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Abstract. Little research exists on the optimal temporal frequency between soil
tests, given empirical data on potassium (K) carryover and its interaction with
cotton yield. We evaluate how decreasing the temporal frequency between
obtaining K soil test information affects the net present value (NPV) of cotton
production. Monte Carlo simulation was used to determine NPV for cotton
production using five soil test schedules ranging from soil testing annually to
every fifth year. NPV of returns to K was maximized at $7,580/ac. when
producers updated soil testing information every 2 years, which was $2/ac. per
year greater than annual soil testing.
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1. Introduction

Potassium (K) is an important nutrient for upland cotton (Gossypium hirsutum
L.) but can be difficult to manage over time (Howard et al., 2001). In the
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late 1980s and early 1990s, there were frequent reports of late-season K
deficiencies in the U.S. Cotton Belt (Maples, Thompson, and Varvil, 1988;
Mullins, Burmester, and Reeves, 1997), resulting in numerous agronomic studies
on cotton response to K while considering K levels in the soil that are readily
available for plant consumption (soil K) from the previous production year
(i.e., carryover) (Essington et al., 2002; Howard et al., 1998; Mullins, Schwab,
and Burmester, 1999). Findings from these studies triggered extension personnel
in several southeastern states to recalibrate K recommendations to maintain
adequate soil K levels for cotton production and circumvent yield loss because
of late-season K deficiencies. Methods to analyze soil K levels were developed
more than 60 years ago (Mehlich, 1953), but gathering this information using
soil tests and applying the information to make K applications is still a growing
practice among cotton producers (Zhou et al., 2015).

If a profit-maximizing producer considers information on soil K levels before
applying a K rate, the producer’s decision framework changes from maximizing
net returns in a given year to maximizing the present value of net returns (NPV)
over a planning horizon. The switch in the producer’s decision framework occurs
because application decisions in a given year are based on their application rates
from the previous year. Economists developed dynamic programming models to
determine nutrient application rates that maximize NPV with nutrient carryover
(Fuller, 1965; Heady and Dillon, 1961; Kennedy, 1986; Kennedy et al., 1973;
Stauber, Burt, and Linse, 1975). The dynamic programming approach separates
the producer’s planning horizon into discrete sequential maximization problems,
solved by deriving optimality conditions for each period (Bellman, 1957). The
single period application rates are conditioned on some knowledge of soil
carryover levels prior to planting.

These dynamic models have been adapted to different crops and nutrients
(Ackello-Ogutu, Paris, and Williams, 1985; Jomini et al., 2001; Kennedy et al.,
1973; Lambert, Lowenberg-DeBoer, and Malzer, 2007; Lanzer and Paris, 1981;
Park et al., 2007; Schnitkey, Hopkins, and Tweeten, 1996; Segarra et al., 1989;
Watkins, Lu, and Huang, 1998). However, Harper et al. (2012) were first to use
a dynamic programming model to determine K application rates that maximize
NPV for upland cotton production. They developed an application for valuing
the information from soil testing in cotton production by considering multiple
information scenarios in the dynamic programming framework. Harper et al.
(2012) used 3 years of data on K soil fertility and cotton lint yields in Tennessee
to determine the applied K rate that maximized NPV when soil K levels were
considered and were not considered in the applied K rate decision. They found
that using the soil K level information annually would increase NPV relative to
not considering the soil K level information over a 5-year horizon. Additionally,
using soil K carryover knowledge reduced the amount of annual K that was
applied and the soil K carryover levels, which may be helpful for reducing off-site
K leaching.

https://doi.org/10.1017/aae.2016.41 Published online by Cambridge University Press


https://doi.org/10.1017/aae.2016.41

Temporal Frequency of Soil Test Information 253

A common assumption in the existing dynamic programming literature is that
producers annually soil test to update their soil nutrient information. However,
gathering information about soil nutrient variability on an annual basis might
not increase the NPV (e.g., by reducing fertilizer costs) enough to pay for the cost
of gathering soil nutrient information, especially for K because it is immobile in
the soil profile (Walworth, 2011). Currently, state extension recommendations
encourage cotton producers to update K soil test information from annually
to every 3 years in the Southeast (Kissel and Sonon, 2011; Mylavarapu, 1997;
Savoy and Joines, 2013). These recommendations vary across states because
production factors such as cropping intensity, soil type, tillage practices, and
weather conditions play an important role in determining the length of time to
wait until retesting soil nutrient levels. Nonetheless, the common assumption in
the literature of soil testing annually may not be appropriate for all nutrients and
crops to maximize NPV.

Lambert et al. (2014) used survey data of cotton producers in 13 southern
states to determine the factors affecting the length of time between updating
soil test information (temporal frequency) for precision soil sampling. They
found that farm size, land ownership, farm location, and farming experience
were correlated with the temporal frequency that producers tested soils. Overall,
cotton producers who adopted precision soil sampling indicated they retested
soils on average every 2.5 years, which is within the range encouraged by
Southeast extension agronomists. Moreover, Lambert et al.’s (2014) research
indicates that annual soil testing might not be a profit-maximizing frequency.

The objective of this research was to determine the K application and temporal
frequency for obtaining K soil test information that maximizes NPV to K in
cotton production over a 10-year planning horizon. Optimal K rates and NPV
were determined ex ante for five soil testing schedules of varying temporal
frequencies using Kennedy’s (1986) dynamic programming framework. The
conceptual modeling of this study extends the literature by considering the
temporal frequency of obtaining soil test information in a dynamic programming
framework to determine optimal K rates and expected returns for cotton
production. The results can guide producers and extension personnel on optimal
K rates and length of time between soil tests for upland cotton growers.

2. Empirical Framework

2.1. Dynamic Programming Model

A risk-neutral, profit-maximizing cotton producer chooses an amount of K to
apply (A;) at the beginning of each production year (¢ = 1,...,T [T = 10]),
conditioned on some knowledge of soil K carryover (C;), that maximizes the NPV
of returns to K over a planning horizon (Kennedy, 1986; Kennedy et al., 1973).
This producer also selects the optimal temporal frequency j of soil testing by
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choosing some discrete number of years between retesting soils. Five soil testing
schedules of varying temporal frequency from annually to every fifth year (j =
1,..., 5) were considered, where j is the number of years between soil testing.

At the beginning of each production year, the producer had knowledge of
current elemental K prices, an expectation of cotton lint prices at harvest, cotton
lint yield response to total available K, and information on soil K levels from the
most recent soil test. For each soil testing schedule, the producer used this a priori
knowledge to apply a profit-maximizing amount of K. The optimal temporal
frequency was the soil testing schedule that provides the greatest NPV over a 10-
year planning period. Therefore, the maximized NPV is calculated as follows:

T
max NPV; =Y §"INR,;
AvjonAr; =

Subject to:

At,j,ct,/‘ZO (1)
Cz+1,7‘ =ap+ a1(At,/ + Ct,/)

Crj =40+ (1 =21;)Os1,;

Qo given,

where NPV; is the sum of discounted net returns ($/ac.) over T years for a
producer following soil testing schedule j; A;; is applied K (Ib./ac.); NR;; is the
net returns ($/ac.) to K for cotton production; § is a discount factor reflecting the
time value of money 1/(1 + ), where 7 is the discount rate; C;; is the producer’s
knowledge of carryover K(Ib./ac.) in time period #; Q;; is the actual carryover K
(Ib./ac.) in time period #; C; 1 j is the producer’s knowledge of carryover K(lb./ac.)
prior to planting in year ¢ 4+ 1, which is a function of applied K and the producer’s
knowledge of soil K carryover (i.e., total K available [Ib./ac.]) in year t; A; is an
indicator variable that is equal to 1 in the year a producer updates his or her
knowledge of soil K by soil testing, and 0 otherwise; ap and a; are estimated
parameters for the linear carryover function; and Qy is the actual soil K level
before K is applied in the first production period. Partial budgeting was used
to calculate the single period net returns for a risk-neutral profit-maximizing
producer, where single period net returns (NR) are the following;:

NR; ; = 8py: j(Ar; +Crj) — XA — Ajs, (2)

where p¢ is the producer’s expectation of the price of cotton lint at harvest
($/ac.);pK is the producer’s observed price of K at the time of application ($/ac.);
y:j is cotton lint yield (Ib./ac.) in period #; and s is the cost of obtaining soil test
information prior to applying K ($/ac.), which only occurs in years when the
producer tests the soil (A; = 1), or otherwise s = 0.

Assume the producer conducts a soil test prior to production in the first year;
therefore, the producer knows the soil K level at the beginning of production
year 1 and uses this information in selecting an optimal application rate in year
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Table 1. Producer’s Knowledge of K Carryover by Temporal Frequency of Soil Testing and

Year

Temporal Frequency
Year j=1 j=2 j=3 j =4 j=5
t=0 Qo Qo Qo Qo Qo
t=1 C1,1* =011 Ci2 =01, Ci,3 =013 Ci4 =014 Ci5s =015
t=2 C1 =021 C2 =01, Cr3 =013 Cr4 =014 Cas = Q15
t=3 C3,1 =031 C3p =03, G335 =013 C34 =014 G35 =015
t=4 C4,1 = Q4,1 C42=03p Cy43 =043 C44 =014 C45 = Q1,5
t=35 Cs1 =051 Cs2 =05, Cs3 =043 Cs4a =054 Cs,s = 01,5
t=6 Ce,1 = Q6,1 Csp = QOsp Cs3 = Qa3 Cea =054 Ce,s = Qg5
t=7 C71=07.1 Cr2=072 Cr3=073 C74=0s54 Crs = Qs,s
t=38 Cs,1 = 0s1 Csp =072 Cs3 =073 Cga =054 Css = Os,s
t=9 Co,1 = Q9,1 Cop = Qo) Co3 =073 Coq = Qo4 Co,s = Qs,5
=10 Cio,1 = Q10,1 Cio2 = Q9,2 C10,3 = Q10,3 Cio4 = Qo4 Cio5 = Qe.s

Note: This table shows how the constraint C; ; = 1;Q; j + (1 — 1;)Q;_1,; is updated in equation (1).

1 (A1,). After the first production year, the producer chooses to update his or
her knowledge of soil K at the beginning of each period, following five soil test
schedules j defined as follows:

. 1
j =3, k_{o
j=4, x:{

i=Ss, x:{

1

otherwise

if t=1,..,10
0 otherwise

’

1 if t=1,3,579

if t=1,4,7 10

otherwise

]

1 if t=1,5,9

0 otherwise

k)

1 if t=1,6
0 otherwise

(3)

(7)

When a producer did not test soil in a given year, the producer’s knowledge
of carryover K(C,;) was assumed to be the actual carryover K obtained from
the most recent soil test (Qr.1;). However, when a producer did soil test, the
producer’s knowledge of carryover K(C,;) was still assumed to be the actual
carryover K obtained from the most recent soil test (Q;;). Table 1 shows how the
producer’s knowledge of K carryover is updated with actual soil test information
by temporal frequency.
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When maximizing NPV, the economic optimality principle of marginal
value product (MVP) equals marginal factor cost (MFC) is complicated by
intertemporal factors such as the time value of money (opportunity cost) and
fertilizer carryover (Kennedy, 1986; Kennedy et al., 1973). Therefore, a dynamic
optimization technique was required to determine optimal total K levels in each
period when using soil test information. This study extends Kennedy’s (1986)
dynamic programing framework to determine optimal total available K levels in
each period:

Vi, ilG i} = HAa_X[NRt,/ + Vi1, iG]

Subject to:

At,/', Ct,/' > 0

Crvrj = a0 +a1(Ar;+ G ) 8
Crj =4O+ (1 —=2;)Os-1,

V11, i{iCri1,;} =0

Qp = given,

where V,;{C,} is the present value of net returns ($/ac.) from applying the profit-
maximizing K application in year #; and Vryq; {Cry1;} = 0 is the terminal
condition stating that the producer does not receive any economic value from
the available K remaining in the soil after the last period of the planning horizon
because the producer will not be able to utilize these available soil K levels
(Chiang, 1992).

The optimal single period applied K level was determined using Bellman’s
(1957) recursive equation. The optimality conditions were solved by differen-
tiating equation (8) with respect to the decision variable A,; as follows:

Vi Y, K AVig1j
MY RN P ALY ) L a, =0, 9
aAt’]‘ 4 BAt’,‘ pt + dCt+1’/'a1 ( )
which can be rearranged as
9Yr,j K dVi,j
Spi——"=p; —§ ~ay. 10
p; aAt,f P, dct+1,ja1 ( )

Using the envelope theorem (Léonard and Van Long, 1992), differentiating
equation (8) with respect to the state variable C;; gives the following:

oV Ay, j AV j
= =8pi—+34 ~ay. 11
3Ct,7' pt BAt,,' + dCt+1’I'a1 ( )
Substituting equation (10) into equation (11) and simplifying gives
Vi, K
= =P, 12
Tontal (12)
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which indicates soil carryover at the beginning of year # is valued at the price of
K in year ¢. This result can be updated to year ¢t + 1:
th+1 j K
= = Diy1> (13)
8Ct+1,j t+1
which can be substituted into equation (10) to obtain the optimality condition
for single period K application rate when using soil test information:

c aytv/'
taAtJ

Spi5 = bi =P (14)

Equation (14) indicates the current period optimal total available K level
occurs where the MVP (left-hand side of equation 14) was equal to the MFC
less the discounted savings associated with K carried over to the next year (right-
hand side of equation 14).

2.2. K Carryover Function

Soil K carryover was estimated as a linear function of total K available (i.e.,
applied K and actual carryover K), which is a commonly used functional form
(Harper et al., 2012; Jomini et al., 1991; Lanzer and Paris, 1981; Segarra et
al., 1989). Parameter estimates for the carryover function were obtained using
the actual measured total K available. However, depending on the producer’s
temporal frequency of soil testing, the producer’s knowledge of carryover K in
the dynamic programming model was updated in each time period with the actual
soil K level or the soil K level from the previous soil test. A year random effect
was included in the intercept:

Crii=ao+ai(Ani+ Oi) + 1 + uyj, (15)

where 7; ~ N(0, 0.2) is a random effect capturing the variation in carryover
levels across years, and u;; ~ N(0, u#,?) is a random error term capturing the
variation in carryover levels because of unobserved factors in plot i. The two
error terms were assumed to be independent. The intercept, ag, represents some
constant amount of available K that remains in the soil over the planning
horizon; the slope, a1, is the proportion of total K from the current year readily
available to the next crop estimated using observed carryover K. Soil K from
previous applications accumulates into current-period soil K levels; thus, the only
relevant soil K carryover level is for the current period for each of the schedules.
Maximum likelihood parameter estimates for equation (15) were obtained using
the MIXED procedure in SAS 9.3 (SAS Institute Inc., 2011).

2.3. Yield Response Function

The selection of a functional form to characterize cotton lint yield response to
K is important for determining application rates that maximize NPV (Ackello-
Ogutu, Paris, and Williams, 19835). Plateau-type response functions, such as the
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linear response plateau or quadratic plus plateau, have been suggested to be
more appropriate for characterizing yield response to fertilizer than polynomial
or other nonlinear specifications (Ackello-Ogutu, Paris, and Williams, 1985;
Bullock and Bullock, 1994; Cerrato and Blackmer, 1990). Plateau-type functional
forms assume yield responds to an input in a linear or polynomial manner until
it reaches a plateau, beyond which the input no longer limits yield. Tembo
et al. (2008) extended the linear response plateau by including a normally
distributed random effect in the plateau to capture variation in the plateau
from stochastic events such as insects, weather, and disease. The linear response
stochastic plateau (LRSP) developed by Tembo et al. (2008) has been found to
be more appropriate than similar deterministic functional forms to model yield
response to nutrient applications for several crops and provide more accurate
economically optimal nutrient rates (Biermacher et al., 2009; Boyer et al., 2013;
Tumusiime et al., 2011). Furthermore, Harmon et al. (2016) found the LRSP to
be more appropriate than a deterministic linear plateau function in the dynamic
programming framework. Therefore, cotton yield response to K applied and
actual measured soil K was estimated using the LRSP function:

Vi = min[Bo + B1(As;i + Ori), u+ 0] + w; + &, (16)

where By and B1 are the yield response parameters estimated using observed
yields; u is the expected plateau yield parameter (Ib./ac.); v; ~ N(0, o,2) is a
normally distributed plateau random effect; w, ~ N(0, o,°) is the intercept
random effect isolating variation in yields from year to year; and &,;, ~ N(0, o.%)
is the random error term accounting for variation in yields from unexplained
factors. Independence is assumed across the three random effects. Maximum
likelihood parameter estimates for equation (16) were obtained using the
NLMIXED procedure in SAS 9.3 (SAS Institute Inc., 2011).

To solve for the optimal applied K rate, the optimality condition (equation 14)
was updated with the first-order condition for the LRSP yield response function
with respect to applied K, defined as

SPEIB1(1 — @)] = pX — 5pK (a1, (17)

where ® = ®{[Bo + Bi(A;; + Cij) — ul/o,} is the standard normal cumulative
distribution function (Tembo et al., 2008). Equation (17) is rearranged to obtain
the optimal K application rate for period ¢:

K_ 5K
[q)fl (1 _ b B‘Sfmﬂl)]o_v - Bo
* pzﬂ]
At i =

5 -G (18)
which can be simplified to
%« zmau "'I_ -
At,iz —ﬂf‘b ﬂo _Ct,j7 (19)
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where z,, is a standard normal z-score,! and # is the observed probability in the
right-hand tail of the standard normal distribution (Tembo et al., 2008). Thus,
the optimal application decision depends on the deviation from the expected
plateau yield (z,,0,), which is conditioned on the ratio of per unit K cost and
cotton lint price (Tembo et al., 2008). Additionally, the optimal application rate
will depend on the temporal frequency of soil testing and the accuracy of the
producer’s knowledge of their soil K levels. For the producer who soil tests in
every year (j = 1), the producer’s knowledge of carryover K is equal to the actual
K carryover in each year. However, for a producer who soil tests every other year
(j = 2), the producer’s knowledge of carryover K is equal to the actual soil K
levels in years when a soil test occurs, but the producer’s knowledge of carryover
K may be higher or lower than the actual K carryover level in periods when the
producer does not update soil testing information. Therefore, the producer who
updates soil K levels less frequently may over- or underapply K depending on
the variability of soil K carryover levels between years. Given that yield responds
to the amount of applied and carryover K, the producer’s decision of which soil
testing schedule to follow will affect yield and the subsequent returns achieved in
each period. The NPV for the different soil testing schedules indicates how often
a producer needs to update his or her information on soil K to maximize NPV.

2.4. Monte Carlo Simulation

A Monte Carlo simulation was used to introduce uncertainty into the dynamic
programming model. One thousand iterations of a 10-year planning period were
simulated to generate output distributions of NPV for each of the five scenarios.
The prices of K and cotton lint yield, as well as the yield response and carryover
coefficients, were assumed to be stochastic, providing an ex ante analysis of the
NPV of returns to K for each scenario. Figure 1 summarizes the general process
used to solve the dynamic programming model. Shaded boxes correspond with
stochastic parameters in the model.

Uncertainty surrounding the prices of cotton lint and K were introduced into
the model by bootstrapping the observed real average annual prices of cotton lint
and K for each period of the 10-year planning horizon. To introduce uncertainty
in the expected yield response, the yield response coefficients were simulated as
multivariate normal (MVN) random variables:

2
/33 ﬂg Uﬂ() pgo,ﬂl 08,08,  PBy.u0B, 01 'Oﬁ(),ff,,zo—ﬁoaof
br ~ MVN A PB1.pOB1 %0 T, pg"ﬂaﬁlaﬂ Pp1,02081 002
2* MZ | PupaOuOp PuprOnOp O Pu.o}Ou0s? ’
o, o, Po2,6,05208, Po2,052081 Po2,u0520u Ua,,z
(20)

1 Following Tembo et al. (2008), z,, = (Bo + B1As; — u)lo,, evaluated at m = (1 - @) =
[(pf — 8p£<+1a1 )/(8p%B1)], which is the observed probability in the right-hand tail of the standard normal
distribution.
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Figure 1. Flow Chart of the Dynamic Programming Model and Simulation Process
of Solving for Optimal K Rates

where the mean of the distribution was a vector of the estimated coefficients
for the yield response function (equation 16); the variance of the distribution
was a four-by-four matrix of the robust covariance estimator of the parameter
estimates, where p is the correlation coefficient; and the asterisk denotes a
randomly drawn coefficient for the simulation (Cuvaca et al., 2015). The
preplanting carryover levels after the initial year were estimated by the linear
carryover function (equation 15), where the carryover coefficients followed a
MVN distribution:

(G e, ) e
af a |’ Pay,a00a;0ay 0_{121

For each iteration, new coefficients and prices were randomly sampled to
determine, ex ante, the total available K, yield, and NPV.

Uncertainty surrounding the initial carryover level (Qg) was introduced into
the model by bootstrapping the observed carryover levels. In year 1, prices of
K and cotton were randomly drawn along with parameter estimates for the
carryover and yield response function. The producer was assumed to soil test
in year 1, so the preplanting carryover level was determined using the initial
carryover level. The yield and carryover parameter estimates, prices of K and
cotton, and the estimated preplanting K carryover level were substituted into
equation (18) to obtain the optimal application rate in year 1. Subsequent yield
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and single period net returns were calculated at the optimal application rate and
the carryover level. In time period 2, new prices of K and cotton were randomly
drawn. After the first period of production, the producer’s decision to soil test
in each period was determined by the soil testing temporal frequency he or she
follows. If the producer tested soil K levels, the optimal K rate was determined
using the actual carryover K rate in time period 2. If the producer did not soil
test, the producer’s knowledge of carryover K was used to determine the optimal
K application rate. The subsequent yield and NPV were determined using the
application rate and actual carryover levels, and the soil testing decision process
was repeated for the remaining years of the planning period for each soil testing
schedule. Therefore, after the first year of production, K applications, yield, and
NPV for years ¢ = 2,...,10 were influenced by the temporal frequency with which
producers updated soil test information.

For each scenario, output distributions were generated for the annual and
10-year average applied K, carryover K, lint yield, and NPV for each scenario.
The Monte Carlo simulation was conducted using @Risk (Palisade Corporation,
2014). The expected NPVs of each scenario were compared to determine the soil
testing temporal frequency that provided the greatest NPV of returns to K.

3. Data

Data on cotton yield response and soil K fertility levels were collected from
a 9-year field study (2000 to 2008) conducted at the University of Tennessee,
West Tennessee Research and Education Center at Jackson (35.63° N, 88.85°
W). The soil type was Loring-Calloway silt loam (thermic Oxyaquic Fragiudal
and thermic Typic Fragiaqualf). The plots were not tilled. Each year, K fertilizer
(muriate of potash, 0-0-60) was broadcast by hand to individual plots prior to
planting at rates of 0, 25, 50, 75, 100, 125, and 149 Ib./ac. of elemental K. These
treatments were applied to the same plots each year, beginning 5 years prior to
the start of the study (2000) through the last year (2008). Plots were arranged in
a randomized complete block design, with five or six replications of the fertilizer
treatments.

Cotton was planted between April 30 and May 15 of each year using a
four-row John Deere MaxEmerge planter. From 2000 to 2002, the cultivar
‘PM1218BG/RR’ was planted on all plots. From 2003 to 2008, two contrasting
cultivars were planted in a factorial arrangement relative to the K-fertility plots.
The cultivars ‘PM1218BG/RR’ and DP555BG/RR’ were planted from 2003 to
20035, the cultivars ‘FM960BR’ and DP555BG/RR’ were planted from 2006 to
2007, and the cultivars ‘ST455B2RF’ and ‘ST5327B2RF’ were planted in 2008.2
Plots were 30 by 12 feet, each containing four rows spaced 38 inches apart.
Shortly before or after planting each year, nitrogen fertilizer (ammonium nitrate,

2 Analysis of variance indicated there was no difference in yield across cultivars.
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Table 2. Total Monthly Precipitation Levels for the Growing Season of Upland Cotton in
Jackson, Tennessee, 2000-2008

Precipitation Totals (inches)

Month 2000 2001 2002 2003 2004 2005 2006 2007 2008  Average
March 3.93 2.81  13.00 3.56 2.50 4.10 1.77 1.15 9.75 4.83
April 5.22 2.48 1.10 2.34 9.08 8.54 5.42 3.25 8.23 5.07
May 3.52 4.87 5.90 — 6.23 0.36 3.60 0.86 6.86 4.02
June 3.99 4.82 2.45 6.06 2.90 6.87 4.94 2.71 2.81 4.17
July 2.46 4.71 0.85 2.42 4.74 5.46 2.12 1.76 6.28 3.42
August 2.92 4.65 5.35 3.43 4.93 7.27 3.53 0.77 2.55 3.93
September 3.27 2.28 13.09 2.79 0.69 3.95 2.89 6.28 0.79 4.00
October 0.86 7.37 6.41 4.16 7.99 0.14 2.62 8.97 3.15 4.63
Total 26.17 3399 48.15 2476 39.06 36.69 26.89 25.75 40.43 33.54

Source: National Oceanic and Atmospheric Administration, National Climatic Data Center (2016).

34-0-0) was uniformly drop-spread to all plots at a rate of 80 Ib./ac. University
of Tennessee Extension Service recommendations were followed for lime and
phosphorus applications (Savoy and Joines, 2001). Supplemental irrigation was
used during dry spells in all years except 2002 and 2003. Monthly growing
season rainfall for Jackson, Tennessee, is summarized in Table 2 (National
Oceanic and Atmospheric Administration, National Climatic Data Center,
2016). All other production practices followed the University of Tennessee
Agricultural Extension Service (2001) guidelines for cotton production.

Seed cotton was harvested from the two interior rows of each plot twice each
year using a modified John Deere 9930 spindle picker. First harvest occurred from
September 7 to October 8, with a second harvest occurring 14 to 28 days later.
Lint yields were calculated using seed cotton weights, gin turnouts, and plot areas
harvested. Yield response functions were estimated using observed lint yields
from 2000 to 2008. Average annual lint yields by K rate are displayed in Table 3.
Yields may have increased over time because of improved biotechnology from
different cultivars. Therefore, cotton lint yields were tested with a deterministic
quadratic time response function (Just and Weninger, 1999). Similar to cotton
yields in Oklahoma (Boyer, Brorsen, and Tumusiime, 2015), a time trend was
not present.

Within 6 weeks after harvest in each year, soil samples were collected from all
plots at the 0- to 6-inch depth using the Mehlich I extraction method (Howard et
al.,2001). The samples were tested at the University of Tennessee Soil and Forage
Test Laboratory in Nashville, Tennessee. Preplanting soil test levels from 2001
to 2009 were used to estimate the carryover function. The average soil test level
for the experiment was characterized by the medium soil fertility range (Savoy
and Joines, 2001) (Table 2). Soil test levels were corrected for heteroskedasticity
across years.
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Table 3. Average Annual Cotton Lint Yield and Postharvest K Carryover Level by K
Application Rate in Jackson, Tennessee, 2000-2008

K rate
(Ib./ac.)  2000* 2001 2002 2003 2004 2005 2006 2007 2008 Average

Yield (Ib./ac.)
0 880 827 475 809 960 871 695 903 597 780
25 1,092 1209 756 1208 1,519 1,305 1242 1,312 1,300 1216
50 1,117 1,242 835 1,387 1,873 1,487 1,427 1,314 1,419 1,345
75 1,191 1,368 1,003 1,403 1,812 1,384 1,408 1,274 1,595 1,382
100 1,171 1,392 1,072 1,451 1,999 1,536 1,462 1275 1,581 1,438
124 1,173 1,366 1,069 1,370 1,857 1,390 1,310 1,129 1,447 1,346
149 1,184 1,402 1,038 1,375 1,920 1,430 1,317 1,120 1,383 1,352
Preplanting K Carryover Levels (Ib./ac.)
0 — 119 110 139 98 88 104 93 102 104
25 — 154 147 177 150 123 130 123 142 144
50 — 178 186 204 219 177 195 188 222 196
75 — 245 222 249 297 229 238 252 271 251
100 — 325 270 301 395 307 337 298 318 319
124 — 395 347 335 469 350 405 363 335 375
149 — 459 521 376 528 440 458 467 491 468

aPreplanting K carryover levels were not measured for the year 2000.

Average annual cotton lint and elemental K prices ($/1b.) from 1994 to 2013
were used to determine the K fertilization rates that maximized NPV over a
10-year planning horizon. The Federal Reserve implicit price deflator (Federal
Reserve Bank of St. Louis, 2016) was used to adjust nominal prices to reflect
real prices in 2013. From 1994 to 2013, real average annual cotton prices varied
from $0.38 to $1.07/lb., and real average annual elemental K prices varied from
$0.20 to $0.91/Ib. (U.S. Department of Agriculture, Economic Research Service,
2013, 2014). Real cotton and K prices were not correlated over time. The real
cost of soil testing included the cost of obtaining the soil sample and the chemical
analysis. The cost of obtaining the soil sample was $7.27/ac. per year, which was
based on the University of Tennessee Custom Rate Survey (Bowling, 2013). The
cost of the chemical analysis was $0.70/ac. per year, which assumes a producer
soil tests on a 10-acre grid, following University of Tennessee recommendations
for soil testing (Savoy and Joines, 2013). A 5% discount rate was used to
represent the opportunity cost of land in cotton production, similar to previous
dynamic programming literature (Harper et al., 2012; Kennedy et al., 1973; Park
et al., 2007; Segarra et al., 1989; Watkins, Lu, and Huang, 1998).

4. Results

4.1. Yield Response and Carryover

The parameter estimates for the yield response and carryover functions are
presented in Table 4. The intercept of the LRSP function was insignificant and
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Table 4. Parameter Estimates for the Linear Response Stochastic Plateau Yield Response to
Total Available K and the Linear Carryover Function

Parameter®:" Stochastic Plateau Carryover®
Interceptd (B, ag) —60.27 25.46%**

(90.69) (6.78)
Sloped (81, a1) 7.95%k+ 0.73%*

(0.54) (0.02)
Plateau yieldd (x) 1,397.05%**

(14.36) —
Plateau random effect (o2) 31,996%*

(4,172.66) —
Year random effect (o2, 02) 33,787

(5,197.98) 235.71
Random error (03, (ruz) 25,416%*

(1,909.13) 2.74

3Single, double, and triple asterisks (*, **, ***) represent significance at the 10%, 5%, and 1% levels,
respectively.

bStandard errors are in parentheses.

€Carryover data were corrected for heteroskedasticity.

dUnits are reported in Ib./ac.

negative, indicating that the intercept was not statistically different than zero.
Total available K was always observed to be greater than zero (Table 3); thus, a
negative yield would be outside the range of the data. Similarly, Watkins, Lu, and
Huang (1998) and Stauber, Burt, and Linse (1975) found insignificant negative
estimated intercepts in their yield response to nitrogen when carryover was
considered. The remaining parameter estimates had the expected positive signs
and were significant at the 1% level. Estimated yields from the LRSP function
were plotted against observed yield response to total available K in Figure 2.

The estimated K carryover function had positive estimates for the intercept
and slope (P < 0.01). The intercept indicated that 25.46 lb. K/ac. of soil K did
not come from the amount of total K in the previous year but remains available
to the plant over the planning period (Lanzer and Paris, 1981). The estimated
slope indicated that 73% of the total K available in the current period (¢) will be
carried over to the next period (¢ + 1). The carryover coefficient was similar to
Harper et al.’s (2012) estimated K carryover coefficient of 0.72.

4.2. Simulation

Monte Carlo simulation results for the annual and 10-year average K application,
K carryover, and yield are presented in Table 5. The 10-year average profit-
maximizing K application rates for all temporal frequencies of soil testing varied
from 29 to 31 Ib./ac. per year. However, the range of optimal K application rates
across the years varied by temporal frequency of soil testing. The optimal K
application in years when a producer did not update his or her soil K information
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Figure 2. Visualizing the Fit of the Linear Response Stochastic Plateau (LRSP)
Functional Form on the Observed Cotton Lint Yield Data

with a soil test was lower than the optimal K application rate when a producer
did update his or her information on soil K carryover. These lower applications
were offset by applying a higher rate in years when soil testing information was
updated to correct for K deficiencies in soil carryover levels. For example, in year
2, the producer that soil tested every year applied a higher K rate to maximize
NPV than the producer that soil tested every other year. However, the optimal K
application rate for the producer that soil tested every other year was higher in
year 3 than the optimal K rate for the producer that soil tested every year, which
was necessary to rebuild total available K levels to maximize NPV. The longer
the producer waited to update his or her information on soil K carryover with
a soil test, the greater the range of optimal K application rate increased.

The 10-year average optimal K carryover levels were 204 Ib./ac. per year when
a producer updated soil testing information annually. However, when a producer
soil tested every other year and every third year, average soil carryover levels were
reduced by 2 Ib./ac. per year, and average carryover levels were 3 and 4 lb./ac.
per year lower than annual soil testing when a producer waited 4 and 5 years
to update soil testing information, respectively. However, as temporal frequency
of soil testing decreased, the lower bound of the range of annual K carryover
level decreased. For instance, when a producer waited 5 years to soil test, the
carryover K level dropped from 238 Ib./ac. at the beginning of period 1 to 159
Ib./ac. when the producer updated soil test information at the beginning of period
6, which was 26 lb./ac. lower than the K carryover level for a producer who soil
tests annually. To correct this deficiency, the producer applied a higher rate of K,
relative to annual soil testing, to increase the soil K levels. This result shows that
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Table 5. Monte Carlo Simulation Results for the Optimal K Application Rate, Potassium

Carryover, and Yield by Simulation Year for a 10-Period Planning Horizon

Temporal Frequency

Every Every Second Every Third Every Fourth Every Fifth
Value Year Year Year Year Year
K Application (Ib./ac.)
Period 1 28 28 28 28 28
Period 2 20 10 10 10 10
Period 3 27 33 21 21 21
Period 4 31 20 41 13 13
Period 5 33 42 28 54 18
Period 6 34 29 36 27 63
Period 7 35 38 36 43 29
Period 8 34 34 37 33 52
Period 9 34 36 36 35 35
Period 10 27 27 26 26 39
Average 30 30 30 29 31
K Carryover (Ib./ac.)
Period 0 293 293 293 293 293
Period 1 238 238 238 238 238
Period 2 218 218 218 218 218
Period 3 199 191 191 191 191
Period 4 189 188 180 180 180
Period § 185 176 186 166 166
Period 6 185 184 181 185 159
Period 7 185 180 183 179 186
Period 8 184 184 184 187 182
Period 9 184 183 186 185 195
Period 10 184 184 186 185 193
Average 204 202 202 201 200
Cotton Lint Yield (Ib./ac.)
Period 1 1,389 1,389 1,389 1,389 1,389
Period 2 1,388 1,378 1,378 1,378 1,378
Period 3 1,386 1,383 1,347 1,347 1,347
Period 4 1,383 1,371 1,382 1,285 1,285
Period 5 1,383 1,379 1,375 1,380 1,212
Period 6 1,383 1,376 1,369 1,376 1,380
Period 7 1,382 1,380 1,382 1,376 1,378
Period 8 1,382 1,380 1,382 1,372 1,386
Period 9 1,382 1,381 1,380 1,383 1,383
Period 10 1,379 1,377 1,381 1,376 1,375
Average 1,384 1,379 1,376 1,366 1,352

when a producer does not know or use soil K carryover information in managing
K applications, the optimal strategy was to draw down soil K levels. In turn,
the drawing down of soil K levels requires producers to apply higher rates of K
in years that soil test information is updated. This finding also resembles what

https://doi.org/10.1017/aae.2016.41 Published online by Cambridge University Press


https://doi.org/10.1017/aae.2016.41

Temporal Frequency of Soil Test Information 267

southeastern cotton producers experienced in the late 1980s and early 1990s
with K deficiencies (Maples, Thompson, and Varvil, 1988; Mullins, Burmester,
and Reeves, 1997), which reiterates the importance of soil testing for K levels in
cotton production in the southeastern United States.

The 10-year average K carryover levels reported in this study would be
classified in the medium soil fertility range for each soil testing schedule according
to the University of Tennessee Extension Service guidelines (Savoy and Joines,
2001). However, the University of Tennessee Extension Service recommends K
application rates of 90 Ib./ac. for medium testing soils in cotton production,
which are higher than the optimal rates reported in this study. Moreover, Harper
et al. (2012) reported optimal total K levels of 516 Ib./ac., which is higher than
the optimal total K levels reported in this study. However, Harper et al. (2012)
used data from a shorter time series on a different soil type and a different yield
response function than used in this study, which might explain the differences
in results. Our results suggest that recommended K application rates in cotton
production based on soil test levels could be decreased.

Annual soil testing produced the highest 10-year average yield of 1,384 Ib./ac.
per year, and the 10-year average lint yields decreased as the producer’s temporal
frequency of soil testing decreased. By waiting until every fifth year to soil test, the
producer decreased his or her yield by 32 Ib./ac. per year relative to the producer
that soil tests annually. The longer a producer waited to update soil testing
information, the lower the annual yields decreased, which might be attributed
to the deficient soil carryover levels limiting yield.

4.3. Optimal Temporal Frequency

The expected NPV increased as temporal frequency increased from soil testing
every fifth year ($7,436/ac.) to soil testing every other year ($7,580/ac.)
(Figure 3). This indicates that the additional information on soil K carryover
had a greater value than the cost of soil testing. The expected NPV increased
$83/ac. when a producer went from soil testing every 5 years to every 4 years,
$48/ac. when a producer went from soil testing every 4 years to every 3 years,
and $13/ac. when a producer went from soil testing every 3 years to every
other year (Figure 3). Thus, the findings further indicate that the value of soil
testing increased at a decreasing rate when the temporal frequency of soil testing
increased. Annual soil testing provided the producer with the most accurate
knowledge of soil K carryover variability over time. However, results from
this study suggest that the additional value from having the most accurate
information on soil K carryover was less than the cost of soil testing to gather that
information. When a producer soil tested annually, the expected NPV decreased
by $12/ac. from soil testing every other year (Figure 3).

Pairwise comparisons were made between the distributions of simulated NPVs
for all temporal frequencies of soil testing. The NPV of soil testing every other
year was statistically different than the NPVs from soil testing every fourth
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Figure 3. Net Present Value from Applying Optimal K Rates over a 10-Year
Planning Period for Five Soil Testing Schedules (different letters indicate a
significant difference at the 0.05 level; least significant difference = 58)

(P value = 0.08) and fifth year (P value = <0.0001) at the 0.05 level. However,
the NPV of soil testing every other year was not statistically different than the
NPVs from soil testing annually and every third year. Although producers who
use soil testing information to manage K in cotton production can maximize
their expected NPV by updating soil testing information every other year, the
optimum soil testing temporal frequency may be found soil testing annually to
every 3 years.’> The conclusion about optimal temporal frequency of soil testing
was supported by what Lambert et al. (2014) found in their survey of cotton
producers in the southern United States.

5. Conclusion

The objective of this study was to determine the temporal frequency of soil testing
for K that maximized NPV of returns to K in cotton production. Cotton lint
yield and soil testing data were obtained from a 9-year experiment in Jackson,
Tennessee. Cotton lint yield was characterized by an LRSP yield response
function, and soil testing information was characterized by a linear carryover
function. The producer’s objective was to choose the temporal frequency of soil
testing and the subsequent annual K application rates that maximized his or her

3 As suggested by a reviewer, mean-variance criteria and stochastic dominance were used to find that
the optimal decision for a risk-averse producer is to soil test every other year.
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NPV of returns to K over a 10-year planning period. Kennedy’s (1986) dynamic
programming framework was applied, and a Monte Carlo simulation was used
to introduce uncertainty into the model.

Previous studies that investigate optimal nutrient application to maximize
NPV assume that producers soil test on an annual basis; however, this assumption
does not appear to follow producer practices (Lambert et al., 2014) or extension
recommendations in the Southeast (Kissel and Sonon, 2011; Mylavarapu, 1997;
Savoy and Joines, 2013). This study expands previous literature by incorporating
the temporal frequency of soil testing into a dynamic programming model, and
results will assist producers in making better-informed decisions regarding their
use of soil testing as a tool to manage K in cotton production.

On average over the 10-year production horizon, the profit-maximizing K
application rates for all temporal frequencies of soil testing varied slightly from
29 to 31 Ib./ac. per year. The longer producers waited to update their information
on soil K carryover with a soil test, the greater the range of optimal K application
rate increased. As producers decreased their temporal frequency of soil testing,
the lower bounds of the carryover levels and yields decreased because of yield-
limiting levels of K. The expected NPV increased at a decreasing rate as temporal
frequency increased from soil testing every fifth year to soil testing every other
year, indicating that the value of the additional information from soil testing was
greater than the cost of soil testing. However, the expected NPV decreased when
producers increased their temporal frequency from every other year to annually;
thus, the additional value from having the most accurate information on soil K
carryover was less than the cost of soil testing to gather that information. The
findings of this study are limited to the production region and soil type of the
experiment. Production practices, weather, and soil type may produce an optimal
soil testing temporal frequency that differs from the results of this study. Further
research is needed on the optimal temporal frequency in other cotton-producing
regions of the United States.

This study used an LRSP functional form assuming the expected plateau yield
is normally distributed, but nonnormality in the expected plateau yield could
increase or decrease the optimal K rates (Boyer, Brorsen, and Tumusiime, 2015).
Nonnormality in the expected plateau yield may give producers an incentive
to update information more frequently to sustain higher total K levels. Future
research could investigate if skewness in the distribution of expected plateau lint
yields has an impact on the optimal temporal frequency of soil testing or optimal
K application rates for cotton.

References

Ackello-Ogutu, C., Q. Paris, and W.A. Williams. “Testing a Von Liebig Crop Response
Function against Polynomial Specifications.” American Journal of Agricultural
Economics 67(November 1985):873-80.

https://doi.org/10.1017/aae.2016.41 Published online by Cambridge University Press


https://doi.org/10.1017/aae.2016.41

270 XAVIER HARMON ET AL.

Bellman, R.E. Dynamic Programming. Princeton, NJ: Princeton University Press, 1957.

Biermacher, J.T., B.W. Brorsen, EM. Epplin, ]J.B. Solie, and W.R. Raun. “The Economic
Potential of Precision Nitrogen Application with Wheat Based on Plant Sensing.”
Agricultural Economics 40(July 2009):397-407.

Bowling, B. Custom Rates Survey, 2013. Knoxville: Department of Agricultural and Resource
Economics, University of Tennessee, 2013. Internet site: http://economics.ag.utk.edu/
extension/pubs/CustomRates2013-rev.pdf (Accessed January 27,2016).

Boyer, C.N., B.W. Brorsen, and E. Tumusiime. “Modeling Skewness with the Linear Stochastic
Plateau Model to Determine Optimal Nitrogen Rates.” Agricultural Economics
46(January 2015):1-10.

Boyer, C.N., J.A. Larson, R.K. Roberts, A.T. McClure, D.D. Tyler, and V. Zhou. 2013.
“Stochastic Corn Yield Response Functions to Nitrogen for Corn after Corn, Corn
after Cotton, and Corn after Soybeans.” Journal of Agricultural and Applied Economics.
45(November 2013):669-81.

Bullock, D.G., and D.S. Bullock. “Quadratic and Quadratic-Plus-Plateau Models for Predicting
Optimal Nitrogen Rate of Corn: A Comparison.” Agronomy Journal 86(January
1994):191-95.

Cerrato, M.E., and A.M. Blackmer. “Comparison of Models for Describing Corn Yield
Response to Nitrogen Fertilizer.” Agronomy Journal 82(January 1990):138-43.

Chiang, A.C. Elements of Dynamic Optimization. New York: McGraw Hill, 1992.

Cuvaca, [.B., D.M. Lambert, ER. Walker, M. Marake, and N.S. Eash. “Economically Optimal
N Fertilizer Rates for Maize Produced on Vertisol and Inceptisol Soils under No-Till
Management: A Case Study in Maphutseng Lesotho.” International Journal of Plant
and Soil Science 8(July 2015):1-12.

Essington, M.E., D.D. Howard, H.]J. Savoy, and G.M. Lessman. “Potassium Fertilization of
Cotton Produced on Loess-Derived Soils.” Better Crops 86,4(2002):13-15.

Federal Reserve Bank of St. Louis. “Gross Domestic Product: Implicit Price Deflator
(GDPDEF).” 2016. Internet site: http://research.stlouisfed.org/fred2/series/fGDPDEF/
downloaddata (Accessed January 11, 2016).

Fuller, W.A. “Stochastic Fertilizer Production Functions for Continuous Corn.” American
Journal of Agricultural Economics 47(February 1965):105-19.

Harmon, X., C.N. Boyer, D.M. Lambert, J.A. Larson, and C.O. Gwathmey. “Comparing
the Value of Soil Test Information Using Deterministic and Stochastic Yield Response
Plateau Functions.” Journal of Agricultural and Resource Economics 41,2(2016):307-
23.

Harper, D.C., D.M. Lambert, J.A. Larson, and C.O. Gwathmey. “Potassium Carryover
Dynamics and Optimal Application Policies in Cotton Production.” Agricultural
Systems 106(December 2012):84-93.

Heady, E.O., and J.L. Dillon. Agricultural Production Functions. Ames: lowa State University
Press, 1961.

Howard, D.D., M.E. Essington, R.M. Hayes, and W.M. Percell. “Potassium Fertilization of
Conventional- and No-Till Cotton.” Journal of Cotton Science 5,4(2001):197-205.

Howard, D.D., C.O. Gwathmey, R.K. Roberts, and G.M. Lessman. “Potassium Fertilization
of Cotton Produced on a Low K Soil with Contrasting Tillage Systems.” Journal of
Production Agriculture 11(January 1998):74-79.

Jomini, P.A., R.D. Deuson, J. Lowenberg-DeBoer, and A. Bationo. “Modelling Stochastic
Crop Response to Fertilisation when Carry-Over Matters.” Agricultural Economics
6(December 1991):97-113.

https://doi.org/10.1017/aae.2016.41 Published online by Cambridge University Press


http://economics.ag.utk.edu/extension/pubs/CustomRates2013-rev.pdf
http://research.stlouisfed.org/fred2/series/GDPDEF/downloaddata
https://doi.org/10.1017/aae.2016.41

Temporal Frequency of Soil Test Information 271

Just, R.E., and Q. Weninger. “Are Crop Yields Normally Distributed?” American Journal of
Agricultural Economics 81(May 1999):287-304.

Kennedy, J.O.S. Dynamic Programming: Applications to Agriculture and Natural Resources.
London: Elsevier Applied Science, 1986.

Kennedy, J.O.S, LE Whan, R. Jackson, and J.L. Dillon. “Optimal Fertilizer Carryover and
Crop Recycling Policies for a Tropical Grain Crop.” American Journal of Agricultural
Economics 17(August 1973):104-13.

Kissel, D.E., and L. Sonon. Soil Test Handbook for Georgia. Athens: University of Georgia
Cooperative Extension, 2011.

Lambert, D.M., B.C. English, D.C. Harper, S.L. Larkin, J.A. Larson, D.F. Mooney,
R.K. Roberts, M. Velandia, and J.M. Reeves. “Adoption and Frequency of Precision
Soil Testing in Cotton Production.” Journal of Agricultural and Resource Economics
39(April 2014):106-23.

Lambert, D.M., ]. Lowenberg-DeBoer, and G. Malzer. “Managing Phosphorus Soil Dynamics
over Space and Time.” Agricultural Economics 37(July 2007):43-53.

Lanzer, E.A., and Q. Paris. “A New Analytical Framework for the Fertilization Problem.”
American Journal of Agricultural Economics 63(February 1981):93-103.

Léonard, D., and N. Van Long. Optimal Conirol Theory and Static Optimization in
Economics. Cambridge, UK: Cambridge University Press, 1992.

Maples, R.L., W.R. Thompson, Jr., and J. Varvil. “Potassium Deficiency in Cotton Takes on a
New Look.” Better Crops 73,1(1988):6-9.

Mehlich, A. Determination of P, Ca, Mg, K, Na and NH4. Raleigh, NC: North Carolina
Department of Agriculture, Soil Testing Division Publication No. 1-53, 1953.

Mullins, G.L., C.H. Burmester, and D.W. Reeves. “Cotton Response to In-Row Subsoiling
and Potassium Fertilizer Placement in Alabama.” Soil and Tillage Research 40(January
1997):145-54.

Mullins, G.L., G.J. Schwab, and C.H. Burmester. “Cotton Response to Surface Applications
of Potassium Fertilizer: A 10-Year Summary.” Journal of Production Agriculture
12(October 1999):434-40.

Mylavarapu, R.S. Soil Sampling for Precision Farming. Clemson, SC: Clemson University
Cooperative Extension Service, Publication No. IL 63, 1997.

National Oceanic and Atmospheric Administration, National Climatic Data Center.
“Climate Data Online Search.” Internet site: http://www.ncdc.noaa.gov/cdo-web/search
(Accessed January 11, 2016).

Palisade Corporation. @ Risk. Ver. 6. Ithaca, NY: Palisade Corporation, 2014.

Park, S.C., A. Stocker, J.A. Hattey, and J.C. Turner. “Long-Term Profitability of Animal
Manure Using Optimal Nitrogen Application Rate.” Paper presented at the Southern
Agricultural Economics Association Annual Meeting, Mobile, Alabama, February 4-7,
2007.

SAS Institute Inc. SAS/STAT 9.3 User’s Guide. Cary, NC: SAS Institute Inc., 2011. Internet
site: http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.
htm#titlepage.htm (Accessed January 11, 2016).

Savoy, H.J.,Jr, and D. Joines. “Chapter 2: Agronomic Crops.” Lime and Fertilizer
Recommendations for the Various Crops of Tennessee. Knoxville: Agricultural
Extension Service, University of Tennessee, Publication No. BEES Info 100, 2001, pp.
1-8.

. Soil Testing. Knoxville: Agricultural Extension Service, University of Tennessee,

Publication No. PB1061, 2013.

https://doi.org/10.1017/aae.2016.41 Published online by Cambridge University Press


http://www.ncdc.noaa.gov/cdo-web/search
http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#titlepage.htm
https://doi.org/10.1017/aae.2016.41

272 XAVIER HARMON ET AL.

Schnitkey, G.D., ].W. Hopkins, and L.G. Tweeten. “An Economic Evaluation of Precision
Fertilizer Applications on Corn-Soybean Fields.” Proceedings of the Third International
Conference on Precision Agriculture, Minneapolis, Minnesota, June 23-26, 1996.
Madison, WI: American Society of Agronomy, 1996, pp. 978-80.

Segarra, E., E.D. Ethridge, C.R. Deussen, and A.B. Onken. “Nitrogen Carry-Over Impacts
in Irrigated Cotton Production, Southern High Plains of Texas.” Western Journal of
Agricultural Economics 14(December 1989):300-309.

Stauber, ML.S., O.R. Burt, and E. Linse. “An Economic Evaluation of Nitrogen Fertilization of
Grasses When Carry-Over Is Significant.” American Journal of Agricultural Economics
57(August 1975):463-71.

Tembo, G., B.W. Brorsen, EM. Epplin, and E. Tostdo. “Crop Input Response Functions with
Stochastic Plateaus.” American Journal of Agricultural Economics 90(May 2008):424—
34.

Tumusiime, E., B.W. Brorsen, J. Mosali, J. Johnson, J. Locke, and J.T. Biermacher. “Determining
Optimal Levels of Nitrogen Fertilizer Using Random Parameter Models.” Journal of
Agricultural and Applied Economics 43(November 2011):541-52.

University of Tennessee Agricultural Extension Service. Cotton Production in Tennessee.
Knoxville: University of Tennessee Agricultural Extension Service, Publication No.
PB1514, 2001.

U.S. Department of Agriculture, Economic Research Service. “Table 7. Average U.S. Farm
Prices of Selected Fertilizers, 1960-2013.” 2013. Internet site: https://www.ers.usda.
gov/webdocs/DataFiles/Fertilizer_Use_and_Price__17978/fertilizeruse.xls?v=41467
(Accessed January 11, 2016).

. “Table 11. U.S. Upland Cotton Farm, Spot, and Mill Prices, 1970/71-2013/14.”
2014. Internet site: http://usda.mannlib.cornell.edu/usda/ers/89004/ (Accessed January
11, 2016).

Walworth, J.L. Soil Sampling and Analysis. Tucson: University of Arizona Cooperative
Extension, Publication No. AZ1412,2011.

Watkins, B., Y. Lu, and W. Huang. “Economic and Environmental Feasibility of Variable Rate
Nitrogen Fertilizer Application with Carry-Over Effects.” Journal of Agricultural and
Resource Economics 23(December 1998):401-26.

Zhou, X., B.C. English, C.N. Boyer, R.K. Roberts, J.A. Larson, D.M. Lambert, M. Velandia,
et al. Precision Farming by Cotton Producers in Fourteen Southern States: Results from
the 2013 Southern Cotton Farm Survey. Knoxville: Department of Agricultural and
Resource Economics, University of Tennessee, Research Series 15-001, 2015.

https://doi.org/10.1017/aae.2016.41 Published online by Cambridge University Press


https://www.ers.usda.gov/webdocs/DataFiles/Fertilizer_Use_and_Price__17978/fertilizeruse.xls?v=41467
http://usda.mannlib.cornell.edu/usda/ers/89004/
https://doi.org/10.1017/aae.2016.41

	1. Introduction
	2. Empirical Framework
	2.1. Dynamic Programming Model
	2.2. K Carryover Function
	2.3. Yield Response Function
	2.4. Monte Carlo Simulation

	3. Data
	4. Results
	4.1. Yield Response and Carryover
	4.2. Simulation
	4.3. Optimal Temporal Frequency

	5. Conclusion
	References



