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DEFORMATION METHODS AND THE STRONG UNBOUNDED
REPRESENTATION TYPE OF p-GROUPS

J. D. DONALD AND F. J. FLANIGAN

Introduction.

A basic problem in the representation theory of a finite group G is
the determination of all indecomposable G-modules. Thus, for G — C(n)
= a cyclic group of order n over an arbitrary field, the indecomposable
representations, finite in number, are known from the theory of a single
linear transformation. In 1954 Higman [9] showed that, in sharp con-
trast to the classical case of characteristic zero, an arbitrary finite group
G has indecomposables of arbitrarily high dimension over any field of
prime characteristic p iff the p-Sylow subgroup of G is non-cyclic (cf.
unbounded representation type [3, p. 431]). Examples published by Heller
and Reiner [8] in 1961 indicated that this phenomenon is even more
extensive; reinterpreting a result of Dieudonne [4] as classifying the
indecomposable modules for a square zero algebra on two generators,
they showed that G = C(p) x C(p) (and therefore many other groups)
has infinitely many non-isomorphic indecomposables in every even dimen-
sion over an infinite field of characteristic p (cf. strong unbounded
representation type). At present, all C(p) x C(p) indecomposables are
known only in the case p = 2, the result also being given (essentially)
in [4] (cf. also [1], [2], [12]). In particular, the four-group C(2) X C(2)
affords only two (dual) indecomposable representations in each odd di-
mension >3.

This paper contributes, by way of examples and a suggested tech-
nique, to a fuller description of this plethora of G-modules. Our study
of the deformation of algebra representations [5], [6], [7], when brought
to bear on the Heller-Reiner modules for a non-cyclic abelian p-group G,
has led us to these observations:
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(1) If G is not the four-group, then it has infinitely many inde-
composables in each odd dimension >3 also, provided of course that the
field k is infinite (Section 2).

(2) For p = 2, the odd-dimensional Heller-Reiner indecomposables
for the four-group G must decompose in every nontrivial generic defor-
mation and are actually rigid as modules for the square zero algebra
on two generators. This phenomenon may be viewed as the deformation-
theoretic counterpart of the fact (see above) that there are no other
indecomposables but these two. We partially re-obtain this finiteness
result in the course of straightening-out some deformations (Section 4).

(3) A result recently announced by Janusz ([10], [11]) that almost
all non-cyclic abelian p-groups have infinitely many faithful indecom-
posables in every sufficiently large dimension is obtained by a slight
extension of our methods (Section 3).

Actually our results grew out of a deceptive intuition. We speculated
that if an indecomposable module were not rigid (as are the principal
indecomposables and the irreducibles), then a generic deformation of that
module would provide a parametrized family of non-isomorphic indecom-
posables of the same dimension. Thus we began by rediscovering the
Heller-Reiner modules referred to above and trying to deform them.
The even-dimensional family is in fact obtained as a deformation of a
particularly simple member of it. Secondly, we found a common defor-
mation of the two odd-dimensional types (no longer factoring through
an algebra with square zero radical) valid for G = C(pe) x C(pf) except
C(2) x (7(2). It is easy to prove the indecomposability of all these modules
directly (see (1) above). Subsequently we extended our methods slightly
to include Janusz' faithfulness result ((3) above).

These examples lent support to our potentially very useful deforma-
tion principle, but then we discovered a counterexample (cf. (5.2)) a
generic deformation of an indecomposable need not be indecomposable.
Nonetheless, we suspect that every indecomposable over an algebraically
closed field arises by deforming one defined over the prime field. As an
illustration of the usefulness of a deformation-theoretic approach, we
mention that the rigidity and straightening-out theorems (cf. [6]) imply
that certain modules cannot belong to a larger parametrized family!

Section 1 briefly describes the Heller-Reiner modules. Then we begin
to deform. Section 2 gives the common deformation of the two odd-
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dimensional classes. Section 3 describes a simple way of extending these

results to yield faithful representations of groups with exponent >p.

Section 4 contains a rigidity result for C(2) x C(2)-modules and Section

5 contains some examples of deformations. It is only in these last two

sections that any technical deformation-theoretic language appears.

1. The Heller-Reiner modules.

(1.1) We list here, using a convenient notation, various indecom-

posable representations for a non-cyclic multiplicative abelian group

G = YllZTC(pei) with basis au ,α m , m > 2, et > 1, over a scalar field fc

of prime characteristic p. See [8].

The group algebra kG has radical of codimension one. We will

define the action of the m generators at — 1 of the radical of kG so that

all products (α* — l)(βj — 1) will act as 0. This is sufficient to define a

"height two" representation of kG on a fc-space V, that is,

V > (rad kG)V > (rad kGfV = (0) .

In each case let the fc-space V — X®Y with bases {x19 , xβ},

{xβ+1, -9xN} for X, Y. We always put (at — 1)Y = (0) for all i, and

(βi — 1)1x6 Honifc (X, Y). With one exception, (1.2), we do not specify

the di — 1 for i > 3.

(1.2) The first odd-dimensional class: Let β — n>l, iV = 2w + l

and, for 1 < r < n

(a, - ΐ)(xr) = xr+n , (a2 - ΐ)(xr) = α; r + n + 1

Note t h a t if m > 3, then the choices

(α3 - 1)(^) = txn+u tek , (a3 — l)(xr) = 0 , 2 < r < w ,

yield inequivalent representations, since for a e fc, dimfc ker [α(α! — 1) —

(α3 — 1)] = n + 2 iff α = £. This provides "many" indecomposables in

the special case G is an elementary abelian p-group C{p) x C(p) x x

C(p) of dimension m > 2. (Contrast the case p = 2, m = 2.) We use this

in (3.2).

(1.3) The second odd-dimensional class: These are the duals to (1.2).

Let β == n + 1 > 2, N = 2w + 1, and

= 0 , (a, - l)(av) = ^ r +n , 2 < r < n + 1 ,
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(<z2 - ΐ)(xr) = xr+n+ι , 1 < r < n , (a2 - l)(#w + 1) = 0 .

Remark. In [8] it is pointed out that, for G = C(pe) X Cίp') (thus

m = 2), every height two odd-dimensional &G-indecomposable is either

(1.2) or (1.3).

(1.4) An even-dimensional class: Let β — n > 1, N — 2n, and

(αx - ΐ)(xr) = xr+n , 1 < r < n

(α2 — l)0*v) = # r + w + 1 + txr+n , 1 < r < n — 1

(α2 - l)(α;TO) = ία;27l , tek

These representations are inequivalent for distinct tek since for a e k,

dimfc ker [aia^ — 1) — (α2 — 1)] = n + 1 iff a — t. Consequently an infinite

field k affords infinitely many distinct even-dimensional indecomposables

for G.

In [8] it is pointed out that, for groups G = C(pe) x C(pf) (thus

m = 2), every even-dimensional height two feG-indecomposable is of the

type (1.4) iff k is algebraically closed.

(1.5) Faithfulness of these representations when all et = 1. Note

that each group element a\ acts as r(at — 1) + 1. Thus, if G = C(p) x

C(p) is elementary abelian with m = 2, then the above representations

are faithful for G.

In general, since

dim z / p Z Homfe (X, Y) = dimfc Z dimfc Γ [A;: Z/pZ] ,

proper choices of the radical generators at — 1 e Horn* (Z, Y) with 3 < i

< m will yield faithful representations of an elementary abelian G pro-

vided the field k is large enough.

See Section 3 for the case where some et > 1.

2. The common deformation of the two odd-dimensional classes.

(2.1) Now we show that an infinitude of odd-dimensional indecom-

posable G-modules, which occured at height two in the even-dimensional

case (1.4), occurs at height three. Our method is to write down a one-

parameter family Vt of deformations of (1.2) and observe that the generic

member is indecomposable. The modules (1.2) and (1.3) are the cases

t = 0 and t = 1 of this family.

We require G = f]*-? C(p6i) with pei ψ29m>2, and char k = p.
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(2.2) The G-modules Vt. L e t V = X®Y w i t h fc-bases {x19---,xn}

and {Xn+ι, - -,%2n+ι} for X and Y as in (1.2). We have a\ Φ 1 in G.

Fix £ e k and define the action of αx — 1 by

(to - ΐ)(xj = (1 - t)xn+1 , (αx - l)(xr) = xr+n , 2 <r <n

(a, - l)(an + 1) = tx2n+1 , (©! - l)(a r) - 0 , n + 2<r<2n + l .

The action of a2 — 1 is defined by

(a2 - ΐ)(xr) = xr+n+1 , 1 < r < n , (α2 - 1)(Y) = (0) .

Moreover, for 3 < ί < m we require that {at — l ) | x e Homfc (Z, Γ) and

also that (α4 - 1)(Y) = (0).

Now one notes that, except for (ax — l)2(^i) = til — t)x2n+ι, defining

all products (at — lXα^ — 1) and so on to act as zero yields a represen-

tation of kG on the space Z 0 Γ . We denote this module Vt. It is

immediate that t = 0 and t = 1 reduce to (1.2) and (1.3) respectively.

(2.3) Vt is indecomposable. We sketch the argument. It is stand-

ard, and applies in Section 1 also; see [3, p. 433].

Note first that a nonzero fcG-direct summand cannot be contained

in Y. Now, if Xo is any A -space complement to Y in Vt, and if we have

a nontrivial /c-space decomposition Xo — Xλ Θ X29 then one checks that

dimfc (rad kG)Xj > dimfc Xj for = 1,2. (This follows from the fact that

ax — 1, a2 — 1 map Xo —> Y injectively.) Thus, dimft (Xλ 0 X2) = n and the

hypothesis (rad kG)Xx Π (rad kG)X2 = (0) would imply n + 1 = dimft Y >

n + 2, a contradiction. Thus Xx and Z 2 cannot generate complementary

submodules of Vt. The assertion follows.

(2.4) Lβί t Φ 0,1 ink. Then Vt and Vs are kG-isomorphic iffs=:t

or 1 — t. To prove this, suppose first s = 1 — t and £ =£ 0,1. Define a

fc-linear map φ: Vt —> Vγ_t on the basis x19 , xn+lf , a?2n+i by

^ ) = xi9 i φ n + 1 , φ(xn+i) = t(X - t)~ιxn+ι

One readily checks that φ yields the desired fcG-isomorphism.

Conversely, in Vt we have (rad kG)2Vt = fc-span{#2n+1}. Moreover,

since a2 — 1 gives a fc-space isomorphism X -+ ft-span{#w+2, '9x2n+i}> we

may consider the inverse map here (denoted (a2 — I)"1) and obtain the

equation

- V-ψ(x2n+ύ = i d - t)«2n+i
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Thus a certain intrinsically defined map on the canonical subspace
(rad JcGfVt is multiplication by t(l — t). It follows that Vt isomorphic
to Vs forces t(l — ί) = s0- — s)> whence s = t or 1 — t. This completes
the proof of (2.4).

We note this consequence. See (3.2) also.

(2.5) // the scalar field k is infinite and pei Φ 2, (see (2.1)), then
there are infinitely many odd-dimensional indecomposable G-modules of
height three.

The remarks (1.5) on faithfulness in the situation G is elementary
abelian, p odd, apply here as well.

(2.6) The dual module to Vt. Now we define a left action of kG
on ΈLomk(yt,k) by (a*f)(x) = f(ax) for a e kG, f e Homfe (7 t, k), and
xeVt. Note that (α&)*/ = α *(&*/) because kG is commutative. We
denote the module thus obtained Vf.

(Note also that a different left action may be obtained by using the
natural involution a «-• α"1 of G, rather than commutativity.)

Now let {fί} be the fc-basis for Vf dual to {#*}, so that fi(Xj) — dis.
Then the assignment

extends to a feG-isomorphism Vf ^Vx_t.
We conclude, using (2.4), that Vt is isomorphic with its dual iff

tΦθ,l.

3. Abelian p-groups of higher exponent.

In this section we construct families of indecomposables for abelian
^-groups of exponent greater than p.

Let G, k be as in (1.1). Let U denote the p-group of unipotent
matrices over k of the form I + N, with N strictly lower triangular.
Any representation G —> Autfc V may, by proper choice of basis, be viewed
as a homomorphism p:G->U. The group U contains an element of
order pd iff dimfc V > pd~ι + 1. Furthermore V can be made indecom-
posable with respect to such an element iff dimΛ V < pd. For the time
being, assume exponent G = pd and pd~1 + 1 < dimfc V <pd, and that,
by a further modification of basis if necessary, the representation p: G
—> U satisfies
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1 <Γ

. . (in Jordan form) .

0 1 ' 1.

The centralizer Γ in U of p(ax) is the subgroup of U of matrices

fas) with constant subdiagonals: ai3 — oti+ιj+i for ί > j . (Γ = I + (com-

mutative algebra generated over k by p(a^ — /).) Thus p(G) c Γ. By

letting the first non-zero subdiagonal be the r-th for appropriate r, one

gets a matrix of any order p% v < d. Further, if a2 is a second generator

of G of order p% choosing distinct constant entries t e k for the r-th

subdiagonal yields inequivalent modules Vt (here p(a(aι — l ) r — (a2 — 1))

annihilates Vt/(a1 — l)r+1Vt iff a = ί). Since the appropriate location of

the constant subdiagonals is sufficient to determine a representation, we

see also that p can be made faithful if k is sufficiently large and ex-

ponent G — pd.

We combine the representations of Sections 1 and 2 with the above

described minimal faithful ones Vt.

(3.1) PROPOSITION. Let {vu -,vm], m > 3, be a basis of Vt giving

the desired lower triangular form. Let M be an indecomposable G-module

with cyclic submodule Mo isomorphic via φ to some submodule &-span

{vi9 , vm}, λ>2, of Vt. Assume (a, - Ϊ)m'1+1(M) = (0). Then

W = Vt 0 Mj fc-span {^ •— p " 1 ^ * »̂ m — p"1^^)}

is indecomposable.

Proof. We denote the images in W of the ^ by Vι. If ^ + tt; € ^ ,
a submodule of W, then (αx — l)m'ι(vι + w) — DneZ. Let W = Zλ®Z2

and suppose some ^ + w e Zλ. Then as vector space we have a non-

trivial decomposition

Z, = fc-span {(αx - 1)^^! + w): = 0, . . . , λ - 2} 0 (Zx Π l ) ,

where ifcf denotes the image of M in W. Since v̂  + w' e Z2, j < jί, implies

^m 6 Z2, we have Z2 c U7. Thus ilί" is decomposed. Since M is isomorphic

to M,Z2 = (0).

In this situation, given non-isomorphic F c or non-isomorphic ΛΓs,

the resulting modules W are non-isomorphic. In fact, then Vt is the

only m-dimensional cyclic submodule of W, while M = ker (ax — i^-^+i.
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We may apply (3.1) using for M the second odd-dimensional class

(Mo = Jfc-span{#n+1, α?2n+i} w ^ h (β% — l)G&π+i) e &-span{#27l+1}, i >2) provided

{a2 — l)vm_x = 0 in Vt. This can be arranged if either a2 has order <pd

or n > pd~ι + 1. We may also take M in the even-dimensional class,

with MQ = fc-span {xn, x2n) and (αt — l)(#n) e fe-span {x2n}, ί > 2. Note that

the choice oί tek for the action of α2 — 1 is already determined by Vt.

One may also take for M one of the modules of Section 2, with

Mo = fc-span{ίcn+1, ίc2n+1} and appropriate choices for action of the α< — 1,

ΐ > 2, provided again that (α2 — l)vm-i = 0, and m > 3. In this case,

however, the hypothesis that (c^ — \)m~λ+ι{M) = 0 fails, and a slightly

more complicated argument specific to M is needed to prove W inde-

composable. For other M, and in the absence of that hypothesis, W may

decompose.

A partial summary of the material of Sections 1, 2, and 3 is the

following:

(3.2) THEOREM. With the exception of C(2) x C(2), a non-cyclic

abelίan p-group has infinitely many indecomposables in every dimension

> 2 over an infinite field of characteristic p. If pd is the exponent of

the group, these representations may be taken faithful in dimensions

4. The anomalous case: The four-group in characteristic 2.

In this section we show that the procedure of Section 2 for obtain-

ing an infinite family of odd-dimensional indecomposables fails for G =

(7(2) x C(2). In fact we show essentially that in this case neither of the

two odd-dimensional Heller-Reiner modules is a member of any non-trivial

larger parametrized family of modules, indecomposable or decomposable,

unless the group algebra kG is a direct summand of the generic members

of that family. Our argument involves straightening out a deformation,

and the method is reminiscent of Dieudonne's in [4], Consequently a

portion of his characterization of the odd-dimensional indecomposables

in this situation emerges from our proof.

A complete statement of results is as follows:

(4.1) THEOREM. Let G be the four-group, and V be an indecomposable

G-module of odd dimension > 3 over a field k of characteristic 2. Then

(i) every non-trivial generic deformation Vt of V decomposes directly
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over KG in fact, Vt ~ KG Θ W, for some KG-submodule W and

(ii) V is a Heller-Reiner module of the first (1.2) or second (1.3)

class.

Here K is the power series field k((t)). For deformations, we employ

only some definitions and two lemmas from [6]. Statement (ii) is of

course known. We use some weaker consequences of it, Lemmas (4.2)

and (4.3) below, in the proof of (i). This proof shows (ii) to be a con-

sequence of (4.2) and (4.3).

We have G = {1, x, y, xy), and write α = 1 — x, β = 1 — y in the group

algebra kG. Thus rad kG has basis a,β,aβ. Suppose ^ : fcG->End f c 7

gives the odd-dimensional indecomposable representation. Then it is well-

known that ψiaβ) = 0, for otherwise V would contain a submodule iso-

morphic to the free (and hence injective) left regular module kG, which

would therefore split off from V.

Likewise, if φt = φ + tΦx + t2Φ2 + affords a deformation Vt such

that <pt(aβ) Φ 0, then Vt has a if G-direct summand isomorphic with KG.

(Here the underlying space for Vt is Vκ, obtained by extending scalars

to the power series field K. This procedure is standard; see [6]).

It remains to show, therefore, that every deformation ψt with the

property ψtiββ) = 0 is a trivial deformation. This is true in any charac-

teristic. See (4.4) below.

Since aβ will act as zero from now on, we may take ψ and ψt as

representations of the 3-dimensional quotient algebra k[a, b] = kG/(aβ),

where a = a + (aβ) and b = β + (aβ). Note N = rad k[a9 b] is square zero

on a and b.

Denoting <p(N)V by Y, we may write V = X ®Y, where X is a fc-

space complement to Y. Since ψ(a)Y = ψ(b)Y = (0), we may as well

consider the operators ψ(a) and ψ(b) on V as mappings X —> Y.

(4.2) LEMMA. // V is indecomposable as a k[a, b]-module and if

dim^ X < dimfc Y, then both mappings ψ(a),ψ(b): X -> Y are injective.

V must in fact have one of the structures given in (1.2) and (1.4).

From (4.1) (ii) we also have

(4.3) LEMMA. Let V be a (2n + T)-dίmensional indecomposable module

for k[a, b]. Then dimfc^(2V)y equals n or n + 1.

Now all of (4.1) follows from (4.4) using only (4.2) and (4.3).
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(4.4) LEMMA. Let k be any field, and V a (2n + l)-dimensional

indecomposable module for the algebra k[a, b] afforded by the represen-

tation φ. Then

( i ) V is rigid as a k[a, b]-module

(ii) if diϊΆkφ(N)V = n + 1, then V has a k-basis xl9 , xn>yi, •>

yn+ι such that, for 1 < i < n,

= yi+ί;

(iii) otherwise, V is the n-dimensional k-dual of the module in (ii).

It is straightforward that (iii) follows from (ii), (4.3) and Lemma

4 of [6]. To prove (i) and (ii), suppose we are given a deformation Vt

of V afforded by a representation <pt = φ + tΦι + - of K[a, b]. We

assert first that if Y — <p(N)V has dimension n + 1 over k, then Z =

<pt(NK)VK has dimension n + 1 over the power series field K and, more-

over, Z = ker ψt (a) — ker <pt(b). Here we are considering φt(a) and φt(b)

as operators on Vt. To see this, note first that Z is contained in both

kernels because ab — ba = 0. Moreover, each kernel has Z-dimension

n + 1, because any square zero operator on Vκ has a kernel of dimension

>n + 1, while Lemma 8 of [6] says that dim^ ker φt(a) is less than or

equal to dim* ker φ(a). Thus dim^ Z < n + 1. On the other hand, Z has

If-dimension at least as large as dimfc φ(N)X = n + 1, again by Lemma

8 of [6].

It follows that the fc-space decomposition V — X®Y has a counter-

part Vt = XK θ Z over K. We next assert that Xκ has a K-space basis

fi, J ζn where ξt — ξi(t) = xi0 + txix + (cf. order zero) with the

properties that xm ,a?n0 is a Λ-basis for X and also ψt{b)ξi = £>£(G0?*+I

for i = 1, ,w — 1 when w > 2. We go by induction on n, noting that

the case n = 1 is clear.

To begin the induction process, define

Zx = ( P t (α)Z r ) Π M&)X*) , Ξ =

Note that Zx is of codimension 2 in Z, whence Ξ is of codimension 1 in

Xκ. Now let ΐF be the submodule of Vt generated over K[a, b] by the

subspace Ξ,

W = Ξ + φt(β)B + φt{b)Ξ

and, having this, let Wo be the k[a, 6]-submodule of V generated by the
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"constant terms" in W; see Lemma 5 in [6], It follows that

W0 = Ξ0 + φ(ά)Ξ0 + φ(b)Ξ0

where Ξo is the fc-space of constant terms in B. Note dimfc Wo > 2(n — 1),

since dim^ Ξo = n — 1.

We assert that in fact dimfc Wo = 2n — 1 and that Wo is an inde-

composable k[a, &]-module. First the assumption dimfc Wo = 2(n — 1)

would imply φ(a)Ξ0 = φ(b)Ξ0. Then any x e Xy x & ΞQ, would generate a

3-dimensional k[a, &]-module complement to Wo in V, a contradiction.

Now given a module decomposition WQ = Γ Θ Γ7, assume Γ ; even-dimen-

sional. From previous remarks ker φ(a)\Wo ΓΊ ker ^(δ)|^0 is p(N)T70. Thus

we have T = X' 0 F where Z 7 c X and Y7 = φ(N)T'. A similar decom-

position of Γ implies dim£>(ΛΓ)Γ > i dim Γ, whence dimZ 7 = dim Γ', and

^(α)| x, and φ(b)\z, are isomorphisms. Let X" ®X' = Z . Then [̂ (Λ/')Z//]

Π F = (0) by dimensionality. Thus T has a complement Z 7 / + φ(N)X"

in "F and so is (0).

Now by induction, there exists a If-basis ξ 2, , ξ n for Ξ such that

each ξt has the form xiQ + txix + and also φt(b)ξi = pί(α)£<+1, i = 2,

. . . , n — 1. Recalling the definition of B, we note that φt(a)ξ2, , ^(α)fn

is a basis for Zι% Since ^ c <pt(b)Xk, we may complete our basis of Xk

by choosing a series ξx of order 0 in Xκ such that φt(b)ξx = ^£(α)f2. This

gives us the basis of f/s as asserted.

Now we complete the proof of (i) and (ii) in the statement of (4.4)

by defining xt = xi0 and y€ = ^(α)^^ for 1 < i < w, and also yn+ί = <p(b)xn.

To show that the deformation Vt is trivial we define the mapping It: Vκ

—• Vκ (a deformation of the identity mapping of the underlying if-space

see [6, Lemma 3]) by

for 1 <; ϊ < w. One checks readily that It affords an equivalence of the

representations φ and φt, whence the deformation φt of φ is trivial. This

completes the proof of Lemma (4.4) and thus of Theorem (4.1).

5. Some examples of deformations in the even-dimensional case.

In Section 4 we did not determine whether for G — C(2) x C(2), the

ZG-modules of types (1.2) and (1.3) can deform so as to acquire a

summand isomorphic to KG. In fact we intend to give a fuller treatment

https://doi.org/10.1017/S0027763000016585 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000016585


118 J . D. DONALD AND F. J . FLANIGAN

of this problem later in which we show this to be impossible. There
the Hochschild cohomology is a useful computational device.

For the present we content ourselves with two examples to illustrate
the deformation structure of the even-dimensional Heller-Reiner modules
for G = C(2) x C(2) in characteristic two.

(5.1) The ^-dimensional module of type (1.4) with t = 0 deforms
into the left regular module KG.

We let u represent the variable in the power series field K. Then
defining

φu(a2 — 1 ) ( O = x4 + ux2 , φu(a2 — l)(x3) = ux4 ,

with other action as before, gives the result. For now xx acts as cyclic
generator.

Actually here again one may show that for t Φ 0, there is no de-
formation into KG, nor is there even a deformation with a summand
isomorphic to KG in the higher dimensional cases of (1.4) with t Φ 0.
One might say that the kernel of these XG-representations is rigid.

(5.2) All the modules (1.4) for G = C(2) x C(2) admit decomposable
generic deformations of height two.

We factor through the algebra k[a, b] of Section 4, letting a act as
ax — 1 and b as a2 — 1. Hence the following is valid in any characteristic.
With the given action of a, and an arbitrary map ψ{b): X —• Y, the
module X 0 Y is indecomposable if and only if with respect to the given
bases of X and Y the map <p(b): X —> Y has an indecomposable matrix.
It suffices then to give a deformation preserving the action of a and
such that ψu{b): X —> Y has a matrix with distinct eigenvalues in Jί£. For
example, we may define

φu(b)(xr) = p(6)(ίcr) + ^r£r+rc , 1 < r < n .

Note that if ψjb) has distinct eigenvalues only in the algebraic
closure of K then the generic deformation might actually be indecomposable
over K in spite of the fact that all specializations of u into k might
yield decomposable modules. One may often avoid this difficulty by
replacing u by a suitable power uN before making the deformation.
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