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Abstract
In this paper, we prove that klt singularities are invariant under deformations if the generic fiber is Q-Gorenstein.
We also obtain a similar result for slc singularities. These are generalizations of results of Esnault-Viehweg [Math.
Ann. 271 (1985), 439–449] and S. Ishii [Math. Ann. 275 (1986), 139–148; Singularities (Iowa City, IA, 1986)
Contemporary Mathematics, vol. 90 (American Mathematical Society, Providence, RI, 1989), 135–145].
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1. Introduction

For the purposes of this introduction, we work over the field C of complex numbers. Kawamata log
terminal (klt for short) and log canonical (lc for short) singularities are important classes of singularities
in the minimal model program. Esnault-Viehweg [6] (respectively, S. Ishii [15, 16]) proved that two-
dimensional klt (respectively, lc) singularities are invariant under small deformations. Unfortunately,
an analogous statement fails in higher dimensions, because the general fibers are not necessarily
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Q-Gorenstein even if the special fiber is klt or lc. In this paper, we give a generalization of their results,
using the theory of non-Q-Gorenstein singularities initiated by de Fernex-Hacon [7]. Our results are
not just a formal generalization to the non-Q-Gorenstein setting, but provide a new interpretation of the
results of Esnault-Viehweg and Ishii. Let X be a normal variety that is not necessarily Q-Gorenstein.
de Fernex-Hacon [7] defined the pullback 𝑓 ∗𝐷 of a (non-Q-Cartier) Weil divisor D on X, which is
a higher-dimensional analog of Mumford’s numerical pullback. By using this pullback, two relative
canonical divisors𝐾+

𝑌 /𝑋
= 𝐾𝑌 + 𝑓 ∗(−𝐾𝑋 ) and𝐾−

𝑌 /𝑋
= 𝐾𝑌 − 𝑓 ∗𝐾𝑋 are defined for every proper birational

morphism 𝑓 : 𝑌 → 𝑋 from a normal variety Y. They coincide if X is Q-Gorenstein but are different in
general. We say that X has only valuatively klt singularities (respectively, klt singularities in the sense of
de Fernex-Hacon) if every coefficient of the R-Weil divisor 𝐾+

𝑌 /𝑋
(respectively, 𝐾−

𝑌 /𝑋
) is greater than −1

for any 𝑓 : 𝑌 → 𝑋 .1 These singularities are a natural generalization of classical klt singularities to the
non-Q-Gorenstein setting, and being valuatively klt is a weaker condition than being klt in the sense of de
Fernex-Hacon, because 𝐾+

𝑌 /𝑋
� 𝐾−

𝑌 /𝑋
. Klt singularities in the sense of de Fernex-Hacon are known not

to be invariant under small deformations (cf. [30]), and therefore, we focus on valuatively klt singularities
in this paper. Our first main result is the inversion of adjunction for valuatively klt singularities, which
states that if a Cartier divisor D on X is valuatively klt, then the pair (𝑋, 𝐷) is valuatively purely log
terminal (plt) near D. Here, valuatively plt pairs are a generalization of plt pairs, defined in terms of
𝐾+
𝑌 /𝑋

as in the case of valuatively klt singularities (see Definition 2.6 for its precise definition). The
proof is based on a characterization of valuatively klt singularities in terms of classical multiplier ideal
sheaves. As its corollary, we obtain the following result on deformations of valuatively klt singularities.

Theorem A (Corollary 3.7). Let (X ,D) → 𝑇 be a proper flat family of pairs over a complex variety T,
where D is an effective Q-Weil divisor on a normal variety X . Suppose that some closed fiber (X𝑡0 ,D𝑡0)

is valuatively klt. Then so is a general fiber (X𝑡 ,D𝑡 ). In particular, if (X𝑡 ,D𝑡 ) is log Q-Gorenstein, then
it is klt.

Theorem A says that klt singularities deform to klt singularities if the general fibers areQ-Gorenstein.
Note that the total space X is not (log) Q-Gorenstein in general, and therefore, the classical inversion of
adjunction for klt singularities cannot be applied directly even if T is a smooth curve and the fibers are
Q-Gorenstein. We also remark that the result of Esnault-Viehweg immediately follows from Theorem
A, because valuatively klt singularities and classical klt singularities coincide in dimension two (cf.
Lemma 2.12).

Next we discuss deformations of lc singularities. Ishii [15] proved that isolated lc singularities are
invariant under small deformations if the general fibers are Q-Gorenstein. The condition of isolated
singularities is essential in her proof, and in order to remove this condition, we use the notion of
valuatively lc singularities, which are defined in a similar way to the valuatively klt case. The second
main result of this paper proves that if a Cartier divisor D on X is lc, then the pair (𝑋, 𝐷) is valuatively
lc. For the proof, we introduce new variants of Fujino’s non-lc ideal sheaves [9], [10] and show that
these ideal sheaves behave well under the restriction to a Cartier divisor. Then we employ a strategy
similar to the klt case but use the variants of Fujino’s non-lc ideal sheaves instead of multiplier ideal
sheaves. We also prove an analogous result for semi log canonical (slc) singularities, a generalization
of lc singularities to the nonnormal setting, under a mild additional assumption (see Theorem 4.12 for
details). In this case, we use the theory of AC-divisors to deal with divisors on nonnormal varieties.
Since we do not know a suitable reference, the details of the theory are given in the Appendix. As a
corollary of our second main result, we obtain the following generalization of the result of Ishii.

Theorem B (Corollaries 4.17 and 4.19). Let (X ,D) → 𝑇 be a proper flat family of pairs over a smooth
complex curve T, where D is an effective Q-Weil divisor on a normal variety X . Suppose that some
closed fiber (X𝑡0 ,D𝑡0) is slc. Then a general fiber (X𝑡 ,D𝑡 ) is valuatively lc. In particular, if (X𝑡 ,D𝑡 ) is
log Q-Gorenstein, then it is lc.

1Valuatively klt singularities are called lt+ singularities in [4] and [5]. Klt singularities in the sense of de Fernex-Hacon are
called klt type singularities in [3].
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When the general fibers are log Q-Gorenstein, Theorem B was independently proved by Kollár [20,
Theorem 5.33], whose method can be traced back to his joint work [22, Corollary 5.5] with Shepherd-
Barron, but the proof heavily depends on the existence of lc modifications. We believe that our proof,
which uses only the cohomological package due to Ambro and Fujino ([2, Theorem 3.2] and [8, Theorem
1.1]), is of independent interest.

Notation. Throughout this paper, all rings are assumed to be commutative and with unit element and
all schemes are assumed to be Noetherian and separated.

2. Preliminaries

This section provides preliminary results needed for the rest of the paper.

2.1. Singularities in MMP

In this subsection, we recall the definition and basic properties of singularities in the minimal model
program (or MMP for short).

Throughout this subsection, unless otherwise stated, X denotes an excellent normal integralQ-scheme
with a dualizing complex 𝜔•

𝑋 . The canonical sheaf 𝜔𝑋 associated to 𝜔•
𝑋 is the coherent O𝑋 -module

defined as the first nonzero cohomology of 𝜔•
𝑋 . A canonical divisor of X associated to 𝜔•

𝑋 is any Weil
divisor 𝐾𝑋 on X, such that O𝑋 (𝐾𝑋 ) � 𝜔𝑋 . We fix a canonical divisor 𝐾𝑋 of X associated to 𝜔•

𝑋 , and
given a proper birational morphism 𝜋 : 𝑌 → 𝑋 from a normal integral scheme Y, we always choose
a canonical divisor 𝐾𝑌 of Y that is associated to 𝜋!𝜔•

𝑋 and coincides with 𝐾𝑋 outside the exceptional
locus Exc( 𝑓 ) of f.

Definition 2.1. A proper birational morphism 𝑓 : 𝑌 → 𝑋 from a regular integral scheme Y is said to be
a resolution of singularities of X. When Δ is a Q-Weil divisor on X and 𝔞 ⊆ O𝑋 is a nonzero coherent
ideal sheaf, a resolution 𝑓 : 𝑌 → 𝑋 is said to be a log resolution of (𝑋,Δ , 𝔞) if 𝔞O𝑌 = O𝑌 (−𝐹) is
invertible and if the union of the exceptional locus Exc( 𝑓 ) of f, the support of F and the strict transform
𝑓 −1
∗ Δ of Δ is a simple normal crossing divisor. Log resolutions exist for quasi-excellent Q-schemes (see

[33]).

First, we recall the definition of singularities in MMP.

Definition 2.2. Suppose that Δ is an effective Q-Weil divisor on X, such that 𝐾𝑋 + Δ is Q-Cartier,
𝔞 ⊆ O𝑋 is a nonzero coherent ideal sheaf, and 𝜆 > 0 is a real number.

(i) Given a proper birational morphism 𝑓 : 𝑌 → 𝑋 from a normal integral scheme Y, we define the
Q-Weil divisor Δ𝑌 on Y as

Δ𝑌 := 𝑓 ∗(𝐾𝑋 + Δ) − 𝐾𝑌 .

When 𝔞O𝑌 = O𝑌 (−𝐹) is invertible, the discrepancy 𝑎𝐸 (𝑋,Δ , 𝔞𝜆) of the triple (𝑋,Δ , 𝔞𝜆) with
respect to a prime divisor E on Y is defined as the coefficient of E in −(Δ𝑌 + 𝜆𝐹).

(ii) The triple (𝑋,Δ , 𝔞𝜆) is said to be log canonical (or lc for short) if 𝑎𝐸 (𝑋,Δ , 𝔞𝜆) � −1 for every
proper birational morphism 𝑓 : 𝑌 → 𝑋 from a normal integral scheme Y with 𝔞O𝑌 invertible and
for every prime divisor E on Y.

Definition 2.3. Suppose that Δ is an effective Q-Weil divisor on X, 𝔞 ⊆ O𝑋 is a nonzero coherent
ideal sheaf, and 𝜆 > 0 is a real number. Let D be a reduced Weil divisor on X which has no common
components with Δ and none of whose generic points lies in the zero locus of 𝔞. Assume, in addition,
that 𝐾𝑋 + Δ + 𝐷 is Q-Cartier.

(i) The triple (𝑋,Δ + 𝐷, 𝔞𝜆) is said to be purely log terminal (or plt for short) along D if 𝑎𝐸 (𝑋,Δ +

𝐷, 𝔞𝜆) > −1 for every proper birational morphism 𝑓 : 𝑌 → 𝑋 from a normal integral scheme Y
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with 𝔞O𝑌 invertible and for every prime divisor E on Y that is not an irreducible component of the
strict transform 𝑓 −1

∗ 𝐷 of D.
(ii) The adjoint ideal sheaf adj𝐷 (𝑋,Δ + 𝐷, 𝔞𝜆) associated to (𝑋,Δ + 𝐷, 𝔞𝜆) along D is defined as

adj𝐷 (𝑋,Δ + 𝐷, 𝔞𝜆) :=
⋂

𝑓 :𝑌→𝑋

𝑓∗O𝑌 (−�(Δ + 𝐷)𝑌 − 𝑓 −1
∗ 𝐷 + 𝜆𝐹�),

where 𝑓 : 𝑌 → 𝑋 runs through all proper birational morphisms from a normal integral scheme Y
with 𝔞O𝑌 = O𝑌 (−𝐹) invertible.

(iii) Assume that 𝐾𝑋 + Δ is Q-Cartier. The triple (𝑋,Δ , 𝔞𝜆) is said to be Kawamata log terminal (or
klt for short) if it is plt along the zero divisor. The adjoint ideal sheaf adj0(𝑋,Δ , 𝔞𝜆) is called the
multiplier ideal sheaf associated to (𝑋,Δ , 𝔞𝜆) and is denoted by J (𝑋,Δ , 𝔞𝜆).

Remark 2.4 (cf. [23, 9.3.E]). Let (𝑋,Δ , 𝔞𝜆) and D be as in Definition 2.3.

(i) (𝑋,Δ + 𝐷, 𝔞𝜆) is plt along D if and only if adj𝐷 (𝑋,Δ + 𝐷, 𝔞𝜆) = O𝑋 .
(ii) If 𝑓 : 𝑌 → 𝑋 is a log resolution of (𝑋,Δ + 𝐷, 𝔞) separating the components of D, then

adj𝐷 (𝑋,Δ + 𝐷, 𝔞𝜆) = 𝑓∗O𝑌 (−�(Δ + 𝐷)𝑌 − 𝑓 −1
∗ 𝐷 + 𝜆𝐹�).

Next, we introduce a generalization of the singularities in Definitions 2.2 and 2.3 to the non-Q-
Gorenstein setting.

Definition 2.5 [7, Section 2]. Suppose that 𝑓 : 𝑌 → 𝑋 is a proper birational morphism from a normal
integral scheme Y and E is a prime divisor on Y. The discrete valuation associated to E is denoted by
ord𝐸 .

(i) The natural valuation ord♮𝐸 (𝐷) along ord𝐸 of a Weil divisor D on X is defined as the integer

ord♮𝐸 (𝐷) := ord𝐸 (O𝑋 (−𝐷)).

The natural pullback of D on Y is the Weil divisor

𝑓 ♮ (𝐷) :=
∑
𝐸

ord♮𝐸 (𝐷)𝐸,

where E runs through all prime divisors on Y.
(ii) The valuation ord𝐸 (𝐷) along ord𝐸 of a Q-Weil divisor D on X is defined as the real number

ord𝐸 (𝐷) := lim
𝑚→∞

ord♮𝐸 (𝑚𝐷)
𝑚

= inf
𝑚�1

ord♮𝐸 (𝑚𝐷)
𝑚

,

where the limit is taken over all integers 𝑚 � 1, such that 𝑚𝐷 is an integral Weil divisor. This limit
always exists by [27, Lemma 1.4]. The pullback of D on Y is the R-Weil divisor

𝑓 ∗(𝐷) :=
∑
𝐸

ord𝐸 (𝐷)𝐸,

where E runs through all prime divisors on Y.

Definition 2.6. Suppose that Δ is an effective Q-Weil divisor on X, 𝔞 ⊆ O𝑋 is a nonzero coherent ideal
sheaf, and 𝜆 > 0 is a real number. Let 𝑚 > 0 be an integer, such that 𝑚Δ is an integral Weil divisor,
and let D be a reduced Weil divisor on X which has no common components with Δ and none of whose
generic points lies in the zero locus of 𝔞.
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(i) Let 𝑓 : 𝑌 → 𝑋 be a proper birational morphism from a normal integral scheme Y with 𝔞O𝑌 =
O𝑌 (−𝐹) invertible, and let E be a prime divisor on Y. The m-th limiting discrepancy of (𝑋,Δ , 𝔞𝜆)
is defined as

𝑎+𝑚,𝐸 (𝑋,Δ , 𝔞
𝜆) = ord𝐸 (𝐾𝑌 − 𝜆𝐹) +

ord♮𝐸 (−𝑚(𝐾𝑋 + Δ))

𝑚
.

The discrepancy of (𝑋,Δ , 𝔞𝜆) is defined as

𝑎+𝐸 (𝑋,Δ , 𝔞
𝜆) = ord𝐸 (𝐾𝑌 − 𝜆𝐹) + ord𝐸 (−(𝐾𝑋 + Δ))

= lim
𝑛→∞

𝑎+𝑛,𝐸 (𝑋,Δ , 𝔞
𝜆)

= inf
𝑛
𝑎+𝑛,𝐸 (𝑋,Δ , 𝔞

𝜆),

where the limit and the infimum are taken over all integers 𝑛 � 1, such that 𝑛Δ is an integral
Weil divisor. When 𝔞 = O𝑋 , we simply write 𝑎+𝑚,𝐸 (𝑋,Δ) (respectively, 𝑎+𝐸 (𝑋,Δ)) instead of
𝑎+𝑚,𝐸 (𝑋,Δ , 𝔞

𝜆) (respectively, 𝑎+𝐸 (𝑋,Δ , 𝔞
𝜆)).

(ii) ([34]) We say that (𝑋,Δ , 𝔞𝜆) is valuatively lc (respectively, m-weakly valuatively lc) if
𝑎+𝐸 (𝑋,Δ , 𝔞

𝜆) � −1 (respectively, 𝑎+𝑚,𝐸 (𝑋,Δ , 𝔞
𝜆) � −1) for every proper birational morphism

𝑓 : 𝑌 → 𝑋 from a normal integral scheme Y with 𝔞O𝑌 invertible and for every prime divisor E
on Y.

(iii) We say that (𝑋,Δ + 𝐷, 𝔞𝜆) is valuatively plt (respectively, m-weakly valuatively plt) along D
if 𝑎+𝐸 (𝑋,Δ + 𝐷, 𝔞𝜆) > −1 (respectively, 𝑎+𝑚,𝐸 (𝑋,Δ + 𝐷, 𝔞𝜆) > −1) for every proper birational
morphism 𝑓 : 𝑌 → 𝑋 from a normal integral scheme Y with 𝔞O𝑌 invertible and for every prime
divisor E on Y that is not an irreducible component of 𝑓 −1

∗ 𝐷.
(iv) We say that (𝑋,Δ , 𝔞𝜆) is valuatively klt2 (respectively, m-weakly valuatively klt) if it is valuatively

plt (respectively, m-weakly valuatively plt) along the zero divisor.
Remark 2.7. Let (𝑋,Δ + 𝐷, 𝔞𝜆) be as in Definition 2.6. If (𝑋,Δ + 𝐷, 𝔞𝜆) is valuatively plt along D,
then (𝑋,Δ + 𝐷, 𝔞𝜆) is valuatively lc and (𝑋,Δ , 𝔞𝜆) is valuatively klt. This follows from the fact that if
𝐷𝑖 is an irreducible component of D, then

𝑎+
𝑓 −1
∗ 𝐷𝑖

(𝑋,Δ + 𝐷) = 𝑎+𝐷𝑖
(𝑋,Δ + 𝐷) = −1, 𝑎+

𝑓 −1
∗ 𝐷𝑖

(𝑋,Δ) = 𝑎+𝐷𝑖
(𝑋,Δ) = 0

for every proper birational morphism 𝑓 : 𝑌 → 𝑋 from a normal integral scheme Y.
Remark 2.8. Let (𝑋,Δ , 𝔞𝜆) be as in Definition 2.6. If 𝐾𝑋 + Δ is Q-Cartier, then (𝑋,Δ , 𝔞𝜆) is lc if and
only if it is valuatively lc. Similarly, if 𝐾𝑋 + Δ + 𝐷 is Q-Cartier, then the following three conditions are
equivalent to each other:
(a) (𝑋,Δ + 𝐷, 𝔞𝜆) is plt along D,
(b) (𝑋,Δ + 𝐷, 𝔞𝜆) is valuatively plt along D, and
(c) (𝑋,Δ + 𝐷, 𝔞𝜆) is m-weakly valuatively plt along D for every integer 𝑚 � 1, such that 𝑚Δ is an

integral Weil divisor.
Lemma 2.9. Suppose that (𝑋,Δ , 𝔞𝜆), m, and D are as in Definition 2.6. Let 𝑓 : 𝑌 → 𝑋 be a log
resolution of (𝑋,Δ + 𝐷, 𝔞) separating the components of D.
(1) The triple (𝑋,Δ , 𝔞𝜆) is m-weakly valuatively lc (respectively, valuatively lc) if and only if

𝑎+𝑚,𝐸 (𝑋,Δ , 𝔞
𝜆) � −1 (respectively, 𝑎+𝐸 (𝑋,Δ , 𝔞

𝜆) � −1) for every prime divisor E on Y.
(2) (𝑋,Δ + 𝐷, 𝔞𝜆) is m-weakly valuatively plt (respectively, valuatively plt) along D if and only if

𝑎+𝑚,𝐸 (𝑋,Δ + 𝐷, 𝔞𝜆) > −1 (respectively, 𝑎+𝐸 (𝑋,Δ + 𝐷, 𝔞𝜆) > −1) for every prime divisor E on Y
that is not an irreducible component of 𝑓 −1

∗ 𝐷.

2Valuatively klt singularities are called lt+ singularities in [4] and [5].
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Proof. The assertion follows from [7, Lemma 2.7] and [7, Remark 2.13]. �

Proposition 2.10. Suppose that (𝑋,Δ , 𝔞𝜆), m, and D are as in Definition 2.6. Let 𝑥 ∈ 𝑋 be a point,
and let Δ 𝑥 and 𝐷𝑥 denote the flat pullbacks of Δ and D by the canonical morphism SpecO𝑋,𝑥 → 𝑋 ,
respectively.

(1) (𝑋,Δ , 𝔞𝜆) is valuatively lc at x, that is, (SpecO𝑋,𝑥 ,Δ 𝑥 , (𝔞O𝑋,𝑥)
𝜆) is valuatively lc if and only if

there exists an open neighborhood 𝑈 ⊆ 𝑋 of x, such that (𝑈,Δ |𝑈 , (𝔞 |𝑈 )𝜆) is valuatively lc.
(2) (𝑋,Δ +𝐷, 𝔞𝜆) is valuatively plt along D at x, that is, (SpecO𝑋,𝑥 ,Δ 𝑥 +𝐷𝑥 , (𝔞O𝑋,𝑥)

𝜆) is valuatively
plt along 𝐷𝑥 if and only if there is an open neighborhood 𝑈 ⊆ 𝑋 of x, such that (𝑈,Δ |𝑈 +

𝐷 |𝑈 , (𝔞 |𝑈 )𝜆) is valuatively plt along 𝐷 |𝑈 .

Proof. This is an immediate application of Lemma 2.9. �

Proposition 2.11. Let (𝑋,Δ , 𝔞𝜆) and D be as in Definition 2.6. Suppose that 𝐼 ⊆ O𝑋 is a coherent
ideal sheaf whose zero locus does not contain any generic points of D but contains the locus, where
𝐾𝑋 + Δ + 𝐷 is not Q-Cartier. Then (𝑋,Δ + 𝐷, 𝔞𝜆) is valuatively plt along D if and only if there exists
a real number 𝜀 > 0, such that (𝑋,Δ + 𝐷, 𝔞𝜆𝐼 𝜀) is m-weakly valuatively plt along D for every integer
𝑚 � 1 with 𝑚Δ an integral Weil divisor.

Proof. Take a log resolution 𝑓 : 𝑌 → 𝑋 of (𝑋,Δ + 𝐷, 𝔞𝐼) separating the components of D, and let F
and G be Cartier divisors on Y, such that O𝑌 (−𝐹) = 𝔞O𝑌 and O𝑌 (−𝐺) = 𝐼O𝑌 . For all integers 𝑚 � 1,
such that𝑚Δ is an integral Weil divisor, we define the R-Weil divisors (Δ +𝐷)+𝑌 and (Δ +𝐷)+𝑚,𝑌 on Y as

(Δ + 𝐷)+𝑌 := − 𝑓 ∗(−(𝐾𝑋 + Δ + 𝐷)) − 𝐾𝑌 = −
∑
𝐸

𝑎+𝐸 (𝑋,Δ + 𝐷)𝐸,

(Δ + 𝐷)+𝑚,𝑌 := −
𝑓 ♮ (−𝑚(𝐾𝑋 + Δ + 𝐷))

𝑚
− 𝐾𝑌 = −

∑
𝐸

𝑎+𝑚,𝐸 (𝑋,Δ + 𝐷)𝐸,

where E runs through all prime divisors on Y.
To prove the “only if” part, it suffices to show by Lemma 2.9 that there exists a real number 𝜀 > 0,

such that

ord𝐸 ((Δ + 𝐷)+𝑚,𝑌 − 𝑓 −1
∗ 𝐷 + 𝜆𝐹 + 𝜀𝐺) < 1

for every integer 𝑚 � 1 with 𝑚Δ an integral Weil divisor and for every prime divisor E on Y. Since
(𝑋,Δ + 𝐷, 𝔞𝜆) is valuatively plt along D,

ord𝐸 ((Δ + 𝐷)+𝑌 − 𝑓 −1
∗ 𝐷 + 𝜆𝐹) < 1

for every prime divisor E on Y. Therefore, there exists 𝜀 > 0, such that

ord𝐸 ((Δ + 𝐷)+𝑌 − 𝑓 −1
∗ 𝐷 + 𝜆𝐹 + 𝜀𝐺) < 1

for all prime divisors E on Y. Then we have

ord𝐸 ((Δ + 𝐷)+𝑚,𝑌 − 𝑓 −1
∗ 𝐷 + 𝜆𝐹 + 𝜀𝐺) � ord𝐸 ((Δ + 𝐷)+𝑌 − 𝑓 −1

∗ 𝐷 + 𝜆𝐹 + 𝜀𝐺) < 1.

For the “if” part, we fix a prime divisor E on Y. It is enough to show by Lemma 2.9 that

ord𝐸 ((Δ + 𝐷)+𝑌 − 𝑓 −1
∗ 𝐷 + 𝜆𝐹) < 1.

If 𝐾𝑋 + Δ + 𝐷 is Q-Cartier at the center of E, then this inequality follows from Remark 2.8. Therefore,
we may assume that 𝐾𝑋 + Δ + 𝐷 is not Q-Cartier at the center of E. Then by the definition of I, the
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center of E is contained in the zero locus of I, which implies that ord𝐸 (𝐺) > 0. Since (𝑋,Δ + 𝐷, 𝔞𝜆𝐼 𝜀)
is m-weakly valuatively plt along D for all 𝑚 � 1, such that 𝑚Δ is an integral Weil divisor,

ord𝐸 ((Δ + 𝐷)+𝑚,𝑌 − 𝑓 −1
∗ 𝐷 + 𝜆𝐹) < 1 − 𝜀 ord𝐸 (𝐺).

Taking the supremum over all such m, we have

ord𝐸 ((Δ + 𝐷)+𝑌 − 𝑓 −1
∗ 𝐷 + 𝜆𝐹) � 1 − 𝜀 ord𝐸 (𝐺) < 1. �

Lemma 2.12 (cf. [21, Proposition 4.11 (2)]). Let (𝑋,Δ , 𝔞𝜆) be as in Definition 2.6. If (𝑋,Δ , 𝔞𝜆) is
valuatively lc at a point 𝑥 ∈ 𝑋 with dimO𝑋,𝑥 � 2, then 𝐾𝑋 + Δ is Q-Cartier at x, and therefore,
(𝑋,Δ , 𝔞𝜆) is lc at x.

Proof. Since the pullback of a Q-Weil divisor on a surface, defined in Definition 2.5, coincides with
Mumford’s numerical pullback, the pair (𝑋,Δ) is numerically lc at x (see [21, Section 4.1] for the
definition of numerically lc pairs). The assertion then follows from [21, Proposition 4.11 (2)]. �

The log canonicity can be generalized for nonconnected schemes in a natural way.

Definition 2.13. Let X be an excellent normal (not necessarily connected) Q-scheme with a dualizing
complex 𝜔•

𝑋 , Δ be an effective Q-Weil divisor on X, 𝜆 > 0 be a real number, and 𝔞 ⊆ O𝑋 be a coherent
ideal that is nonzero at any generic points of X. Let 𝑋 :=

∐
𝑖 𝑋𝑖 be the decomposition of X into connected

components. We say that (𝑋,Δ , 𝔞𝜆) is lc (respectively, valuatively lc) if so is (𝑋𝑖 ,Δ |𝑋𝑖 , 𝔞 |
𝜆
𝑋𝑖
) for all i.

2.2. Semi log canonical singularities
Throughout this subsection, we assume that X is an excellent reduced scheme, satisfying Serre’s condi-
tion (𝑆2). Let K𝑋 denote the sheaf of total quotients of X.

We define the abelian groups WDiv∗(𝑋) and WDiv∗
Q
(𝑋) as

WDiv∗(𝑋) :=
⊕
𝐸

Z𝐸,

WDiv∗Q(𝑋) := WDiv∗(𝑋) ⊗Z Q =
⊕
𝐸

Q𝐸,

where E runs through all prime divisors on X whose generic points are regular points of X. Similarly,
let Div∗(𝑋) be the subgroup of Div(𝑋) = Γ(𝑋,K∗

𝑋/O∗
𝑋 ) defined as

Div∗(𝑋) := {𝐶 ∈ Div(𝑋) | 𝐶𝑥 = 1 modO∗
𝑋,𝑥 for every codimension one

singular point 𝑥 ∈ 𝑋}.

It follows from [24, Theorem 11.5 (ii)] that the canonical map

Div∗(𝑋) → WDiv∗(𝑋)

is injective.3
Let D be a Weil divisor contained in WDiv∗(𝑋). Since the support of D contains no codimension

one singular points of X, there exists an open subset 𝑈 ⊆ 𝑋 containing all codimension one points of
X, such that the restriction 𝐷 |𝑈 ∈ WDiv∗(𝑈) of D is Cartier, that is, there exists a (unique) Cartier
divisor 𝐸𝑈 on U contained in Div∗(𝑈), such that the Weil divisor defined by 𝐸𝑈 coincides with 𝐷 |𝑈 .
Then we define the subsheaf O𝑋 (𝐷) of K𝑋 as the pushforward 𝑖∗O𝑈 (𝐸𝑈 ) of the invertible subsheaf
O𝑈 (𝐸𝑈 ) ⊆ K𝑈 by the open immersion 𝑖 : 𝑈 ↩→ 𝑋 .

3The (𝑅1) condition is assumed in loc. cit., but this assumption is unnecessary for the injectivity.
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Lemma 2.14. The quasi-coherent O𝑋 -module O𝑋 (𝐷) is coherent, reflexive, and independent of the
choice of U.

Proof. We write

𝐷 =
𝑛∑
𝑖=1
𝑎𝑖𝐸𝑖 −

𝑚∑
𝑗

𝑏 𝑗𝐸 𝑗 ,

where 𝐸𝑖 and 𝐸 𝑗 are prime divisors on X whose generic points are regular points of X and 𝑎𝑖 and 𝑏 𝑗
are positive integers. Let G be the coherent sheaf

H𝑜𝑚𝑋

(⊗
𝑖

I ⊗𝑎𝑖
𝐸𝑖
,
(⊗

𝑗

I ⊗𝑏 𝑗

𝐸 𝑗

)∗∗)
,

where I𝐸𝑖 (respectively, I𝐸 𝑗 ) is the ideal sheaf of 𝐸𝑖 (respectively, 𝐸 𝑗 ) and (−)∗∗ denotes the reflexive
hull. Note by [29, Corollary 2.9] that G is reflexive.4

Let 𝑗 : 𝑉 ↩→ 𝑈 be the open immersion from an open subset 𝑉 ⊆ 𝑈 containing all codimension
one points of X, such that 𝐸𝑖 |𝑉 (respectively, 𝐸 𝑗 |𝑉) is Cartier for all i (respectively, j). Since G |𝑉 �
O𝑉 (𝐸𝑈 |𝑉 ), it follows from Lemma 2.15 that

G � (𝑖 ◦ 𝑗)∗(G |𝑉 ) � 𝑖∗ 𝑗∗O𝑉 (𝐸𝑈 |𝑉 ) � 𝑖∗O𝑈 (𝐸𝑈 ) = O𝑋 (𝐷). �

Lemma 2.15. Let X be a Noetherian reduced (𝑆2) scheme, and let F be a coherent sheaf. Then the
following conditions are equivalent to each other.

(1) F is reflexive.
(2) F satisfies (𝑆2), and F is reflexive in codimension one, that is, F𝑥 is a reflexive O𝑋,𝑥-module for

each codimension one point 𝑥 ∈ 𝑋 .
(3) F is reflexive in codimension one, and the natural map F → 𝑖∗𝑖

∗F is an isomorphism for every
open subscheme 𝑖 : 𝑈 ↩→ 𝑋 with Codim(𝑋 \𝑈, 𝑋) � 2.

(4) There exists a reflexive sheaf G on an open subscheme 𝑖 : 𝑈 ↩→ 𝑋 with Codim(𝑋 \𝑈, 𝑋) � 2, such
that F � 𝑖∗G.

Proof. The proof is very similar to the argument in [29, Section 2] and [31, Section 0AUY], which can
be traced back to [12] and [13]. �

Let 𝜔•
𝑋 be a dualizing complex of X, and let 𝜔𝑋 be the canonical sheaf associated to 𝜔•

𝑋 , that
is, the coherent O𝑋 -module defined as the first nonzero cohomology of 𝜔•

𝑋 . A canonical divisor on
X associated to 𝜔•

𝑋 is a Weil divisor 𝐾𝑋 contained in WDiv∗(𝑋), such that O𝑋 (𝐾𝑋 ) � 𝜔𝑋 as O𝑋 -
modules. The following proposition gives sufficient conditions for X to admit a canonical divisor.

Proposition 2.16. Let (Λ,𝔪, 𝑘) be a Noetherian local ring with k infinite, and let A be an excellent
Λ-algebra. Suppose that X is a reduced, (𝑆2), (𝐺1), and quasi-projective A-scheme with a dualizing
complex𝜔•

𝑋 . Then X admits a canonical divisor associated to𝜔•
𝑋 if one of the following conditions hold.

(i) There exists a finite morphism 𝑓 : 𝑋 → 𝑌 to an excellent reduced (𝑆2) and (𝐺1) scheme Y with
the following conditions:
(a) Y admits a dualizing complex 𝜔•

𝑌 , such that 𝑓 !𝜔•
𝑌 � 𝜔

•
𝑋 ,

(b) Y admits a canonical divisor associated to 𝜔•
𝑌 , and

(c) the codimension of 𝑓 (𝜂) ∈ 𝑌 is constant for all generic points 𝜂 of X.
(ii) X is irreducible.

(iii) X is connected and biequidimensional (see Definition A.14 for the definition of biequidimensional
schemes).

4X is assumed to be irreducible in loc. cit., but this assumption is unnecessary.
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Proof. It follows from Lemmas A.16 and A.17. �

Let 𝜈 : 𝑋𝑛 → 𝑋 be the normalization of X, and let 𝐶 ∈ WDiv(𝑋𝑛) be the conductor divisor of 𝜈 on
𝑋𝑛, that is, an effective Weil divisor on 𝑋𝑛 satisfying that

O𝑋𝑛 (−𝐶) = 𝜈−1(H𝑜𝑚𝑋 (𝜈∗O𝑋𝑛 ,O𝑋 )) ⊆ O𝑋𝑛 .

If X admits a canonical divisor 𝐾𝑋 associated to 𝜔•
𝑋 , then it follows from [19, Section 5.1] that the

Weil divisor 𝜈∗𝐾𝑋 − 𝐶 on 𝑋𝑛 is a canonical divisor associated to the dualizing complex 𝜈!𝜔•
𝑋 .

Definition 2.17. Let X be an excellent reduced (𝑆2) and (𝐺1)Q-scheme admitting a canonical divisor
𝐾𝑋 ∈ WDiv∗(𝑋) associated to a dualizing complex 𝜔•

𝑋 . Suppose that Δ ∈ WDiv∗
Q
(𝑋) is an effective

Q-Weil divisor, 𝔞 ⊆ O𝑋 is a coherent ideal sheaf that is nonzero at any generic points of X, and 𝜆 > 0
is a real number.

1. The triple (𝑋,Δ , 𝔞𝜆) is said to be semi log canonical (or slc for short) if 𝐾𝑋 + Δ is Q-Cartier and
(𝑋𝑛, 𝜈∗Δ + 𝐶, (𝔞O𝑋𝑛 )𝜆) is lc.

2. The triple (𝑋,Δ , 𝔞𝜆) is said to be valuatively slc if (𝑋𝑛, 𝜈∗Δ + 𝐶, (𝔞O𝑋𝑛 )𝜆) is valuatively lc.

Remark 2.18. (1) There exists an example of a two-dimensional non-Q-Gorenstein valuatively slc
scheme (see [19, Example 5.16]).

(2) Let (𝑋,Δ , 𝔞𝜆) be as in Definition 2.17, and assume, in addition, that X is a Q-scheme and 𝑥 ∈ 𝑋
is a point. It then follows from Proposition 2.10 that (𝑋,Δ , 𝔞𝜆) is valuatively slc at x, that is, the induced
triple (SpecO𝑋,𝑥 ,Δ 𝑥 , (𝔞O𝑋,𝑥)

𝜆) is valuatively slc if and only if (𝑈,Δ |𝑈 , 𝔞 |𝜆𝑈 ) is valuatively slc for an
open neighborhood 𝑈 ⊆ 𝑋 of x.

2.3. Different
In this subsection, we recall the definition and basic properties of the different of a Q-Weil divisor. The
detailed proofs are given in Appendix A (see also [19, Section 4.1]).

Throughout this subsection, we fix an excellent scheme S admitting a dualizing complex 𝜔•
𝑆 , every

scheme is assumed to be separated and of finite type over S, and every morphism is assumed to be an
S-morphism. Moreover, given a scheme X, we always choose 𝜔•

𝑋 := 𝜋!
𝑋𝜔

•
𝑆 as a dualizing complex of

X, where 𝜋𝑋 : 𝑋 → 𝑆 is the structure morphism and 𝜔𝑋 always denotes the canonical sheaf associated
to 𝜔•

𝑋 .

Setting 2.19. Let (𝑌,𝑊,𝑊 ′, 𝑖, 𝜇, 𝑓 ,Δ) be a tuple satisfying the following conditions.

1. Y is an excellent reduced (𝑆2) and (𝐺1) scheme over S admitting a canonical divisor 𝐾𝑌 ∈ WDiv∗(𝑌 )
associated to 𝜔•

𝑌 := 𝜋!
𝑌𝜔

•
𝑆 , where 𝜋𝑌 : 𝑌 → 𝑆 is the structure morphism.

2. 𝑖 : 𝑊 ↩→ 𝑌 is the closed immersion from a reduced closed subscheme W whose generic points are
codimension one regular points of Y. In particular,𝑊 ∈ WDiv∗(𝑌 ).

3. 𝜇 : 𝑊 ′ → 𝑊 is a finite birational morphism from a reduced (𝑆2) and (𝐺1) scheme 𝑊 ′ and
𝑓 := 𝑖 ◦ 𝜇 : 𝑊 ′ → 𝑌 is the composite of i and 𝜇.

𝑌

𝑊

𝑖

��

𝑊 ′
𝜇

��

𝑓
����������

.

4. Δ ∈ WDiv∗
Q
(𝑌 ) is a Q-Weil divisor on Y, such that the support of Δ has no common components

with W and 𝐾𝑌 + Δ +𝑊 ∈ WDiv∗
Q
(𝑌 ) is Q-Cartier at every codimension one point w of W.

5. For each codimension one singular point 𝑤′ of 𝑊 ′, there exists an open neighborhood 𝑈 ⊆ 𝑌 of
𝑓 (𝑤′) ∈ 𝑌 , such that Δ |𝑈 = 0 and𝑊 |𝑈 is Cartier, that is,𝑊 |𝑈 is contained in the image of the natural
injection Div∗(𝑈) → WDiv∗(𝑈).
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Let (𝑌,𝑊,𝑊 ′, 𝑖, 𝜇, 𝑓 ,Δ) be as in Setting 2.19. Then the Q-Weil divisor Diff𝑊 ′ (Δ) ∈ WDiv∗
Q
(𝑊 ′) is

defined as in [19, Section 4.1] and is called the different of Δ on𝑊 ′. The reader is referred to Lemma-
Definition A.9 for details.

Remark 2.20. The condition (5) in Setting 2.19 is not essential. In Section A.2, we remove this condition
by formulating the different Diff𝑊 ′ (Δ) in terms of AC-divisors.

Lemma 2.21. Let (𝑌,𝑊,𝑊 ′, 𝑖, 𝜇, 𝑓 ,Δ) be as in Setting 2.19, and let 𝜋 : 𝑊𝑛 = (𝑊 ′)𝑛 → 𝑊 ′ be the
normalization of𝑊 ′. Then

Diff𝑊 𝑛 (Δ) = 𝜋∗Diff𝑊 ′ (Δ) + 𝐶𝑊 ′ ,

where 𝐶𝑊 ′ denotes the conductor divisor of 𝜋 on𝑊𝑛 = (𝑊 ′)𝑛.

Proof. This is a special case of Lemma A.10. �

Lemma 2.22. Let (𝑌,𝑊,𝑊 ′, 𝑖, 𝜇, 𝑓 ,Δ) be, as in Setting 2.19, such that 𝑓 : 𝑊 ′ → 𝑌 factors through the
normalization 𝜈 : 𝑌𝑛 → 𝑌 of Y. We further assume that Y is normal at 𝑓 (𝑤′) ∈ 𝑌 for every codimension
one singular point 𝑤′ ∈ 𝑊 ′. Then

Diff𝑊 ′ (Δ) = Diff𝑊 ′ (𝜈∗Δ + 𝐶𝑌 ),

where 𝐶𝑌 denotes the conductor divisor of 𝜈 on 𝑌𝑛.

Proof. We write A′ := (𝑌𝑛,𝑊 ′′,𝑊 ′, 𝑗 , 𝜋, 𝑔, 𝜈∗Δ + 𝐶𝑌 ), where 𝑔 : 𝑊 ′ → 𝑌𝑛 is the morphism induced
by f,𝑊 ′′ ⊆ 𝑌𝑛 is the reduced image of g, and j, 𝜋, and 𝜌 are natural morphisms, such that the following
diagram commutes:

𝑌 𝑌𝑛𝜈
��

𝑊
��

𝑖

��

𝑊 ′′
��

𝑗

��

𝜌
�� 𝑊 ′.𝜋

��

𝜇

��

𝑔

����������

𝑓

��

It is clear that A′ satisfies the conditions (1)–(3) in Setting 2.19. The tuple A′ also satisfies (4), because
𝜈 is an isomorphism over the generic points of W, and therefore, 𝜈∗𝑊 = 𝑊 ′′. By the assumption that Y
is normal at the image of every codimension one singular point 𝑤′ of 𝑊 ′, the conductor divisor 𝐶𝑌 is
trivial near 𝑔(𝑤′), which implies that A′ satisfies the condition (5) too. Then the assertion is a special
case of Lemma A.11. �

Remark 2.23. We can relax the assumption that Y is normal at the image of any codimension one
singular points of𝑊 ′ by using the terminology of AC-divisors (see Lemma A.11 for details).

Lemma 2.24. Suppose that Y is a scheme satisfying the condition (1) in Setting 2.19 and 𝑖 : 𝑊 ↩→ 𝑌 is
a closed immersion satisfying the condition (2). We further assume that W is a Cartier divisor (that is,
𝑊 ∈ Div∗(𝑌 )) satisfying (𝑆2) and (𝐺1). Let Δ =

∑
𝑖 𝑎𝑖𝐸𝑖 ∈ WDiv∗

Q
(𝑌 ) be a Q-Weil divisor on Y whose

support contains neither any generic points of W nor any singular codimension one points of W.

(1) The tuple (𝑌,𝑊,𝑊, 𝑖, id𝑊 , 𝑖,Δ) satisfies all the conditions in Setting 2.19.
(2) ([19, Proposition 4.5 (4)]) Let Δ |𝑊 ∈ WDiv∗

Q
(𝑊) be the restriction

Δ |𝑊 :=
∑
𝑖

𝑎𝑖𝐸𝑖 |𝑊 ∈ WDiv∗Q(𝑊)
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of Δ to W, where 𝐸𝑖 |𝑊 denotes the Weil divisor on W corresponding to the scheme theoretic
intersection 𝐸𝑖 ∩𝑊 . Then

Δ |𝑊 = Diff𝑊 (Δ).

Proof. This is just a reformulation of Lemma A.8. �

2.4. Deformations

In this subsection, we recall some basic terminology from the theory of deformations.
Definition 2.25. Let X be an algebraic scheme over a field k. Suppose that T is a k-scheme and 𝑡 ∈ 𝑇 is
a k-rational point.
1. A deformation of X over T with reference point t is a pair (X , 𝑖) of a scheme X that is flat and of

finite type over T and an isomorphism 𝑖 : 𝑋 ∼
−−→ X ×𝑇 Spec 𝜅(𝑡) of k-schemes.

2. Let Z be a closed subscheme of X. A deformation of the pair (𝑋, 𝑍) over T with reference point t
is a quadruple (X , 𝑖,Z , 𝑗), where (X , 𝑖) is a deformation of X over T with reference point t, Z is a
closed subscheme of X that is flat over T, and j is an isomorphism 𝑗 : 𝑍 ∼

−−→ Z ×X 𝑋 of k-schemes.
In the later sections, we will use the following setup to consider some problems on deformations of

singularities.
Setting 2.26. Suppose that k is an algebraically closed field of characteristic zero, X is a reduced (𝑆2)
and (𝐺1) scheme of finite type over k, T is an irreducible scheme over k with generic point 𝜂, and 𝑡 ∈ 𝑇
is a closed point. Let (X , 𝑖) be a deformation of X over T with reference point t, such that X is a reduced
(𝑆2) and (𝐺1) scheme. Let D ∈ WDiv∗

Q
(X ) be an effective Q-Weil divisor on X whose support does

not contain any generic points of the closed fiber X nor any singular codimension one points of X. Let
𝔞 ⊆ OX be a coherent ideal sheaf, such that 𝔞O𝑋 is nonzero, and let 𝜆 > 0 be a real number.

3. Deformations of valuatively klt singularities

In this section, we prove the inversion of adjunction for valuatively klt singularities. As a corollary, we
show that valuatively klt singularities are invariant under a deformation over a smooth base, which is a
generalization of a result of Esnault-Viehweg [6] on deformations of klt singularities.

Throughout this section, we say that (𝑅,Δ , 𝔞𝜆) is a triple of equal characteristic zero if (𝑅,𝔪) is an
excellent normal local ring of equal characteristic zero with a dualizing complex 𝜔•

𝑅, Δ is an effective
Q-Weil divisor on Spec 𝑅, 𝔞 is a nonzero ideal of R, and 𝜆 > 0 is a real number.
Proposition 3.1. Suppose that (𝑅,Δ , 𝔞𝜆) is a triple of equal characteristic zero and D is a reduced
Weil divisor on 𝑋 := Spec 𝑅, such that 𝔞 is trivial at any generic points of D. Let A be an effective
Weil divisor on X linearly equivalent to −𝐾𝑋 − 𝐷, such that 𝐵 := 𝐴 − Δ is also effective and A has no
common components with D. Fix an integer 𝑚 � 1, such that 𝑚Δ is an integral Weil divisor.
(1) adj𝐷 (𝑋, 𝐴 + 𝐷, 𝔞𝜆O𝑋 (−𝑚𝐵)

1−1/𝑚) is contained in O𝑋 (−𝑚𝐵).
(2) The following conditions are equivalent to each other.

(a) (𝑋,Δ + 𝐷, 𝔞𝜆) is m-weakly valuatively plt along D.
(b) For every nonzero coherent ideal 𝔟 ⊆ O𝑋 contained in O𝑋 (−𝑚𝐵) that is trivial at any generic

points of D, we have

𝔟 ⊆ adj𝐷 (𝑋, 𝐴 + 𝐷, 𝔞𝜆𝔟1−1/𝑚).

(c) For every nonzero principal ideal (𝑟) ⊆ O𝑋 contained in O𝑋 (−𝑚𝐵) that is trivial at any
generic points of D, we have

𝑟 ∈ adj𝐷 (𝑋, 𝐴 + 𝐷, 𝔞𝜆 (𝑟)1−1/𝑚).
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(d) For every antieffective Q-Weil divisor Γ on X, such that 𝑚(𝐾𝑋 + Δ + Γ + 𝐷) is Cartier and Γ
has no common components with D, the triple (𝑋,Δ + Γ + 𝐷, 𝔞𝜆) is sub-plt along D, that is,
O𝑋 ⊆ adj𝐷 (𝑋,Δ + Γ + 𝐷, 𝔞𝜆).

(e) adj𝐷 (𝑋, 𝐴 + 𝐷, 𝔞𝜆O𝑋 (−𝑚𝐵)
1−1/𝑚) = O𝑋 (−𝑚𝐵).

Proof. (1) Let 𝑈 ⊆ 𝑋 denote the locus, where 𝑚𝐵 is Cartier. Since O𝑋 (−𝑚𝐵) is reflexive and U is an
open subset of X whose complement has codimension at least two, it suffices to show that

adj𝐷 (𝑋, 𝐴 + 𝐷, 𝔞𝜆O𝑋 (−𝑚𝐵)
1−1/𝑚) |𝑈 ⊆ O𝑈 (−𝑚𝐵 |𝑈 ).

However, it follows from the fact that O𝑈 (−𝑚𝐵 |𝑈 ) is invertible that

adj𝐷 (𝑋, 𝐴 + 𝐷, 𝔞𝜆O𝑋 (−𝑚𝐵)
1−1/𝑚) |𝑈 = adj𝐷 |𝑈

(𝑈, 𝐴|𝑈 + 𝐷 |𝑈 , 𝔞 |
𝜆
𝑈O𝑈 (−𝑚𝐵 |𝑈 )

1−1/𝑚)

= adj𝐷 |𝑈
(𝑈, 𝐴|𝑈 +

𝑚 − 1
𝑚

(𝑚𝐵 |𝑈 ) + 𝐷 |𝑈 , 𝔞 |
𝜆
𝑈 )

= adj𝐷 |𝑈
(𝑈,Δ |𝑈 + 𝑚𝐵 |𝑈 + 𝐷 |𝑈 , 𝔞 |

𝜆
𝑈 )

= adj𝐷 |𝑈
(𝑈,Δ |𝑈 + 𝐷 |𝑈 , 𝔞 |

𝜆
𝑈 ) ⊗O𝑈 O𝑈 (−𝑚𝐵 |𝑈 )

⊆ O𝑈 (−𝑚𝐵 |𝑈 ).

(2) First we prove the implication (𝑎) ⇒ (𝑏). Take a log resolution 𝑓 : 𝑌 → 𝑋 of (𝑋,Δ + 𝐴 +

𝐷, 𝔞𝔟O𝑋 (−𝑚𝐵)) separating the components of D, and write

𝔞O𝑌 = O𝑌 (−𝐹), 𝔟O𝑌 = O𝑌 (−𝐺) and O𝑋 (−𝑚𝐵)O𝑌 = O𝑌 (−𝐻).

We also set

(𝐴 + 𝐷)𝑌 := 𝑓 ∗(𝐾𝑋 + 𝐴 + 𝐷) − 𝐾𝑌 ,

(Δ + 𝐷)+𝑚,𝑌 := −
𝑓 ♮ (−𝑚(𝐾𝑋 + Δ + 𝐷))

𝑚
− 𝐾𝑌 .

Since

𝐻 − 𝑚(𝐾𝑌 + (𝐴 + 𝐷)𝑌 ) = 𝑓
♮ (𝑚𝐵) − 𝑓 ∗(𝑚(𝐾𝑋 + 𝐴 + 𝐷))

= 𝑓 ♮ (𝑚(𝐵 − (𝐾𝑋 + 𝐴 + 𝐷)))

= 𝑓 ♮ (−𝑚(𝐾𝑋 + Δ + 𝐷)),

one has

(Δ + 𝐷)+𝑚,𝑌 = −
1
𝑚
𝐻 + (𝐴 + 𝐷)𝑌 .

Therefore, we obtain

adj𝐷 (𝑋, 𝐴 + 𝐷, 𝔞𝜆𝔟1−1/𝑚)

= 𝑓∗O𝑌

(
−

⌊
(𝐴 + 𝐷)𝑌 − 𝑓 −1

∗ 𝐷 + 𝜆𝐹 +

(
1 −

1
𝑚

)
𝐺

⌋)
= 𝑓∗O𝑌

(
−

⌊
(Δ + 𝐷)+𝑚,𝑌 +

1
𝑚
𝐻 − 𝑓 −1

∗ 𝐷 + 𝜆𝐹 +

(
1 −

1
𝑚

)
𝐺

⌋)
= 𝑓∗O𝑌

(
−𝐺 −

⌊
(Δ + 𝐷)+𝑚,𝑌 − 𝑓 −1

∗ 𝐷 + 𝜆𝐹 −
1
𝑚
(𝐺 − 𝐻)

⌋)
.
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Combining this with the inequalities 𝐻 � 𝐺 and �(Δ + 𝐷)+𝑚,𝑌 − 𝑓 −1
∗ 𝐷 + 𝜆𝐹� � 0 yields the inclusion

adj𝐷 (𝑋, 𝐴 + 𝐷, 𝔞𝜆𝔟1−1/𝑚) ⊇ 𝑓∗O𝑌 (−𝐺) ⊇ 𝔟.

Next we prove the implication (e) ⇒ (a). An argument similar to the above shows that

𝑓∗O𝑌 (−𝐻 − �(Δ + 𝐷)+𝑚,𝑌 − 𝑓 −1
∗ 𝐷 + 𝜆𝐹�) = adj𝐷 (𝑋, 𝐴 + 𝐷, 𝔞𝜆O𝑌 (−𝑚𝐵)

1−1/𝑚)

= O𝑋 (−𝑚𝐵)

= 𝑓∗O𝑌 (−𝐻),

where the second equality is just (e). Since O𝑌 (−𝐻) is globally generated with respect to f, we conclude
that

�(Δ + 𝐷)+𝑚,𝑌 − 𝑓 −1
∗ 𝐷 + 𝜆𝐹� � 0,

which proves (a) by Lemma 2.9.
The implication (b) ⇒ (c) is obvious. For (c) ⇒ (e), take a system of generators 𝑟1, . . . , 𝑟𝑛 of the

ideal O𝑋 (−𝑚𝐵) ⊆ 𝑅. Since B has no common components with D, replacing the generators by their
linear combinations, we may assume that the principal ideal (𝑟𝑖) is trivial at any generic points of D for
all i. Then (e) follows from (1) and an application of (c) with 𝑟 = 𝑟𝑖 .

For (c) ⇒ (d), take an antieffective Q-Weil divisor Γ, such that 𝑚(𝐾𝑋 + Δ + Γ + 𝐷) is Cartier and
Γ has no common components with D. Since R is local and 𝑚(𝐾𝑋 + Δ + 𝐷) is linearly equivalent to
−𝑚𝐵, we may write

−𝑚𝐵 + 𝑚Γ + div𝑋 (𝑟) = 0,

where r is an element of Frac(𝑅). Since Γ is antieffective and 𝐵 − Γ has no common components with
D, the principal ideal (𝑟) is contained in O𝑋 (−𝑚𝐵) and is trivial at any generic points of D. Therefore,
applying (c) to this principal ideal, we obtain

𝑟 ∈ adj𝐷 (𝑋, 𝐴 + 𝐷, 𝔞𝜆 (𝑟)1−1/𝑚) = adj𝐷 (𝑋,Δ + Γ + div𝑋 (𝑟) + 𝐷, 𝔞𝜆)
= 𝑟 · adj𝐷 (𝑋,Δ + Γ + 𝐷, 𝔞𝜆),

which implies that

1 ∈ adj𝐷 (𝑋,Δ + Γ + 𝐷, 𝔞𝜆).

For the converse implication (d) ⇒ (c), just reverse the above argument. �

The following theorem is the main result of this section, which shows the inversion of adjunction for
valuatively klt singularities.

Theorem 3.2. Suppose that (𝑅,Δ , 𝔞𝜆) is a triple of equal characteristic zero and h is a nonzero element
in R, such that 𝑆 := 𝑅/(ℎ) is normal. We assume, in addition, that 𝑍 := Spec 𝑆 is not contained in the
support of Δ and 𝔞 is not contained in the ideal (ℎ).

(1) Let 𝑚 � 1 be an integer, such that 𝑚Δ is an integral Weil divisor. If the triple (𝑍,Δ |𝑍 , (𝔞𝑆)𝜆) is
m-weakly valuatively klt, then (𝑋,Δ + 𝑍, 𝔞𝜆) is m-weakly valuatively plt along Z.

(2) If (𝑍,Δ |𝑍 , (𝔞𝑆)𝜆) is valuatively klt, then (𝑋,Δ + 𝑍, 𝔞𝜆) is valuatively plt along Z, and in particular,
(𝑋,Δ , 𝔞𝜆) is valuatively klt.
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Proof. (1) Since X is affine and Gorenstein at the generic point of Z, we can take an effective Weil divisor
A on X linearly equivalent to −𝐾𝑋 , such that 𝐵 := 𝐴 −Δ is effective and Supp 𝐴 does not contain Z. Set

𝐼 := adj𝑍 (𝑋, 𝐴 + 𝑍, 𝔞𝜆𝔟1−1/𝑚) ⊆ 𝑅,

𝐽 := J (𝑍, 𝐴|𝑍 , (𝔞𝑆)
𝜆 (𝔟𝑆)1−1/𝑚) ⊆ 𝑆,

where 𝔟 := O𝑋 (−𝑚𝐵) ⊆ 𝑅.
Since 𝐴|𝑍 is linearly equivalent to −𝐾𝑍 , 𝐵 |𝑍 = 𝐴|𝑍 − Δ |𝑍 , and 𝔟𝑆 ⊆ O𝑍 (−𝑚𝐵 |𝑍 ), we apply

Proposition 3.1 (2) (a)⇒(b) with 𝑋 = 𝑍 and 𝐷 = ∅ to deduce that

𝔟𝑆 ⊆ 𝐽 = 𝐼𝑆,

where the last equality is a consequence of the restriction theorem [32, Theorem 1.5].5 It follows from
a combination of the inclusion 𝔟𝑆 ⊆ 𝐼𝑆 with Proposition 3.1 (1) that

𝐼 ⊆ 𝔟 ⊆ 𝐼 + 𝔟 ∩ (ℎ).

By assumption, div𝑋 (ℎ) = 𝑍 is a prime divisor on X, which is not an irreducible component of B. Thus,
𝔟 ∩ (ℎ) = ℎ(𝔟 :𝑅 (ℎ)) = ℎ𝔟 ⊆ 𝔪𝔟, so that 𝔟 = 𝐼 +𝔪𝔟. By Nakayama’s lemma, we have 𝐼 = 𝔟, which
completes the proof by using Proposition 3.1 (2) (e)⇒(a).

(2) Take an ideal 𝐼 ⊆ O𝑋 , such that 𝐼O𝑍 is nonzero and the closed subset 𝑉 (𝐼) ⊆ 𝑋 contains
the singular locus of X and that of Z. The assertion then follows from (1), Proposition 2.11, and
Remark 2.7. �

Remark 3.3. The no boundary case, that is, the case where Δ = 0 and 𝔞 = 𝑅, of Theorem 3.2 (2)
was originally claimed in [4, Theorem 3.8], but there is an error in the proof. Our proof is completely
different from the one given there.

Corollary 3.4. Suppose that (𝑅,Δ , 𝔞𝜆) is a triple of equal characteristic zero and ℎ1, ℎ2, . . . , ℎ𝑟 forms a
regular sequence of R, such that 𝑆 := 𝑅/(ℎ1, . . . , ℎ𝑟 ) is normal. We assume, in addition, that 𝑍 := Spec 𝑆
is not contained in the support of Δ and 𝔞 is not contained in the ideal (ℎ1, . . . , ℎ𝑟 ). If (𝑍,Δ |𝑍 , (𝔞𝑆)𝜆)
is valuatively klt, then so is (𝑋,Δ , 𝔞𝜆).

Proof. It follows from repeated applications of Theorem 3.2 (2). �

Corollary 3.5. With notation as in Setting 2.26, we assume that X and X are normal integral schemes.
Let 𝑥 ∈ 𝑋 be a closed point and Z ⊆ 𝑋 be an irreducible closed subscheme, such that (X , 𝑖,Z , 𝑗) is a
deformation of the pair (𝑋, {𝑥}red) over T with reference point t. Let y be the generic point of Z , which
lies in the generic fiber X𝜂 . If (𝑋,D |𝑋 , (𝔞O𝑋 )

𝜆) is valuatively klt at x, then so is (X𝜂 ,D𝜂 , (𝔞OX𝜂 )
𝜆)

at y.

Proof. Let 𝑓 : 𝑇 → 𝑇red be a resolution of singularities of the reduced closed subscheme 𝑇red of T. Take
a closed point 𝑡̃ ∈ 𝑇 that maps to the point 𝑡 ∈ 𝑇 . Since the closed fiber of X ×𝑇 𝑇 over 𝑡̃ is isomorphic
to X𝑡 = 𝑋 and the generic fiber of X ×𝑇 𝑇 is isomorphic to X𝜂 , after replacing T by S, we may assume
that T is a regular integral scheme. Then the closed fiber X is locally a complete intersection in X , and
we see from Corollary 3.4 that (X ,D, 𝔞𝜆) is valuatively klt at x. Since y is a generalization of x, the
triple (X ,D, 𝔞𝜆) is valuatively klt at y by Lemma 2.10, which completes the proof. �

Corollary 3.6. With notation as in Setting 2.26, we assume that X and X are normal integral
schemes. We further assume that X is proper over T. If (𝑋,D |𝑋 , (𝔞O𝑋 )

𝜆) is valuatively klt, then so is
(X𝜂 ,D𝜂 , (𝔞OX𝜂 )

𝜆).

5[32, Theorem 1.5] is formulated for varieties, but the same statement for excellent Q-schemes is obtained by using [26,
Theorem A] instead of the local vanishing theorem.
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Proof. Since the structure map X → 𝑇 is a closed map, it follows from an argument similar to the proof
of Corollary 3.5 that (X ,D, 𝔞𝜆) is valuatively klt near X𝜂 . �

Finally, we show that valuatively klt singularities are invariant under deformations. Corollary 3.7 (2)
gives an alternative proof of a result of Esnault-Viehweg [6].

Corollary 3.7. Let T be an irreducible algebraic scheme over an algebraically closed field k of charac-
teristic zero, and let (X ,D, 𝔞𝜆) → 𝑇 be a proper flat family of triples over T, where D is an effective
Q-Weil divisor on a normal variety X over k, 𝔞 ⊆ O𝑋 is a nonzero coherent ideal sheaf, and 𝜆 > 0 is a
real number.

(1) If some closed fiber (X𝑡0 ,D𝑡0 , (𝔞OX𝑡0
)𝜆) is valuatively klt, then so is a general closed fiber

(X𝑡 ,D𝑡 , (𝔞OX𝑡 )
𝜆).

(2) If some closed fiber (X𝑡0 ,D𝑡0 , (𝔞OX𝑡0
)𝜆) is two-dimensional klt, then so is a general closed fiber

(X𝑡 ,D𝑡 , (𝔞OX𝑡 )
𝜆).

Proof. (1) It follows from Corollary 3.6 that the generic fiber (X𝜂 ,D𝜂 , (𝔞O𝑋𝜂 )
𝜆) is valuatively klt.

Then by Lemma 2.9, a general closed fiber (X𝑡 ,D𝑡 , (𝔞OX𝑡 )
𝜆) is also valuatively klt.

(2) Corollary 3.6 and Lemma 2.12 tell us that the generic fiber (X𝜂 ,D𝜂 , (𝔞O𝑋𝜂 )
𝜆) is klt. Then a

general closed fiber (X𝑡 ,D𝑡 , (𝔞OX𝑡 )
𝜆) is also klt. �

4. Deformations of slc singularities

In this section, we study small deformations of slc singularities.

4.1. Variants of non-lc ideal sheaves

Fujino’s non-lc ideal sheaves are a generalization of multiplier ideal sheaves that defines non-lc locus
(see [9] and [10]). We introduce two new variants of these ideal sheaves to generalize the inversion of
adjunction for slc singularities. This subsection is devoted to their definitions and basic properties.

Throughout this subsection, we assume that Γ is an R-Weil divisor, W is a reduced Weil divisor, and
D is a Weil divisor on a normal integral scheme X.

Definition 4.1.

(i) The Q-Weil divisor Θ𝑊 (Γ) on X is defined as

Θ𝑊 (Γ) := Γ −
∑
𝐸

𝐸,

where E runs through all irreducible components of W, such that ord𝐸 (Γ) is an integer.
(ii) The Q-Weil divisor Θ𝑊𝐷 (Γ) on X is defined as

Θ𝑊𝐷 (Γ) := Γ −
∑
𝐸

𝐸,

where E runs through all irreducible components of W, such that ord𝐸 (Γ) = ord𝐸 (𝐷) + 1.

We collect some basic properties of Θ𝑊 (Γ) and Θ𝑊𝐷 (Γ) in the following lemma.

Lemma 4.2.

(1) Θ𝑊 (Γ) � Θ𝑊𝐷 (Γ).
(2) For a Weil divisor A on X, we have

Θ𝑊 (Γ + 𝐴) = Θ𝑊 (Γ) + 𝐴 and Θ𝑊𝐷+𝐴(Γ + 𝐴) = Θ𝑊𝐷 (Γ) + 𝐴.
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(3) For a reduced Weil divisor𝑊 ′ on X, such that𝑊 � 𝑊 ′, we have

Θ𝑊 (Γ) � Θ𝑊
′

(Γ) and Θ𝑊𝐷 (Γ) � Θ𝑊
′

𝐷 (Γ).

(4) For an R-Weil divisor Γ′ on X, such that Γ � Γ′, we have

�Θ𝑊 (Γ)� � �Θ𝑊 (Γ′)� and �Θ𝑊𝐷 (Γ)� � �Θ𝑊𝐷 (Γ′)� .

(5) For an open subscheme𝑈 ⊆ 𝑋 , we have

Θ𝑊 (Γ) |𝑈 = Θ𝑊 |𝑈 (Γ|𝑈 ) and Θ𝑊𝐷 (Γ) |𝑈 = Θ𝑊 |𝑈
𝐷 |𝑈

(Γ|𝑈 ).

(6) For a reduced Weil divisor𝑊 ′′ having no common components with W, we have

Θ𝑊 +𝑊 ′′

(Γ) = Θ𝑊 (Θ𝑊
′′

(Γ)) and Θ𝑊 +𝑊 ′′

𝐷 (Γ) = Θ𝑊𝐷 (Θ𝑊
′′

𝐷 (Γ)).

Proof. The proof is straightforward. �

Lemma 4.3. Suppose that X is a regular integral excellent scheme with dualizing complex and the union
of the supports of Γ, D, and W is a simple normal crossing divisor, which is denoted by B. Let 𝑓 : 𝑌 → 𝑋
be a log resolution of (𝑋, 𝐵) with exceptional locus Exc( 𝑓 ) =

⋃
𝑖 𝐸𝑖 , and set Γ𝑌 := 𝑓 ∗(𝐾𝑋 + Γ) − 𝐾𝑌

and𝑊𝑌 := 𝑓 −1
∗ 𝑊 +

∑
𝑖 𝐸𝑖 . Then

𝑓∗O𝑌 (−�Θ
𝑊𝑌 (Γ𝑌 )�) = O𝑋 (−�Θ

𝑊 (Γ)�),

𝑓∗O𝑌 (−�Θ
𝑊𝑌

𝑓 ∗𝐷 (Γ𝑌 )�) = O𝑋 (−�Θ
𝑊
𝐷 (Γ)�).

Proof. The proof is similar to that of [9, Lemma 2.7]. �

We are now ready to define our variants of Fujino’s non-lc ideal sheaves ([9], [10]).
Definition 4.4. Suppose that X is a normal variety over a field k of characteristic zero and D is a Cartier
divisor on X. Let Δ be an effective Q-Weil divisor on X, such that 𝐾𝑋 + Δ is Q-Cartier, let 𝔞 ⊆ O𝑋 be a
nonzero coherent ideal sheaf, and let 𝜆 > 0 be a real number. Let B be the union of the supports of Δ ,
W, and D, and take a log resolution 𝑓 : 𝑌 → 𝑋 of (𝑋, 𝐵, 𝔞) with 𝔞O𝑌 = O𝑌 (−𝐹) and Exc( 𝑓 ) =

⋃
𝑖 𝐸𝑖 .

The fractional ideal sheaves I𝑊 (𝑋,Δ , 𝔞𝜆) and I𝑊𝐷 (𝑋,Δ , 𝔞𝜆) are then defined as

I𝑊 (𝑋,Δ , 𝔞𝜆) := 𝑓∗O𝑌 (−�Θ
𝑊𝑌 (Δ𝑌 + 𝜆𝐹)�),

I𝑊𝐷 (𝑋,Δ , 𝔞𝜆) := 𝑓∗O𝑌 (−�Θ
𝑊𝑌

𝑓 ∗𝐷 (Δ𝑌 + 𝜆𝐹)�),

where𝑊𝑌 := 𝑓 −1
∗ 𝑊 +

∑
𝑖 𝐸𝑖 and Δ𝑌 := 𝑓 ∗(𝐾𝑋 + Δ) − 𝐾𝑌 . This definition is independent of the choice

of the log resolution f by Lemma 4.3.
When W is the union of the support of 𝐷 + Δ and all the codimension one irreducible components

of the closed subscheme of X defined by 𝔞, the fractional ideal sheaf I𝑊𝐷 (𝑋,Δ , 𝔞𝜆) is denoted simply
by I𝐷 (𝑋,Δ , 𝔞𝜆).
Remark 4.5. Definition 4.4 makes sense even if X is disconnected. We also remark that given a nonzero
coherent ideal sheaf 𝔟 ⊆ O𝑋 and a real number 𝜆′ > 0, the fractional ideal sheaves I𝑊 (𝑋,Δ , 𝔞𝜆𝔟𝜆

′
)

and I𝑊𝐷 (𝑋,Δ , 𝔞𝜆𝔟𝜆
′
) are defined similarly.

Remark 4.6. Let (𝑋,Δ , 𝔞𝜆) be as in Definition 4.4, and assume, in addition, that W is the union of the
support of Δ and all the codimension one irreducible components of the closed subscheme of X defined
by 𝔞.
(i) I𝑊 (𝑋,Δ , 𝔞𝜆) coincides with the maximal non-lc ideal sheaf J ′(𝑋,Δ , 𝔞𝜆) defined in [10].

(ii) I𝑊0 (𝑋,Δ , 𝔞𝜆) coincides with the non-lc ideal sheaf JNLC (𝑋,Δ , 𝔞𝜆) defined in [9].

The following two lemmas state basic properties of I𝑊 (𝑋,Δ , 𝔞𝜆) and I𝑊𝐷 (𝑋,Δ , 𝔞𝜆) that we will
use later.
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Lemma 4.7. Let (𝑋,Δ , 𝔞𝜆), W, and D be as in Definition 4.4.

(1) I𝑊𝐷 (𝑋,Δ , 𝔞𝜆) ⊆ I𝑊 (𝑋,Δ , 𝔞𝜆).
(2) For a Cartier divisor A on X, we have

I𝑊 (𝑋,Δ + 𝐴, 𝔞𝜆) = I𝑊 (𝑋,Δ , 𝔞𝜆) ⊗𝑋 O𝑋 (−𝐴),

I𝑊𝐷+𝐴(𝑋,Δ + 𝐴, 𝔞𝜆) = I𝑊𝐷 (𝑋,Δ , 𝔞𝜆) ⊗𝑋 O𝑋 (−𝐴).

(3) For a reduced Weil divisor𝑊 ′ on X, such that𝑊 � 𝑊 ′, we have

I𝑊 (𝑋,Δ , 𝔞𝜆) ⊆ I𝑊 ′

(𝑋,Δ , 𝔞𝜆),

I𝑊𝐷 (𝑋,Δ , 𝔞𝜆) ⊆ I𝑊 ′

𝐷 (𝑋,Δ , 𝔞𝜆).

(4) Let Δ ′ be an effective Q-Weil divisor on X, such that 𝐾𝑋 + Δ ′ is Q-Cartier, and let Δ � Δ ′, 𝔞′ be a
nonzero coherent ideal sheaf, such that 𝔞 ⊇ 𝔞′, and let 𝜆′ be a real number, such that 𝜆 � 𝜆′. Then

I𝑊 (𝑋,Δ , 𝔞𝜆) ⊇ I𝑊 (𝑋 ′,Δ ′, 𝔞′𝜆
′

),

I𝑊𝐷 (𝑋,Δ , 𝔞𝜆) ⊇ I𝑊𝐷 (𝑋 ′,Δ ′, 𝔞′𝜆
′

).

(5) For an open subscheme𝑈 ⊆ 𝑋 , we have

I𝑊 (𝑋,Δ , 𝔞𝜆) |𝑈 = I𝑊 |𝑈 (𝑈,Δ |𝑈 , 𝔞 |
𝜆
𝑈 ),

I𝑊𝐷 (𝑋,Δ , 𝔞𝜆) |𝑈 = I𝑊 |𝑈
𝐷 |𝑈

(𝑈,Δ |𝑈 , 𝔞 |
𝜆
𝑈 ).

Proof. All the assertions immediately follow from Lemma 4.2. �

Lemma 4.8. Let (𝑋,Δ , 𝔞𝜆), W, and D be as in Definition 4.4. Let G be the cycle of codimension one in
X associated to the closed subscheme defined by 𝔞, that is,

𝐺 =
∑
𝐸

ord𝐸 (𝔞)𝐸,

where E runs through all prime divisors on X.

(1) We have inclusions

I𝑊 (𝑋,Δ , 𝔞𝜆) ⊆ O𝑋 (−�Θ
𝑊 (Δ + 𝜆𝐺)�),

I𝑊𝐷 (𝑋,Δ , 𝔞𝜆) ⊆ O𝑋 (−�Θ
𝑊
𝐷 (Δ + 𝜆𝐺)�).

(2) Assume that W is contained in the support of Δ + 𝐺. Then the following conditions are equivalent
to each other:
(a) I𝑊 (𝑋,Δ , 𝔞𝜆) = O𝑋 ,
(b) I𝑊0 (𝑋,Δ , 𝔞𝜆) = O𝑋 ,
(c) (𝑋,Δ , 𝔞𝜆) is lc and ord𝐸 (Δ + 𝜆𝐺) < 1 for every prime divisor E on X that is not a component

of W.

Proof. We use the notation established in Theorem 4.4.
(1) Since 𝑓∗𝑊𝑌 = 𝑊 , 𝑓∗Δ𝑌 = Δ , and 𝑓∗𝐹 = 𝐺, one has

𝑓∗(Θ
𝑊𝑌 (Δ𝑌 + 𝜆𝐹)) = Θ𝑊 (Δ + 𝐺),

which implies the first inclusion I𝑊 (𝑋,Δ , 𝔞𝜆) ⊆ O𝑋 (−�Θ𝑊 (Δ+𝜆𝐺)�). The second inclusion is shown
similarly.
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(2) First note that the fractional ideals I𝑊 (𝑋,Δ , 𝔞𝜆) and I𝑊𝐷 (𝑋,Δ , 𝔞𝜆) are ideals in O𝑋 by (1) and
the assumption that W is contained in the support of Δ + 𝐺. Therefore, (a) (respectively, (b)) holds if
and only if �Θ𝑊𝑌 (Δ𝑌 + 𝜆𝐹)� � 0 (respectively, �Θ𝑊𝑌

0 (Δ𝑌 + 𝜆𝐹)� � 0). It is easy to see that these
inequalities are equivalent to (c). �

4.2. An extension of inversion of adjunction for slc singularities

In this subsection, we prove an extension of the inversion of adjunction for slc singularities to the
non-Q-Gorenstein setting, using our variants of Fujino’s non-lc ideal sheaves. As a corollary, we show
that slc singularities deform to lc singularities if the total space is normal and the nearby fibers are
Q-Gorenstein, which is a generalization of a result of Ishii [15].

First we show an analog of [28, Proposition 4.1] for our variants of non-lc ideal sheaves.

Proposition 4.9. Suppose that (𝑅,𝔪) is a normal local ring essentially of finite type over a field of
characteristic zero, Δ is an effective Q-Weil divisor on 𝑋 = Spec 𝑅, 𝔞 ⊆ 𝑅 is a nonzero ideal, and 𝜆 > 0
is a real number. Let W be the reduced Weil divisor on X whose support coincides with the union of
the supports of Δ and the cycle of codimension one in X associated to the closed subscheme defined
by 𝔞. Let A be an effective Weil divisor on X linearly equivalent to −𝐾𝑋 , such that 𝐵 := 𝐴 − Δ is also
effective. Fix an integer 𝑚 � 1, such that 𝑚Δ is an integral Weil divisor, and let 𝔟 ⊆ 𝑅 be a nonzero
ideal contained in O𝑋 (−𝑚𝐵).

(1) I𝑊 (𝑋, 𝐴, 𝔞𝜆𝔟1−1/𝑚) is contained in O𝑋 (−𝑚𝐵).
(2) If I𝑊 (𝑋, 𝐴, 𝔞𝜆O𝑋 (−𝑚𝐵)

1−1/𝑚) = O𝑋 (−𝑚𝐵), then (𝑋,Δ , 𝔞𝜆) is m-weakly valuatively lc.
(3) Assume that 𝑚(𝐾𝑋 + Δ) is Cartier. If (𝑋,Δ , 𝔞𝜆) is lc, then 𝔟 is contained in I𝑊𝑚𝐵 (𝑋, 𝐴, 𝔞𝜆𝔟1−1/𝑚).

Proof. (1) The assertion follows from arguments similar to the proof of [28, Proposition 4.1] (1) by
replacing [23, Proposition 9.2.31] with Lemma 4.7 (2).

(2) Assume to the contrary that there exists a log resolution 𝑓 : 𝑌 → 𝑋 of (𝑋, 𝐴+𝑊+Δ , 𝔞,O𝑋 (−𝑚𝐵))
and a prime divisor E on Y, such that 𝑎+𝑚,𝐸 (𝑋,Δ , 𝔞

𝜆) < −1. We write 𝔞O𝑌 = O𝑌 (−𝐹𝑎) and
O𝑋 (−𝑚𝐵)O𝑌 = O𝑌 (−𝐹𝑏). Since 𝐾𝑋 + 𝐴 is Cartier, we have

O𝑋 (𝑚(𝐾𝑋 + Δ))O𝑌 = O𝑋 (𝑚(𝐾𝑋 + 𝐴) − 𝑚𝐵)O𝑌

= O𝑌 (𝑚(𝐾𝑌 + 𝐴𝑌 ) − 𝐹𝑏),

where 𝐴𝑌 := 𝑓 ∗(𝐾𝑋 + 𝐴) − 𝐾𝑌 . Then

𝑎+𝑚,𝐸 (𝑋,Δ , 𝔞
𝜆) = ord𝐸 (𝐾𝑌 +

1
𝑚
(−𝑚(𝐾𝑌 + 𝐴𝑌 ) + 𝐹𝑏) − 𝜆𝐹𝑎)

= ord𝐸 (−𝐴𝑌 − 𝜆𝐹𝑎 +
1
𝑚
𝐹𝑏)

= ord𝐸 (−𝐴𝑌 − 𝜆𝐹𝑎 −
𝑚 − 1
𝑚

𝐹𝑏) + ord𝐸 (𝐹𝑏).

By the assumption that 𝑎+𝑚,𝐸 (𝑋,Δ , 𝔞
𝜆) < −1, one has

ord𝐸 (�Θ𝑊𝑌 (𝐴𝑌 + 𝜆𝐹 +
𝑚 − 1
𝑚

𝐹𝑏)�) > ord𝐸 (𝐹𝑏),

where𝑊𝑌 is the reduced divisor on Y whose support is the union of the strict transform 𝑓 −1
∗ 𝑊 of W and

the exceptional locus Exc( 𝑓 ) of f. Therefore,
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I𝑊 (𝑋, 𝐴, 𝔞𝜆O𝑋 (−𝑚𝐵)
1−1/𝑚) = 𝑓∗O𝑌 (−�Θ

𝑊𝑌 (𝐴𝑌 + 𝜆𝐹𝑎 +
𝑚 − 1
𝑚

𝐹𝑏)�)

� 𝑓∗O𝑌 (−𝐹𝑏)

= O𝑋 (−𝑚𝐵),

where the strict containment on the second line follows from the fact that O𝑌 (−𝐹𝑏) is f -free. This is a
contradiction.

(3) First note that 𝑚𝐵 is Cartier by assumption, and we set 𝔮 := 𝔟 ⊗ O𝑋 (𝑚𝐵). It then follows from
Lemma 4.7 (2) that the inclusion in (3) is equivalent to the inclusion 𝔮 ⊆ I𝑊0 (𝑋,Δ , 𝔞𝜆𝔮1−1/𝑚). Take a
log resolution 𝑓 : 𝑌 → 𝑋 of (𝑋,𝑊, 𝔞𝔮) with 𝔞O𝑌 = O𝑌 (−𝐹𝑎) and 𝔮O𝑌 = O𝑌 (−𝐹𝑞). Since (𝑋,Δ , 𝔞𝜆)
is lc, all the coefficients of Δ𝑌 + 𝜆𝐹𝑎 are less than or equal to one, where Δ𝑌 := 𝑓 ∗(𝐾𝑋 + Δ) − 𝐾𝑌 .
Noting that 𝐹𝑞 is an effective integral divisor on Y, we have

�Θ𝑊𝑌

0 (Δ𝑌 + 𝜆𝐹𝑎 +
𝑚 − 1
𝑚

𝐹𝑞)� � 𝐹𝑞 ,

where𝑊𝑌 is the reduced divisor on Y whose support is the union of the strict transform 𝑓 −1
∗ 𝑊 of W and

the exceptional locus Exc( 𝑓 ) of f. Therefore,

𝔮 ⊆ 𝑓∗O𝑌 (−𝐹𝑞) ⊆ I𝑊0 (𝑋,Δ , 𝔞𝜆𝔮1−1/𝑚).

�

We have the following restriction theorem for our variants of non-lc ideal sheaves.

Theorem 4.10. Let (𝑅,𝔪) be a normal local ring essentially of finite type over an algebraically closed
field of characteristic zero, and let A be an effective Q-Weil divisor on 𝑋 := Spec 𝑅, such that 𝐾𝑋 + 𝐴 is
Q-Cartier. Suppose that h is a nonzero element in R, such that 𝑆 := 𝑅/(ℎ) is reduced and any irreducible
component of 𝑍 := Spec 𝑆 is not contained in the support of A. Let 𝜆, 𝜆′ > 0 be real numbers, 𝔞, 𝔟 ⊆ 𝑅
be ideals that are trivial at any generic point of Z, and W be a reduced Weil divisor on X having no
common components with Z. We assume that there exist an ideal 𝐽 ⊆ 𝑆, an effective Cartier divisor D
on 𝑍𝑛, and an open subset𝑈 ⊆ 𝑍 satisfying the following three conditions:

(i) 𝐽𝑆𝑛 ⊆ O𝑍𝑛 (−𝐷) ∩ I𝐷 (𝑍𝑛,Diff𝑍𝑛 (𝐴), (𝔞𝑆𝑛)𝜆(𝔟𝑆𝑛)𝜆
′
),

(ii) (𝐽𝑆𝑛)𝑥 ≠ O𝑍𝑛 (−𝐷)𝑥 for any point 𝑥 ∈ 𝑍𝑛 whose image in Z is not contained in U,
(iii) 𝐽 |𝑈 ⊆ I𝑊 +𝑍 (𝑋, 𝐴 + 𝑍, 𝔞𝜆𝔟𝜆

′
)𝑆 |𝑈 .

Then we have 𝐽 ⊆ I𝑊 +𝑍 (𝑋, 𝐴 + 𝑍, 𝔞𝜆𝔟𝜆
′
)𝑆.

Proof. Let V be the complement of U in Z. Take a log resolution 𝑓 : 𝑌 → 𝑋 of (𝑋, 𝔞, 𝔟) with
𝔞O𝑌 = O𝑌 (−𝐹𝑎) and 𝔟O𝑌 = O𝑌 (−𝐹𝑏), such that 𝑓 −1(𝑉) is a closed subset of pure codimension one
in Y and that the union of 𝑓 −1(Supp 𝐴), 𝑓 −1(𝑍), 𝑓 −1(𝑊), 𝑓 −1(𝑉), the support of the divisor 𝐹𝑎 + 𝐹𝑏 ,
and the exceptional locus Exc( 𝑓 ) of f is a simple normal crossing divisor on Y. Let g and 𝑔′ denote
the induced morphisms 𝑔 : 𝑍 → 𝑍𝑛 and 𝑔′ : 𝑍 → 𝑍 , respectively, where 𝑍 is the strict transform of Z
on Y. Let 𝑊𝑍𝑛 be the union of the support of 𝐷 + Diff𝑍𝑛 (𝐴) and all the codimension one irreducible
components of the closed subscheme of 𝑍𝑛 defined by 𝔞𝔟𝑆𝑛. After replacing Y by its blowing up along
𝑔−1 (𝑊𝑍𝑛 ) ⊆ 𝑌 , we may assume that 𝑔−1(𝑊𝑍𝑛 ) ⊆ Exc( 𝑓 ). Then 𝑔 : 𝑍 → 𝑍𝑛 is a log resolution of
(𝑍𝑛,Diff𝑍𝑛 (𝐴) +𝑊𝑍𝑛 , (𝔞𝑆𝑛) (𝔟𝑆𝑛)) with (𝔞𝑆𝑛)O𝑍 = O𝑍 (−𝐹𝑎 |𝑍 ) and (𝔟𝑆𝑛)O𝑍 = O𝑍 (−𝐹𝑏 |𝑍 ).

Let𝑊𝑌 (respectively,𝑊𝑍 ) be the reduced divisor on Y (respectively, 𝑍) whose support is the union
of the strict transform 𝑓 −1

∗ 𝑊 (respectively, 𝑔−1
∗ 𝑊𝑍𝑛 ) and the exceptional locus of f (respectively, 𝑔′).

Since 𝑔−1 (𝑊𝑍𝑛 ) is contained in the exceptional locus of f, we have 𝑊𝑌 |𝑍 � 𝑊𝑍 . We decompose
𝑊𝑌 = 𝑊1

𝑌 +𝑊2
𝑌 as follows:

(a) 𝑓 (𝑊1
𝑌 ) ⊂ 𝑉 ,

(b) no irreducible components of𝑊2
𝑌 are mapped into V by f.
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Set Γ := 𝑓 ∗(𝐾𝑋 + 𝐴+𝑍) −𝐾𝑌 −𝑍 . Since Γ|𝑍 = 𝑔∗(𝐾𝑍𝑛 +Diff𝑍𝑛 (𝐴)) −𝐾𝑍 (see [19, Paragraph 4.7]),

I𝐷 (𝑍𝑛,Diff𝑍𝑛 (𝐴), (𝔞𝑆𝑛)𝜆(𝔟𝑆𝑛)𝜆
′

) = I𝑊𝑍𝑛

𝐷 (𝑍𝑛,Diff𝑍𝑛 (𝐴), (𝔞𝑆𝑛)𝜆(𝔟𝑆𝑛)𝜆
′

)

= 𝑔∗O𝑍 (−�Θ
𝑊𝑍

𝑔∗𝐷 (Γ|𝑍 + 𝜆𝐹𝑎 |𝑍 + 𝜆′𝐹𝑏 |𝑍 )�)

⊆ 𝑔∗O𝑍 (−�Θ
𝑊𝑌 |𝑍
𝑔∗𝐷 (Γ|𝑍 + 𝜆𝐹𝑎 |𝑍 + 𝜆′𝐹𝑏 |𝑍 )�)

⊆ 𝑔∗O𝑍 (−�Θ
𝑊 1

𝑌 |𝑍
𝑔∗𝐷 (Θ𝑊

2
𝑌 |𝑍 (Γ|𝑍 + 𝜆𝐹𝑎 |𝑍 + 𝜆′𝐹𝑏 |𝑍 ))�),

where the containment on the third line follows from Lemma 4.2 (3) and the last containment does
from Lemma 4.2 (1), (4), and (6). Setting Λ := Θ𝑊

2
𝑌 (Γ + 𝜆𝐹𝑎 + 𝜆

′𝐹𝑏) and noting that the union of the
supports of 𝑍 ,𝑊2

𝑌 and Γ + 𝜆𝐹𝑎 + 𝜆
′𝐹𝑏 is a simple normal crossing divisor on Y, one has

Λ|𝑍 = Θ𝑊
2
𝑌 |𝑍 (Γ|𝑍 + 𝜆𝐹𝑎 |𝑍 + 𝜆′𝐹𝑏 |𝑍 ),

and therefore,

I𝐷 (𝑍𝑛,Diff𝑍𝑛 (𝐴), (𝔞𝑆𝑛)𝜆(𝔟𝑆𝑛)𝜆
′

) ⊆ 𝑔∗O𝑍 (−�Θ
𝑊 1

𝑌 |𝑍
𝑔∗𝐷 (Λ|𝑍 )�).

Claim. 𝐽 ⊆ 𝑔′∗O𝑍 (−�Λ|𝑍 �).

Proof of Claim. It is enough to show that 𝐽𝑆𝑛 ⊆ 𝑔∗O𝑍 (−�Λ|𝑍 �). Take a connected component C of
𝑍𝑛, and let𝐶 denote the corresponding component of 𝑍 . By the assumption (i), for any nonzero element
𝑟 ∈ 𝐻0(𝐶, 𝐽𝑆𝑛 |𝐶 ),

div𝐶 (𝑟) � �Θ
𝑊 1

𝑌 |𝑍
𝑔∗𝐷 (Λ|𝑍 )� |𝐶 and div𝐶 (𝑟) � 𝑔

∗𝐷 |𝐶 .

Fix any prime divisor E on 𝐶. If ord𝐸 (Λ|𝑍 ) = ord𝐸 (𝑔∗𝐷) + 1 and E is contained in 𝑊1
𝑌 |𝑍 , then

𝑔′(𝐸) ⊆ 𝑉 by the definition of𝑊1
𝑌 , and it therefore follows from the assumption (ii) that

ord𝐸 (𝑟) � ord𝐸 (𝑔∗𝐷) + 1 = ord𝐸 (Λ|𝑍 ).

If ord𝐸 (Λ|𝑍 ) ≠ ord𝐸 (𝑔∗𝐷) + 1 or 𝐸 � 𝑊1
𝑌 |𝑍 , then

ord𝐸 (Θ
𝑊 1

𝑌 |𝑍
𝑔∗𝐷 (Λ|𝑍 )) = ord𝐸 (Λ|𝑍 ).

Thus, we obtain the inequality div𝐶 (𝑟) � �Λ|𝑍 � |𝐶 , which implies 𝐽𝑆𝑛 ⊆ 𝑔∗O𝑍 (−�Λ|𝑍 �). �

By the above claim, we have the following commutative diagram:

𝑓∗O𝑌 (−�Θ𝑊
1
𝑌 (Λ)�)

𝛼 �� 𝑔′∗O𝑍 (−�(Θ
𝑊 1

𝑌 (Λ) |𝑍 �)

𝑓∗O𝑌 (−�Λ�)
��

��

𝛽 �� 𝑔′∗O𝑍 (−�Λ|𝑍 �)
��

��

𝐽.
��

��

Noting that I𝑊 +𝑍 (𝑋, 𝐴 + 𝑍, 𝔞𝜆𝔟𝜆
′
) = 𝑓∗O𝑌 (−�Θ𝑊

1
𝑌 (Λ)�) by Lemma 4.2 (6), we have

Im 𝛽 ⊆ Im 𝛼 = I𝑊 +𝑍 (𝑋, 𝐴 + 𝑍, 𝔞𝜆𝔟𝜆
′

)𝑆.
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Take any element 𝑟 ∈ 𝐽. In order to prove the assertion of this theorem, it suffices to prove that the
morphism 𝛿 : 𝐽 ↩→ 𝑔′∗O𝑌 (−�Λ|𝑍 �) → Coker 𝛽 sends r to zero. Since ( 𝑓∗𝑊

1
𝑌 ) |𝑈 = 0, one has an

inclusion 𝐽 |𝑈 ⊆ I𝑊 +𝑍 (𝑋, 𝐴 + 𝑍, 𝔞𝜆𝔟𝜆
′
)𝑆 |𝑈 = Im 𝛽 |𝑈 by the assumption (iii), which implies that the

support of 𝛿(𝑟) ∈ Coker 𝛽 is contained in V.
On the other hand, by pushing forward the short exact sequence

0 → O𝑌 (−�Λ� − 𝑍) → O𝑌 (−�Λ�) → O𝑍 (−�Λ|𝑍 �) → 0,

we obtain an inclusion Coker 𝛽 ⊆ 𝑅1 𝑓∗O𝑌 (−�Λ� − 𝑍). Let H be the f -semiample R-divisor −(𝐾𝑌 +

Γ + 𝑍 + 𝜆𝐹𝑎 + 𝜆
′𝐹𝑏) on Y, let Δ be the fractional part of the R-divisor Γ + 𝜆𝐹𝑎 + 𝜆

′𝐹𝑏 , and let B be
the reduced divisor on Y whose support is the union of all prime divisors E, such that 𝐸 ⊆ 𝑊2

𝑌 and
𝐸 � SuppΔ . Since 𝐵 + Δ has simple normal crossing support and

−�Λ� − 𝑍 = (𝐾𝑌 + 𝐵 + Δ) + 𝐻,

it follows from [2, Theorem 3.2] (see also [8, Theorem 1.1]) that if

𝛿(𝑟) ∈ 𝑅1 𝑓∗O𝑌 (−�Λ� − 𝑍)

is a nonzero element, then the support of 𝛿(𝑟) contains 𝑓 (𝑇), where T is a stratum of the simple
normal crossing pair (𝑌, 𝐵). Taking into account that B and 𝑓 −1(𝑉) have no common components and
𝐵 + 𝑓 −1(𝑉) has simple normal crossings, we have 𝑓 (𝑇) � 𝑉 , which contradicts the fact that the support
of 𝛿(𝑟) is contained in V. Therefore, we conclude that 𝛿(𝑟) = 0 as desired. �

Setting 4.11. Let (𝑅,𝔪) be an equidimensional local ring essentially of finite type over an algebraically
closed field of characteristic zero, let ℎ ∈ 𝑅 be a nonzero divisor, let 𝜆 > 0 be a real number, and let
𝔞 ⊆ 𝑅 be an ideal with the following properties:

(1) 𝑆 := 𝑅/(ℎ) is reduced and satisfies (𝑆2) and (𝐺1). Therefore, so is R.
(2) 𝔞 is nonzero at any generic point of 𝑋 := Spec 𝑅 and is trivial at any generic point of 𝑍 := Spec 𝑆.
(3) Any generic point of Z is a regular point of X.

Moreover, let Δ be an effective Q-Weil divisor on X contained in WDiv∗
Q
(𝑋), and let 𝐾𝑋 and 𝐾𝑍 be

canonical divisors contained in WDiv∗(𝑋) and WDiv∗(𝑍), respectively, which exist by Proposition 2.16
and Example A.15. We further assume that

(4) neither any generic points of Z nor any codimension one singular points of Z are contained in the
support of Δ , and

(5) 𝐾𝑍 + Δ |𝑍 is Q-Cartier, where Δ |𝑍 denotes the Q-Weil divisor Diff𝑍 (Δ) (see Lemma 2.24).

The main result of this section is an extension of the inversion of adjunction for slc singularities to
the non-Q-Gorenstein setting, which is stated as follows.

Theorem 4.12. In setting 4.11, if (𝑍,Δ |𝑍 , (𝔞𝑆)𝜆) is lc, then (𝑋,Δ +𝑍, 𝔞𝜆) is valuatively lc. If we further
assume the condition

(6) the pullback 𝑍 ′ := 𝑍 ×𝑋 𝑋
𝑛 of Z to the normalization 𝑋𝑛 = Spec 𝑅𝑛 of X satisfies (𝑆2),

then the slc case also holds, that is, if (𝑍,Δ |𝑍 , (𝔞𝑆)𝜆) is slc, then (𝑋,Δ + 𝑍, 𝔞𝜆) is valuatively slc.

Proof. We only consider the slc case, as the lc case follows essentially the same arguments.
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First note that since the morphism 𝑍 ′ → 𝑍 is finite and birational, 𝑍 ′ is reduced and the normalization
𝑍𝑛 = Spec 𝑆𝑛 of Z is isomorphic to that of 𝑍 ′. We consider the following diagram:

𝑋 𝑋𝑛
𝜈��

𝑍
��

��

𝑍 ′
��

��

𝜇
�� 𝑍𝑛 = (𝑍 ′)𝑛.𝜋

��

𝜌

		

𝑓
		����������

By prime avoidance, we can take an effective Weil divisor 𝐴 ∈ WDiv∗(𝑋), linearly equivalent to
−𝐾𝑋 , whose support contains neither any generic points of Z nor any codimension one singular points
of Z. We may also assume that 𝐵 := 𝐴−Δ is effective. Fix an integer𝑚 � 1, such that𝑚Δ ∈ WDiv∗

Q
(𝑋)

is an integral Weil divisor and 𝑚(𝐾𝑍 + Δ |𝑍 ) ∈ WDiv∗
Q
(𝑍) is a Cartier divisor. It then follows from

Lemma 2.24 (2) that 𝑚𝐵 |𝑍 = 𝑚𝐴|𝑍 − 𝑚Δ |𝑍 ∼ −𝑚(𝐾𝑍 + Δ |𝑍 ) is Cartier.
We define the Q-Weil divisors Δ𝑋𝑛 , 𝐴𝑋𝑛 , and 𝐵𝑋𝑛 on 𝑋𝑛 as

Δ𝑋𝑛 := 𝜈∗Δ + 𝐶𝑋 , 𝐴𝑋𝑛 := 𝜈∗𝐴 + 𝐶𝑋 and 𝐵𝑋𝑛 := 𝐴𝑋𝑛 − Δ𝑋𝑛 ,

where 𝐶𝑋 is the conductor divisor of 𝜈 on 𝑋𝑛. Let W be the reduced Weil divisor on 𝑋𝑛 whose support
coincides with the union of the support of Δ𝑋𝑛 and all the codimension one irreducible components of
the closed subscheme of 𝑋𝑛 defined by 𝔞𝑅𝑛. Since 𝐴𝑋𝑛 ∼ −𝐾𝑋𝑛 , it suffices to show by Proposition 4.9
(2) that

𝔟 = I𝑊 +𝑍 ′

(𝑋𝑛, 𝐴𝑋𝑛 ,O𝑋𝑛 (−𝑍 ′)1(𝔞𝑅𝑛)𝜆𝔟1−1/𝑚)

= I𝑊 +𝑍 ′

(𝑋𝑛, 𝐴𝑋𝑛 + 𝑍 ′, (𝔞𝑅𝑛)𝜆𝔟1−1/𝑚) (★)

where 𝔟 := O𝑋𝑛 (−𝑚𝐵𝑋𝑛 ).

Claim 1. Let 𝑆′ = 𝑅𝑛/(ℎ) be the structure ring of 𝑍 ′ and 𝐿 ⊆ 𝑆′ denote the principal ideal
O𝑍 ′ (−𝜇∗(𝑚𝐵 |𝑍 )). Then 𝔟𝑆′ ⊆ 𝐿.

Proof of Claim 1. Noting that 𝐵𝑋𝑛 = 𝜈∗𝐵, we see that the ideal 𝔟 ⊆ 𝑅𝑛 is the reflexive hull of
O𝑋 (−𝑚𝐵)𝑅

𝑛. Since 𝑚𝐵 is Cartier at any codimension one point of Z by an argument analogous to the
proof of Lemma 2.24 (1), the inclusion map O𝑋 (−𝑚𝐵)𝑆

′ ↩→ 𝔟𝑆′ is the identity at any codimension
one point of 𝑍 ′. Composing with the inclusion O𝑋 (−𝑚𝐵)𝑆 ⊆ O𝑍 (−𝑚𝐵 |𝑍 ), we obtain the inclusion
𝔟𝑆′ ⊆ 𝐿 at any codimension one point of 𝑍 ′. It follows from the fact that L is invertible and 𝑍 ′ satisfies
(𝑆2) that 𝐿 =

⋂
𝑥 𝐿𝑥 , where x runs through all codimension one points of 𝑍 ′, which implies the desired

inclusion 𝔟𝑆′ ⊆ 𝐿. �

As an intermediate step to prove (★), we show the inclusion

𝔟𝑆′ ⊆ I𝑊 +𝑍 ′

(𝑋𝑛, 𝐴𝑋𝑛 + 𝑍 ′, (𝔞𝑅𝑛)𝜆𝔟1−1/𝑚)𝑆′.

By Proposition 4.10, it is enough to show that if we set 𝜆′ := (𝑚 − 1)/𝑚, 𝐽 := 𝔟𝑆′, and 𝐷 := 𝜌∗(𝑚𝐵 |𝑍 )
and if𝑈 ⊆ 𝑍 ′ denotes the locus where 𝐽 = 𝐿, then the assumptions (i), (ii), and (iii) in Proposition 4.10
are satisfied. We define Q-Weil divisors Δ𝑍𝑛 and 𝐴𝑍𝑛 on 𝑍𝑛 as

Δ𝑍𝑛 := 𝜌∗Δ |𝑍 + 𝐶𝑍 and 𝐴𝑍𝑛 := 𝜌∗𝐴|𝑍 + 𝐶𝑍 ,

where𝐶𝑍 is the conductor divisor of 𝜌 on 𝑍𝑛. The assumption (i) is an immediate consequence of Claim
1 and Proposition 4.9 (3), because Diff𝑍𝑛 (𝐴𝑋𝑛 ) = 𝐴𝑍𝑛 ∼ −𝐾𝑍𝑛 by Lemmas 2.21, 2.22, and 2.24 and
𝐷 = 𝑚(𝐴𝑍𝑛 − Δ𝑍𝑛 ). Since L is a principal ideal, 𝐽𝑥 ⊆ 𝔪𝑍 ′,𝑥𝐿𝑥 for all points 𝑥 ∈ 𝑍 ′ \𝑈, from which
the assumption (ii) follows. In order to verify the assumption (iii), we need the following claim.
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Claim 2. Let 𝑉 ⊆ 𝑋𝑛 be the locus where 𝑚𝐵𝑋𝑛 is Cartier. Then𝑈 ⊆ 𝑉 ∩ 𝑍 .

Proof of Claim 2. Since 𝔟 satisfies (𝑆2), 𝔟⊗𝑅𝑛 𝑆′ is torsion-free, and therefore, we have an isomorphism
𝔟 ⊗𝑅𝑛 𝑆′ � 𝔟𝑆′ = 𝐽. If 𝑥 ∈ 𝑍 ′ is contained in U, then 𝔟𝑥 ⊗O𝑋𝑛,𝑥

O𝑍 ′,𝑥 � 𝐽𝑥 = 𝐿𝑥 is an invertible
O𝑍 ′,𝑥-module, which implies that 𝔟𝑥 is an invertible O𝑋𝑛 ,𝑥-module, that is, 𝑚𝐵𝑋𝑛 is Cartier at x. Thus,
we obtain the assertion. �

Let𝑈 := 𝑉 ∩ 𝑍 ′ and𝑈𝑛 := 𝜋−1(𝑈) ⊆ 𝑍𝑛. By Lemma 4.7, we have

I𝑊 +𝑍 ′

(𝑋𝑛, 𝐴𝑋𝑛 + 𝑍 ′, (𝔞𝑅𝑛)𝜆𝔟𝜆
′

) |𝑉

=I𝑊 |𝑉 +𝑈 (𝑉, 𝐴𝑋𝑛 |𝑉 +𝑈, (𝔞𝑅𝑛) |𝜆𝑉 𝔟 |
𝜆′

𝑉 )

=I𝑊 |𝑉 +𝑈 (𝑉, 𝐴𝑋𝑛 |𝑉 +𝑈 +
𝑚 − 1
𝑚

(𝑚𝐵𝑋𝑛 |𝑉 ), (𝔞𝑅
𝑛) |𝜆𝑉 )

=I𝑊 |𝑉 +𝑈 (𝑉,Δ𝑋𝑛 |𝑉 +𝑈, (𝔞𝑅𝑛) |𝜆𝑉 ) ⊗O𝑉 O𝑉 (−𝑚𝐵𝑋𝑛 |𝑉 ),

where the second equality follows from the fact that 𝑚𝐵𝑋𝑛 |𝑉 is Cartier. Since the triple (𝑍,Δ |𝑍 , (𝔞𝑆)𝜆)
is slc and

Δ𝑍𝑛 |𝑈𝑛 = Diff𝑍𝑛 (Δ𝑋𝑛 ) |𝑈𝑛 = Diff𝑈𝑛 (Δ𝑋𝑛 |𝑉 )

by Lemmas 2.21, 2.22, and 2.24, the triple (𝑈𝑛,Diff𝑈𝑛 (Δ𝑋𝑛 |𝑉 ), (𝔞O𝑈𝑛 )
𝜆) is lc. Noting that 𝑚(𝐾𝑉 +

Δ𝑋𝑛 |𝑉 + 𝑈) is Cartier, we use inversion of adjunction for lc singularities [17]6 to deduce that there
exists an open subscheme 𝑉 ⊆ 𝑉 containing𝑈, such that (𝑉,Δ𝑋𝑛 |𝑉 +𝑈, 𝔞 |𝜆

𝑉
) is lc, which is equivalent

by Lemma 4.8 (2) to saying that I𝑊 |𝑉 +𝑈 (𝑉,Δ𝑋𝑛 |𝑉 +𝑈, 𝔞 |𝜆
𝑉
) = O𝑉 . Therefore,

I𝑊 +𝑍 ′

(𝑋𝑛, 𝐴𝑋𝑛 + 𝑍 ′, (𝔞𝑅𝑛)𝜆𝔟𝜆
′

) |𝑉 = O𝑉 (−𝑚𝐵𝑋𝑛 |𝑉 ),

and it follows from Claim 2 that the assumption (iii) of Theorem 4.10 is satisfied. Thus, we obtain the
inclusion

𝔟𝑆′ ⊆ I𝑊 +𝑍 ′

(𝑋𝑛, 𝐴𝑋𝑛 + 𝑍 ′, (𝔞𝑅𝑛)𝜆𝔟1−1/𝑚)𝑆′.

Finally, combining this inclusion with Proposition 4.9 (1) yields that

𝔟 ⊆ I𝑊 +𝑍 ′

(𝑋𝑛, 𝐴𝑋𝑛 + 𝑍 ′, (𝔞𝑅𝑛)𝜆𝔟1−1/𝑚) + 𝔟 ∩ (ℎ).

Since 𝐵𝑋𝑛 has no common component with 𝑍 ′, the ideal 𝔟 ∩ (ℎ) is contained in ℎ𝔟. By Nakayama’s
lemma, one has the desired inclusion (★), that is,

𝔟 = I𝑊 +𝑍 ′

(𝑋𝑛, 𝐴𝑋𝑛 + 𝑍 ′, (𝔞𝑅𝑛)𝜆𝔟1−1/𝑚). �

Corollary 4.13. In setting 4.11, we further assume the condition

(6′) R is normal.

If (𝑍,Δ |𝑍 , (𝔞𝑆)𝜆) is slc, then (𝑋,Δ + 𝑍, 𝔞𝜆) is valuatively lc.

Proof. This is an immediate consequence of Theorem 4.12. Since 𝑋𝑛 � 𝑋 , the assumption (6) in
Theorem 4.12 is clearly satisfied. �

Corollary 4.14. In setting 4.11, we further assume that

6Kawakita [17] proved inversion of adjunction for lc pairs, but his proof works for triples.
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(6′′) there exists an effective Q-Weil divisor Θ, such that 𝐾𝑋𝑛 + Θ is Q-Cartier and Θ � 𝜈∗Δ + 𝐶𝑋 ,
where 𝜈 : 𝑋𝑛 → 𝑋 is the normalization of X and 𝐶𝑋 is the conductor divisor of 𝜈 on 𝑋𝑛.

If (𝑍,Δ |𝑍 , (𝔞𝑆)𝜆) is slc, then (𝑋,Δ + 𝑍, 𝔞𝜆) is valuatively slc.

Proof. As in the proof of Theorem 4.12, we consider the following diagram.

𝑋 𝑋𝑛
𝜈��

𝑍
��

��

𝑍 ′
��

��

𝜇
�� 𝑍𝑛 = (𝑍 ′)𝑛𝜋

��

𝜌

		

𝑓
		����������

.

Since Diff𝑍𝑛 (Θ) � Diff𝑍𝑛 (𝜈∗Δ + 𝐶𝑋 ) = 𝜌∗(Δ |𝑍 ) + 𝐶𝑍 by Lemmas 2.21, 2.22, and 2.24, the pair
(𝑍𝑛,Diff𝑍𝑛 (Θ)) is lc. We use inversion of adjunction for lc singularities [17] to deduce that (𝑋𝑛,Θ+𝑍 ′)

is lc near 𝑍 ′. It then follows from [1, Theorem 3.4] that 𝑍 ′ satisfies (𝑆2). Now we apply Theorem 4.12
to obtain the result. �

As a corollary, we obtain results on deformations of slc singularities.

Corollary 4.15. With notation as in Setting 2.26, let 𝑥 ∈ 𝑋 be a closed point, and let Z ⊆ X be an
irreducible closed subscheme, such that (X , 𝑖,Z , 𝑗) is a deformation of the pair (𝑋, {𝑥}red) over T with
reference point t. Let y be the generic point of Z , which lies in the generic fiber X𝜂 . We assume that the
following conditions are satisfied:

(1) T is a smooth curve,
(2) 𝐾𝑋 +D |𝑋 is Q-Cartier at x.

If (𝑋,D |𝑋 , (𝔞O𝑋 )
𝜆) is lc at x, then (X𝜂 ,D𝜂 , 𝔞𝜆𝜂) is valuatively lc at y. If we further assume the condition

(3) the closed fiber X 𝑛
𝑡 of the normalization X 𝑛 of X satisfies (𝑆2),

then the slc case also holds, that is, if (𝑋,D |𝑋 , (𝔞O𝑋 )
𝜆) is slc at x, then (X𝜂 ,D𝜂 , 𝔞𝜆𝜂) is valuatively slc

at y.

Proof. It follows from Theorem 4.12, Corollary 4.13, and Corollary 4.14 that (X ,D, 𝔞𝜆) is valuatively
(s)lc at x. Since y is a generalization of x, the triple (X ,D, 𝔞𝜆) is valuatively (s)lc at y by Remark 2.18,
which completes the proof. �

Remark 4.16. Kollár points out in a draft of his book [20, Theorem 5.33], whose method can be traced
back to his joint work [22, Corollary 5.5] with Shepherd-Barron, that if X𝜂 +D𝜂 is Q-Cartier, then the
slc case of Corollary 4.15 holds without the condition (3). However, since his proof heavily depends on
the existence of lc modifications, we believe that our proof, which uses only the cohomological package
due to Ambro and Fujino ([2, Theorem 3.2] and [8, Theorem 1.1]), is of independent interest.

Corollary 4.17. With notation as in Setting 2.26, we further assume that the following conditions are
all satisfied:

(1) T is a smooth curve,
(2) 𝐾𝑋 +D |𝑋 is Q-Cartier,
(3) X is proper over T.

If (𝑋,D |𝑋 , (𝔞O𝑋 )
𝜆) is lc, then (X𝜂 ,D𝜂 , 𝔞𝜆𝜂) is valuatively lc. If we further assume the condition

(4) the closed fiber X 𝑛
𝑡 of the normalization X 𝑛 of X satisfies (𝑆2),

then the slc case also holds, that is, if (𝑋,D |𝑋 , (𝔞O𝑋 )
𝜆) is slc, then (X𝜂 ,D𝜂 , 𝔞𝜆𝜂) is valuatively slc.
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Proof. Since the structure map X → 𝑇 is a closed map, it follows from an argument similar to the proof
of Corollary 4.15 that (X ,D, 𝔞𝜆) is valuatively (s)lc near X𝜂 , which implies the assertion. �

Remark 4.18. In Corollary 4.15 (respectively, Corollary 4.17), the condition (3) (respectively, (4)) is
satisfied, for example, if one of the following holds:

(a) X is normal, or
(b) there exists an effectiveQ-Weil divisor Θ on X 𝑛, such that 𝐾X 𝑛 +Θ isQ-Cartier and Θ � 𝜈∗D+𝐶X ,

where 𝜈 : X 𝑛 → X is the normalization of X and 𝐶X is the conductor divisor of 𝜈 on X 𝑛.

This follows from arguments similar to the proofs of Corollaries 4.13 and 4.14.

Finally, we show that slc singularities are invariant under small deformations if the total space is
normal and the nearby fibers are Q-Gorenstein.

Corollary 4.19. Let T be a smooth curve over an algebraically closed field k of characteristic zero, and
let (X ,D, 𝔞𝜆) → 𝑇 be a proper flat family of triples over T, where D is an effective Q-Weil divisor on a
normal variety X over k, 𝔞 ⊆ O𝑋 is a nonzero coherent ideal sheaf, and 𝜆 > 0 is a real number.

(1) Suppose that k is an uncountable. If some closed fiber (X𝑡0 ,D𝑡0 , (𝔞OX𝑡0
)𝜆) is slc and if a general

closed fiber (X𝑡 ,D𝑡 ) is log Q-Gorenstein, then (X𝑡 ,D𝑡 , (𝔞OX𝑡 )
𝜆) is lc.

(2) If some closed fiber (X𝑡0 ,D𝑡0 , (𝔞OX𝑡0
)𝜆) is two-dimensional lc, then so is a general closed fiber

(X𝑡 ,D𝑡 , (𝔞OX𝑡 )
𝜆).

Proof. In both cases, it suffices to show that the generic fiber (𝑋𝜂 , 𝐷𝜂 , (𝔞O𝑋𝜂 )
𝜆) is lc. In (1), since

𝐾𝑋𝜂 + 𝐷𝜂 is Q-Cartier by [28, Remark 2.15], it follows from Corollary 4.17 and Remark 2.8 that
(𝑋𝜂 , 𝐷𝜂 , (𝔞O𝑋𝜂 )

𝜆) is lc. In (2), we deduce from Corollary 4.17 that (𝑋𝜂 , 𝐷𝜂 , (𝔞O𝑋𝜂 )
𝜆) is two-

dimensional valuatively lc, which implies by Lemma 2.12 that (𝑋𝜂 , 𝐷𝜂 , (𝔞O𝑋𝜂 )
𝜆) is lc. �

Remark 4.20. Using plurigenera defined for normal isolated singularities, Ishii [15] proved the isolated
singularities case of Corollary 4.19 (1). She also showed (the no boundary case of) Corollary 4.19 (2),
combining results of [15] and [16]. Thus, Corollary 4.19 gives a generalization and an alternative proof
of her results.

A. Some background material on AC divisors

A.1. Notation

Throughout this Appendix subsection, we assume that X is an excellent reduced scheme satisfying the
(𝑆2)-condition. Let K𝑋 denote the sheaf of total quotients of X.

First we recall the definition of AC divisors. The reader is referred to [25, Section 2.1] and [18,
Section 16] for more details.

Definition A.1. An AC divisor (or almost Cartier divisor) is a coherent submodule F ⊆ K𝑋 satisfying
the following two conditions:

1. F satisfies (𝑆2) and
2. F𝑥 is an invertible O𝑋,𝑥-module for each point 𝑥 ∈ 𝑋 of codimension� 1.

AC divisors form an additive group via tensor product up to 𝑆2-ification ([11, Section 5.10]), which
is denoted by WSh(𝑋). Let D denote an AC divisor F ⊆ K𝑋 . We say that D is effective if O𝑋 ⊆ F .
We also say that D is Cartier at a point 𝑥 ∈ 𝑋 if F is invertible at x, and that D is Cartier if D is Cartier
at all points of X. Note that the set of all Cartier AC divisors coincides with the image of the injective
group homomorphism

Div(𝑋) ↩→ WSh(𝑋); 𝐸 ↦−→ O𝑋 (𝐸),
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where Div(𝑋) = 𝐻0(𝑋,K∗
𝑋/O∗

𝑋 ) is the set of all Cartier divisors. We say that two AC divisors 𝐷1 and
𝐷2 are linearly equivalent if 𝐷1 −𝐷2 is contained in the image of Pr(𝑋) ⊆ Div(𝑋) → WSh(𝑋), where
Pr(𝑋) denotes the set of all principal divisors.

By a Q-AC divisor, we mean an element of

WShQ(𝑋) := WSh(𝑋) ⊗Z Q.

We say that a Q-AC divisor Δ ∈ WShQ(𝑋) is effective (respectively, Q-Cartier at a point 𝑥 ∈ 𝑋 , Q-
Cartier) if Δ = 𝐷 ⊗ 𝜆 for some effective (respectively, Cartier at x, Cartier) AC divisor 𝐷 ∈ WSh(𝑋)
and some nonnegative rational number 𝜆.

The support of an AC divisor F ⊆ K𝑋 is the closed subset consisting of all points 𝑥 ∈ 𝑋 , such that
F𝑥 ≠ O𝑋,𝑥 as a submodule of K𝑋,𝑥 .

Lemma A.2. The support of an AC divisor is of pure codimension one if it is not empty.

Proof. Let D denote an AC divisor F ⊆ K𝑋 whose support is not empty. Assume to the contrary
that there exists an irreducible component Z of the support Supp𝐷 of D with codimension� 2. After
shrinking X, we may assume that Supp𝐷 = 𝑍 . Let 𝑖 : 𝑈 ↩→ 𝑋 be an open immersion from𝑈 := 𝑋 \ 𝑍 ,
and then it follows from Lemma 2.15 that F = 𝑖∗𝑖∗F = 𝑖∗O𝑈 = O𝑋 . This is a contradiction to the
assumption that Supp𝐷 ≠ ∅. �

For a Weil divisor E contained in WDiv∗(𝑋), since the submodule O𝑋 (𝐸) ⊆ K𝑋 is an AC divisor,
we obtain the injective group homomorphism

WDiv∗(𝑋) → WSh(𝑋); 𝐸 ↦−→ O𝑋 (𝐸).

Its image is the subgroup WSh∗(𝑋) of WSh(𝑋) consisting of all AC divisors whose supports contain
no codimension one singular points of X. The situation is summarized in the following commutative
diagram, which is Cartesian

Div(𝑋) �
� �� WSh(𝑋)

Div∗(𝑋)
��

��

� � �� WDiv∗(𝑋) ∼ �� WSh∗(𝑋)
��

�� .

Since WSh∗(𝑋) is a free Z-module, the natural map

WSh∗(𝑋) → WSh∗Q(𝑋) := WSh∗(𝑋) ⊗Z Q ⊆ WShQ(𝑋)

is injective. Let Δ be a Q-AC divisor contained in WSh∗
Q
(𝑋). Then there exists an integer 𝑚 � 1, such

that 𝑚Δ is integral, that is, 𝑚Δ ∈ WSh∗(𝑋). We define the support SuppΔ of Δ as Supp𝑚Δ . This is
independent of the choice of m by the following lemma.

Lemma A.3. The support of a Weil divisor 𝐸 ∈ WDiv∗(𝑋) coincides with that of the AC divisor
O𝑋 (𝐸). In particular, for every AC divisor 𝐷 ∈ WSh∗(𝑋) and every integer 𝑛 � 1, we have Supp(𝐷) =
Supp(𝑛𝐷).

Proof. It immediately follows from Lemma A.2. �

Remark A.4. There is an example of X, such that the natural map

WSh(𝑋) → WShQ(𝑋)

is not injective (see [18, (16.1.2)]).
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We also have an example of an AC divisor D, such that Supp𝐷 ≠ Supp 𝑛𝐷 for an integer 𝑛 � 1. If
we set 𝑋 := SpecC[𝑥, 𝑦]/(𝑦2 − 𝑥2 + 𝑥3) and 𝐷 := (𝑦/𝑥)O𝑋 , then the origin (0, 0) ∈ 𝑋 is contained in
the support of D but not in that of 2𝐷 = (𝑥 − 1)O𝑋 .

A.2. Differents of AC divisors

In this subsection, we recall the definition of the different of aQ-AC divisor and prove some basic results
used in subsection 2.3.

Throughout this subsection, we fix an excellent scheme S admitting a dualizing complex 𝜔•
𝑆 , every

scheme is assumed to be separated and of finite type over S and every morphism is assumed to be an
S-morphism. Moreover, given a scheme X, we always choose 𝜔•

𝑋 := 𝜋!
𝑋𝜔

•
𝑆 as a dualizing complex of

X, where 𝜋𝑋 : 𝑋 → 𝑆 is the structure morphism, and 𝜔𝑋 always denotes the canonical sheaf associated
to 𝜔•

𝑋 . The trace map of a finite surjective morphism 𝑓 : 𝑌 → 𝑋 is denoted by Tr 𝑓 : 𝑓∗𝜔𝑌 → 𝜔𝑋 .

Lemma A.5. Let 𝑓 : 𝑌 → 𝑋 be a finite birational morphism of reduced schemes. Then the following
hold.

(1) For a morphism 𝛼𝑋 : 𝜔𝑋 → K𝑋 , there exists a unique morphism 𝛼𝑌 : 𝜔𝑌 → K𝑌 , such that the
following diagram commutes

𝑓∗𝜔𝑌
𝛼𝑌 ��

Tr 𝑓




𝑓∗K𝑌

𝜔𝑋 𝛼𝑋

�� K𝑋

∼𝜃 𝑓

��

, (A.1)

where 𝜃 𝑓 : K𝑋
∼
−→ 𝑓∗K𝑌 is the canonical isomorphism.

(2) For a morphism 𝛼𝑌 : 𝜔𝑌 → K𝑌 , there exists a unique morphism 𝛼𝑋 : 𝜔𝑋 → K𝑋 , such that the
diagram (A.1) commutes.

Proof. Take an open subscheme 𝑖 : 𝑈 ↩→ 𝑋 containing all generic points of X, such that𝑉 := 𝑓 −1(𝑈) →
𝑈 is an isomorphism. Since 𝑖∗K𝑈 = K𝑋 , we have an isomorphism

Hom𝑋 (𝜔𝑋 ,K𝑋 ) � Hom𝑈 (𝜔𝑈 ,K𝑈 ).

Similarly,

Hom𝑌 (𝜔𝑌 ,K𝑌 ) � Hom𝑉 (𝜔𝑉 ,K𝑉 ).

Therefore, after replacing X by U, we may assume that f is an isomorphism. In this case, the assertion
is obvious because Tr 𝑓 is an isomorphism. �

Let𝜔•
𝑋 be a dualizing complex of X, and let𝜔𝑋 be the canonical sheaf associated to𝜔•

𝑋 . A canonical
AC divisor on X associated to 𝜔•

𝑋 is an AC divisor F ⊆ K𝑋 , such that F � 𝜔𝑋 as O𝑋 -modules. The
reader is referred to Lemma A.16 below for sufficient conditions for X to admit a canonical AC divisor.

Setting A.6. Let A := (𝑌,𝑊,𝑊 ′, 𝑖, 𝜇, 𝑓 , Γ) be a tuple satisfying the following conditions.

1. Y is an excellent reduced (𝑆2) and (𝐺1) scheme admitting a canonical AC divisor associated to
𝜔•
𝑌 := 𝜋!

𝑌𝜔
•
𝑆 , where 𝜋𝑌 : 𝑌 → 𝑆 is the structure morphism.

2. 𝑖 : 𝑊 ↩→ 𝑌 is the closed immersion from a reduced closed subscheme W whose generic points are
codimension one regular points of Y.
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3. 𝜇 : 𝑊 ′ → 𝑊 is a finite birational morphism from a reduced (𝑆2) and (𝐺1) scheme 𝑊 ′, and
𝑓 := 𝑖 ◦ 𝜇 : 𝑊 ′ → 𝑌 is the composite of i and 𝜇

𝑌

𝑊

𝑖

��

𝑊 ′
𝜇

��

𝑓
����������

.

4. Γ ∈ WSh∗
Q
(𝑌 ) is a Q-AC divisor on Y, such that the support of Γ has no common components with

W and the Q-AC divisor 𝐾𝑌 + Γ +𝑊 is Q-Cartier at every codimension one point w of W.
Suppose that A := (𝑌,𝑊,𝑊 ′, 𝑖, 𝜇, 𝑓 , Γ) is a tuple as in Setting A.6. Since Y admits a canonical AC

divisor 𝐾𝑌 , we have an inclusion 𝛼𝑌 : 𝜔𝑌 ↩→ K𝑌 whose image coincides with 𝐾𝑌 . By Lemma A.16 (i),
𝑊 ′ also admits a canonical AC divisor 𝐾𝑊 ′ , and let 𝛼𝑊 ′ : 𝜔𝑊 ′ ↩→ K𝑊 ′ be the corresponding inclusion.
Take an integer 𝑚 � 1, such that 𝑚Γ ∈ WSh∗(𝑋) and 𝑚(𝐾𝑌 +𝑊) + 𝑚Γ is Cartier at any codimension
one points of W, and let F := O𝑌 (𝑚(𝐾𝑌 +𝑊) + 𝑚Γ) ⊆ K𝑌 . We will define the morphism

𝛽A (𝛼𝑌 , 𝛼𝑊 ′ , 𝑚) : 𝑓 ∗F → K𝑊 ′ .

Take an open subscheme 𝑉 ⊆ 𝑌 , such that V is regular, Γ|𝑉 = 0, 𝑈 := 𝑊 ∩ 𝑉 is regular, and U
contains all generic points of W. Let u and v be natural open immersions, such that the following diagram
commutes:

𝑊
� � 𝑖 �� 𝑌

𝑈
��

𝑢

��

�� 𝑉.
��

𝑣

��

Then we define the morphism 𝛽𝑉A (𝛼𝑌 , 𝛼𝑊 ′ , 𝑚) : F |𝑈 → K𝑈 as

F |𝑈 = O𝑉 (𝑚(𝐾𝑌 |𝑉 +𝑈)) |𝑈
(𝛾𝑚𝑗 )−1◦(𝛼𝑚

𝑌 )−1

−−−−−−−−−−−−→ (𝜔𝑉 (𝑈) |𝑈 )
⊗𝑚

Res𝑚
𝑉 /𝑈

−−−−−−→ 𝜔𝑚𝑈
𝛼𝑚
𝑊 ◦𝛾𝑚𝑖

−−−−−−→ K𝑈 ,

where Res𝑉 /𝑈 : 𝜔𝑉 (𝑈) |𝑈
∼
−→ 𝜔𝑈 is the Poincaré residue map, 𝛾𝑖 : 𝜔𝑈

∼
−→ 𝜔𝑊 |𝑈 and 𝛾 𝑗 : 𝜔𝑉

∼
−→ 𝜔𝑌 |𝑉

are canonical isomorphisms, and 𝛼𝑊 : 𝜔𝑊 → K𝑊 is the morphism induced by 𝛼𝑊 ′ as in Lemma
A.5. Pulling back this morphism to 𝑈 ′ := 𝑓 −1(𝑈) ⊆ 𝑊 ′ and taking the (𝑢′)∗-(𝑢′)∗ adjoint, where
𝑢′ : 𝑈 ′ ↩→ 𝑊 ′ is the open immersion, we obtain a morphism 𝑓 ∗F → K𝑊 ′ . Since this morphism is
independent of the choice of V, we write this morphism by

𝛽A (𝛼𝑌 , 𝛼𝑊 ′ , 𝑚) : 𝑓 ∗F → K𝑊 ′ .

Let 𝐸 = 𝐸A (𝛼𝑌 , 𝛼𝑊 ′ , 𝑚) ∈ WSh(𝑊 ′) denote the AC divisor defined by the reflexive hull of the
image of 𝛽A(𝛼𝑌 , 𝛼𝑊 ′ , 𝑚). Then the different of Γ on𝑊 ′ is defined as

D̃iff𝑊 ′ (Γ) := (𝐸 − 𝑚𝐾𝑊 ′ ) ⊗Z
1
𝑚

∈ WShQ(𝑊 ′).

Lemma A.7. With the above notation, the following holds.
(1) The Q-AC divisor D̃iff𝑊 ′ (Γ) is independent of the choice of 𝛼𝑌 , 𝛼𝑊 ′ , and m.
(2) Taking differents is compatible with open immersions, that is, for an open subscheme 𝑌◦ ⊆ 𝑌 , we

have

D̃iff (𝑊 ′)◦ (Γ|𝑌 ◦ ) = D̃iff𝑊 ′ (Γ) |(𝑊 ′)◦ ,

where (𝑊 ′)◦ ⊆ 𝑊 ′ is the pullback of 𝑌◦ to𝑊 ′.
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(3) If 𝐷 ∈ Div∗
Q
(𝑌 ) is a Q-Cartier divisor on Y whose support does not contain any generic points of

W, then

D̃iff𝑊 ′ (Γ + 𝐷) = D̃iff𝑊 ′ (Γ) + 𝑓 ∗𝐷,

where 𝐷 and 𝑓 ∗𝐷 are the Q-AC divisors corresponding to the Q-Cartier divisors D and 𝑓 ∗𝐷,
respectively.

Proof. (1) and (2) are obvious. For (3), after shrinking Y if necessary, we can write 𝐷 = 𝐷1 − 𝐷2,
where 𝐷1, 𝐷2 ∈ Div∗

Q
(𝑌 ) are effective Q-Cartier divisors whose supports contain no generic points of

W. Therefore, it suffices to show the assertion when D is effective.
Take 𝑚, 𝛼𝑌 , 𝛼𝑊 , and 𝐾𝑊 as in the discussion preceding this lemma. We further assume that 𝑚𝐷 is

Cartier. When we write A′ := (𝑌,𝑊,𝑊 ′, 𝑖, 𝜇, 𝑓 , Γ + 𝐷), the following diagram

𝑓 ∗O𝑌 (𝑚(𝐾𝑌 +𝑊) + 𝑚Γ)
� �

nat

��������
������

������
������

𝛽A





𝑓 ∗O𝑌 (𝑚(𝐾𝑌 +𝑊) + 𝑚Γ) ⊗ O𝑊 ′ (𝑚 𝑓 ∗(𝐷))

∼




𝑓 ∗O𝑌 (𝑚(𝐾𝑌 +𝑊) + 𝑚(Γ + 𝐷))

𝛽A′ �� K𝑊 ′

commutes, because the morphism 𝛽A′ := 𝛽A′ (𝛼𝑌 , 𝛼𝑊 ′ , 𝑚) is generically the same as 𝛽A :=
𝛽A (𝛼𝑌 , 𝛼𝑊 ′ , 𝑚). Thus,

𝐸A′ (𝛼𝑌 , 𝛼𝑊 ′ , 𝑚) = 𝐸A(𝛼𝑌 , 𝛼𝑊 ′ , 𝑚) + 𝑚 𝑓 ∗𝐷,

which implies the desired result. �

Lemma A.8. Suppose that Y is a scheme satisfying the condition (1) in Setting A.6, and let 𝑖 : 𝑊 ↩→ 𝑌
be a closed immersion satisfying the condition (2). We further assume that W is a Cartier divisor (that is,
𝑊 ∈ Div∗(𝑌 )) satisfying (𝑆2) and (𝐺1). Take a Q-Weil divisor Δ ∈ WDiv∗

Q
(𝑌 ) whose support contains

neither any generic points of W nor any singular codimension one points of W, and let Γ ∈ WSh∗
Q
(𝑌 )

be the corresponding Q-AC divisor.
(1) The tuple (𝑌,𝑊,𝑊, 𝑖, id𝑊 , 𝑖, Γ) satisfies all the conditions in Setting A.6.
(2) Let Δ |𝑊 ∈ WDiv∗

Q
(𝑊) be the restriction of Δ to the Cartier divisor W (see Lemma 2.24 for

the definition). Then the Q-Weil divisor Δ |𝑊 ∈ WDiv∗
Q
(𝑊) corresponds to the Q-AC divisor

D̃iff𝑊 (Δ) ∈ WShQ(𝑊).
Proof. (1) It is enough to verify the condition (4) in Setting A.6. Let 𝑤 ∈ 𝑊 be a codimension one
point. If w is a singular point of W, then 𝐾𝑌 +𝑊 + Δ = 𝐾𝑌 +𝑊 around w, which is Cartier since W
is Cartier and satisfies (𝐺1). If w is a regular point of W, then Y is also regular at w and, in particular,
𝐾𝑌 +𝑊 + Δ is Q-Cartier at w.

(2) Take 𝑚, 𝛼𝑌 , 𝛼𝑊 , and 𝐾𝑊 as in the discussion preceding Lemma A.7. We will show that the AC-
divisor 𝐸A (𝛼𝑌 , 𝛼𝑊 , 𝑚) − 𝑚𝐾𝑊 ∈ WSh(𝑊) coincides with the Weil divisor 𝑚Δ |𝑊 ∈ WDiv∗(𝑊). By
Lemma 2.15 (3), it is enough to show the assertion after shrinking Y around an arbitrary codimension
one point w of W.

First, we consider the case where w is a singular point of W. After shrinking Y, we may assume
that Δ = 0 and Y, W are Gorenstein. Since the Poincaré residue map Res𝑌 /𝑊 : 𝜔𝑌 (𝑊) |𝑊 → 𝜔𝑊 is
isomorphic, it induces the isomorphism

𝜑 : (O𝑌 (𝑚(𝐾𝑌 +𝑊)) |𝑊 ) � (𝜔𝑌 (𝑊) |𝑊 )𝑚
(Res𝑌 /𝑊 )𝑚

−−−−−−−−−→ (𝜔𝑊 )𝑚 � O𝑊 (𝑚𝐾𝑊 ) ⊆ K𝑊 .
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Since the Poincaré residue maps are compatible with open immersions, we have 𝜑 = 𝛽A (𝛼𝑌 , 𝛼𝑊 , 𝑚).
Therefore, 𝐸A (𝛼𝑌 , 𝛼𝑊 , 𝑚) = 𝑚𝐾𝑊 .

Next, we consider the case where w is a regular point of W. After shrinking Y, we may assume that
Y and W are regular. Since Δ is Q-Cartier, we can reduce to the case where Δ = 0 by applying Lemma
A.7 (3). Then we obtain the equality 𝐸A (𝛼𝑌 , 𝛼𝑊 , 𝑚) = 𝑚𝐾𝑊 as in the first case. �

Lemma-Definition A.9. Let (𝑌,𝑊,𝑊 ′, 𝑖, 𝜇, 𝑓 ,Δ) be as in Setting 2.19, and let Γ ∈ WSh∗
Q
(𝑌 ) be the

Q-AC divisor corresponding to the Q-Weil divisor Δ ∈ WDiv∗
Q
(𝑌 ). Then the following hold.

1. A := (𝑌,𝑊,𝑊 ′, 𝑖, 𝜇, 𝑓 , Γ) satisfies all the conditions in Setting A.6.
2. The Q-AC divisor D̃iff𝑊 ′ (Γ) ∈ WShQ(𝑊 ′) is contained in WSh∗

Q
(𝑊 ′).

We define the different Diff𝑊 ′ (Δ) ∈ WDiv∗
Q
(𝑊 ′) of Δ on 𝑊 ′ as the Q-Weil divisor corresponding to

the Q-AC divisor D̃iff𝑊 ′ (Γ) ∈ WSh∗
Q
(𝑊 ′).

Proof. (1) is obvious. For (2), take 𝑚, 𝛼𝑌 , 𝛼𝑊 ′ , and 𝐾𝑊 ′ as in the discussion preceding Lemma A.7.
It is enough to show that the AC-divisor 𝐸A(𝛼𝑌 , 𝛼𝑊 ′ , 𝑚) − 𝑚𝐾𝑊 ′ is contained in WSh∗(𝑊 ′). Take a
codimension one singular point 𝑤′ of𝑊 ′. After shrinking Y around 𝑓 (𝑤′), we may assume that Δ = 0
and W is Cartier. Then the equality 𝐸A (𝛼𝑌 , 𝛼𝑊 ′ , 𝑚) − 𝑚𝐾𝑊 ′ = 0 can be shown in a way similar to the
proof of Lemma A.8. �

Lemma A.10. Let A := (𝑌,𝑊,𝑊 ′, 𝑖, 𝜇, 𝑓 , Γ) be as in Setting A.6, and let 𝜋 : 𝑊𝑛 = (𝑊 ′)𝑛 → 𝑊 ′ be
the normalization of𝑊 ′. Then

D̃iff𝑊 𝑛 (Γ) = 𝜋∗D̃iff𝑊 ′ (Γ) + 𝐶𝑊 ′ ,

where 𝐶𝑊 ′ denotes the conductor divisor of 𝜋 on𝑊𝑛 = (𝑊 ′)𝑛.

Proof. We first note that the tuple A′ := (𝑌,𝑊,𝑊𝑛, 𝑖, 𝜌 := 𝜇 ◦ 𝜋, 𝑔 := 𝑓 ◦ 𝜋,Δ) satisfies the conditions
in Setting A.6

𝑌

𝑊
��

𝑖

��

𝑊 ′

𝑓

����������

𝜇
�� 𝑊𝑛

𝜋
��

𝜌

��

𝑔

�����������������

.

After shrinking Y, we may assume that 𝐾𝑌 +𝑊 + Δ is Q-Cartier. Take an integer 𝑚 � 1, such that
𝑚Γ ∈ WSh∗(𝑌 ) and 𝑚(𝐾𝑌 +𝑊) + 𝑚Γ is Cartier. Since Y admits a canonical AC divisor 𝐾𝑌 , we have
the corresponding inclusion 𝛼𝑌 : 𝜔𝑌 ↩→ K𝑌 . Let 𝛼𝑊 ′ : 𝜔𝑊 ′ ↩→ K𝑊 ′ and 𝛼𝑊 𝑛 : 𝜔𝑊 𝑛 ↩→ K𝑊 𝑛

be inclusions, such that a diagram involving 𝛼𝑊 ′ and 𝛼𝑊 𝑛 , similar to (A.1), commutes, and let 𝐾𝑊 ′

and 𝐾𝑊 𝑛 be the corresponding canonical AC divisors. By the choice of 𝛼𝑊 ′ and 𝛼𝑊 𝑛 , we have
𝐾𝑊 𝑛 = 𝜋∗𝐾𝑊 ′ − 𝐶𝑊 ′ .

Take an open subscheme 𝑉 ⊆ 𝑌 , such that V is regular, Γ|𝑉 = 0, 𝑈 := 𝑊 ∩ 𝑉 is regular, and U
contains all generic points of W. We also take an inclusion 𝛼𝑊 : 𝜔𝑊 ↩→ K𝑊 , such that a diagram
involving 𝛼𝑊 and 𝛼𝑊 ′ , similar to (A.1), commutes. It then follows from the equality Tr𝜇 ◦ 𝜇∗Tr𝜋 = Tr𝜌
that a similar diagram involving 𝛼𝑊 and 𝛼𝑊 𝑛 also commutes. Therefore,

𝛽𝑉A (𝛼𝑌 , 𝛼𝑊 ′ , 𝑚) = 𝛽𝑉A′ (𝛼𝑌 , 𝛼𝑊 𝑛 , 𝑚),
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which implies that the following diagram

𝑔∗O𝑌 (𝑚(𝐾𝑌 +𝑊) + 𝑚Γ)

𝜋∗𝛽A

���
���

���
���

�

𝛽A′ ����
���

���
���

���

𝜋∗K𝑊 ′

𝜃
adj
𝜋

�� K𝑊 𝑛

commutes, where 𝛽A = 𝛽A (𝛼𝑌 , 𝛼𝑊 ′ , 𝑚), 𝛽A′ = 𝛽A′ (𝛼𝑌 , 𝛼𝑊 𝑛 , 𝑚), and 𝜃adj
𝜋 is the natural isomorphism.

Taking into account that O𝑌 (𝑚(𝐾𝑌 +𝑊) + 𝑚Γ) is invertible, we have

O𝑊 𝑛 (𝐸A′ (𝛼𝑌 , 𝛼𝑊 𝑛 , 𝑚)) = Image(𝛽A′ )

= 𝜃adj
𝜋 (Image(𝜋∗𝛽A))

= 𝜃adj
𝜋 (𝜋∗O𝑊 ′ (𝐸A (𝛼𝑌 , 𝛼𝑊 ′ , 𝑚))

= O𝑊 𝑛 (𝜋∗𝐸A(𝛼𝑌 , 𝛼𝑊 ′ , 𝑚))

as submodules of K𝑊 𝑛 . Thus,

𝑚(𝐾𝑊 𝑛 + D̃iff𝑊 𝑛 (Γ)) = 𝐸A′ (𝛼𝑌 , 𝛼𝑊 𝑛 , 𝑚)

= 𝜋∗𝐸A(𝛼𝑌 , 𝛼𝑊 ′ , 𝑚)

= 𝜋∗(𝑚𝐾𝑊 ′ + 𝑚D̃iff𝑊 ′ (Γ))

= 𝑚(𝐾𝑊 𝑛 + (𝜋∗D̃iff𝑊 ′ (Γ) + 𝐶𝑊 ′ )),

which completes the proof. �

Lemma A.11. Let A := (𝑌,𝑊,𝑊 ′, 𝑖, 𝜇, 𝑓 , Γ) be, as in Setting A.6, such that 𝑓 : 𝑊 ′ → 𝑌 factors
through the normalization 𝜈 : 𝑌𝑛 → 𝑌 of Y. Then

D̃iff𝑊 ′ (Γ) = D̃iff𝑊 ′ (𝜈∗Γ + 𝐶𝑌 ),

where 𝐶𝑌 denotes the conductor divisor of 𝜈 on 𝑌𝑛.

Proof. We first note that the tuple A′ := (𝑌𝑛,𝑊 ′′,𝑊 ′, 𝑗 , 𝜋, 𝑔, 𝜈∗Γ + 𝐶𝑌 ) satisfies the conditions in
Setting A.6, where 𝑔 : 𝑊 ′ → 𝑌𝑛 is the morphism induced by f,𝑊 ′′ ⊆ 𝑌𝑛 is the reduced image of g, and
j, 𝜋, and 𝜌 are natural morphisms, such that the following diagram commutes:

𝑌 𝑌𝑛𝜈
��

𝑊
��

𝑖

��

𝑊 ′′
��

𝑗

��

𝜌
�� 𝑊 ′.𝜋

��

𝜇

��

𝑔
����������

𝑓

��

We also remark that 𝜈∗𝑊 = 𝑊 ′′ by the same argument as the proof of Lemma 2.22. After shrinking Y,
we may assume that 𝐾𝑌 +𝑊 + Γ is Q-Cartier. Take an integer 𝑚 � 1, such that 𝑚Γ ∈ WSh∗(𝑌 ) and
𝑚(𝐾𝑌 +𝑊) + 𝑚Γ is Cartier.

Let 𝛼𝑌 : 𝜔𝑌 ↩→ K𝑌 and 𝛼𝑌 𝑛 : 𝜔𝑌 𝑛 ↩→ K𝑌 𝑛 be inclusions, such that a diagram involving 𝛼𝑊 and
𝛼𝑊 ′ , similar to (A.1), commutes, and let 𝐾𝑌 and 𝐾𝑌 𝑛 be the corresponding canonical AC divisors.
Then 𝐾𝑌 𝑛 = 𝜈∗𝐾𝑌 − 𝐶𝑌 . We also take inclusions 𝛼𝑊 : 𝜔𝑊 ↩→ K𝑊 , 𝛼𝑊 ′ : 𝜔𝑊 ′ ↩→ K𝑊 ′ , and
𝛼𝑊 ′′ : 𝜔𝑊 ′′ ↩→ K𝑊 ′′ , such that each two of them satisfy a similar commutativity. Let F ⊆ K𝑌 and
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G ⊆ K𝑌 𝑛 denote the submodules corresponding to 𝑚(𝐾𝑌 +𝑊) +𝑚Γ and 𝑚(𝐾𝑌 𝑛 +𝑊 ′′ + (𝜈∗Γ +𝐶𝑌 )) =
𝜈∗(𝑚(𝐾𝑌 +𝑊)+𝑚Γ), respectively. SinceF is invertible, the canonical isomorphism 𝜃adj

𝜈 : 𝜈∗K𝑌
∼
−→ K𝑌 𝑛

induces the isomorphism 𝜃adj
𝜈 : 𝜈∗F ∼

−→ G. As in the proof of Lemma A.10, it suffices to show that the
following diagram

𝑓 ∗F

𝛽A ���
��

��
��

�
∼

𝑔∗ 𝜃
adj
𝜈

�� 𝑔∗G

𝛽A′��		
		
		
		

K𝑊 ′

commutes, where 𝛽A := 𝛽A (𝛼𝑌 , 𝛼𝑊 ′ , 𝑚) and 𝛽A′ := 𝛽A′ (𝛼𝑌 𝑛 , 𝛼𝑊 ′ , 𝑚).
Take an open subscheme 𝑉 ⊆ 𝑌 , such that V is regular, Γ|𝑉 = 0, 𝑈 := 𝑉 ∩𝑊 is regular, and U

contains all generic points of W. Let 𝜈′ : 𝑉𝑛 := 𝜈−1(𝑉)
∼
−→ 𝑉 and 𝜌′ : 𝑈 ′′ := 𝜌−1(𝑈)

∼
−→ 𝑈 denote the

isomorphisms induced by 𝜈 and 𝜌, respectively. Then the problem can be reduced to showing that the
following diagram

(𝜌′)∗ (F |𝑈 )

(𝜌′)∗𝛽𝑉A ����
���

���
��

∼

(𝜌′)∗ (𝜃
adj
𝜈 |𝑈 )

�� G |𝑈 ′′

𝛽𝑉
𝑛

A′��












K𝑈 ′′

commutes, where 𝛽𝑉A := 𝛽𝑉A (𝛼𝑌 , 𝛼𝑊 ′ , 𝑚) and 𝛽𝑉 𝑛

A′ := 𝛽𝑉 𝑛

A′ (𝛼𝑌 𝑛 , 𝛼𝑊 ′ , 𝑚). By taking (𝜌′)∗-(𝜌′)∗-adjoint,
this follows from the commutativity of the following diagram

𝜔𝑉 (𝑈) |𝑈

Res𝑉 /𝑈





(𝜌′)∗ (𝜔𝑉 𝑛 (𝑈 ′′) |𝑈 ′′ )
Tr𝜈′ |𝑈��

𝜌′∗Res𝑉𝑛/𝑈′′




𝜔𝑈 (𝜌′)∗𝜔𝑈 ′′

Tr𝜌′
��

.

�

A.3. Existence of a canonical divisor

In this subsection, we give a sufficient condition for a scheme to admit a canonical AC divisor.

Lemma A.12. Let X be an excellent reduced scheme, and let F be an 𝑆1 coherent sheaf, such that F𝜂

is an invertible O𝑋,𝜂-module for every generic point 𝜂 ∈ 𝑋 . Then there exists an inclusion F ↩→ K𝑋 .

Proof. Let 𝑄 :=
∏

𝜂 𝜅(𝜂) denote the product of the residue fields 𝜅(𝜂) of all generic points 𝜂 ∈ 𝑋 .
Since X is reduced, K𝑋 is isomorphic to 𝑖∗𝑄, where 𝑖 : Spec𝑄 → 𝑋 is the natural morphism.

Since F is invertible at all generic points of X, there exists an isomorphism 𝑖∗F → 𝑄, which induces
the adjoint morphism 𝛼 : F → K𝑋 . Since 𝛼 is injective at every generic point of X and F satisfies (𝑆1),
we conclude that 𝛼 is injective. �

Lemma A.13. Let X be an excellent reduced (𝑆2) and (𝐺1) scheme with a dualizing complex 𝜔•
𝑋 . Let

𝛿 : 𝑋 → Z be the dimension function associated to 𝜔•
𝑋 (see [31, Lemma 0AWF] for definition). Then

the following conditions are equivalent to each other.

(1) X admits a canonical AC divisor associated to 𝜔•
𝑋 .

(2) The support of the canonical sheaf 𝜔𝑋 coincides with X.
(3) 𝛿(𝜂) is constant for all generic points 𝜂 of X.
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Proof. Since 𝜔𝑋 satisfies (𝑆2) and the support of 𝜔𝑋 is the union of the irreducible components of
maximal dimension with respect to 𝛿 (see [31, Lemma 0AWK]), the assertion follows from Lemma
A.12. �

Definition A.14. A topological space X of finite Krull dimension is biequidimensional if all maximal
chains of irreducible closed subsets of X have the same length.
Example A.15 [14, Lemma 2.4]. If 𝑋 = Spec 𝑅 is the spectrum of a Noetherian local ring R, then X is
biequidimensional if and only if X is equidimensional and catenary.
Lemma A.16. Let X be an excellent reduced (𝑆2) and (𝐺1) scheme with a dualizing complex 𝜔•

𝑋 . Then
X admits a canonical AC divisor associated to 𝜔•

𝑋 if one of the following conditions hold.
(i) There exists a finite morphism 𝑓 : 𝑋 → 𝑌 to an excellent reduced (𝑆2) and (𝐺1) scheme Y with

the following conditions:
(a) Y admits a dualizing complex 𝜔•

𝑌 , such that 𝑓 !𝜔•
𝑌 � 𝜔

•
𝑋 ,

(b) Y admits a canonical AC divisor associated to 𝜔•
𝑌 , and

(c) the codimension of the point 𝑓 (𝜂) ∈ 𝑌 is constant for all generic points 𝜂 of X.
(ii) X is irreducible.

(iii) X is connected and biequidimensional.
Proof. By Lemma A.13, it is enough to show that 𝛿(𝜂) is constant for all generic points 𝜂 of X. In the
case (ii), this is obvious. In the case (iii), it follows from [31, Lemma 02IA]. In the case (i), let 𝛿′ : 𝑌 → Z

denote the dimension function associated to𝜔•
𝑌 . Then it follows from [31, Lemma 0AX1] that 𝛿 = 𝛿′◦ 𝑓 .

Since Y admits a canonical AC divisor, it follows from Lemma A.13 that 𝛿′(𝑦) = 𝛿′(𝑦′) for any points
𝑦, 𝑦′ ∈ 𝑌 with same codimension. Thus, the assertion follows again from Lemma A.13. �

We next give a sufficient condition for the map

WSh∗(𝑋) → WSh(𝑋) → WSh(𝑋)/∼

to be surjective, where ∼ denotes the linear equivalence of AC divisors.
Lemma A.17. Let (Λ,𝔪, 𝑘) be a Noetherian local ring with k infinite, A be a Noetherian Λ-algebra,
and X be a quasi-projective A-scheme. Suppose that Σ ⊆ 𝑋 is a finite subset and D is an AC divisor
which is Cartier at any points of Σ. Then there exists an AC divisor 𝐷 ′ linearly equivalent to D, such
that Σ ∩ Supp𝐷 ′ = ∅. In particular, the map

WSh∗(𝑋) → WSh(𝑋) → WSh(𝑋)/∼

is surjective.
Proof. Let F ⊆ K𝑋 be a submodule corresponding to D. After twisting F by an ample line bundle, we
may assume that F is globally generated. We set𝑀 := 𝐻0 (𝑋,F) and 𝑁𝑥 := Ker(𝑀 → F𝑥 ⊗ 𝜅(𝑥)) ⊆ 𝑀
for every point 𝑥 ∈ Σ. The global generation of F yields that 𝑁𝑥 ≠ 𝑀 . Taking into account that k is
infinite, we have ⋃

𝑥∈Σ

𝑁𝑥 ≠ 𝑀.

Take an element 𝑟 ∈ 𝑀 \
⋃
𝑥∈Σ 𝑁𝑥 . Since F is Cartier at any 𝑥 ∈ Σ, the support of the AC divisor

𝐷 ′ := 𝐷 + div𝑋 (𝑟) does not contain x, as desired. �
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