ(t, A, Ā) = 0.

(ii) For every Banach space B, if T : Ā → B is a linear operator such that T : A1 → B

is compact, then T : A → B is compact.

(iii) If T : Ā → `∞ is a linear operator such that T : A1 → `∞ is compact, then
T : A → `∞ is compact.

Remark 3.16. Since every separable Banach space can be isometrically embedded
into `∞, it is not surprising that it is sufficient to check condition (ii) just for the special
case B = `∞. It will be clear from the proof that if A◦

0 = A0, then it is also sufficient to
check for the special case B = c0.

Proof. Let us first observe that the condition that we really need here is (3.7). It
is easy to verify that it is a consequence of either of the two density conditions in the
statement of the theorem.

Once again we use Theorem 3.1 (b) to obtain that (i) implies (ii). Of course (ii) implies
(iii). (Both of these implications also hold when the additional density conditions or
(3.7) are not satisfied.) To complete the proof we will show that (iii) implies (i), or,
equivalently, that if (i) does not hold, then (iii) cannot hold.

Thus we assume that limt→0 ψ(t, A, Ā) = δ > 0, which implies that there exist a
sequence {an}n∈N of elements in UA and a decreasing sequence {tn}n∈N of numbers in
(0, 1) such that limn→∞ tn = 0 and K(tn, an; Ā) > δ/2. In view of (3.7) we can also
assume, by passing if necessary to subsequences of the original sequences, that

K(tn, am; Ā) < δ/4, for all m < n.

By the Hahn–Banach theorem, for each n ∈ N, there exists a linear functional fn on
A0 +A1 such that fn(an) = K(tn, an; Ā) and |fn(a)| 6 K(tn, a; Ā) for each a ∈ A0 +A1.
Now consider the linear operator T : A0+A1 → `∞ defined by Ta = {fn(a)}n∈N. Clearly,
T : Ai → `∞ with norm not exceeding 1 for i = 0, 1. Furthermore, T maps the unit ball of
A1 into the set of all sequences {λn}n∈N that satisfy |λn| 6 tn. This is clearly a compact
subset of c0 and of `∞. On the other hand, for each pair of positive integers m < n we
have

‖Tan − Tam‖`∞ > |fn(an) − fn(am)| > K(tn, an) −K(tn, am) > 1
4δ.

Thus, T : A → `∞ is not compact, and so (iii) does not hold. �
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Finally we present a result analogous to Corollary 3.12 which is essentially a dual of the
preceding theorem. This time we simultaneously consider all possible domain spaces A.
In contrast to the previous theorem, we do not need to impose any additional conditions.

Theorem 3.17. Let B̄ = (B0, B1) be a Banach couple and let B be an intermediate
space with respect to B̄. Then the following are equivalent.

(i) limt→∞ ρ(t, B, B̄) = ∞.

(ii) For every Banach space A, if T : A → B̄ is a linear operator such that T : A → B1

is compact, then T : A → B is compact.

(iii) If T : `1 → B̄ is a linear operator such that T : `1 → B1 is compact, then T : `1 → B

is compact.

Proof. We obtain (i) ⇒ (ii) by Theorem 3.2 (b). Obviously, (ii) ⇒ (iii). To show
that (iii) ⇒ (i), let us suppose that (i) does not hold. Then limt→∞ ρ(t, B, B̄) = δ ∈
(0,∞) and there exist a sequence {bn}n∈N of elements in B0 ∩ B1 with ‖bn‖B = 1 and
‖bn‖B0 < 2δ and a sequence {tn}n∈N of numbers in (1,∞) such that limn→∞ tn = ∞
and ‖bn‖B1 < 2δ/tn. We consider the operator T : `1 → B0 +B1 defined by

T ({λn}n∈N) =
∑
n∈N

λnbn.

Clearly, T : `1 → Bi for i = 0, 1 with norm not exceeding 2δ. Furthermore, T : `1 → B1 is
compact, as the limit, in operator norm, of a sequence of finite-rank operators. However,
T : `1 → B is not compact. This follows immediately from the fact that the sequence {bn}
does not contain any subsequence that converges in B. Were {bmn} to be such a sequence,
its limit b∗ would necessarily satisfy ‖b∗‖B = 1. But this would be a contradiction, since
this same sequence converges to 0 in B0 + B1 and B is an intermediate space. Thus we
deduce that in this case (iii) cannot hold. This shows that (iii) ⇒ (i) and completes the
proof. �

4. Some results for other operator ideals

The class of compact operators between Banach spaces is an injective surjective closed
operator ideal in the sense of Pietsch. It is therefore natural to investigate whether the
results of § 3 are valid for other operator ideals having similar properties.

Let us recall (cf. [8, p. 131] and [17, p. 45]) that an operator ideal I is a method of
ascribing to each pair (X,Y ) of Banach spaces, a linear subspace I(X,Y ) of L(X,Y )
such that

(i) I(X,Y ) contains all rank one operators x∗ ⊗ y for all x∗ ∈ X∗ and y ∈ Y ; and

(ii) for all Banach spaces X, Y , E, F , whenever U ∈ L(E,X), T ∈ I(X,Y ) and
S ∈ L(Y, F ), then the composed operator STU ∈ I(E,F ).
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The ideal I is closed if I(X,Y ) is a closed subspace of L(X,Y ) with respect to the
usual operator norm topology, for all Banach spaces X and Y .

For each Banach space A we let QA denote the canonical surjection QA : `1(UA) → A

defined by
QA({λx}x∈UA

) =
∑

x∈UA

λxx,

and JA denote the canonical isometric embedding JA : A → `∞(UA∗) defined by

JAa = {〈f, a〉}f∈UA∗ .

The operator ideal I is said to be injective (respectively, surjective) if whenever T ∈
L(A,B) and in addition JBT ∈ I(A, `∞(UB∗)) (respectively, TQA ∈ I(`1(UA), B)),
then it follows that T ∈ I(A,B) (cf. [17, pp. 70–75]).

Apart from the class of compact operators, other examples of injective surjective closed
ideals are the classes of weakly compact operators, Rosenthal operators, Banach–Saks
operators and dual Radon–Nikodým operators. The class of strictly singular operators
is an injective closed ideal which is not surjective, while the class of strictly cosingular
operators is a surjective closed ideal which is not injective. We refer to [17] and also
to [8] and [12] for more details about operator ideals.

There are two functionals, introduced, respectively, by Astala and by Tylli, which can
be used to measure the extent to which a given operator T ∈ L(A,B) fails to belong to
a given operator ideal I. We shall now briefly recall their definitions and some of their
main properties. We refer to [6] for relevant references and further details.

The outer measure of T ∈ L(A,B) is denoted by γI(T ) or γI(TA,B) and is the infimum
of all positive numbers σ such that T (UA) ⊂ σUB + R(UZ) for some Banach space Z
and some operator R ∈ I(Z,B). The inner measure of the same operator is denoted
by βI(T ) or βI(TA,B) and is the infimum of all positive numbers σ such that for some
Banach space Z and some operator R ∈ I(A,Z) the inequality

‖Tx‖B 6 σ‖x‖A + ‖Rx‖Z

holds for all x ∈ A.
It is known that

if I is surjective and closed, then γI(TA,B) = 0 if and only if T ∈ I(A,B), (4.1)

and, analogously,

if I is injective and closed, then βI(TA,B) = 0 if and only if T ∈ I(A,B). (4.2)

In the particular case where I = K, the ideal of compact operators, then γK(TA,B)
coincides with the measure of non-compactness of T and βK(TA,B) is the infimum of
all η > 0 such that there exists a subspace M of A with finite codimension such that
‖Tx‖B 6 η‖x‖A for all x ∈ M .

The following theorem is an abstract version of Theorem 3.1. In its proof we use some
techniques that were developed in [6].
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Theorem 4.1. Let Ā = (A0, A1) be a Banach couple, let A be an intermediate space
with respect to Ā and let B be another Banach space. Let I be an operator ideal. Then,
for each T ∈ L(Ā, B):

(a) if γI(TA0,B) = 0, then

γI(TA,B) 6 γI(TA1,B) · lim
t→∞

ψ(t, A, Ā)
t

;

(b) if γI(TA1,B) = 0, then

γI(TA,B) 6 γI(TA0,B) · lim
t→0

ψ(t, A, Ā);

and

(c) if γI(TAi,B) > 0 for i = 0, 1, then

γI(TA,B) 6 2γI(TA0,B)ψ
(
γI(TA1,B)
γI(TA0,B)

, A, Ā

)
.

Proof. By the definition of γ(TAi,B), for i = 0, 1 and for each ε > 0 there exist Banach
spaces Zi and operators Si ∈ I(Zi, B) such that

T (UAi) ⊂ (ε+ γI(TAi,B))UB + Si(UZi). (4.3)

Now, for each choice of positive numbers δ and t and each a ∈ UA, there exists a
decomposition a = a0 + a1 with ai ∈ Ai and ai ∈ (δ+ψ(t))t−iUAi

for i = 0, 1. From this
and (4.3) it follows that

T (UA) ⊂ (δ + ψ(t))
[
T (UA0) +

1
t
T (UA1)

]

⊂ (δ + ψ(t))
[
ε+ γI(TA0,B) +

ε

t
+

1
t
γI(TA1,B)

]
UB + S′

0(UZ0) + S′
1(UZ1),

where S′
0 = (δ+ψ(t))S0 and S′

1 = (1/t)(δ+ψ(t))S1 are operators belonging to I(Z0, B)
and I(Z1, B), respectively. Let Z be the Banach space Z = Z0⊕Z1 with norm ‖(x, y)‖Z =
max{‖x‖Z0 , ‖y‖Z1} and define S : Z → B by S(x, y) = S′

0x+S′
1y. Then clearly S(UZ) =

S′
0(UZ0)+S′

1(UZ1), and, furthermore, using the projection operators from Z onto Z0 and
Z1, and the definition of operator ideals, we have that S ∈ I(Z,B). Consequently,

γI(TA,B) 6 ψ(t)
[
γI(TA0,B) +

1
t
γI(TA1,B)

]
, for all t > 0.

This inequality implies the three cases of the theorem by the same immediate arguments
as were used to obtain the three cases of Theorem 3.1 from equation (3.2). �

We now consider an abstract version of Theorem 3.2. Note, however, that in the par-
ticular case I = K, it yields a result different from Theorem 3.2, since here we deal with
the inner rather than outer measure. (Also the factors of 2 that appear in Theorem 3.2
do not appear here.)
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Theorem 4.2. Let B̄ = (B0, B1) be a Banach couple, let B be an intermediate space
with respect to B̄ and let A be another Banach space. Let I be an operator ideal. Then,
for each operator T ∈ L(A, B̄):

(a) if βI(TA,B0) = 0, then

βI(TA,B) 6 βI(TA,B1) · lim
t→0

t

ρ(t, B, B̄)
;

(b) if βI(TA,B1) = 0, then

βI(TA,B) 6 βI(TA,B0) · lim
t→∞

1
ρ(t, B, B̄)

;

and

(c) if βI(TA,Bi
) > 0 for i = 0, 1, then

βI(TA,B) 6 βI(TA,B0)
ρ(βI(TA,B0)/βI(TA,B1), B, B̄)

.

Proof. In view of the definition of βI(TA,Bi), given any ε > 0, there are Banach spaces
Zi and operators Si ∈ I(A,Zi) such that

‖Ta‖Bi 6 (ε+ βI(TA,Bi))‖a‖A + ‖Sia‖Zi , for all a ∈ A, i = 0, 1.

Since Ta ∈ B0 ∩B1 and ‖b‖B 6 (1/ρ(t, B, B̄))J(t, b; B̄) for all b ∈ B0 ∩B1 and all t > 0,
we obtain that

‖Ta‖B 6 1
ρ(t)

J(t, Ta)

6 1
ρ(t)

max{(ε+ βI(TA,B0)), t(ε+ βI(TA,B1))}‖a‖A + ‖S′
0a‖Z0 + ‖S′

1a‖Z1 ,

where S′
0 = (1/ρ(t))S0 and S′

1 = (t/ρ(t))S1. Let Z be the Banach space Z = Z0 ⊕ Z1

with norm ‖(x, y)‖Z = ‖x‖Z0 + ‖y‖Z1 and consider the operator S : A → Z defined by
Sa = (S′

0a, S
′
1a). Then, using the ideal properties of I and the canonical embeddings of

Z0 and Z1 into Z, we see that S ∈ I(A,Z) and we have

‖Ta‖B 6 1
ρ(t)

max{(ε+ βI(TA,B0)), t(ε+ βI(TA,B1))}‖a‖A + ‖Sa‖Z , for all a ∈ A.

This implies that

βI(TA,B) 6 1
ρ(t)

max{βI(TA,B0), tβI(TA,B1)}, for all t > 0,

and we can conclude the proof in the same way as at the end of the proof of Theorem 3.2.
�
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Suppose that T : Ā → B and T ∈ I(A1, B) for some operator ideal I. For which
intermediate spaces or rank-one interpolation spaces A do we necessarily have that T ∈
I(A,B)? Under what circumstances can it happen that T /∈ I(A,B)?

The preceding two theorems enable us to find answers to these questions and the
corresponding questions for operators T : A → B̄ with T ∈ I(A,B1). These answers take
the form of analogues of Theorems 3.9 and 3.10 and Corollaries 3.11 and 3.12, where the
ideal K of compact operators is replaced by an appropriate more general operator ideal
I.

First we state a result that incorporates the analogues of Theorem 3.9 and Corol-
lary 3.11. Here, we need the ideal to be surjective and closed so that we can use property
(4.1). The proof of the theorem can then follow exactly the same path as its predecessor
theorem and corollary, except that the inner measure γI now plays the former role of the
measure of non-compactness.

Theorem 4.3. Let Ā = (A0, A1) be a Banach couple, let A be a rank-one interpola-
tion space with respect to Ā and let B be another Banach space. Let I be a surjective
closed operator ideal and let T : Ā → B be a linear operator such that T ∈ I(A1, B).
Then at least one of the following conditions must hold.

(i) T ∈ I(A,B).

(ii) A◦
0 ↪→ A.

If, in addition, the couple Ā satisfies A◦
0 = A0, then T ∈ I(A,B) if and only if at least

one of the following conditions hold.

(i′) limt→0 ψ(t, A, Ā) = 0.

(ii′) T ∈ I(A0, B).

Now we turn to a theorem that contains the analogues of Theorem 3.10 and Corol-
lary 3.12. Here, the ideal must be taken to be injective and closed so that the proof can
use property (4.2) and the outer measure βI in place of the measure of non-compactness.

Theorem 4.4. Let B̄ = (B0, B1) be a Banach couple, let B be a rank-one interpola-
tion space with respect to B̄, and let A be another Banach space. Let I be an injective
closed operator ideal, and suppose that T ∈ L(A, B̄) satisfies T ∈ I(A,B1). Then at
least one of the following conditions must hold.

(i) T ∈ I(A,B).

(ii) B ↪→ Bv
0 .

If, in addition, we have Bv
0 = B0, then T ∈ I(A,B) if and only if at least one of the

following conditions hold.

(i′) limt→∞ ρ(t, B, B̄) = ∞.

(ii′) T ∈ I(A,B0).
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Theorems 4.1 and 4.2 immediately lead to stronger versions of Propositions 1.6 and 1.7
in Heinrich [12], i.e. if I is closed and, respectively, surjective or injective, and if T ∈
I(A1, B) or, respectively, T ∈ I(A,B1), and if (1.1) or, respectively, (1.2) holds, then The-
orem 4.1 or, respectively, Theorem 4.2 immediately gives us that T ∈ I(A,B). Applying
these results to the ideals of strictly singular operators and strictly cosingular operators,
we obtain new information about the behaviour under interpolation of these operator
ideals which complements the results established by Beucher in [3, § 2].

In the cases where A or B, respectively, are merely intermediate spaces rather than
rank-one interpolation spaces we apparently, in general, do not have analogues of Theo-
rems 3.15 and 3.17.
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