
Adv. Appl. Probab. 55, 1415–1441 (2023)
doi:10.1017/apr.2023.3

α-STABLE CONVERGENCE OF HEAVY-/LIGHT-TAILED INFINITELY
WIDE NEURAL NETWORKS

PAUL JUNG,∗ Sam Houston State University
HOIL LEE ,∗∗ KAIST
JIHO LEE,∗∗∗ Korea Science Academy of KAIST
HONGSEOK YANG,∗∗∗∗ KAIST and Institute for Basic Science

Abstract

We consider infinitely wide multi-layer perceptrons (MLPs) which are limits of stan-
dard deep feed-forward neural networks. We assume that, for each layer, the weights
of an MLP are initialized with independent and identically distributed (i.i.d.) samples
from either a light-tailed (finite-variance) or a heavy-tailed distribution in the domain
of attraction of a symmetric α-stable distribution, where α ∈ (0, 2] may depend on the
layer. For the bias terms of the layer, we assume i.i.d. initializations with a symmetric
α-stable distribution having the same α parameter as that layer. Non-stable heavy-tailed
weight distributions are important since they have been empirically seen to emerge in
trained deep neural nets such as the ResNet and VGG series, and proven to naturally
arise via stochastic gradient descent. The introduction of heavy-tailed weights broadens
the class of priors in Bayesian neural networks. In this work we extend a recent result
of Favaro, Fortini, and Peluchetti (2020) to show that the vector of pre-activation values
at all nodes of a given hidden layer converges in the limit, under a suitable scaling, to a
vector of i.i.d. random variables with symmetric α-stable distributions, α ∈ (0, 2].

Keywords: Heavy-tailed distribution; stable process; multi-layer perceptrons; infinite-
width limit; weak convergence
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1. Introduction

Deep neural networks have brought remarkable progress in a wide range of applications,
such as language translation and speech recognition, but a satisfactory mathematical answer
on why they are so effective has yet to be found. One promising direction, which has been
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the subject of a large amount of recent research, is to analyze neural networks in an idealized
setting where the networks have infinite widths and the so-called step size becomes infinitesi-
mal. In this idealized setting, seemingly intractable questions can be answered. For instance, it
has been shown that as the widths of deep neural networks tend to infinity, the networks con-
verge to Gaussian processes, both before and after training, if their weights are initialized with
independent and identically distributed (i.i.d.) samples from the Gaussian distribution [32, 24,
30, 33, 43]. (The methods used in these works can easily be adapted to show convergence to
Gaussian processes when the initial weights are i.i.d. with finite variance.) Furthermore, in this
setting, the training of a deep neural network (under the standard mean-squared loss) is shown
to achieve zero training error, and an analytic form of a fully-trained network with zero error
has been identified [17, 26]. These results, in turn, enable the use of tools from stochastic pro-
cesses and differential equations to analyze deep neural networks in a novel way. They have
also led to new high-performing data-analysis algorithms based on Gaussian processes [25].

One direction extending this line of research is to consider neural networks with possi-
bly heavy-tailed initializations. Although these are not common, their potential for modeling
heavy-tailed data was recognized early on by [41], and even the convergence of an infinitely
wide yet shallow neural network under non-Gaussian α-stable initialization was shown in the
1990s [32]. Recently, Favaro, Fortini, and Peluchetti extended such convergence results from
shallow to deep networks [4].

Favaro et al. [4] considered multi-layer perceptrons (MLPs) having large width n, and hav-
ing i.i.d. weights with a symmetric α-stable (SαS) distribution of scale parameter σw. A random
variable X is said to have an SαS distribution if its characteristic function takes the form, for
0<α ≤ 2,

ψX(t) := EeitX = e−|σ t|α ,

for some constant σ > 0 called the scale parameter. In the special case α= 2, X has a Gaussian
distribution with variance 2σ 2 (which differs from standard notation in this case, by a factor
of 2).

The results of Favaro et al. [4] show that as n tends to ∞, the arguments of the nonlinear
activation function φ, in any given hidden layer, converge jointly in distribution to a product
of SαS(σ�) distributions with the same α parameter. The scale parameter σ� differs for each
layer �; however, an explicit form is provided as a function of σw, the input x = (x1, . . . , xI),
and the distribution of bias terms which have an SαS(σB) distribution for some σB > 0. Favaro
et al. also show that as a function of x, the joint distribution described above is an α-stable
process, and they describe the spectral measure (see [38, Section 2.3]) of this process at the
points x1, . . . , xn.

Our work is a further extension of the work of [4]. We consider deep networks whose
weights in a given layer are allowed to be initialized with i.i.d. samples from either a light-
tailed (finite-variance) or heavy-tailed distribution, not necessarily stable, but in the domain
of attraction of an SαS distribution. We show that as the widths of the networks increase, the
networks at initialization converge to SαS processes.

One of our aims is to show universality, in the sense that the results also hold when the
weights are i.i.d. and heavy-tailed, and in the domain of attraction of an SαS distribution.
Such heavy-tailed (and non-stable) weight distributions are important in the context of deep
neural networks, since they have been empirically seen to emerge from trained deep neural
networks such as the ResNet and VGG series [28, 29] and have been shown to arise naturally
via stochastic gradient descent [14, 16]. Also, such heavy-tailed distributions cover a wide
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range of distributions, including for example some Pareto, inverse gamma, Fréchet, Student
t, horseshoe, and beta-prime distributions. In particular, both Student t and horseshoe priors
have been used for weights in Bayesian neural networks [8], since heavy tails can potentially
improve the performance of priors [9]. Another of our goals is to fill a (minor) gap regarding
one nontrivial step, and to clarify other details, of the proof in [4] and its companion paper
[5] (see Lemma 3.1 below). Finally, we also generalize by considering a slightly more general
case where the α parameter for the weights may depend on the layer it is in, including the case
where it may be that α = 2 for some layers. This provides, for instance, a proof of universality
in the Gaussian case. Such a result for the non-Gaussian finite-variance weights is known in
the ‘folklore’, but we are unaware of a published proof of it.

Notation. Let Pr (R) be the set of probability distributions on R. In the sequel, for α ∈ (0, 2],
let μα,σ ∈ Pr (R) denote an SαS(σ ) distribution. We will typically use capital letters to denote
random variables in R. For example, a random weight in our neural network from layer �− 1 to
layer � is denoted by W(�)

ij and is henceforth assumed to be in the domain of attraction of μα,σ ,
which may depend on �. One notable exception to this convention is our use of the capital letter
L to denote a slowly varying function. We use the notation | · |α±ε to denote the maximum of
| · |α+ε and | · |α−ε .

2. The model: heavy-tailed multi-layer perceptrons

At a high level, a neural network is just a parameterized function Y from inputs in R
I to

outputs in R
O for some I and O. In this article, we consider the case that O = 1. The parame-

ters� of the function consist of real-valued vectors W and B, called weights and biases. These
parameters are initialized randomly, and get updated repeatedly during the training of the net-
work. We adopt the common notation Y�(x), which expresses that the output of Y depends on
both the input x and the parameters �= (W,B).

Note that since � is set randomly, Y� is a random function. This random-function view-
point is the basis of a large body of work on Bayesian neural networks [32], which studies
the distribution of this random function or its posterior conditioned on input–output pairs in
training data. Our article falls into this body of work. We analyze the distribution of the ran-
dom function Y� at the moment of initialization. Our analysis is in the situation where Y� is
defined by an MLP, the width of the MLP is large (so the number of parameters in � is large),
and the parameters � are initialized by possibly using heavy-tailed distributions. The precise
description of the setup is given below.

2.1 (Layers.) We suppose that there are �lay layers, not including those for the input and out-
put. Here, the subscript lay means ‘layers’. The 0th layer is for the input and consists of
I nodes assigned with deterministic values from the input x = (x1, . . . , xI). We assume
for simplicity that xi ∈R. (None of our methods would change if we instead let xi ∈R

d

for arbitrary finite d.) The layer �lay + 1 is for the output. For layer � with 1 ≤ �≤ �lay,
there are n� nodes for some n� ≥ 2.

2.2 (Weights and biases.) The MLP is fully connected, and the weights on the edges from
layer �− 1 to � are given by W(�) = (W(�)

ij )1≤i≤n�,1≤j≤n�−1 . Assume that W(�) is a
collection of i.i.d. symmetric random variables in each layer, such that for each layer �,
(2.2.a) they are heavy-tailed, i.e. for all t> 0,

P(|W(�)
ij |> t) = t−α�L(�)(t), for some α� ∈ (0, 2], (2.1)
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where L(�) is some slowly varying function, or
(2.2.b) E|W(�)

ij |2 <∞. (In this case, we set α� = 2 by default.)

Note that both (2.2.a) and (2.2.b) can hold at the same time. Even when this happens, there
is no ambiguity about α�, which is set to be 2 in both cases. Our proof deals with the cases
when α� < 2 and α� = 2 separately. (See below, in the definition of L0.) We permit both the
conditions (2.2.a) and (2.2.b) to emphasize that our result covers a mixture of both heavy-tailed
and finite-variance (light-tailed) initializations.

Let B(�)
i be i.i.d. random variables with distribution μα�,σB(�) . Note that the distribution

of B(�)
i is more constrained than that of W(�)

ij . This is because the biases are not part of the
normalized sum, and normalization is, of course, a crucial part of the stable limit theorem.

For later use in the α= 2 case, we define a function L̃(�) by

L̃(�)(x) :=
∫ x

0
yP(|W(�)

ij |> y) dy.

Note that L̃(�) is increasing. For the case (2.2.b),
∫ x

0 yP(|W(�)
ij |> y) dy converges to a constant,

namely to 1/2 of the variance, and thus it is slowly varying. For the case (2.2.a), it is seen in
Lemma A.1 that L̃(�) is slowly varying as well.

For convenience, let

L0 :=
{

L(�) if α� < 2,

L̃(�) if α� = 2.

We have dropped the superscript � from L0 as the dependence on � will be assumed.

2.3 (Scaling.) Fix a layer � with 2 ≤ �≤ �lay + 1, and let n = n�−1 be the number of nodes
at the layer �− 1. We will scale the random values at the nodes (pre-activation) by

an(�) := inf{t> 0: t−α�L0(t) ≤ n−1}.
Then an(�) tends to ∞ as n increases. One can check that an(�) = n1/α�G(n) for some
slowly varying function G. If we consider, for example, power-law weights where
P(|W(�)

ij |> t) = t−α� for t ≥ 1, then an(�) = n1/α� . For future purposes we record the
well-known fact that, for an = an(�),

lim
n→∞ na−α�

n L0(an) = 1. (2.2)

Let us quickly show (2.2). For the case (2.2.b), t2L0(t) becomes continuous and so
na−α�

n L0(an) is simply 1. To see the convergence in the case (2.2.a), first note that
as P(|W(�)

ij |> t) = t−α�L(�)(t) is right-continuous, na−α�
n L(�)(an) ≤ 1. For the reverse

inequality, note that by (2.1) and the definition of an, for n large enough we have

P

(
|W(�)

ij |> 1
1+ε an

)
≥ 1/n, and by the definition of a slowly varying function we have

that

(1 + 2ε)−α� = lim
n→∞

P

(
|W(�)

ij |> 1+2ε
1+ε an

)
P

(
|W(�)

ij |> 1
1+ε an

) ≤ lim inf
n→∞

P

(
|W(�)

ij |> an

)
1/n

.
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2.4 (Activation.) The MLP uses a nonlinear activation function φ(y). We assume that φ
is continuous and bounded. The boundedness assumption simplifies our presentation; in
Section 4 we relax this assumption so that for particular initializations (such as Gaussian
or stable), more general activation functions such as ReLU are allowed.

2.5 (Limits.) We consider one MLP for each (n1, . . . , n�lay ) ∈N
�lay . We take the limit of the

collection of these MLPs in such a way that

min (n1, . . . , n�lay ) → ∞. (2.3)

(Our methods can also handle the case where limits are taken from left to right, i.e.,
limn�lay→∞ · · · limn1→∞, but since this order of limits is easier to prove, we will focus
on the former.)

2.6 (Hidden layers.) We write n = (n1, . . . , n�lay ) ∈N
�lay . For � with 1 ≤ �≤ �lay + 1, the

pre-activation values at these nodes are given, for an input x ∈R
I , recursively by

Y (1)
i (x; n) := Y (1)

i (x) :=
I∑

j=1

W(1)
ij xj + B(1)

i ,

Y (�)
i (x; n) := 1

an�−1 (�)

n�−1∑
j=1

W(�)
ij φ(Y (�−1)

j (x; n)) + B(�)
i , �≥ 2,

for each n�−1 ∈N and i ∈N. Note that Y (�)
i (x; n) depends on only the coordinates

n1, . . . , n�−1, but we may simply let it be constant in the coordinates n�, . . . , n�lay . This
will often be the case when we have functions of n in the sequel.

We often omit n and write Y (�)
i (x). When computing the output of the MLP with widths

n, one only needs to consider i ≤ n� for each layer �. However, it is always possible to assign
values to an extended MLP beyond n, which is why we have assumed more generally that
i ∈N. This will be important for the proofs, as we explain in the next paragraph.

Extending finite neural networks to infinite neural networks
Let us describe a useful construct for the proofs which allows us to leverage the natural

exchangeability present in the model. For each n = (n1, . . . , n�lay ), the MLP is finite and each
layer has finite width. A key part of the proof is the application of de Finetti’s theorem at each
layer, which applies only in the case where one has an infinite sequence of random variables.
As in [4], a crucial observation is that for each n = (n1, . . . , n�lay ), we can extend the MLP
to an infinite-width MLP by adding an infinite number of nodes at each layer that compute
values in the same manner as nodes of the original MLP, but are ignored by nodes at the next
layer. Thus, the finite-width MLP is embedded in an infinite-width MLP. This allows us to use
de Finetti’s theorem. With this in mind we will henceforth consider an infinite collection of
weights (W(�)

ij )ij∈N2 , for any finite neural network.

3. Convergence to α-stable distributions

Our main results are summarized in the next theorem and its extension to the situation of
multiple inputs in Theorem 5.1 in Section 5. They show that as the width of an MLP tends
to infinity, the MLP becomes a relatively simple random object: the outputs of its �th layer
become merely i.i.d. random variables drawn from a stable distribution, and the parameters of
the distribution have explicit inductive characterizations.
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Let

cα := lim
M→∞

∫ M

0

sin u

uα
du for α < 2 and c2 = 1,

and let

σ
α2
2 := (σ2(x))α2 := σ

α2
B(2) + cα2

∫
|φ(y)|α2 ν(1)(dy), �= 2, (3.1)

σ
α�
� := (σ�(x))α� := σ

α�
B(�) + cα�

∫
|φ(y)|α� μα�−1,σ�−1 (dy), �= 3, . . . , �lay + 1,

where ν(1) := ν(1)(x) is the distribution of Y (1)
1 (x).

Theorem 3.1. For each �= 2, . . . , �lay + 1, the joint distribution of (Y (�)
i (x; n))i≥1 converges

weakly to
⊗

i≥1 μα�,σ� as min (n1, . . . , n�lay ) → ∞, with σ� inductively defined by (3.1) . That
is, the characteristic function of the limiting distribution is, for any finite subset L⊂N,∏

i∈L
ψB(2) (ti) exp

(
−cα2 |ti|α2

∫
|φ(y)|α2 ν(1)(dy)

)
, �= 2,

∏
i∈L

ψB(�) (ti) exp

(
−cα� |ti|α�

∫
|φ(y)|α� μα�−1,σ�−1 (dy)

)
, �= 3, . . . , �lay + 1.

Remark 3.1. The integrals in Theorem 3.1 are well-defined since φ is bounded. For (possibly)
unbounded φ, these integrals are well-defined as well under suitable assumptions on φ. See
Section 4.

This theorem shows that, for a given data point x, the individual layers of our MLP converge
in distribution to a collection of i.i.d. stable random variables. The result is a universal-
ity counterpart to a similar result in [4] where, instead of general heavy-tailed weights on
edges, one initializes precisely with stable weights. As already mentioned in the introduction,
heavy-tailed initializations other than α-stable have been considered and discussed in previous
literature. Later, in Theorem 5.1, we generalize this result to consider multiple data points x1,

x2, . . . , xk.
Heuristic of the proof. The random variables (Y (�)

i (x; n))i∈N are dependent only through

the randomness of the former layer’s outputs (Y (�−1)
j (x; n))j∈N. Just as in proofs in the literature

for similar models, as the width grows to infinity, this dependence vanishes via an averaging
effect.

Here, we briefly summarize the overarching technical points, from a bird’s-eye view, in
establishing this vanishing dependence; we also highlight what we believe are new technical
contributions in relation to models with general heavy-tailed initializations.

By de Finetti’s theorem, for each n there exists a random distribution ξ (�−1)(dy; n) such
that the sequence (Y (�−1)

j (x))j is conditionally i.i.d. with common random distribution ξ (�−1).

By first conditioning on (Y (�−1)
j (x))j, we obtain independence among the summands of

Y (�)
i (x) = 1

an�−1 (�)

n�−1∑
j=1

W(�)
ij φ(Y (�−1)

j (x)) + B(�)
i
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as well as independence among the family (Y (�)
i (x))i. Let α := α�, n := n�−1, and an :=

an�−1 (�). Then, with the help of Lemma A.2, the conditional characteristic function of Y (�)
1 (x)

given ξ (�−1) is asymptotically equal to

e−σαB |t|α
(

1 − bn

n
cα|t|α

∫
|φ(y)|α L0

( an|φ(y)t|
)

L0(an)
ξ (�−1)(dy; n)

)n

, (3.2)

where bn is a deterministic constant that tends to 1. Assuming the inductive hypothesis, the
random distribution ξ (�−1) converges weakly to μα�−1,σ�−1 as n → ∞ in the sense of (2.3), by
Lemma 3.1 below. This lemma is intuitively obvious, but we have not seen it proved in any
previous literature.

Next, since L0 is slowly varying, one can surmise that the conditional characteristic function
tends to

exp

(
−σαB |t|α − cα|t|α

∫
|φ(y)|αμα�−1,σ�−1 (dy)

)
,

which is the characteristic function of the stable law we desire. Making the above intuition rig-
orous involves additional technicalities in the setting of general heavy-tailed weights: namely,
we verify the convergence of (3.2) by proving uniform integrability of the integrand

|φ(y)|α L0
( an|φ(y)t|

)
L0(an)

with respect to the family of distributions ξ (�−1) over the indices n. In particular, by
Lemma A.4, the integrand can be bounded by O(|φ(y)|α±ε) for small ε > 0, and uniform inte-
grability follows from the boundedness of φ. The joint limiting distribution converges to the
desired stable law by similar arguments, which completes our top-level heuristic proof.

Before delving into the actual technical proof, we next present a key lemma mentioned in
the above heuristic. Recall that de Finetti’s theorem tells us that if a sequence X = (Xi)i∈N ∈R

N

is exchangeable, then

P(X ∈ A) =
∫
ν⊗N(A) π (dν) (3.3)

for some π which is a probability measure on the space of probability measures Pr (R).
The measure π is sometimes called the mixing measure. The following lemma characterizes
the convergence of exchangeable sequences by the convergence of their respective mixing
measures. While intuitively clear, the proof of the lemma is not completely trivial.

Lemma 3.1. For each j ∈N∪ {∞}, let X(j) = (X(j)
i )i∈N be an infinite exchangeable sequence

of random variables with values in R (or more generally, a Borel space). Let πj be the mixing
measure on Pr (R) corresponding to X(j), from (3.3) . Then the family (X(j))j∈N converges
in distribution to X(∞) if and only if the family (πj)j∈N converges in the weak topology on
Pr ( Pr (R)) to π∞.

The proof of the lemma is in the appendix. In the lemma, the topology on Pr ( Pr (R)) is
formed by applying the weak-topology construction twice. We first construct the weak topol-
ogy on Pr (R). Then we apply the weak-topology construction again, this time using Pr (R)
instead of R.
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In the proof of Theorem 3.1, we use the special case when the limiting sequence X(∞) is a
sequence of i.i.d. random variables. In that case, by (3.3), it must be that π∞ concentrates on a
single element ν ∈ Pr (R), i.e. it is a point mass, π∞ = δν , for some ν ∈ Pr (R).

More specifically, we use the following corollary to Lemma.

Corollary 3.1. In the setting of Theorem 3.1 , the joint distribution of the exchange-
able sequence (Y (�−1)

i (x))i≥1 converges weakly to the product measure
⊗

i≥1 μα,σ�−1 as
the minimum of n1, . . . , n�lay tends to ∞ if and only if the random probability measures

(ξ (�−1)(dy, ω; n))
n∈N�lay defined in (3.8) converge weakly, in probability, to the deterministic

probability measure μα,σ�−1 .

Proof of Theorem 3.1. We start with a useful expression for the characteristic function
conditioned on the random variables {Y (�−1)

j (x)}j=1,...,n�−1 :

ψ
Y(�)

i (x)|{Y(�−1)
j (x)}j

(t) := E

[
exp

(
itY (�)

i (x)
)∣∣∣ {Y (�−1)

j (x)}j

]
(3.4)

=E

⎡⎣exp

⎛⎝it

⎧⎨⎩ 1

an�−1 (�)

n�−1∑
j=1

W(�)
ij φ(Y (�−1)

j (x)) + B(�)
i

⎫⎬⎭
⎞⎠∣∣∣∣∣∣ {Y (�−1)

j (x)}j

⎤⎦
= e−σ |t|α�

n�−1∏
j=1

ψ
W(�)

ij

(
φ(Y (�−1)

j (x))

an�−1 (�)
t

)
,

where σ := σ
α�
B(�) and the argument on the right-hand side is random.

Case �= 2:
Let us first consider the case �= 2. Let n = n1, α= α2, an = an1 (2), and t �= 0. We first show

the weak convergence of the one-point marginal distributions; i.e., we show that the distribution
of Y (2)

i (x) converges weakly to μα,σ for each i. Since Y (1)
j (x), j = 1, . . . , n, are i.i.d., this is a

straightforward application of standard arguments, which we include for completeness. Denote
the common distribution of Y (1)

j (x), j = 1, . . . , n, by ν(1). Taking the expectation of (3.4) with

respect to the randomness of {Y (1)
j (x)}j=1,...,n, we have

ψ
Y(2)

i (x)
(t) = e

−σα
B(2) |t|α

(∫
ψW

(
φ(y)

an
t

)
ν(1)(dy)

)n

,

where ψW := ψ
W(2)

ij
for some/any i,j. From Lemma A.2, we have that

ψW (t) = 1 − cα|t|αL0

(
1

|t|
)

+ o

(
|t|αL0

(
1

|t|
))

, |t| → 0,

for cα = limM→∞
∫ M

0 sin u/uα du when α < 2 and c2 = 1. If φ(y) = 0 then ψW

(
φ(y)
an

t
)

= 1.

Otherwise, setting bn := na−α
n L0(an), for fixed y with φ(y) �= 0 we have that, as n → ∞,

ψW

(
φ(y)

an
t

)
= 1 − cα

bn

n
|φ(y)t|α L0

( an|φ(y)t|
)

L0(an)
+ o

(
bn

n
|φ(y)t|α L0

( an|φ(y)t|
)

L0(an)

)
. (3.5)

By Lemma A.4 applied to G(x) := x−αL0(x) and c = 1, for any ε > 0, there exist constants
b> 0 and n0 such that for all n> n0 and all y with φ(y) �= 0,

https://doi.org/10.1017/apr.2023.3 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.3


Convergence of heavy-/light-tailed infinitely wide NNs 1423

|φ(y)t|α L0
( an|φ(y)t|

)
L0(an)

=
G
(

an|φ(y)t|
)

G(an)
≤ b|φ(y)t|α±ε . (3.6)

Since φ is bounded, the right-hand side of (3.5) is term-by-term integrable with respect to
ν(1)(dy). In particular, the integral of the error term can be bounded, for some small ε and large
enough n, by∫

o

(
bn

n
|φ(y)t|α L0

( an|φ(y)t|
)

L0(an)

)
ν(1)(dy) ≤ o

(
b

bn

n

∫
|φ(y)t|α±ε ν(1)(dy)

)
= o

(
bn

n

)
.

(Set |φ(y)|αL0( an|φ(y)| ) = 0 when φ(y) = 0.) Thus, integrating both sides of (3.5) with respect to

ν(1)(dy) and taking the nth power, it follows that(∫
ψW

(
φ(y)t

an

)
ν(1)(dy)

)n

=
(

1 − cα
bn

n

∫
|φ(y)t|α L0

( an|φ(y)t|
)

L0(an)
ν(1)(dy) + o

(
bn

n

))n

.

From the bound in (3.6), we have, by dominated convergence, that as n → ∞∫
|φ(y)t|α L0

( an|φ(y)t|
)

L0(an)
ν(1)(dy) → |t|α

∫
|φ(y)|α ν(1)(dy).

Since bn = na−α
n L0(an) converges to 1 by (2.2), we have that(∫

ψW

(
φ(y)t

an

)
ν(1)(dy)

)n

→ exp

(
−cα|t|α

∫
|φ(y)|α ν(1)(dy)

)
.

Thus, the distribution of Y (2)
i (x) weakly converges to μα,σ2 where

σα2 = σαB(2) + cα

∫
|φ(y)|α ν(1)(dy),

as desired.
Next we prove that the joint distribution of (Y (2)

i (x))i≥1 converges to the product distribution⊗
i≥1 μα,σ2 . Let L⊂N be a finite set. LetψB denote the multivariate characteristic function for

the |L|-fold product distribution of μα,σB(2) . For t = (ti)i∈L, conditionally on {Y (1)
j (x)}j=1,...,n,

ψ
(Y(2)

i (x))i∈L|{Y(1)
j (x)}j

(t) (3.7)

:= E

[
exp

(
i
∑
i∈L

tiY
(2)
i (x)

)∣∣∣∣∣ {Y (1)
j (x)}j

]

=E

[
exp

(
i
∑
i∈L

B(2)
i ti

)]
E

⎡⎣exp

⎛⎝i
1

an

n∑
j=1

∑
i∈L

W(2)
ij φ(Y (1)

j (x))ti

⎞⎠∣∣∣∣∣∣ {Y (1)
j (x)}j

⎤⎦
=ψB(t)

n∏
j=1

∏
i∈L

E

[
exp

(
i

1

an
W(2)

ij φ(Y (1)
j (x))ti

)∣∣∣∣ {Y (1)
j (x)}j

]

=ψB(t)
n∏

j=1

∏
i∈L

ψW

(
φ(Y (1)

j (x))ti

an

)
.
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Taking the expectation over the randomness of {Y (1)
j (x)}j=1,...,n, we have

ψ
(Y(2)

i (x))i∈L
(t)

ψB(t)
=
∫ n∏

j=1

∏
i∈L

ψW

(
φ(yj)ti

an

) n⊗
j=1

ν(1)(dyj)

=
(∫ ∏

i∈L
ψW

(
φ(y)ti

an

)
ν(1)(dy)

)n

.

Now, since∏
i∈L

ψW

(
φ(y)ti

an

)

= 1 − cα
bn

n

∑
i∈L

|φ(y)ti|α
L0

(
an|φ(y)ti|

)
L0(an)

+ o

⎛⎝bn

n

∑
i∈L

|φ(y)ti|α
L0

(
an|φ(y)ti|

)
L0(an)

⎞⎠ ,
it follows that

ψ
(Y(2)

i (x))i∈L(t)

ψB(t)
=
⎛⎝1 − cα

bn

n

∑
i∈L

∫
|φ(y)ti|α

L0

(
an|φ(y)ti|

)
L0(an)

ν(1)(dy) + o

(
bn

n

)⎞⎠n

→ exp

(
−cα

∑
i∈L

|ti|α
∫

|φ(y)|α ν(1)(dy)

)

=
∏
i∈L

exp

(
−cα|ti|α

∫
|φ(y)|α ν(1)(dy)

)
.

This proves the case �= 2.
Case � > 2:

The remainder of the proof uses induction on the layer �, the base case being �= 2
proved above. Let � > 2. Also, let n = n�−1, α = α�, an = an�−1 (�), σB = σB(�) , and t �= 0. Then

{Y (�−1)
j (x)}j=1,...,n is no longer i.i.d.; however, it is still exchangeable. By de Finetti’s theorem

(see the end of Section 2), there exists a random probability measure

ξ (�−1)(dy) := ξ (�−1)(dy, ω) := ξ (�−1)(dy, ω; n) (3.8)

such that given ξ (�−1), the random variables Y (�−1)
j (x), j = 1, 2, . . ., are i.i.d. with distribution

ξ (�−1)(dy, ω), where ω ∈� is an element of the probability space.
As before, we start by proving convergence of the marginal distribution. Taking the

conditional expectation of (3.4), given ξ (�−1), we have

ψ
Y(�)

i (x)|ξ (�−1) (t) := E

[
ψ

Y(�)
i (x)|{Y(�−1)

j (x)}j
(t)

∣∣∣∣ ξ (�−1)
]

= e−σαB |t|α
E

⎡⎣ n∏
j=1

ψ
W(�)

ij

(
φ(Y (�−1)

j (x))

an
t

)∣∣∣∣∣∣ ξ (�−1)

⎤⎦
= e−σαB |t|α

(∫
ψW

(
φ(y)

an
t

)
ξ (�−1)(dy)

)n

,
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where ψW := ψ
W(�)

ij
for some/any i,j. Using Lemma A.2 and Lemma A.4 again, we get(∫

ψW

(
φ(y)t

an

)
ξ (�−1)(dy)

)n

= (3.9)(
1−cα

bn

n

∫
|φ(y)t|α L0

( an|φ(y)t|
)

L0(an)
ξ (�−1)(dy)+o

(
bn

n

∫
|φ(y)t|α L0

( an|φ(y)t|
)

L0(an)
ξ (�−1)(dy)

))n

.

Note that these are random integrals since ξ (�−1)(dy) is random, whereas the corresponding
integral in the case �= 2 was deterministic. Also, each integral on the right-hand side is
finite almost surely since φ is bounded. By the induction hypothesis, the joint distribution
of (Y (�−1)

i (x))i≥1 converges weakly to the product measure
⊗

i≥1 μα�−1,σ�−1 . We claim that∫
|φ(y)t|α L0

( an|φ(y)t|
)

L0(an)
ξ (�−1)(dy)

p→ |t|α
∫

|φ(y)|α μα�−1,σ�−1 (dy). (3.10)

To see this, note that∣∣∣∣∣
∫

|φ(y)t|α L0
( an|φ(y)t|

)
L0(an)

ξ (�−1)(dy) −
∫

|φ(y)t|α μα�−1,σ�−1 (dy)

∣∣∣∣∣ (3.11)

≤
∣∣∣∣∣
∫

|φ(y)t|α L0
( an|φ(y)t|

)
L0(an)

ξ (�−1)(dy) −
∫

|φ(y)t|α L0
( an|φ(y)t|

)
L0(an)

μα�−1,σ�−1 (dy)

∣∣∣∣∣
+
∣∣∣∣∣
∫

|φ(y)t|α L0
( an|φ(y)t|

)
L0(an)

μα�−1,σ�−1 (dy) −
∫

|φ(y)t|α μα�−1,σ�−1 (dy)

∣∣∣∣∣ .

First, consider the first term on the right-hand side of the above. By Corollary 3.1, the
random measures ξ (�−1) converge weakly, in probability, to μα�−1,σ�−1 as n → ∞ in the sense
of (2.3), where n ∈N

�lay . Also, by Lemma A.4, we have

|φ(y)t|α
L0

(
an|φ(y)t|

)
L0(an)

≤ b|φ(y)t|α±ε (3.12)

for large n. For any subsequence (nj)j, there is a further subsequence (njk )k along which,
ω-almost surely, ξ (�−1) converges weakly to μα�−1,σ�−1 . To prove that the first term on the
right-hand side of (3.11) converges in probability to 0, it is enough to show that it converges
almost surely to 0 along each subsequence (njk )k. Fix an ω-realization of the random distri-
butions (ξ (�−1)(dy, ω; n))

n∈N�lay such that convergence along the subsequence (njk )k holds.
Keeping ω fixed, view g(yn) = |φ(yn)t|α±ε as a random variable where the parameter yn is
sampled from the distribution ξ (�−1)(dy, ω; n). Since φ is bounded, the family of these ran-
dom variables is uniformly integrable. Since ξ (�−1)(dy, ω; n) converges weakly to μα�−1,σ�−1

along the subsequence, the Skorokhod representation and Vitali convergence theorem [37, p.
94] guarantee the convergence of the first term on the right-hand side of (3.11) to 0 as n tends
to ∞.

Now, for the second term, since

lim
n→∞|φ(y)t|α L0

( an|φ(y)t|
)

L0(an)
= |φ(y)t|α
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for each y and φ is bounded, we can use dominated convergence via (3.12) to show that the
second term on the right-hand side of (3.11) also converges to 0, proving the claim.

Having proved (3.10), we have

(
1 + 1

n

(
−cαbn

∫
|φ(y)t|α L0

( an|φ(y)t|
)

L0(an)
ξ (�−1)(dy) + o(bn)

))n

p→ exp

(
−cα|t|α

∫
|φ(y)|α μα�−1,σ�−1 (dy)

)
and hence

ψ
Y(�)

i (x)|ξ (�−1) (t)
p→ e−σαB |t|α exp

(
−cα|t|α

∫
|φ(y)|α μα�−1,σ�−1 (dy)

)
.

Thus, the limiting distribution of Y (�)
i (x), given ξ (�−1), is μα,σ� with

σα� = σαB + cα

∫
|φ(y)|α μα,σ�−1 (dy).

Recall that characteristic functions are bounded by 1. Thus, by taking the expectation of both
sides and using dominated convergence, we can conclude that the (unconditional) characteristic
function converges to the same expression and thus the (unconditional) distribution of Y (�)

i (x)
converges weakly to μα,σ� .

Finally, we prove that the joint distribution converges weakly to the product
⊗

i≥1 μα,σ� .

Let L⊂N be a finite set and t = (ti)i∈L. Conditionally on {Y (�−1)
j (x)}j=1,...,n,

ψ
(Y(�)

i (x))i∈L|{Y(�−1)
j (x)}j=1,...,n

(t) =ψB(t)
n∏

j=1

∏
i∈L

ψW

(
φ(Y (�−1)

j (x))ti

an

)
. (3.13)

Taking the expectation with respect to {Y (�−1)
j (x)}j=1,...,n, we have

ψ
(Y(�)

i (x))i∈L (t)

ψB(t)
=E

∫ n∏
j=1

∏
i∈L

ψW

(
φ(yj)ti

an

) ⊗
j≥1

ξ (�−1)(dyj)

=E

(∫ ∏
i∈L

ψW

(
φ(y)ti

an

)
ξ (�−1)(dy)

)n

.

Now since

∏
i∈L

ψW

(
φ(y)ti

an

)
∼ 1 − cα

bn

n

∑
i∈L

|φ(y)ti|α
L0

(
an|φ(y)ti|

)
L0(an)

,
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a similar argument to that of convergence of the marginal distribution shows that

ψ
(Y(�)

i (x))i∈L (t)

ψB(t)
∼E

⎛⎝1 − cα
bn

n

∑
i∈L

∫
|φ(y)ti|α

L0

(
an|φ(y)ti|

)
L0(an)

ξ (�−1)(dy)

⎞⎠n

→ exp

(
−cα

∑
i∈L

|ti|α
∫

|φ(y)|α μα�−1,σ�−1 (dy)

)

=
∏
i∈L

exp

(
−cα|ti|α

∫
|φ(y)|α μα�−1,σ�−1 (dy)

)
,

completing the proof. �

4. Relaxing the boundedness assumption

As we mentioned earlier in Remark 3.1, the boundedness assumption on φ can be relaxed,
as long as it is done with care. It is known that the growth rate of the activation function φ
affects the behavior of the network at deeper layers. If φ grows too fast, then the variance will
quickly become too large at deeper layers, causing chaotic behavior of the network at those
deeper layers. If, on the other hand, φ grows too slowly, then the variance will become too
small, causing the network to behave as if it were not random [13, 15, 36]. Thus, it is important
to find an appropriate growth rate for the activation function. Before presenting our result, we
first present a counterexample where, for heavy-tailed initializations, we cannot use a function
which grows linearly. This shows the subtlety of our relaxation.

Remark 4.1. Consider the case where φ = ReLU, P(|W(�)
ij |> t) = t−α for t ≥ 1, 0<α < 2, and

σB = 0. For an input x = (1, 0, . . . , 0) ∈R
I , we have

Y (1)
i (x) = W(1)

i1 ,

Y (2)
i (x) = 1

an

n∑
j=1

W(2)
ij W(1)

j1 1{W(1)
j1 >0},

an = n1/α .

Let us calculate the distribution function of W(2)
ij W(1)

j1 1{W(1)
j1 >0}. For z ≥ 1,

P(W(2)
ij W(1)

j1 1{W(1)
j1 >0} ≤ z)

= P(W(1)
j1 ≤ 0) +

∫ z

1

αw−α−1
1

2
P

(
W(2)

ij ≤ z

w1

)
dw1 +

∫ ∞

z

αw−α−1
1

2
P

(
W(2)

ij ≤ −1
)

dw1

= 1 − 1

4
z−α − 1

4
αz−α log z.

Similarly, for z ≤ −1,

P(W(2)
ij W(1)

j1 1{W(1)
j1 >0} < z) = 1

4
α( − z)−α log ( − z) + 1

4
( − z)−α .
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Thus,

P(|W(2)
ij W(1)

j1 1{W(1)
j1 >0}|> z) = 1

2
z−α (1 + α log z) .

Let ân := inf{x : x−α(1 + α log x)/2 ≤ n−1}. Then nâ−α
n (1 + α log ân)/2 → 1 as

n → ∞, which leads to

ân

n1/α
∼ ((1 + α log ân)/2)1/α → ∞

when n is large. Thus, ân is of strictly larger order than n1/α , which shows that Y (2)
i (x) does not

converge using the suggested normalization.

However, despite the remark, one can modify the scaling to an = n1/αL(n) where L(n) is a
nonconstant slowly varying factor, in order to make the network converge at initialization. For
details, we refer to [6], where the authors handle the convergence of shallow ReLU networks
with stable weights.

Despite the above remark, there is still room to relax the boundedness assumption on φ.
Note that, in the proof of Theorem 3.1, we used boundedness (in a critical way) to prove
the claim (3.10). In particular, boundedness gave us that the family of random variables
|φ(y)|α+ε with respect to the random distribution ξ (�−1)(dy, ω; n) is y -uniformly integrable
ω-almost surely. We make this into a direct assumption on φ as follows. Let n := n�−2 and
an := an�−2 (�− 1). Suppose

(UI1) for �= 2, there exists ε0 > 0 such that |φ(Y (1)
j )|α2+ε0 is integrable;

(UI2) for �= 3, . . . , �lay + 1, there exists ε0 > 0 such that for any array (cn,j)n,j satisfying

sup
n

1

n

n∑
j=1

|cn,j|α�−1+ε0 <∞, (4.1)

we have uniform integrability of the family⎧⎨⎩
∣∣∣∣∣∣φ
⎛⎝ 1

an

n∑
j=1

cn,jW
(�−1)
j

⎞⎠∣∣∣∣∣∣
α�+ε0

⎫⎬⎭
n

(4.2)

over n.

If φ is bounded, then the above is obviously satisfied. It is not clear whether there is a
simpler description of the family of functions that satisfies this assumption (see [1]); however,
we now argue that this is general enough to recover the previous results of Gaussian weights
or stable weights.

In [30] (as well as many other references), the authors consider Gaussian initializations
with an activation function φ satisfying the so-called polynomial envelope condition. That is,
|φ(y)| ≤ a + b|y|m for some a, b> 0 and m ≥ 1 and W ∼N (0, σ 2). In this setting, we have
an ∼ σ

√
n/2 and α= 2 for all �, and cn,j = c(�−2)

n,j = φ(Y (�−2)
j (x; n)). Conditioning on (Y (�−2)

j )j

and assuming that (4.1) holds almost surely, let us show that φ satisfying the polynomial enve-
lope condition also satisfies our uniform integrability assumptions (UI1) and (UI2) almost
surely. For �= 2, the distribution of

Y (1)
i =

I∑
j=1

W(1)
ij xj + B(1)

i
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is Gaussian, and thus |φ(Y (1)
j )|2+ε0 ≤ C0 + C1|Y (1)

j |m(2+ε0) is integrable. For �≥ 3, note that

S(�−1)
n := 1

an

n∑
j=1

cn,jW
(�−1)
j ∼N

⎛⎝0,
2

n

n∑
j=1

c2
n,j

⎞⎠ ,
where the variance is uniformly bounded over n if we assume (4.1). For θ > 1, let ν := m(2 +
ε0)θ ; the νth moment of Sn can be directly calculated and is known to be

2ν/2
1√
π
�

(
1 + ν

2

)⎛⎝2

n

n∑
j=1

c2
n,j

⎞⎠ν/2 .

This is uniformly bounded over n, and hence |φ(Sn)|2+ε0 is uniformly integrable over n. This
shows that φ satisfying the polynomial envelope condition meets (UI1) and (UI2) assuming
(4.1).

In [4], the authors consider the case where W(�) is an SαS random variable with scale param-
eter σ�, i.e., with characteristic function e−σα� |t|α . They use the envelope condition |φ(y)| ≤
a + b|y|β where β < 1. For the more general case where we have different α�-stable weights for
different layers �, this envelope condition can be generalized to β <min�≥2 α�−1/α�. In this
case, aα�n ∼ (σα�� n)/cα� and cn,j = c(�−2)

n,j = φ(Y (�−2)
j (x; n)). Again, conditioning on (Y (�−2)

j )j

and assuming (4.1), let us show that φ under this generalized envelope condition satisfies the
uniform integrability assumptions (UI1) and (UI2) above. For �= 2, the distribution of

Y (1)
j =

I∑
j=1

W(1)
ij xj + B(1)

i

is α1-stable. By the condition on β, there are δ and ε0 satisfying β(α2 + ε0) ≤ α1 − δ so that

|φ(Y (1)
j )|α2+ε ≤ C0 + C1|Y (1)

j |α1−δ,

which is integrable. For �≥ 3, the distribution of S(�−1)
n := a−1

n
∑

j cn,jW
(�−1)
j becomes a

symmetric α�−1-stable distribution with scale parameter⎛⎝cα�−1

n

n∑
j=1

|cn,j|α�−1

⎞⎠1/α�−1

,

which is uniformly bounded over n assuming (4.1). Since β <min�≥2 α�−1/α�, it follows that,
for some θ > 1, there exist small ε0 > 0 and δ > 0 such that∣∣∣φ (S(�−1)

n

)∣∣∣(α�+ε0)θ ≤ C0 + C1

∣∣∣S(�−1)
n

∣∣∣β(α�+ε0)θ ≤ C0 + C1

∣∣∣S(�−1)
n

∣∣∣α�−1−δ
.

It is known (see for instance [39]) that the expectation of |S(�−1)
n |ν with ν < α�−1 is

Kν

⎛⎝cα�−1

n

n∑
j=1

|cn,j|α�−1

⎞⎠ν/α�−1

,
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where Kν is a constant that depends only on ν (and α�−1). As this is bounded uniformly over
n, the family {∣∣∣φ (S(�−1)

n

)∣∣∣α�+ε0
}

n

is uniformly integrable. Thus our φ, under the generalized envelope condition, satisfies (UI1)
and (UI2).

Let us now see that cn,j satisfies the condition (4.1) in both the Gaussian and the symmet-

ric stable case. For �= 3, cn,j = φ(Y (1)
j ) satisfies (4.1) by the strong law of large numbers

since |φ(Y (1)
j )|α2+ε0 is integrable. For � > 3, an inductive argument shows that the family

{|φ(Y (�−2)
j )|α�−1+ε0}n is uniformly integrable, which leads to (4.1). The details of this inductive

argument are contained in the following proof.

Proof of Theorem 3.1 under (UI1) and (UI2). We return to the claim in (3.10) to see how
the conditions (UI1) and (UI2) are sufficient, even when φ is unbounded. We continue to let
n := n�−2. Choose a sequence {(n, n)}n, where n = n(n) depends on n and n → ∞ as n → ∞
in the sense of (2.3). Note that (i) to evaluate the limit as n → ∞, it suffices to show that the
limit exists consistently for any choice of sequence {n(n)}n that goes to infinity, and (ii) we can
always pass to a subsequence (not depending on ω), since we are concerned with convergence
in probability. Therefore, below we will show almost sure uniform integrability over some
infinite subset of an arbitrary index set of the form {(n, n(n)):n ∈N}.

Let an := an�−2 (�− 1). Proceeding as in (3.11) and (3.12), we need to show
that the family |φ(yn)|α+ε where yn ∼ ξ (�−1)(dy, ω; n) is uniformly integrable. Since
{a−1

n
∑

j φ(Y (�−2)
j )W(�−1)

ij }i is conditionally i.i.d. given {Y (�−2)
j }j, the random distribution

ξ (�−1)(dy, ω; n) is the law of a−1
n
∑

j φ(Y (�−2)
j )W(�−1)

ij given {Y (�−2)
j }j, by the uniqueness of

the directing random measure (see [20, Proposition 1.4]). Thus, by (UI2), it suffices to check
that n−1 ∑

j |φ(Y (�−2)
j )|α�−1+ε0 is uniformly bounded for �= 3, . . . , �lay + 1. For �= 3, since

|φ(Y (1)
j )|α2+ε0 is integrable by (UI1),

lim
n→∞

1

n

n∑
j=1

|φ(Y (1)
j )|α2+ε0 <∞

by the strong law of large numbers, and hence the normalized sums are almost surely bounded.
For � > 3, we proceed inductively. By the inductive hypothesis, we have

sup
n

1

n�−3

n�−3∑
j=1

|φ(Y (�−3)
j )|(α�−2+ε0)(1+ε′) <∞

by adjusting ε0, ε
′ > 0 appropriately. By (UI2), we have that the family

{|φ(yn)|(α�−1+ε0)(1+ε′′): yn ∼ ξ (�−2)(dy; n)}
is almost surely uniformly integrable for some ε′′ > 0. Since the Y (�−2)

j are conditionally i.i.d.

with common distribution ξ (�−2)(dy; n) given ξ (�−2)(dy, ω; n), by Lemma A.6 we have that

P

(∣∣∣∣∣1n
n∑

j=1

|φ(Y (�−2)
j )|α�−1+ε0 −

∫
|φ(y)|α�−1+ε0ξ (�−2)(dy; n)

∣∣∣≥ δ ∣∣∣ ξ (�−2)

)
→ 0
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almost surely. By the dominated convergence theorem we can take expectations on both sides
to conclude that∣∣∣1

n

n∑
j=1

|φ(Y (�−2)
j )|α�−1+ε0 −

∫
|φ(y)|α�−1+ε0ξ (�−2)(dy; n)

∣∣∣→ 0

in probability, so by passing to a subsequence we have that the convergence holds for almost
every ω. Since

sup
n

∫
|φ(y)|α�−1+ε0ξ (�−2)(dy; n)<∞

almost surely, we have also that

sup
n

1

n

n∑
j=1

|φ(Y (�−2)
j )|α�−1+ε0 <∞

almost surely, proving our claim. �

5. Joint convergence with different inputs

In this section, we extend Theorem 3.1 to the joint distribution of k different inputs. We show
that the k -dimensional vector (Y (�)

i (x1;n), . . . , Y (�)
i (xk; n)) converges, and we represent the

limiting characteristic function via a finite measure �� on the unit sphere Sk−1 = {x ∈R
k:|x| =

1}, called the spectral measure. This extension to k inputs is needed for our convergence result
to be applied in practice, since practical applications involve multiple inputs: a network is
trained on a set of input–output pairs, and the trained network is then used to predict the output
of a new unseen input. For instance, as suggested in the work on infinitely wide networks with
Gaussian initialization [24, 25], such an extension is needed to perform Bayesian posterior
inference and prediction with heavy-/light-tailed infinitely wide MLPs, where the limiting pro-
cess in the multi-input extension is conditioned on k0 input–output pairs, with k0 < k, and then
the resulting conditional or posterior distribution of the process is used to predict the outputs
of the process for k − k0 inputs.

For simplicity, we use the following notation:

• �x = (x1, . . . , xk) where xj ∈R
I .

• 1 = (1, . . . , 1) ∈R
k.

• Y(�)
i (�x; n) = (Y (�)

i (x1; n), . . . , Y (�)
i (xk; n)) ∈R

k, for i ∈N.

• φ(Y(�)
i (�x; n)) = (φ(Y (�)

i (x1; n)), . . . , φ(Y (�)
i (xk; n))) ∈R

k.

• 〈·, ·〉 denotes the standard inner product in R
k.

• For any given j, let the law of the k -dimensional vector Y(�)
j (�x) be denoted by ν(�)

k (which

does not depend on j). Its projection onto the s th component Y (�)
i (xs; n) is denoted by

ν
(�)
k,s for 1 ≤ s ≤ k, and the projection onto two coordinates, the ith and jth, is denoted

by ν(�)
k,ij. The limiting distribution of Y(�)

j (�x) is denoted by μ(�)
k , and the projections are

similarly denoted by μ(�)
k,s and μ(�)

k,ij.
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• A centered k-dimensional multivariate Gaussian with covariance matrix M is denoted by
Nk(M).

• For α < 2, we denote the k -dimensional SαS distribution with spectral measure � by
SαSk(�). For those not familiar with the spectral measure of a multivariate stable law,
Appendix C provides background.

Recall that

cα = lim
M→∞

∫ M

0

sin u

uα
du and c2 = 1.

Theorem 5.1. Let (Y (�)
i ( · ; n))i≥1 be defined as in Section 2, and (Y(�)

i (�x; n))i≥1 as above.
Then, for each �= 2, . . . , �lay + 1, the joint distribution of the random variables

(Y(�)
i (�x; n))i≥1 converges weakly to μ(�)

k as given below:

• For α� < 2, μ(�)
k =⊗i≥1 Sα�Sk(��), where �� is defined by

�2 = ∥∥σB(2) 1
∥∥α2 δ 1

‖1‖
+ cα2

∫
‖φ(y)‖α2 δ φ(y)

‖φ(y)‖
ν

(1)
k (dy) (5.1)

and

�� = ∥∥σB(�) 1
∥∥α� δ 1

‖1‖
+ cα�

∫
‖φ(y)‖α� δ φ(y)

‖φ(y)‖
μ

(�−1)
k (dy) (5.2)

for � > 2.

• For α� = 2, μ(�)
k =⊗i≥1 Nk(M�), where

(M2)ii =E|B(2)
i |2 + 1

2

∫
|φ(y)|2 ν(1)

k,i (dy), (5.3)

(M2)ij = 1

2

∫
φ(y1)φ(y2) ν(1)

k,ij(dy1dy2),

and

(M�)ii =E|B(�)
i |2 + 1

2

∫
|φ(y)|2 μ(�−1)

k,i (dy), (5.4)

(M�)ij = 1

2

∫
φ(y1)φ(y2)μ(�−1)

k,ij (dy1dy2)

for � > 2.

As mentioned below the statement of Theorem 3.1, this theorem finally shows that the
individual layers of an MLP initialized with arbitrary heavy-/light-tailed weights have a limit,
as the width tends to infinity, which is a stable process in the parameter x.

Proof. Let t = (t1, . . . , tk). We again start with the expression

ψY(�)
i (�x)|{Y(�−1)

j (�x)}j≥1
(t) (5.5)

=E

[
ei〈t,Y(�)

i (�x)〉
∣∣∣ {Y(�−1)

j (�x)}j≥1

]
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=E

⎡⎣exp

⎛⎝i

〈
t,

1

an

n∑
j=1

W(�)
ij φ(Y(�−1)

j (�x)) + B(�)
i 1

〉⎞⎠∣∣∣∣∣∣ {Y(�−1)
j (�x)}j≥1

⎤⎦
=EeiB(�)

i 〈t,1〉
n∏

j=1

E

[
exp

(
i

1

an
W(�)

ij

〈
t, φ(Y(�−1)

j (�x))
〉)∣∣∣∣ {Y(�−1)

j (�x)}j≥1

]

=ψB(〈t, 1〉)
(
ψW

(
1

an
〈t, φ(Y(�−1)

j (�x))〉
))n

.

Here ψB and ψW are characteristic functions of the random variables B(�)
i and W(�)

ij for
some/any i,j.
Case �= 2:

As before, let n = n1, α= α2, and an = an1 (2). As in Theorem 3.1, (Y(1)
j (�x))j≥1 is i.i.d, and

thus

ψY(�)
i (�x)

(t) =ψB(〈t, 1〉)E
(
ψW

(
1

an
〈t, φ(Y(�−1)

j (�x))〉
))n

=ψB(〈t, 1〉)
∫ (

ψW

(
1

an
〈t, φ(y)〉

))n

ν
(1)
k (dy).

As before,(
ψW

(
1

an
〈t, φ(y)〉

))n

=
⎛⎝1 − cα

bn

n
|〈t, φ(y)〉|α

L0

(
an|〈t,φ(y)〉|

)
L0(an)

+ o

⎛⎝bn

n
|〈t, φ(y)〉|α

L0

(
an|〈t,φ(y)〉|

)
L0(an)

⎞⎠⎞⎠n

.

The main calculation needed to extend the proof of Theorem 3.1 to the situation involving �x
is as follows. Assuming the uniform integrability in Section 4, we have, for some b> 0 and
0< ε < ε0,∫

|〈t, φ(y)〉|α
L0

(
an|〈t,φ(y)〉|

)
L0(an)

ν
(1)
k (dy) ≤ b

∫
|〈t, φ(y)〉|α±ε ν(1)

k (dy) (5.6)

=
∫

b

∣∣∣∣∣
k∑

s=1

tsφ(ys)

∣∣∣∣∣
α±ε

ν
(1)
k (dy)

≤
∫

bck

k∑
s=1

|tsφ(ys)|α±ε ν(1)
k (dy)

= bck

k∑
s=1

∫
|tsφ(ys)|α±ε ν(1)

k,s (dy)<∞.

It thus follows that∫
|〈t, φ(y)〉|α

L0

(
an|〈t,φ(y)〉|

)
L0(an)

ν
(1)
k (dy) →

∫
|〈t, φ(y)〉|α ν(1)

k (dy), and

∫
o

⎛⎝bn

n
|〈t, φ(y)〉|α

L0

(
an|〈t,φ(y)〉|

)
L0(an)

⎞⎠ ν
(1)
k (dy) = o

(
bn

n

)
.
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Therefore,

ψB(〈t, 1〉)E
(
ψW

(
1

an
〈t, φ(y)〉

))n

→ exp
(−σαB |〈t, 1〉|α) exp

(
−cα

∫
|〈t, φ(y)〉|α ν(1)

k (dy)

)
.

(5.7)

Let ‖·‖ denote the standard Euclidean norm. Observe that for α < 2,

cα |〈t, φ(y)〉|α = cα

∫
Sk−1

|〈t, s〉|α ‖φ(y)‖α δ φ(y)
‖φ(y)‖

(ds).

Thus, by Theorem C.1, we have the convergence Y(�)
i (�x; n)

w→ SαSk(�2) where �2 is defined
by (5.1).

For α = 2, we have

exp
(

− cα

∫
|〈t, φ(y)〉|2ν(1)

k (dy)
)

= exp ( − 1

2
〈t,M2t〉)

where M2 is given by (5.3), which is equal to the characteristic function of N (M2).
Extending the calculations in (3.7), the convergence (Y(�)

i (�x; n))i≥1
w→⊗

i≥1 SαSk(�2)
follows similarly.
Case � > 2:

Similarly to (3.8), let ξ (�−1)(dy, ω) be a random distribution such that, given ξ (�−1), the
random vectors Y(�−1)

j (�x), j = 1, 2, . . ., are i.i.d. with distribution ξ (�−1)(dy).

Taking the conditional expectation of (5.5) given ξ (�−1), we get

ψY(�)
i |ξ (�−1) (t) =ψB(〈t, 1〉)E

[(∫
ψW

(
1

an
〈t, φ(y)〉

)
ξ (�−1)(dy)

)n ∣∣∣∣ ξ (�−1)
]

for any i. Here,∫
ψW

(
1

an
〈t, φ(y)〉

)
ξ (�−1)(dy) ∼ 1 − cα

bn

n

∫
|〈t, φ(y)〉|α L0( an|〈t,φ(y)〉| )

L0(an)
ξ (�−1)(dy).

From the induction hypothesis, (Y(�−1)
i (�x))i≥1 converges weakly either to

⊗
i≥1 SαS(��−1) or

to
⊗

i≥1 Nk(M�). We claim that∫
|〈t, φ(y)〉|α L0( an|〈t,φ(y)〉| )

L0(an)
ξ (�−1)(dy)

p→
∫

|〈t, φ(y)〉|αμ(�−1)
k (dy).

To see this, note that∣∣∣∣∣
∫

|〈t, φ(y)〉|α L0( an|〈t,φ(y)〉| )
L0(an)

ξ (�−1)(dy) −
∫

|〈t, φ(y)〉|αμ(�−1)
k (dy)

∣∣∣∣∣ (5.8)

≤
∣∣∣∣∣
∫

|〈t, φ(y)〉|α L0( an|〈t,φ(y)〉| )
L0(an)

ξ (�−1)(dy) −
∫

|〈t, φ(y)〉|α L0( an|〈t,φ(y)〉| )
L0(an)

μ
(�−1)
k (dy)

∣∣∣∣∣
+
∣∣∣∣∣
∫

|〈t, φ(y)〉|α L0( an|〈t,φ(y)〉| )
L0(an)

μ
(�−1)
k (dy) −

∫
|〈t, φ(y)〉|αμ(�−1)

k (dy)

∣∣∣∣∣ .

https://doi.org/10.1017/apr.2023.3 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.3


Convergence of heavy-/light-tailed infinitely wide NNs 1435

Now, the uniform integrability assumption in Section 4 combined with (5.6) shows that

|〈t, φ(y)〉|α
L0

(
an|〈t,φ(y)〉|

)
L0(an)

is uniformly integrable with respect to the family (ξ (�−1))n, and thus the first term on the
right-hand side of (5.8) converges in probability to 0. Also, from (5.6) and the fact that

lim
n→∞ |〈t, φ(y)〉|α

L0

(
an|〈t,φ(y)〉|

)
L0(an)

= |〈t, φ(y)〉|α

for each y, dominated convergence gives us convergence to 0 of the second term. Therefore,(∫
ψW

(
1

an
〈t, φ(y)〉

)
ξ (�−1)(dy)

)n
p→ exp

(
−cα

∫
|〈t, φ(y)〉|αμ(�−1)

k (dy)

)
,

and consequently,

ψY(�)
i |ξ (�−1) (t)

p→ψB(〈t, 1〉) exp

(
−cα

∫
|〈t, φ(y)〉|αμ(�−1)

k (dy)

)
.

Finally, noting that the characteristic function is bounded by 1 and using dominated conver-
gence, we get

ψY(�)
i

(t)
p→ψB(〈t, 1〉) exp

(
−cα

∫
|〈t, φ(y)〉|αμ(�−1)

k (dy)

)
,

where the right-hand side is the characteristic function of SαSk(��) (or Nk(M�) for α = 2),
with �� and M� given by (5.2) and (5.4), respectively.

The proof of (Y(�)
i (�x; n))i≥1

w→⊗
i≥1 SαSk(��) (or

⊗
i≥1 Nk(M�) in the case α= 2) follows

similarly to the calculations following (3.13). �

6. Conclusion and future directions

We have considered a deep feed-forward neural network whose weights are i.i.d. heavy-
tailed or light-tailed random variables (Section 2). If the activation function is bounded and
continuous, then as the width goes to infinity, the joint pre-activation values in a given layer of
the network, for a given input, converge in distribution to a product of i.i.d. SαS random vari-
ables (Theorem 3.1), whose scale parameter is inductively defined by (3.1). This is generalized
to multiple inputs (Theorem 5.1), where the pre-activation values converge to a multivari-
ate SαS distribution whose spectral measure (or, in the case α= 2, the covariance matrix) is
inductively defined by (5.1)–(5.4). These results show that an initialization using any i.i.d.
heavy-/light-tailed weights can be treated similarly to an α-stable prior assumption in the con-
text of Bayesian modeling. In Section 4, we sought a more general assumption on the activation
function, beyond boundedness. This is of importance because if the activation function is not
carefully chosen, then the initialized variances may exhibit erratic behavior as the number of
layers grows: either collapsing to zero (so that pre-activation values at deeper layers saturate),
or exploding to infinity [13, 15, 36]. Unlike the case of Gaussian initialization, our model in
general does not allow the use of ReLU. The trade-off is that we allow the use of arbitrary
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heavy-/light-tailed distributions for network weights, which is favorable for encoding heavy-
tailed behaviors of neural networks that are known to arise in well-known trained networks
[28, 42, 9].

Gradient descent on an infinitely wide deep network with the L2-loss function is related
to the kernel method via the neural network Gaussian process (NNGP) kernel [31, 26] and
the neural tangent kernel (NTK) [17, 2]. One interesting future direction is to generalize this
relationship with the kernel method to our model, in particular, by finding an appropriate coun-
terpart of the NTK. For shallow networks with stable weights and ReLU activation, it has been
shown that the NTK converges in distribution as the width tends to infinity [6], and the net-
work dynamics have been explained in terms of the kernel method. Another possible future
direction is to relax the independence assumptions on the weights. For instance, it should be
possible to extend the infinite-width limit result to the case of exchangeable weights in each
layer. Indeed, in [40], the authors consider row–column exchangeable random variables for
network weights in each layer and analyze the infinite-width limit of such a network. Some
authors have also proposed structured recipes for designing a network with dependent weights
while ensuring that the weights are partially exchangeable. One particular way is to consider a
scale mixture of Gaussians for the weight distribution [18, 34, 27, 11, 12]. Infinite-width limits
of these networks with Gaussian scale mixture weights have also been studied, at least in part,
by [23]. However, it would be more challenging to generalize the infinite-width limit result to
a network with general dependent structures for weights.

Appendix A. Auxiliary lemmas

Lemma A.1. If L is slowly varying, then

L̃(x) =
∫ x

0
t−1L(t) dt

is also slowly varying.

Proof. If L̃ is bounded, then since L̃ is increasing, L̃(x) converges as x → ∞. Thus L̃ is
slowly varying. If L̃ is not bounded, then by L’Hôpital’s rule,

lim
x→∞

L̃(λx)

L̃(x)
= lim

x→∞

∫ x
0 y−1L(λy) dy∫ x
0 y−1L(y) dy

= lim
x→∞

L(λx)

L(x)
= 1.

�
The next four lemmas are standard results; we give references for their proofs. In particular,

the next lemma is a standard result concerning the characteristic functions of heavy-tailed
distributions ([35, Theorem 1 and Theorem 3]; see also [3, Equation 3.8.2]).

Lemma A.2. If W is a symmetric random variable with tail probability P(|W|> t) = t−αL(t)
where 0<α ≤ 2 and L is slowly varying, then the characteristic function ψW (t) of W satisfies

ψW (t) = 1 − cα|t|αL

(
1

|t|
)

+ o

(
|t|αL

(
1

|t|
))

, t → 0,

where

cα = lim
M→∞

∫ M

0

sin u

uα
du = π/2

�(α) sin (πα/2)
,

https://doi.org/10.1017/apr.2023.3 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.3


Convergence of heavy-/light-tailed infinitely wide NNs 1437

for α < 2, and

ψW (t) = 1 − |t|2L̃

(
1

|t|
)

+ o

(
|t|2L̃

(
1

|t|
))

, t → 0,

where

L̃(x) =
∫ x

0
yP(|W|> y) dy =

∫ x

0
y−1L(y) dy,

for α= 2.

We next state a standard result about slowly varying functions [7, Section VIII.8, Lemma 2].

Lemma A.3. If L is slowly varying, then for any fixed ε > 0 and all sufficiently large x,

x−ε < L(x)< xε .

Moreover, the convergence

L(tx)

L(t)
→ 1

as t → ∞ is uniform in finite intervals 0< a< x< b.

An easy corollary of the above lemma is the following result, which we single out for
convenience [35, Lemma 2].

Lemma A.4. If G(t) = t−αL(t) where α ≥ 0 and L is slowly varying, then for any given positive
ε and c, there exist a and b such that

G(λt)

G(t)
<

b

λα+ε for t ≥ a, 0<λ≤ c,

G(λt)

G(t)
<

b

λα−ε for t ≥ a, λ≥ c.

In particular, for sufficiently large t> 0, we have

G(λt)

G(t)
≤ b(1/λ)α±ε

for all λ> 0, where we define xα±ε := max
(
xα+ε, xα−ε).

The next lemma concerns the convolution of distributions with regularly varying tails [7,
Section VIII.8, Proposition].

Lemma A.5. For two distributions F1 and F2 such that as x → ∞
1 − Fi(x) = x−αLi(x)

with Li slowly varying, the convolution G = F1 ∗ F2 has a regularly varying tail such that

1 − G(x) ∼ x−α(L1(x) + L2(x)).

Lemma A.6. Let {Xkn:k ∈N} be i.i.d. with EX1n = 0 for each n ∈N. If the family {|X1n|p:n ∈N}
is uniformly integrable for some p> 1, then as n → ∞, we have
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Sn := 1

n

n∑
k=1

Xkn → 0

in probability.

Proof. For M> 0, let

Ykn := Xkn1[|Xkn|≤M] −E
(
Xkn1[|Xkn|≤M]

)
, Zkn := Xkn1[|Xkn|>M] −E

(
Xkn1[|Xkn|>M]

)
,

Tn := 1

n

n∑
k=1

Ykn, Un := 1

n

n∑
k=1

Zkn.

By Markov’s inequality,

P
(|Tn| ≥ δ

)≤ Var Y1n

nδ2
≤ 4M2

nδ2
,

and

P
(|Un| ≥ δ

)≤ E|Un|p
δp

≤ E|Z1n|p
δp

.

Thus, we have

lim sup
n→∞

P
(|Sn| ≥ 2δ

)≤ 1

δp
sup

n
E|Z1n|p.

By the uniform integrability assumption, the right-hand side can be made arbitrarily small by
increasing M. �

Appendix B. Proof of Lemma 3.1

First suppose (πj)j∈N converges to π∞ in the weak topology on Pr ( Pr (R)). We want to
show that (X(j))j∈N converges in distribution to X(∞). By [19, Theorem 4.29], convergence in
distribution of a sequence of random variables is equivalent to showing that for every m> 0
and all bounded continuous functions f1, . . . , fm, we have

E

[
f1(X(j)

1 ) · · · fm(X(j)
m )
]
→E

[
f1(X(∞)

1 ) · · · fm(X(∞)
m )

]
as j → ∞. Rewriting the above using (3.3), we must show that as j → ∞,∫

Pr (R)

(∫
Rm

m∏
i=1

fi(xi) ν
⊗m(dx)

)
πj(dν) −→

∫
Pr (R)

(∫
Rm

m∏
i=1

fi(xi) ν
⊗m(dx)

)
π∞(dν).

But this follows since ν �→ ∫
Rm

∏m
i=1 fi(xi) ν⊗m(dx) is a bounded continuous function on Pr (R)

with respect to the weak topology.
We now prove the reverse direction. We assume (X(j))j∈N converges in distribution to X(∞)

and must show that (πj)j∈N converges to π∞.
In order to show this, we first claim that the family (πj)j∈N is tight. By [21, Theorem 4.10]

(see also [10, Theorem A.6]), such tightness is equivalent to the tightness of the expected
measures (∫

ν⊗N πj(dν)

)
j∈N

.
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But these are just the distributions of the family (X(j))j∈N, which we have assumed converges
in distribution. Hence its distributions are tight.

Let us now return to proving that (πj)j∈N converges to π∞. Suppose to the contrary that this
is not the case. Since the family (πj)j∈N is tight, by Prokhorov’s theorem there must be another
limit point of this family, π̃ �= π∞, and a subsequence (jn)n∈N such that

πjn
w→ π̃

as n → ∞. By the first part of our proof, this implies that (X(jn))n∈N converges in distribution
to an exchangeable sequence with distribution

∫
ν⊗N π̃(dν). However, by assumption we have

that (X(j))j∈N converges in distribution to X(∞), which has distribution
∫
ν⊗N π∞(dν). Thus, it

must be that ∫
ν⊗N π̃ (dν) =

∫
ν⊗N π∞(dν).

But [20, Proposition 1.4] tells us that the measure π in (3.3) is unique, contradicting π̃ �= π∞.
Thus, it must be that (πj)j∈N converges to π∞.

Appendix C. Multivariate stable laws

This section contains some basic definitions and properties related to multivariate stable
distributions, to help familiarize readers with these concepts. The material in this section comes
from the monograph [38] and also from [22].

Definition C.1. A probability measure μ on R
k is said to be (jointly) stable if for all a, b ∈R

and two independent random variables X and Y with distribution μ, there exist c ∈R and
v ∈R

k such that

aX + bY
d= cX + v.

If μ is symmetric, then it is said to be symmetric stable.

Similarly to the one-dimensional case, there exists a constant α ∈ (0, 2] such that cα = aα +
bα for all a,b, which we call the index of stability. The distribution μ is multivariate Gaussian
in the case α = 2.

Theorem C.1. Let α ∈ (0, 2). A random variable X taking values in R
k is symmetric stable

if and only if there exists a finite measure � on the unit sphere Sk−1 = {x ∈R
k:|x| = 1} such

that

E exp
(

i〈t,X〉
)

= exp
(

−
∫

Sk−1

|〈t, s〉|α�(ds)
)

(C.1)

for all t ∈R
k. The measure � is called the spectral measure of X, and the distribution is

denoted by SαSk(�).

In the case k = 1, the measure � is always of the form c1δ1 + c−1δ−1. Thus, the
characteristic function reduces to the familiar form

EeitX = e−|σ t|α .
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