
Appendix B

Quantization in the temporal gauge

Gauge-field quantization in the temporal gauge in the continuum is often
lacking in text books. Here follows a brief outline. Consider the action
of SU(n) gauge theory,

S = −
∫

d4x
1

4g2
Gp

µνG
µνp. (B.1)

The stationary action principle leads to the equations of motion

DµG
µνp = ∂µG

µνp + fpqrG
q
µG

µνr = 0. (B.2)

where Dµ is the covariant derivative in the adjoint representation. Note
that we are using a Minkowski-space metric with signature (−1, 1, 1, 1),
e.g. G0np = −G np

0 = −Gp
0n. The Lagrangian is given by

L(G, Ġ) =
∫

d3x

(
1

2g2
Gp
0nG

p
0n −

1
4g2

Gp
mnG

p
mn

)
, (B.3)

where

Gp
0n = Ġp

n − ∂nG
p
0 + fpqrG

q
0G

r
n, (B.4)

and the canonical momenta are given by

Πp
0 ≡

δL

δĠp
0

= 0, (B.5)

Πp
n ≡

δL

δĠp
n

=
1
g2
Gp
0n. (B.6)

The fact that L is independent of Ġp
0 and consequently the canonical

momentum of Gp
0 vanishes is incompatible with the presumed canonical

Poisson brackets (Gp
0,Π

q
0)

?= δpqδ(x − y), unless we eliminate Gp
0 as
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variable by a choice of gauge. This is the ‘temporal gauge’

Gp
0 = 0. (B.7)

The Hamiltonian in the temporal gauge is given by

H(G,Π) =
∫

d3xΠp
mĠ

p
m − L

=
∫

d3x

(
g2

2
Πp
mΠp

m +
1

4g2
Gp

mnG
p
mn

)
. (B.8)

However, one does not want to lose the time component (ν = 0) of the
equations of motion (B.2). In canonical variables this equation reads

T p ≡ ∂mΠp
m + fpqrG

q
mΠr

m = 0, (B.9)

and we see that it does not contain a time derivative. It is a constraint
equation for every space–time point. Imposing it at one time, the ques-
tion of whether it is compatible with Hamilton’s equations arises.

Let us address this question directly in the quantized case, assuming
the canonical commutation relations

[Ĝp
m(x), Π̂q

n(y)] = δpqδ(x− y), [Ĝp
m(x), Ĝq

n(y)] = 0 = [Π̂p
m(x), Π̂q

n(y)].
(B.10)

Now it is straightforward to check that the T̂ p defined in (B.9) generate
time-independent gauge transformations, e.g. Ω̂†Ĝp

mΩ̂ = infinitesimally
gauge-transformed Ĝp

m, where Ω̂ = 1+ i
∫
d3xωp(x)T̂ p(x)+O(ω2). The

Hamiltonian is gauge invariant,

[T̂ p, Ĥ] = 0, (B.11)

and the constraints are compatible with the Heisenberg equations of
motion. A formal Hilbert-space realization of the canonical commutation
relations (B.10) is given by the coordinate representation

〈G|Ĝp
m(x)|Ψ〉 = Gp

m(x)〈G|Ψ〉, (B.12)

〈G|Π̂p
m(x)|Ψ〉 =

δ

iδGp
m(x)

〈G|Ψ〉, (B.13)

with wave functionals Ψ(G) = 〈G|Ψ〉. Unlike quantization in other
gauges, there are no negative norm states here, but physical states have
to be gauge invariant,

T̂ p(x) |Ψ〉phys = 0. (B.14)
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Such states can be formally written as a superposition of Wilson loops
and this is useful for analytic calculations at strong coupling (on the
lattice, of course, to make it well defined), but not at weak coupling.

Finally, the analogy with QED may be stressed in the notation by
writing

Ep
k =

1
g
G0kp = −gΠp

m, Bp
k =

1
2g
εklmG

p
lm, (B.15)

in terms of which

H =
∫

d3x
(
1
2E

2 + 1
2B

2
)
. (B.16)

In case other fields are present, there are additional contributions to T p

that act as generators for these fields, e.g. for QCD, ρp = ψ+λpψ/2, and
(B.9) becomes the non-Abelian version of Gauss’s law:

DkE
p
k = gρp. (B.17)
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